Reprint Server

New Methods for High-Dimensional Verified Quadrature


Conventional verified methods for integration often rely on the verified bounding of analytically derived remainder formulas for popular integration rules. We show that using the approach of Taylor models, it is possible to devise new methods for verified integration of high order and in many variables. Different from conventional schemes, they do not require an a-priori derivation of analytical error bounds, but the rigorous bounds are calculated automatically in parallel to the computation of the integral.

The performance of various schemes are compared for examples of up to order ten in up to eight variables. Computational expenses and tightness of the resulting bounds are compared with conventional methods.

M. Berz, K. Makino, Reliable Computing 5 (1999) 13-22


Click on the icon to download the corresponding file.

Download Postscript version (67951 Bytes).
Download Adobe PDF version (50923 Bytes).

Go Back to the reprint server.
Go Back to the home page.

This page is maintained by Kyoko Makino. Please contact her if there are any problems with it.