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Abstract. Conventional verified methods for integration often rely on the verified bounding of
analytically derived remainder formulas for popular integration rules. We show that using the approach
of Taylor models, it is possible to devise new methods for verified integration of high order and in
many variables. Different from conventional schemes, they do not require an a-priori derivation
of analytical error bounds, but the rigorous bounds are calculated automatically in parallel to the
computation of the integral.

The performance of various schemes are compared for examples of up to order ten in up to
eight variables. Computational expenses and tightness of the resulting bounds are compared with
conventional methods.

1. Introduction

The verified solution of one- and higher dimensional integrals is one of the important
problems using interval methods in numerics [1], [4], [5], [9]. The strategy is usually
to derive formulas based on the evaluation of the function at a suitably chosen set
of points xi and the determination of a weighted average

I =
N
∑

i= 1

wi ⋅ ƒ(xi)

that approximates the integral of ƒ over an interval [X1, X2]. By suitably choosing
the points xi ∈ [X1, X2] as well as the weights wi, it is possible to derive a formula
for the local error of the method based on a higher derivative of ƒ at an intermediate
point ξ as

E = A ⋅ ƒ(k)(ξ), where ξ ∈ [X1, X2].

The factor A depends on the method and usually includes a higher power of the
width X2 − X1. Within the framework of interval analysis, it is then possible to
determine bounds of E by evaluating the code for the derivative ƒ(k), which is
usually obtained from automatic differentiation, over the interval [X1, X2] (see, for
example, [10]).
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In principle the method can be extended to higher orders, and also to several
dimensions. However, especially schemes in higher dimensions and to high order
can become rather cumbersome to derive and implement. Additional complications
occur if the function ƒ is sensitive to the dependency problem [8], in which case the
evaluation of its error term via automatic differentiation, which requires even more
arithmetic than ƒ itself, can become difficult.

In the following, we use the Taylor model approach [2], [6], [7] for the com-
putation of derivatives. This approach provides a local inclusion of a functional
dependency within a tight band of constant width around a Taylor polynomial with
floating point coefficients by merely evaluating ƒ in Taylor model arithmetic. The
method has the advantages that it is applicable in high order and in many variables,
and that it provides error bounds that scale with a high power of the width of the
domain bounds, while substantially reducing the dependency problem.

Given an n-th order Taylor model (Pn, ƒ, In, ƒ) of a function ƒ : [a→, b
→

] ⊂ Rv → R
consisting of the floating point Taylor polynomial Pn, ƒ and the remainder interval
In, ƒ around the reference point x→0, we can determine a Taylor model for the indefinite
integral ∂−1

i ƒ =
∫

ƒ dxi with respect to the variable xi. The Taylor polynomial part
is obviously just given by

∫ xi
0 Pn−1, ƒ(x→) dxi (here, Pn−1, ƒ is the Taylor polynomial

of order n − 1, i.e., the sum of all terms of order ≤ (n − 1) in the polynomial
Pn, ƒ). Since the part of the Taylor polynomial Pn, ƒ that is of precise order n is
Pn, ƒ − Pn−1, ƒ, remainder bounds can be obtained as (B(Pn, ƒ − Pn−1, ƒ) + In, ƒ) ⋅
|B(xi)|, where B(Pn, ƒ − Pn−1, ƒ) is the bound of the polynomial of exact order n,
and |B(xi)| = bi − ai. We thus define the operator ∂−1

i on the space of Taylor
models as

∂−1
i (Pn, ƒ, In, ƒ) = (Pn, ∂−1ƒ, In, ∂−1ƒ)

=
(∫ xi

0
Pn−1, ƒ(x→) dxi,

(

B(Pn, ƒ − Pn−1, ƒ) + In, ƒ
)

⋅ |B(xi)|
)

. (1.1)

With this definition, bounds for a definite integral over variable xi from xil to xiu

both in [ai, bi], the domain of validity of the Taylor model of a function, can be
obtained as

∫ xiu

xil

ƒ(x→) dxi ∈
(

Pn, ∂−1ƒ(x→|xi =xiu−xi0 ) − Pn, ∂−1ƒ(x→|xi = xil−xi0), In, ∂−1ƒ

)

. (1.2)

This method has the following advantages:

1. There is no need to derive quadrature formulas with weights, support points xi,
and an explicit error formula.

2. High orders can be employed directly by just increasing the order of the Taylor
model, limited only by computational resources.

3. Rather large dimensions are amenable by just increasing the dimensionality of
the Taylor model, limited only by computational resources.
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4. For complicated functions, the control of the dependency problem by the Taylor
model approach [8] often results in significantly sharper bounds than those
obtained through interval-Taylor methods, i.e. Taylor polynomials with interval
coefficients.

In the following sections, we will study the approach for a variety of cases.

2. One-Dimensional Integrals

Utilizing the integral operation ∂−1 introduced in (1.1) and (1.2), it is possible to
perform integration of functions of one or more variables. To increase the accuracy,
the domain of the integral can be divided into sub-domains within which the
function is represented by local Taylor models. To obtain the total integral, each
of the local Taylor models is integrated, which requires the application of the
operators ∂−1

i , subsequent evaluations of polynomials as well as adding the interval
bounds. Accuracy can be controlled both by adjustment of the width of the local
domains as well as of the order n. In practice it is quite straightforward to operate
with orders of ten or higher, and as a consequence the resulting accuracy is not
only guaranteed, but the method is also very efficient.

We compare this method with a variety of other verified integration schemes,
beginning with the straightforward step rule, in which upper and lower bounds of
the function are obtained over subintervals by mere interval evaluation. We also
employ the conventional trapezoidal rule as well as the Simpson 1/3 rule, including
verification through their error formulas, which requires the bounding of the second
and the fourth derivatives of the integrand, respectively.

As an example, we study the definite integral of a one dimensional function

∫ 1

0

4
1 + x2 dx,

the value of which is known to be π. Table 1 summarizes the resulting estimates
with various divisions of the domain of the integral. The step rule covering the
whole domain by one interval gives an enclosure which is too wide to be useful.
To increase the sharpness of the enclosure, the whole domain is divided into many
smaller intervals. The trapezoidal and Simpson rules reach accuracies of about 10−6

and 10−15 with a subdivision into 1000 intervals. On the other hand, the fifth- and
tenth order Taylor model integrations reach about 10−7 and 10−14 verified accuracy
with only 16 subdivisions of the interval. We also show the non-verified estimates
of the Monte-Carlo approach, which because of its simplicity will be used below
for high-dimensional problems.
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Table 1. Bound estimates of
∫ 1

0
4 / (1 + x2) dx.

Analytical Answer π ≈ 3.1415926535897

Step Rule with Verification

Subdivisions Bound

1 [ 2.0000000000000 , 4.0000000000000 ]

10 [ 3.0399259889071 , 3.2399259889071 ]

100 [ 3.1315759869231 , 3.1515759869231 ]

1000 [ 3.1405924869231 , 3.1425924869231 ]

Trapezoidal Rule with Verification

Subdivisions Bound

1 [ 0.5000000000000 , 3.6666666666666 ]

10 [ 3.1403914418783 , 3.1425703033023 ]

100 [ 3.1415915590081 , 3.1415937257970 ]

1000 [ 3.1415926525053 , 3.1415926546720 ]

Simpson 1/3 Rule with Verification

Subdivisions Bound

1 [ 2.5666666666666 , 3.5291666666666 ]

10 [ 3.1415909377638 , 3.1415944278590 ]

100 [ 3.1415926535726 , 3.1415926536069 ]

1000 [ 3.1415926535897 , 3.1415926535897 ]

Monte-Carlo Method (not verified)

Sampling Points Estimate

1 3.0644927519710

100 3.1750796498765

10000 3.1472009776816

1000000 3.1401270041329

Taylor Model Method

Order Subdivisions Bound

1 [ 3.0231893333333 , 8.5807786666666 ]

5 4 [ 3.1415363229415 , 3.1416629536292 ]

16 [ 3.1415926101614 , 3.1415926980786 ]

1 [-2.1984010266006 , 3.2113963175267 ]

10 4 [ 3.1415926519535 , 3.1415926546870 ]

16 [ 3.1415926535897 , 3.1415926535897 ]



NEW METHODS FOR HIGH-DIMENSIONAL VERIFIED QUADRATURE 17

3. Multidimensional Integrals

3.1. A THREE-DIMENSIONAL EXAMPLE

The first example is a somewhat randomly chosen complicated function of three
variables:

ƒ(x, y, z) =
4 tan(3y)

3x + x
√

6x / (56 − 7x)
− 120 − 2x

− 7z(1 + 2y) − sinh
(

1
2

+
6y

8y + 7

)

+
(3y + 13)2

3z
− 20z(2z − 5) +

5x tanh(0.9z)√
5y

− 20y sin(3z).

Integration was performed over the range [3 / 4, 5 / 4] × [3 / 4, 5 / 4] × [3 / 4, 5 / 4].
In Table 2, we compare the performance of the step rule and the trapezoidal rule,
which because of the complexity of the derivation of a remainder formula was not
verified, with the computation using Taylor models of order five and ten, requiring
a total of 56 and 286 coefficients respectively. Again, various subdivisions of the
domain were performed.

One observes that the use of just one Taylor model of order ten to cover the entire
domain yields a sharpness comparable to that of the use of 163 = 4096 subintervals
in the trapezoidal rule. Increasing the subdivisions to 83 = 512 subintervals in the
Taylor model approach yields 10 digit accuracy, which would be reached by the
trapezoidal rule only at an estimated 1010 subintervals.

3.2. EXAMPLES IN FOUR, SIX, AND EIGHT DIMENSIONS

We now concentrate on the determination of integrals of high dimensions. With
conventional methods, these are often very difficult to treat: On the one hand, one
needs high order for the sake of staying within a manageable number of subdivisions
per dimension: On the other hand, it is quite complicated to derive error formulas
for such high-order multidimensional cases. Compared to this predicament, in the
Taylor model approach, there is no increased theoretical effort, and high orders and
many dimensions can still be treated with reasonable effort.

In order to benchmark the various algorithms, we construct multidimensional
integrals whose analytical values are known. They are based on the following double
definite integral found in [3].

∫
π
2

0

∫
π
2

0

sin y
√

1 − k2 sin2 x sin2 y
1 − k2 sin2 y

dx dy =
π

2
√

1 − k2
.

In order to assess the performance of algorithms in higher dimensionalities,
we use this integral to construct four-, six-, and eight dimensional integrals with
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Table 2. Bound estimates of a three dimensional integral.

Step Rule with Verification

Subdivisions Bound

1 [ -9.43480535560 , 11.84444223367 ]

43 [ -2.37821189737 , 2.81357566502 ]

163 [ -0.49305930286 , 0.80296307748 ]

643 [ -0.01095827969 , 0.31301380623 ]

Trapezoidal Rule

Subdivisions Estimate

1 0.48657769881

43 0.17278422284

163 0.15214575522

643 0.15085237990

Monte-Carlo Method

Sampling Points Estimate

1 0.97878177127

100 0.00229810669

10000 0.14778035060

1000000 0.15154470170

Taylor Model Method

Order Subdivisions Bound

1 [ 0.08429328162 , 0.22934882912 ]

5 23 [ 0.14823776771 , 0.15294164469 ]

43 [ 0.15068701132 , 0.15084227488 ]

83 [ 0.15076370507 , 0.15076856317 ]

1 [ 0.14602544640 , 0.15436708172 ]

10 23 [ 0.15075284566 , 0.15077186956 ]

43 [ 0.15076611865 , 0.15076615436 ]

83 [ 0.15076614172 , 0.15076614177 ]

known value to serve as test cases. As a first step, we obtain the four dimensional
integral

∫
π
2

0

∫
π
2

0

∫
π
2

0

∫
π
2

0

(

sin y
√

1 − k2 sin2 x sin2 y
1 − k2 sin2 y

+
sin w

√
1 − k2 sin2 z sin2 w
1 − k2 sin2 w

)

dx dy dz dw,
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Table 3. Bound estimates of a four dimensional integral.

Analytical Answer π3 / (4
√

1 − k2) ≈ 8.170871339 for k2 = 0.1

Step Rule with Verification

Subdivisions Bound

1 [ 0.707312958E-15, 13.529040421 ]

44 [ 6.344461569 , 9.814754327 ]

164 [ 7.730435550 , 8.599902240 ]

Trapezoidal Rule

Subdivisions Estimate

1 6.590953776

44 8.071117282

164 8.164644803

Monte-Carlo Method

Sampling Points Estimate

1 10.718624190

100 7.850754773

10000 8.197884624

1000000 8.176000177

Taylor Model Method

Order Subdivisions Bound

1 [ 7.133074468 , 9.204470869 ]

5 24 [ 8.148975985 , 8.192531932 ]

44 [ 8.170404693 , 8.171334032 ]

1 [ 8.139359412 , 8.205450807 ]

10 24 [ 8.170848978 , 8.170894025 ]

44 [ 8.170871325 , 8.170871354 ]

which is to have the value of π 3 / (4
√

1 − k2). Attempting to solve the integral with
the quadrature engines in Mathematica and Maple fails. The definite integral for
k2 = 0.1 is approximately 8.170871339259325. Similar to before, computations are
made to obtain the bounds with the step rule and the Taylor model method as shown
in Table 3. Apparently all estimates obtained by the Taylor model approach yield
correct inclusions, and in case of tenth order Taylor models the sharpness reaches
eight significant digits with only four subdivisions per dimension, corresponding
to a grid size of π / 8. It is also apparent that the accuracy increases by roughly
three orders of magnitude each time the grid size is reduced by a factor of two,
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Table 4. Bound estimates of a six dimensional integral.

Analytical Answer 3π5 / (32
√

1 − k2) ≈ 30.24122539 for k2 = 0.1

Step Rule with Verification

Subdivisions Bound

1 [ 0.261783715E-14, 50.07235383 ]

26 [ 16.12883946 , 41.65021086 ]

46 [ 23.48149718 , 36.32540343 ]

Trapezoidal Rule

Subdivisions Estimate

1 24.39378990

26 28.75885830

46 29.87202549

Monte-Carlo Method

Sampling Points Estimate

1 32.08739916

100 29.38558165

10000 30.28333639

1000000 30.23656210

Taylor Model Method

Order Subdivisions Bound

1 [ 26.40023368 , 34.06668232 ]

5 26 [ 30.16018846 , 30.32139345 ]

46 [ 30.23949829 , 30.24293787 ]

1 [ 30.12459655 , 30.36920752 ]

10 26 [ 30.24114263 , 30.24130936 ]

46 [ 30.24122534 , 30.24122545 ]

corresponding to the expected decrease of the error with the tenth order of the grid
size.

In a similar manner, the integral problem is extended to the six dimensional and
the eight dimensional cases, where the question of computer resources becomes
non-negligible even for the evaluation with the simple trapezoidal rule without any
error verification. The results are shown in Table 4 and Table 5, where we find the
tenth order Taylor model computation without any domain division already gives a
remarkably good bound estimate.
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Table 5. Bound estimates of an eight dimensional integral.

Analytical Answer π7 / (32
√

1 − k2) ≈ 99.48964376 for k2 = 0.1

Step Rule with Verification

Subdivisions Bound

1 [ 0.861233904E-14, 164.73144125 ]

28 [ 53.06175498 , 137.02370147 ]

48 [ 77.25102931 , 119.50578720 ]

Trapezoidal Rule

Subdivisions Estimate

1 80.25235205

28 94.61285151

48 98.27502476

Monte-Carlo Method

Sampling Points Estimate

1 72.40666558

100 95.61473748

10000 99.86545191

1000000 99.50324225

Taylor Model Method

Order Subdivisions Bound

1 [ 86.85328752 , 112.07489259 ]

5 28 [ 99.22304294 , 99.75338610 ]

48 [ 99.48396181 , 99.49527757 ]

1 [ 99.10595024 , 99.91068808 ]

10 28 [ 99.48937149 , 99.48991998 ]

48 [ 99.48964358 , 99.48964393 ]
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