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ABSTRACT

THE FAST MULTIPOLE METHOD IN THE DIFFERENTIAL ALGEBRA
FRAMEWORK FOR THE CALCULATION OF 3D SPACE CHARGE

FIELDS

By

He Zhang

The space charge effect is one of the most important collective effects in beam dynamics

studies. In many cases, numerical simulations are inevitable in order to get a clear under-

standing of this effect. The particle-particle interaction algorithms and the particle-in-cell

algorithms are widely used in space charge effect simulations. But they both have difficulties

in dealing with highly correlated beams with abnormal distributions or complicated geome-

tries. We developed a new algorithm to calculate the three dimensional self-field between

charged particles by combining the differential algebra (DA) techniques with the fast multi-

pole method (FMM). The FMM hierarchically decomposes the whole charged domain into

many small regions. For each region it uses multipole expansions to represent the poten-

tial/field contributions from the particles far away from the region and then converts the

multipole expansions into a local expansion inside the region. The potential/field due to the

far away particles is calculated from the expansions and the potential/field due to the nearby

particles is calculated from the Coulomb force law. The DA techniques are used in the calcu-

lation, translation and converting of the expansions. The new algorithm scales linearly with

the total number of particles and it is suitable for any arbitrary charge distribution. Using

the DA techniques, we can calculate both the potential/field and its high order derivatives,

which will be useful for the purpose of including the space charge effect into transfer maps

in the future.



We first present the single level FMM, which decomposes the whole domain into boxes of

the same size. It works best for charge distributions that are not overly non-uniform. Then

we present the multilevel fast multipole algorithm (MLFMA), which decomposes the whole

domain into different sized boxes according to the charge density. Finer boxes are generated

where the higher charge density exists; thus the algorithm works for any arbitrary charge

distribution. A Message Passing Interface (MPI) based parallel version of the MLFMA is

developed, so that we can take advantage of cluster machines and enhance our simulation

ability. The algorithms are described in details and the numerical experimental results about

the efficiency and accuracy of the algorithm are presented and discussed. In the end, we

give an example of using this algorithm in the photo emission process simulation. Some

simulation related topics are discussed, such as: how to choose the proper units for the

variables in the beam dynamics equations, how to transform the space charge fields from

the bunch frame to the laboratory frame, and how to avoid artificial collisions between the

charged particles.
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Chapter 1

A Brief Review on the Algorithms for

Self-Field Calculation between

Charged Particles

1.1 Introduction

The Coulomb interaction between charged particles inside a bunch is one of the most impor-

tant collective effects in the study of beam dynamics. As scientists try to approach higher

beam intensity, this effect becomes more significant in modern high brilliance particle ac-

celerators or free electron laser devices. This effect may also be dominant in contemplated

time resolved electric microscopes where the beam energy is relatively low [45, 48]. Although

many analytical models and discussions have been made, numerical simulation is inevitable

to have a good understanding of this effect in many cases.

Usually we assume all the charged particles have very small velocities in the beam frame,

so that their interaction can be treated as an electrostatic field, which can be calculated

from the Coulomb force law. However, the computation cost of the pairwise formula of

the Coulomb force law scales with the square of the particle number N ; this makes it not

applicable in many cases because we often have a huge number of charged particles inside a
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bunch. To increase the efficiency many fast calculation algorithms have been developed. In

this chapter, we will first give a brief historic review of the algorithms developed for beam

dynamics simulations, then concentrate on our algorithm, the fast multipole method (FMM)

based on the differential algebra (DA) , whose computation cost scales linearly with N .

1.2 A Glimpse into the Space Charge Calculation Rou-

tines for Beam Dynamics Simulations

Beam physicists have been using numerical simulations to study the space charge effect

for decades. Many fast algorithms and programs have been developed; most of them can

be classified into two categories: the particle-particle-interaction (PPI) method and the

particle-in-cell (PIC) method [51].

1.2.1 The Particle-Particle-Interaction Method

The basic idea of the PPI method is to use macroparticles, each of which represents a

group of real particles, calculate the field on the macroparticles and move them in the

simulation [60, 51, 35, 52, 50]. In order to calculate the field, one makes some assumptions

concerning the bunch shape and charge distribution, such as an elliptical bunch with uniform

charge distribution inside [17, 18], or fit the real charge distribution by a group of analytical

functions such as a Gaussian [52, 51, 50]. Table 1.1 lists some typical PPI programs with

the assumptions of their algorithm. The programs work well as long as the assumptions are

valid.

MAPRO2 uses macroparticles, each representing 105 to 107 real particles, in simulation.
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Table 1.1: Some PPI programs

Programs Year Assumptions
MAPRO2 1971 Ellipsoidal shape and Gaussian charge distribution
SC3DELP 1991 Ellipsoidal shape
SCHERM 1996 Ellipsoidal symmetry in transverse directions

Improved SCHERM 1996 NONE

The charge distribution inside the bunch is assumed to be a three dimensional Gaussian

distribution such as[60]

n(x, y, z) = n0 exp

{

−1

2

(

x2

a2
+
y2

b2
+
z2

c2

)}

, (1.1)

where a, b, and c are the root mean square (rms) bunch sizes and n0 = 4N/((2π)3/2a · b · c).

Then the field on each macroparticle can be calculated by numerical integration in Eq. (1.2).

Ex =
q · a · b · c · x

2ε0
·
∫ ∞

0

n0 exp

[

−1
2

(

x2

a2+s
+ y2

b2+s
+ z2

c2+s

)]

ds

(a2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
,

Ey =
q · a · b · c · y

2ε0
·
∫ ∞

0

n0 exp

[

−1
2

(

x2

a2+s
+ y2

b2+s
+ z2

c2+s

)]

ds

(b2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
, (1.2)

Ez =
q · a · b · c · z

2ε0
·
∫ ∞

0

n0 exp

[

−1
2

(

x2

a2+s
+ y2

b2+s
+ z2

c2+s

)]

ds

(c2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
,

where q is the total charge of the macroparticle, ε0 is the permittivity. MARPO2 assumes

that the bunch has an elliptical shape and a Gaussian distribution of charges, which is not

necessarily true in practice, especially for high density beams, and may lead to inaccurate

results.

SC3DELP (1991) expands the charge distribution from the Gaussian distribution to any
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arbitrary distribution, although it still assumes an elliptical shape. If the density is described

as[35]

n(t0) = n

(

x2

a2
+
y2

b2
+
z2

c2

)

, (1.3)

where a, b, and c are the rms bunch sizes and t0 defines the isodensity contours of the

distribution, the electric field can be expressed as[35]

Ex =
q · a · b · c · x

2ε0

∫ ∞

0

n(t)ds

(a2 + s)3/2(b2 + s)1/2(c2 + s)1/2
,

Ey =
q · a · b · c · y

2ε0

∫ ∞

0

n(t)ds

(a2 + s)1/2(b2 + s)3/2(c2 + s)1/2
, (1.4)

Ez =
q · a · b · c · z

2ε0

∫ ∞

0

n(t)ds

(a2 + s)3/2(b2 + s)1/2(c2 + s)3/2
,

where q is the total charge of the macroparticle, ε0 is the permittivity, and t = t(x, y, z, s) =

x2/(a2+ s)+ y2/(b2+ s)+ z2/(c2+ s). The charge density can be described as an expansion

of the Fourier series, in which the coefficients can be approximated as a summation over all

macroparticles. For each macroparticle, plug in the coordinates x, y, and z in Eq. (1.4) and

the field can be calculated by performing the integration over s.

SCHERM (1996) only assumes the ellipsoidal symmetry in the transverse directions. The

longitudinal shape is described by the overlap of two or three Gaussian functions [51]. The

charge distribution can be expressed by a Hermite series expansion or a Cesaro-Fejer series

expansion [50]. Since the bunch is decomposed into two or three ellipsoidal bunches, the field

is the summation of the contribution from each bunch, which can be numerically calculated

by Eq. (1.4). The improved SCHERM removes all the assumptions on symmetry, based on

the knowledge that the three dimensional charge distribution of a bunch can be expressed
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by a Hermite series expansion as[52]

ρ(
x

a
,
y

b
,
z

c
) =

∑

i,j,k

Ai,j,kHi

(x

a

)

Hj

(y

b

)

Hk

(z

c

)

exp

(

− x2

2a2
− y2

2b2
− z2

2c2

)

, (1.5)

with

Ai,j,k =
q

(2π)3/2i!j!k!

P
∑

p=1

Hi

(xp
a

)

Hj

(yp
b

)

Hk

(zp
c

)

.

The charge distribution in a bunch can be considered as the Gaussian distribution

ρ0(x, y, z) = A000 exp

(

− x2

2a2
− y2

2b2
− z2

2c2

)

with some modifications. The field due to the Gaussian distribution can be numerically

calculated by Eq. (1.4) as before and the field due to the other terms with Ai,j,k 6= A000

can be approximately calculated by Eq. (1.6) as follows [52].

Ex = −αAi,j,kHi−1
(x

a

)

Hj

(y

b

)

Hk

(z

c

)

exp

(

− x2

2a2
− y2

2b2
− z2

2c2

)

,

Ey = −βAi,j,kHi
(x

a

)

Hj−1
(y

b

)

Hk

(z

c

)

exp

(

− x2

2a2
− y2

2b2
− z2

2c2

)

, (1.6)

Ez = −γAi,j,kHi
(x

a

)

Hj

(y

b

)

Hk−1
(z

c

)

exp

(

− x2

2a2
− y2

2b2
− z2

2c2

)

,

where α, β, and γ are parameters that need to be optimized for each term and that satisfies

α + β + γ = 1.

The PPI codes have been developed for several decades. In the beginning one can only

treat some simple cases with the ellipsoidal symmetry in shape and the uniform distribution

or the Gaussian distribution of charges. Now one can treat bunches with any arbitrary shape

and any arbitrary charge distribution. The most time consuming part is to fit the charge
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distribution and numerically calculate the electric field. Except for a few special cases, there

is no explicit formula for the self-field inside a charged particle bunch. In most cases the field

calculation depends on numerical methods. Although new algorithms are being developed

[66, 73], it is always challenging to do it in a fast and accurate way. In some cases, it may be

very challenging to fit the charge distribution. From Eq. (1.5) one can see it will be easier

to fit the charge distribution if it is close to the Gaussian distribution. However this is not

necessarily true in practice. The charge distribution of a high intensity bunch under external

fields may be far away from a Gaussian distribution, which makes the fitting difficult.

1.2.2 The Particle-In-Cell Method

The PIC method is the most popular method to calculate the space charge effect in beam

dynamics simulations, which has been developed for several decades. In the earlier days,

assumptions on symmetry were used to help simplify the calculation and solve the problem.

For example, SCHEFF, a two dimensional PIC code, assumes the bunch shape has cylindrical

symmetry [69]. Thanks to the development of algorithms and computer hardware, the

contemporary PIC codes can deal with the bunches containing billions of macroparticles

with any arbitrary shape and charge distribution. In the latest two decades, many PIC

codes, for example, WARP [43], GPT [71], VORPAL [63], and IMPACT [74], have been

developed and successfully applied in beam dynamics simulation in different areas such as

laser-plasma accelerators, electron guns, high intensity ion or electron storage rings, etc

[42, 63]. Some PIC codes can simulate millions of particles on a PC. Parallel version of

many contemporary PIC codes has also been developed [63, 74, 41], which allows them to

run on the modern cluster machines. Taking advantage of supercomputers, some PIC codes

can simulate billions of particles [77, 62].
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The strategy of the PIC method can be described in three steps. First, one needs to set

up a grid on the space with charges and distribute the charge density onto the mesh points.

Then, solve the Poisson equation to obtain the electric field on the mesh points, with which

the electric field on the charged particles can be calculated by interpolation. Finally solve

the dynamics equations of the charged particles or solve the Vlasov equation of the flow.

So the first challenge is how to set up the grid, which has effects on accuracy and efficiency.

Usually, in practice one needs to find a balance between the accuracy and the efficiency. In

earlier codes, an equidistant grid is often used. But by now to efficiently deal with more

complicated charge density distributions, adaptive griding techniques with nonequidistant

grids have been developed, which generate a finer grid where higher charge density exists and

a coarser grid where lower charge density exists [72, 87]. The second challenge is to solve the

Poisson equation. This problem has been addressed by physicists and mathematicians for

many years, and there are many well developed methods that can be selected such as the fast

Fourier transformation based solver used in WARP [43], the Green’s function based solver

used in IMPACT [74], the finite difference time-domain solver used in VORPAL[63] , etc.

Finally, one has to solve the dynamics equations, which is also a classical problem. Leap-frog

integrators and Runge-Kutta integrators are often employed [43, 63, 71, 74]. In one sentence

the PIC method is a mature and promising method to solve the self-field between charged

particles.

1.2.3 The Fast Multipole Method

Since so many simulation codes for the space charge effect calculation have been developed

and successfully applied, a question naturally raised is why we need a new algorithm? Why

do we not simply use the existing codes? To answer this question, we have to make it
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clear what we want to calculate. From the beginning, we plan to include the space charge

effect into the transfer map, which is widely used in the beam dynamics simulation for

single particle dynamics studies. The space charge may have significant effects on the beam

dynamics, which can be reflected by the transfer map [16, 65]. In the long run, we want

to develop a method that can generate the transfer map for any arbitrary field. Our group

has developed a method to generate the map for any given external field [57, 58, 59]. To

generate the transfer map for the self-field inside a charged particle bunch is the question in

front of us. For this purpose we need to calculate not only the field but also the derivatives

of the field on the reference particle. Using the PIC method, the field on the macroparticle

is calculated by interpolation, as a result it is very difficult to calculate the derivatives of the

field. Using the PPI method, it is possible to calculate the derivatives of the field if we use

a DA based numerical integrator to calculate the field, but there always exists the danger

that the fitting algorithm for the charge density distribution may fail if the charge density is

too complicated. So we need an algorithm that can treat any arbitrary charge distribution

and that can calculate both the field and the high order derivatives of the field.

The year 1986 brought the publication of the tree code algorithm, also known as Barnes-

Hut algorithm [8], in which the potentials of the particles far away from the observer are

represented by the multipole expansions in powers of 1/r, covering larger and larger boxes

further and further away from the point of interest. In this way the original point to point

interaction is replaced by the point to box (that contains the multipole expansion) interac-

tion. It could be shown that the cost of the method scales with O(N logN)[8, 9]. In 1987,

Greengard and Roklin published the fast multipole method (FMM), in which multipole ex-

pansions are converted into the local expansions in the near region of the observer. Thus

the point to box interaction is converted into the box (that contains the multipole expan-
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sion) to box (that contains the local expansion) interaction, and the efficiency is further

increased to O(N)[39, 19].The original FMM focused on the Coulomb (1/r) potential, and

the three dimensional potential of a point charge is expanded in terms of the spherical har-

monic functions in spherical coordinates[10]. Later on, other algorithms in the FMM family

were developed for different problems, such as the screened Coulomb interaction[40, 55], elec-

tromagnetic scattering (Helmholtz equation)[32, 25], 1/rν potential for any real ν [80], and

potentials that have no explicit expression and can only be expressed numerically[5, 56, 34].

Some of the algorithms express their multipole expansions and local expansions in Cartesian

coordinates. Both FMM and tree code have been widely applied in may areas and have also

gained some attentions in beam dynamics simulations. The two dimensional FMM algorithm

has been employed in Accsin to calculate the transverse space charge field [46, 47]. The tree

code has been used in some electron beam emittance studies [26]. We build a new algorithm

that fits our needs by combining the FMM with our differential algebra (DA) method. The

FMM in the DA framework can calculate not only the three dimensional self-field, but also

its high order derivatives between charged particles in any distribution. In the following

chapters, the details of the DA based FMM will be presented and discussed.
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Chapter 2

Single Level Fast Multipole Method

in the Differential Algebra Framework

2.1 The Algorithm of the single level FMM

The key idea of the FMM is to represent the potential of suitable groups of source particles

that are far away from the observer in terms of expansions involving powers of 1/r, which

we refer to as a far multipole expansion, and use the fact that far enough away, higher

powers of 1/r are less and less significant. This makes it possible to compute the action of

source particles on observer particles in a more efficient manner. Furthermore, far multipole

expansions corresponding to certain groups can be translated and combined. And finally,

far multipoles can also be locally expanded involving powers of r, which we call a local

expansion. This local expansion thus allows the treatment of groups of nearby observer

particles in a combined manner.

In practice, one first encloses all the particles in a group of cube boxes, the zero level

boxes. Then each of these cube boxes is cut into eight equal small cube boxes, which we

call the first level boxes. Then each first level box is cut in the same way into eight smaller

boxes, leading to the second level boxes. This process is continued until a pre-specified level

is reached. In practice, the number of levels is determined such that the average number

of particles in the finest boxes is near a pre-specified value, the size of which will affect the
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Figure 2.1: Sequential cutting of an original box

l = 1 l = 2

12 6

89 7

43 5

efficiency of the method.

We call boxes of the same level neighbors if they touch. For a given box A, we denote the

region made of all same level neighbors and A itself as the near region of A, and everything

else as the far region A. For a box A, a next higher level box B containing A is called a

parent box of A, and A is called one of the child boxes of B. Apparently each child box has

only one parent box, and each parent box has eight child boxes.

A two dimensional example about how to cut the boxes is shown in Figure 2.1. In the

first level, the square box is cut into four square boxes, and in the second level, 16 boxes are

cut out, and so on. Furthermore, boxes 2 through 9 are all neighbors of box 1, and together

they describe the near region of 1. All the unnumbered boxes are in the far region of the

box 1. There is no difference between the two dimensional case and the three dimensional

case in principle, except that each box is cut into four child boxes in the two dimensional

case rather than eight in the three dimensional case.

The FMM algorithm consists of two parts, the first of which we now describe.

1. Cut the box of interest into the desired levels.

2. In each box of the finest level, calculate the far multipole expansion of the particles
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inside that box around the center of the box

3. From the finest level to the second finest level, translate the multipole expansions from

the center of the children boxes into the center of their parent box, and then add them

up to obtain the far multipole expansion of the parent box, as Figure 2.2 shows.

4. Repeat this at all levels.

After this part is completed, we now have a far multipole expansion for each box in each

level.

Figure 2.2: The propagation of the far multipole expansions

l = 2 l = 1l = 3

We now proceed to the second part of the FMM. First, for any box A having a parent

B, we define the interaction list to be the collection of those boxes of the same level that

belong to the far region of A, but to the near region of its parent B. These boxes of “medium

distance” to A will be important in the subsequent algorithm because they require special

treatment. To illustrate the concept of the interaction list, consider Figure 2.3, which shows

a box of interest in black, its near region in white, and its interaction list by hatching of

diagonal lines from lower left to upper right, for three different levels.
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Figure 2.3: The behavior of the interaction list of boxes at three levels

l = 2 l = 3 l = 4

Interaction list Already consideredNear region

The second part of the FMM algorithm now begins at the first level at which boxes have

interaction lists.

1. For each box with an interaction list, compute a local expansion around its center point

from the far expansions of the boxes making up the interaction list

2. At the next finer level, again compute a local expansion around the center of each

box from the far expansion of the boxes making up the interaction list. To this, add

the local expansion of the parent’s interaction list by re-expanding the parent’s local

expansion to its own center, as shown in Figure 2.4

3. Proceed until the lowest level is reached.
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Figure 2.4: The translation of the local expansions

l = 2l = 1 l = 3

After the completion of the second step, each box at the finest level now possesses a local

expansion of all contributions to the potential from outside its near region. The gradient of

this local expansion consequently represents the field contributions from everything in the

far region.

The third step of the method now consists of determining the field on each particle of

interest.

1. For each particle, determine the finest level box to which the particle belongs, and

evaluate the local expansion of the field of that box at the particle’s coordinates. This

results in an approximation of the field at the particle due to all other particles outside

the near region of the box in which the particle lies.

2. To the far field, explicitly add the Coulomb field of all other particles in the near region.

We note that the accuracy of this approximation depends on the orders used for the far

expansions and the local expansions that occur, and in principle can be made as high as

desired.

In the remainder of the paper we will discuss how to perform all the relevant far and

local expansions using the differential algebraic method.
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2.2 A Brief Review of Differential Algebra and COSY

Before we continue to present our work on the FMM in the DA framework, we want to

give a brief introduction of the DA method. The basic concepts and the deductions will be

presented directly without proof, please refer to [14] for details.

Consider the vector space of the infinitely differentiable functions C∞(Rv), in which we

can define an equivalence relation “=n” between two functions a, b ∈ C∞(Rv) via a =n b if

a(0) = b(0) and if all the partial derivatives of a and b at 0 agree up to the order n. Note

that the point 0 is selected for convenience, and any other point could be chosen as well.

The set of all b that satisfies b =n a is called the equivalence class of a, which is denoted

by [a]n. We denote all the equivalence classes with respect to =n on C∞(Rv) as nDv. The

addition, scalar multiplication and multiplication on nDv can be defined as eq. (2.1)

[a]n + [b]n := [a+ b]n,

c · [a]n := [c · a]n, (2.1)

[a]n · [b]n := [a · b]n,

where a, b ∈ nDv and c is a scalar, so that nDv is an algebra. We can also define the

derivation operator ∂v as eq. (2.2)

∂v[a]n :=

[

∂

∂xv
a

]

n−1
, (2.2)
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where xv is the vth variable of the function a. The operator ∂v satisfies

∂v([a] · [b]) = [a] · (∂v[b]) + (∂v[a]) · [b] (2.3)

An algebra with a derivation is called a differential algebra. There are v special classes

dv = [xv], whose elements are all infinitely small. According to the fixed point theorem[14],

the inverse and the roots of any element that is not infinitely small in nDv exist and can

be calculated easily. Furthermore, all real power series can be extend to the DA within

their radius of convergence. If a function a in nDv has all the derivatives cJ1,...Jv =

∂J1+...+Jva/∂x
J1
1 · ... · ∂x

Jv
v , then [a] can be written as

[a] =
∑

cJ1,...Jv · d
J1
1 · ... · d

Jv
v . (2.4)

Thus d
J1
1 · ... · d

Jv
v is a basis of the vector space of nDv. The eq. (2.4) reminds us of the

Taylor expansion of a function. Actually if we have a function f in C∞(Rv) and fT is its

Taylor expansion up to order n, obviously we have f =n fT in nDv. In practice this means

we can express f by its Taylor expansion up to an arbitrary order n as an element in nDv,

and we can calculate the derivative classes of f and any other function that can be derived

by applying the elemental operations, divisions, roots, and power series on f . [11]

A beam optical system can be described in terms of the transfer map method, which

relates the final positions and velocities of the particles to the initial conditions, so that it

makes the tracking more efficient than solving the dynamics equations element by element.

The power of the DA make it possible to calculate the map up to any arbitrary order[12].

COSY Infinity is a program developed for high performance modern scientific computing,
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which is used in beam optical system design. COSY supports various advanced data types,

such as DA, TM and VE[15]. In our following work on the FMM, we will use the DA data

type. By evaluating a function f in DA data type in COSY, one can obtain its Taylor

expansion fT up to an arbitrary predetermined order n , because a DA vector carries all its

coefficients cJ1,...,Jv , which are exactly the coefficients of fT . If we consider two functions

f, g ∈ nDv which can also be viewed as two maps Mf and Mg, the function g(f) or the

composition of the two mapsMg◦Mf can be calculated by the command POLVAL in COSY.

If f is a linear function or a linear map, a more efficient command DATRN can be used.[15]

Furthermore, the TM data type can be used for the rigorous calculation. In the future we

will use the TM in our algorithm to obtain rigorous error bounds.[13] COSY also supports

parallel calculation. Our current code can be easily revised for the parallel calculation and

run in a cluster machine.

2.3 FMM in the DA Framework

2.3.1 The Far Multipole Expansion

Given a unit point charge located at position ~ri, its potential at the location ~r of an observer

is given by

φ =
q

|~r − ~ri|
, (2.5)

The key idea of the FFM method lies in grouping together particles that are sufficiently near

and treat them with a combined expansion. As it turns out, it is not immediately obvious

what the best choice of variables is to achieve this end. It is known that using spherical
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coordinates, φ can be expressed as series of the spherical harmonic functions, which are

composed of products of cos θ, eiψ and 1/r [10]. The desire to operate directly in Cartesian

coordinates ultimately leads to the inspiration of expanding the function with respect to 1/r,

x/r2, y/r2, and z/r2. As it turns out this is one variable more than necessary and contains

redundancy because (x, y, z) already determines r. But the use of four variables leads to a

particularly transparent algorithm.

Back to the FMM, we consider a cube box centered at the origin, whose side length is

a, and there are n particles inside the box whose coordinates are (xi, yi, zi). At any point

(x, y, z), whose distance to the origin r ≫ a, the potential can be expressed as

φ =
n
∑

i

qi
√

(xi − x)2 + (yi − y)2 + (zi − z)2

=
n
∑

i

qi/

√

x2 + y2 + z2
√

√

√

√1 +
x2i+y

2
i +z

2
i

x2+y2+z2
−

2xix

x2+y2+z2
−

2yiy

x2+y2+z2
−

2ziz

x2+y2+z2

=
n
∑

i

d1
√

1 + (x2i + y2i + z2i )d
2
1 − 2xid2 − 2yid3 − 2zid4

(2.6)

with

d1 =
1

√

x2 + y2 + z2
=

1

r
, d2 =

x

x2 + y2 + z2
=

x

r2
,

d3 =
y

x2 + y2 + z2
=

y

r2
, d4 =

z

x2 + y2 + z2
=

z

r2
.

If we consider points (x, y, z) whose distance to the origin r ≫ a, the expression above can

apparently expanded in powers of the quantities d1, d2, d3 and d4, since these quantities go

to zero as r becomes larger and larger. The resulting expansion mathematically represent a
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Taylor series in d1, d2, d3 and d4, and in common physical terminology a multipole expansion.

To avoid confusion with the common definition of multipole expansions in particle optics,

we call this expansion the far multipole expansion if it is not clear from the context.

Using the variables d1, d2, d3 and d4 as the expansion variables in the DA algorithm,

COSY can now readily compute the far multipole expansions to any order. Furthermore,

quite importantly, the same method can be applied to other types of the potential, for

example the two dimensional Coulomb potential, the common van der Waals potentials,

or the potentials of certain macroparticle charge distributions, and in the DA formalism,

without much additional difficulty far multipole expansions can be calculated by evaluation

in DA arithmetic.

We now use the formula to calculate the multipole expansions in the finest level boxes.

To assess the performance of the method, we performed some test calculations of the far

multipole expansion. One group of results are presented in Table 2.1. We put 50 electrons

into each of the two cube boxes, whose centers are (0, 0, 0) and (4, 0, 0) and whose side length

are both 2. In terms of the terminology introduced above, this means the second box lies

in the far region of the first and is hence subject to the far multipole expansion; but it

represents the closes such box, where thus the convergence of the method is particularly

difficult to achieve.

The potential on the electrons in the second box are calculated and repeated for 1000

times with different random numbers, so that we have 50000 data points together. The

relative error is calculated by

√

∑N
i=1(∆φ/φ)

2 with N = 50000. We can see as the DA

order increases, the relative error decreases, which shows the convergence of this multipole

expansion.
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Table 2.1: The relative errors of the potential calculated from the multipole expansions

DA order Error

1 2.088× 10−2

2 3.816× 10−3

3 1.524× 10−3

4 9.681× 10−4

5 1.381× 10−4

6 5.758× 10−5

2.3.2 Translation of a Multipole Expansion

If we have a multipole expansion in the cube box centered at the origin (0, 0, 0), we can

translate it into another frame whose origin is at (x′o, y′o, z′o). The distance from the observer

to the origin of the new frame is assumed to be much larger than the side length of the box

centered at (x′o, y′o, z′o), which assures that the new DA variables d′1...d
′
4 in eq. (2.7) are small

enough to still have convergence. Specifically, we have

d′1 =
1

√

(x− x′o)2 + (y − y′o)2 + (z − z′o)2
=

1
√

x′2 + y′2 + z′2
=

1

r
′

d′2 =
x− x′o
r′2

=
x′

r′2

d′3 =
y − y′o
r′2

=
y′

r′2
(2.7)

d′4 =
z − z′o
r′2

=
z′

r′2

In eq. (2.7), (x′, y′, z′) is the position of the observer in the new frame of (x′o, y′oz′o), and r′

is the distance from the observer to the new origin (x′o, y′o, z′o). The new DA variables and
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the old DA variables in eq. (2.6) are related via

d1 =
1

r
=

1
√

(x− x′o + x′o)2 + (y − y′o + y′o)2 + (z − z′o + z′o)2

=
1

√

√

√

√

√

√

(x− x′o)2 + (y − y′o)2 + (z − zo)2 + x′2o + y′2o + z′2o

+2(x− x′o)x′o + 2(y − y′o)y′o + 2(z − z′o)z′o

=
1

√

1/d′21 + x′2o + y′2o + z′2o + 2x′od′2/d
′2
1 + 2y′od′3/d

′2
1 + 2z′od′4/d

′2
1

=
d′1

√

1 + (x′2o + y′2o + z′2o )d′21 + 2x′od′2 + 2y′od′3 + 2z′od′4
= d′1 ·

√
R, (2.8)

d2 = xd21 = (x− x′o + x′o)d
2
1 = (d′2 + x′od

′2
1 ) ·R,

d3 = yd21 = (y − y′o + y′o)d
2
1 = (d′3 + y′od

′2
1 ) · R,

d4 = zd21 = (z − z′o + z′o)d
2
1 = (d′4 + z′od

′2
1 ) ·R,

with

R =
1

1 + (x′2o + y′2o + z′2o )d′21 + 2x′od′2 + 2y′od′3 + 2z′od′4
.

If we substitute eq. (2.8) into eq. (2.6), we obtain the multipole expansion in the new

frame. If one considers eq. (2.6) as a map Mc2m(d1, d2, d3, d4) and eq. (2.8) as a map

M1(d
′
1, d
′
2, d
′
3, d
′
4), the substitution is actually merely the composition of the two maps

Mm2m =Mc2m ◦M1, (2.9)

which is a common operation in DA methods, and which here yields the expression of φ

in the new frame with the new DA variables. With eq. (2.8) and eq. (2.9), to calculate
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the multipole expansion in a box not in the finest level, we can translate all the multipole

expansions of all its children boxes to its center, then take the summation.

2.3.3 Conversion of a Far Multipole Expansion into a Local Ex-

pansion

The potential of a far multipole expansion at the frame at (0, 0, 0) on an observer (x, y, z)

can be converted into a local expansion in the near region of the observer. Since the new

frame has its origin (x′o, y′o, z′o) close to the observer, it is natural to choose the coordinates

of the observer (x′, y′, z′) in the new frame as the new DA variables, as eq. (2.12) shows.

d′1 = x′,

d′2 = y′, (2.10)

d′3 = z′.

So, in contrast to the far multipole expansion, which is a Taylor expansion in the variable

d1, d2, d3 and d4, which vanish at infinity but diverge in close proximity, we now generate

a Taylor expansion in the variables x′, y′ and z′, which vanish at the origin. The old DA

variables in eq. (2.6) and the new DA variables in eq. (2.12) have the relation as shown in
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eq. (2.11).

d1 =
1

√

x2 + y2 + z2
=

1
√

(x′o + d′1)
2 + (y′o + d′2)

2 + (z′o + d′3)
2
=
√
R,

d2 =
x

x2 + y2 + z2
=

x′o + d′1
(x′o + d′1)

2 + (y′o + d′2)
2 + (z′o + d′3)

2
= (x′o + d′1) ·R,

d3 =
y

x2 + y2 + z2
=

y′o + d′2
(x′o + d′1)

2 + (y′o + d′2)
2 + (z′o + d′3)

2
= (y′o + d′2) ·R,

d4 =
z

x2 + y2 + z2
=

z′o + d′3
(x′o + d′1)

2 + (y′o + d′2)
2 + (z′o + d′3)

2
= (z′o + d′3) ·R.

with (2.11)

R =
1

(x′o + d′1)
2 + (y′o + d′2)

2 + (z′o + d′3)
2
.

If we call eq. (2.11) the map M2(d
′
1,d
′
2,d
′
3), the local expansion can again be written as a

composition of Mc2m and M2 as

Mm2l =Mc2m ◦M2. (2.12)

Having eq. (2.11) and eq. (2.12), we can convert the multipoles in the interaction list of

each box into the local expansion inside the box itself. The result of a test calculation to

show the convergence of the local expansion is presented in Table 2.2. The set up of the

boxes and electrons, the number of the data points, and the definition the relative error are

the same with those of Table 2.1. We can see that the relative error decreases as we increase

the DA order.
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Table 2.2: The relative errors of the potential calculated from the local expansions

DA order Error

1 3.136× 10−2

2 8.348× 10−3

3 3.024× 10−3

4 1.165× 10−3

5 2.086× 10−4

6 8.036× 10−5

2.3.4 Translation of a Local Expansion

Consider two local frames whose origins are both close to the observer. If we know the local

expansion of the frame at (0, 0, 0) is as eq. (2.12) shows, we can translate it into the other

local frame at (x′o, y′o, z′o). Since the new frame’s origin is also close to the observer, we can

still choose the coordinates of the observer in the new frame as the new DA variables d′1, d
′
2,

and d′3. Obviously the old DA variables d1, d2, and d3 , which are the coordinates of the

observer in the local frame at (0, 0, 0), have the simple relation shown in eq. (2.13) with the

new DA variables.

d1 = x′o + d′1,

d2 = y′o + d′2, (2.13)

d3 = z′o + d′3.

We call eq. (2.13) the mapM3, then the new local expansion can be calculated by composing

Mm2l with M3 as

Ml2l =Mm2l ◦M3. (2.14)
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We can translate the local expansion of a box into its children boxes using eq. (2.13) and

eq. (2.14).

2.3.5 Representation of Potential and the Field as Polynomials

In order to calculate the high order transfer map of a beam optical system, one needs not only

the field on the reference orbit but also the derivatives of the field[12]. If we have the field

of the Coulomb interaction and its derivatives, we can include the Coulomb interaction into

the map. Eq. (2.14) provides the expansion of the potential φ with respect to the position

of the observer up to the order p. This expansion converges inside the corresponding finest

box. The constant part of the expansion is the value of the potential at the center of the

box, and the coefficient of each monomial is the value of the corresponding partial derivative

of the potential.

Table 2.3 shows an example of the local expansion. In a large cube box, we put 10000

electrons. The cube box is cut into the third level. And the third level box size is 2, which

means if we put a frame at the center of one finest box, we have x, y, z ∈ [−1, 1]. The local

expansion of each 3rd level box is calculated up to the 10th order, and the coefficients till

the third order of one 3rd level box are presented in Table 2.3. The forth column and the

eighth column show the exponents of each DA variables in each monomial. For example,

the index triple 2 1 0 denotes the monomial x2y1z0 = x2y. The second and sixth columns

show the coefficient of each monomial. From the table, we observe the decreasing trend

of the coefficients according to the increase of the order. To obtain sufficiently meaningful

statistics, we repeat the above process for 40 times with different groups of electrons. Each

time we find the maximum absolute value of the coefficients for each order and calculate the

average absolute value for the coefficients for each order. Then we take the average over the
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Table 2.3: A local expansion

I COEFFICIENT p EXP. I COEFFICIENT p EXP.
1 -10173.27230228843 0 0 0 0 11 -.3770785081465575 3 3 0 0
2 77.96202591617063 1 1 0 0 12 0.3065719640561415 3 2 1 0
3 84.83337126367421 1 0 1 0 13 1.430687924061862 3 1 2 0
4 94.59868392563654 1 0 0 1 14 0.1167018056511110 3 0 3 0
5 -3.199969762547595 2 2 0 0 15 -1.761289530718459 3 2 0 1
6 4.505077944915953 2 1 1 0 16 0.7359490919857412 3 1 1 1
7 2.824067476091086 2 0 2 0 17 -1.758649785663027 3 0 2 1
8 1.929372636609234 2 1 0 1 18 -.2994523996221934 3 1 0 2
9 -3.396989424915588 2 0 1 1 19 -.6566773810094656 3 0 1 2
10 0.3759022864564996 2 0 0 2 20 1.173313105460495 3 0 0 3

40 processes and present the result in Figure 2.5. The green dots show the maximum value

of the coefficients, and the red dots show the average value of the coefficients. It is clear that

the coefficients decrease as the order increase, which suggests the convergence of the local

expansion.

If we want to calculate the expansion of the Coulomb interaction field on a reference

point, we only need to determine which finest box the point belongs to, then by Eq. (2.13)

and Eq. (2.14) we can translate the local expansion of the potential from the center of the

finest box to the reference point. Taking the derivative of the position (x, y, z), we obtain

the expansion of the field (Ex, Ey, Ez) up to the order p − 1. The expansion of the field

only includes the contribution of the electrons in the far region. As to the electrons in the

near region, we obtain the extension of their field by representing each of them by Gaussian

distribution, which will be discussed in the following.

2.3.6 Gaussian Macroparticles Instead of Point Charges

Sometimes it is important to use a finite number of particles to represent a continuous

distribution. There are two important cases where this arises; the first is when the number of
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Figure 2.5: The absolute value of the different order coefficients of the local expansion. For
interpretation of the references to color in this and all other figures, the reader is referred to
the electronic version of this thesis
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actual particles is substantially larger than the number than what can practically be handled

in a simulation. The second case is the desire to compute a transfer map and aberrations

of the system at hand, which requires the knowledge of high-order field expansions near the

reference point, which cannot be done reliably if point charges are near. To avoid this, one

can use three dimensional spherical Gaussian distributions instead of point charges as

f(x, y, z) =
q

(
√
2πσ)3

· exp(−x
2

σ2
− y2

σ2
− z2

σ2
) =

1

(
√
2πσ)3

· exp(− r
2

σ2
). (2.15)
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It is easy to see from Gauss’s law that the field along the radius can be expressed as

Er =
q

r2
√
2πσ3

[√
2πerf(

r√
2σ

)σ3 − 2rσ2 exp(− r2

2σ2
)

]

, (2.16)

where erf(r/
√
2σ) is the error function. By setting a proper value for σ, we can use the

Gaussian distribution in eq. (2.15) to represent a point charge. When r ≫ σ, Er is equal to

the field of a point charge. When r → 0, Er → 0. To calculate the expansion of the error

function, we need to find all the derivatives of it. Considering the definition of the error

function

erf(x) =
2√
π

∫ x

0
e−t

2
dt, (2.17)

it is easily to determine its derivative

derf(x)

dx
=

2√
π
e−x

2
. (2.18)

For any given point x, we calculate erf(x) by the rational Chebyshev approximation[24] and

derf(x)/dx by eq. (2.18), which is infinitely differentiable and allows the computation of all

higher derivatives.

2.3.7 Example Calculations Exhibiting the Linear Scaling Prop-

erty

To show the performance of the method, for reasons of space we limit ourselves here to the

most important characteristic, namely the scaling of the computation time to the number

of particles. We perform a series of simulations with expansion order 5 and with varying

numbers of electrons N on our computer with 4 core Intel Xeon Processor X5677 running

28



Figure 2.6: Computation time for different number of electrons
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at 3.5 GHz. The single process program uses only one core in the computation. Figure 2.6

shows the required computation time for a simulation with varying particle numbers N. We

observe the nearly linear behavior, with a slight deviation around N = 0.4 × 106, at which

point the number of particles crosses a threshold for transitions from a three-level scheme

to a four level scheme, which leads to slightly improved performance after the transition.

Overall, the expected linearity is well achieved.

2.4 Use of the FMM in tracking simulations

The FMM described above always starts from a cubical box, then cuts it into eight child

boxes and keeps all of them. The method works well when the bunch sizes in all three

dimensions are close to each other. However, in practice this is not always the case. In fact,
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usually, the bunch sizes evolve with time, and the bunch may have an oblate shape where

one of the dimensions is much smaller than the others, or a prolate shape where one of the

dimensions is significantly larger than the other two. In these cases, the FMM above will

lose some of its efficiency because a large number of the resulting boxes are empty.

However, what plays the critical role in the FMM algorithm is the hierarchical relation

between the boxes, while the details of the cutting can be modified as necessary. We will now

discuss a more efficient way of cutting boxes which still maintains the necessary hierarchical

relation.

2.4.1 Strategy of cutting boxes

Assume we know the length of the bunch in all the three dimensions (Lx, Ly, Lz). Without

losing generality, we assume Lx ≥ Ly ≥ Lz. We also know the total number of the particles

N , and the average number of particles inside each box of the finest level n, from which

we can obtain the least number of boxes needed Nb. The new idea of box cutting can be

described as follows.

1) Enclose the bunch by a cubic box whose size is slightly greater or equal to the longest

side of the bunch Lx. We say this box is of level zero. Without losing generality we assume

this box is centered at (0, 0, 0).

2) Try to cut this cube box from the center into eight equal size cube boxes. Compare

the coordinates (cx, cy, cz) of the center of each child box with (Lx/2, Ly/2, Lz/2). If a child

box whose center satisfies |ci| < Li/2 for all the three directions, it is accepted. Otherwise,

if in any direction, |ci| < Li/2 is not satisfied, ci is set to zero to obtain a new center point

with the coordinates of the other directions unchanged, and the child box is replaced by a

new box that is centered at the newly obtained point. In this way the number of child boxes
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is decreased. For example, assuming two child boxes with centers (x1, y1, z1) and (x1, y1, z2),

if in x and y directions, |ci| < Li/2 is satisfied, but the absolute values of both z1 and z2

are greater than Lz/2, they will be replaced by one box whose center is (x1, y1, 0). The side

length of the child boxes is set to be half of the parent box.

3) Cut each box of the current finest level in the same way as 3) to obtain the boxes of

a finer level.

4) Repeat 3) until the box number at the finest level is greater than or equal to Nb.

To make the idea clearer, let us consider a two dimensional example as shown in Figure

2.7. The hatching part shows the dimensions of the bunch. First, we enclose the bunch by a

square box. Then we try to cut the square box into four child boxes, but we notice that the

y coordinates of all the centers of the child boxes do not satisfy |cy| < Ly/2. So we set the

y coordinates of them zero, and the four center points fall into two new points as Figure 2.7

shows. We use these two points as the centers of the new child boxes whose side length is

half of their parent box, so that we obtain two child boxes of the first level instead of four.

Then we repeat the same cutting process for each box of the first level, we obtain two child

boxes for each of them. So we have four boxes of the second level. When we cut the boxes

of the second level, we find all the centers of the child boxes satisfy |ci| < Li/2, so we accept

all of them and obtain 16 boxes of the third level. As shown in Figure 2.7, when we use one

square box to enclose the bunch in the beginning, there is a lot of blank place in the box.

But after we find the proper cutting, the dimension of the boxes fits the bunch well. In this

way, we avoid the problem of a large number of empty boxes, which negatively affects the

performance of the FMM method.

Although the strategy is described as above, in practice we do not need to check the

centers of all child boxes for each cutting. What we really need to know is how many times
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Figure 2.7: The box cutting strategy

we need to cut each dimension for each level. For this purpose, we can simply compare the

size of each dimension to a scale. For the first level the scale is set to be the size of the largest

dimension, and for each finer level the scale is divided by two. Each dimension that is larger

than half of the scale will be cut. If a dimension is cut in some level, it will definitely be cut

in all the finer levels. We label each box by four numbers (l, nx, ny, nz). l is the level, and ni

is the index of box in the ith direction. ni = 0 if the ith direction is not cut in the lth level,

or ni ∈ [1, 2li ] if the ith direction is cut li times in the lth level. Assuming the zero level box

is centered at the origin (0, 0, 0), the center position of each box can be simply calculated

from its label as

clni = sl · ni + 0.5 · sl · (1− 2li) (2.19)

where clni is the center position in the ith dimension of the ~nth box of the lth level, and sl

is the box size of the lth level boxes. The center positions are needed when we translate or

convert the far multipole expansions and the local expansions.
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Figure 2.8: Frame rotation
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2.4.2 Frame rotation

Another method to avoid empty boxes is to set the frame consistent with the principal

axes of the bunch as shown in Figure 2.8 for a two dimensional case. We start from a

frame whose origin is the center of mass of the bunch. The position of the ith particle is

Xi = (xi1, xi2, xi3). If the coordinate axes are denoted by xj , j = 1, 2, 3, then the moment

of inertia coefficient matrix element Ijk can be written as

Ijk =
∑

i

mi(r
2
i δjk − xijxik), (2.20)

where i is the index of the particle and r2i = x2i1+x
2
i2+x

2
i3. In the principal axes frame, only

the diagonal elements of the matrix I are nonzero. Assuming a matrix P that diagonalizes I

as P−1IP = I′ = diag{I ′11, I ′22, I ′33}, the position of the particle in the principal axes frame

is X′ = P−1X. If the electric field in the principal axes frame is E′, the field in the original

frame is E = PE′.

So when we have a bunch in the lab frame, we first shift the origin of the frame to the

center of mass of the bunch, and rotate the frame so that it is consistent with the principal
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axes of the bunch. We then cut the boxes as stated in the previous subsection (2.4.1) and

calculate the potential or/and the field. Finally we translate the field back to the lab frame.

This approach automatically determines an initial enclosing box of smallest possible

volume.

2.5 Examples of Tracking Simulations

Figure 2.9: Longitudinal bunch size during the free expansion of an electron bunch
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We used the FMM in tracking simulations, and compared the results with those obtained

by the much more expensive use of a pairwise Coulomb formula. One example is shown in

Figure 2.9 and Figure 2.10. We have a bunch of 2,082,000 electrons with a three dimensional

Gaussian distribution. The initial size of the bunch is (115µm, 81µm, 1µm). We use 100,000

macroparticles, each of which represents 20.82 electrons, and a fourth order Runge-Kutta
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Figure 2.10: Transverse bunch size during the free expansion of an electron bunch
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integrator with fixed step size to simulate the free expansion of the bunch without any

external field. The step size is 1ps, and the simulation runs for 100 steps to 100ps. The

results of the FMM with a fifth order DA expansion are presented in dots, and the results

of the pairwise Coulomb formula are presented in lines. The evolution of the bunch size

with respect to time in z direction is shown on the left, and those in x and y directions

are shown on the right. The final bunch sizes are (155.21µm, 127.08µm, 103.15µm) and

(155.29µm, 127.06µm, 103.13µm) respectively. The relative difference is less than 0.0515%.

Figure 2.11 shows the computational expense for the simulations of the free expansion of

a proton bunch. The bunch has 2,082,000 protons with a uniform distribution in all dimen-

sions, and its initial size is (66.45µm, 46.76µm, 0.58µm). We use a fourth order Runge-Kutta

integrator with fixed step size 1ps and simulate to 100ps on our computer with 4 Core (8
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Figure 2.11: Computational expense for the simulations for different numbers of macropar-
ticles
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Hyperthreaded) Intel Xeon Processor X5677 running at approximately 3.5GHz. Our simula-

tion program is a single process program, although the FMM can be parallelized in principle.

The final bunch size is (66.52µm, 46.84µm, 29.57µm). The macroparticle numbers range from

100,000 to 1,000,000, and the computational expenses for the simulations with different num-

bers of macroparticles are presented in Figure 2.11. Apparently the computational expense

does indeed increase linearly with the number of macroparticles, as expected from the above

theoretical arguments.
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Table 2.4: Computational expenses for the Gaussian/uniform distribution bunches

Distr. dx (µm) dy(µm) dz(µm) lx ly lz time (min)
GS 99.91 99.95 100.03 5 5 5 16.10
U 99.91 99.96 100.00 5 5 5 5.93
GS 1.00 99.95 100.03 0 6 6 10.64
U 1.00 99.96 100.00 0 6 6 3.00
GS 1.00 1.00 100.03 3 3 9 10.44
U 1.00 1.00 100.00 3 3 9 6.53

2.6 Discussion Concerning the Efficiency

We have shown that the FMM can be used in the tracking simulation, and its computational

expense scales with the macroparticle number. However, we also notice that the efficiency of

treating a bunch with the Gaussian distribution is worse than that of a bunch with a uniform

distribution when they have the same number of macroparticles and similar shapes. Some

examples are presented in Table 2.4. We calculated the electric field for a bunch of 1,000,000

electrons with either the Gaussian distribution or the uniform distribution of varying bunch

shapes. (dx, dy, dz) is the r.m.s. size of the bunch, and (lx, ly, lz) is how many times the

bunch is divided in (x, y, z) direction. The single process program runs on our computer

with 4 Core (8 Hyperthreaded) Intel Xeon Processor X5677 running at 3.5 GHz and uses

only one core in the computation. We can see the computational expense of a bunch with

a uniform distribution is much less than that of a bunch with the Gaussian distribution of

similar shape. This is because the FMM has the best efficiency when all of the boxes of the

finest level have the same number of particles inside. On the other hand, when a bunch has

a Gaussian distribution, its center has a much higher charge density than its edge, which

results in the boxes at the edge being either empty or enclosing few particles and the boxes

at the center enclosing many more particles than expected. To solve this problem, we need

to use the adaptive FMM, also called multiple level fast multipole algorithm (MLFMA),
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by which we cut the boxes into finer levels where the charge density is higher, so that we

can make sure all the boxes of the finest levels (different lowest levels at different positions)

enclose similar numbers of particles, which guarantees the efficiency [19, 20].
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Chapter 3

Multiple Level Fast Multipole

Algorithm in the Differential Algebra

Framework

The single level FMM cuts the whole domain of charges into the same level boxes everywhere.

It works well when the charged particle distribution is uniform or close to it. However in

many cases the charged particles have a more complicated distribution. The loss of ability

to deal with heavily non-uniform distribution limits the use of the single level FMM. For

example, a Gaussian distribution has much higher charge density at the center than at the

edge. In this case, if we cut the whole domain to a very deep level so that the boxes at the

center enclose a small number of particles, we will end up with many empty boxes or boxes

with few particles at the edge, which reduces the calculation speed. A deeper level also leads

to a larger number of boxes and thus a larger amount of memory is needed, because of which

the program may fail due to lack of memory. If we do not cut to such a deep level, the boxes at

the center will enclose many more particles than they should, and this will also significantly

lower the efficiency. In some cases the charge distribution may be more complicated. For

example, an FFAG accelerator has several bunches distributed along a helix. The single

level FMM has difficulties to deal with such kind of complicated distributions. However,
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the multiple level fast multipole algorithm (MLFMA) can treat these complicated charge

distributions of N particles with an efficiency of O(N), by cutting the whole domain into

different levels at different places according to the charge density there, which means higher

level boxes are created where higher density is and lower level boxes are created where lower

density is. So one can make sure the number of particles inside the boxes in the lowest levels

at different places are close to each other, which improves the efficiency.[19, 20] To expand

the usage of the FMM in the beam dynamics simulation, we developed the MLFMA in the

DA framework, which we are going to present in the following.
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3.1 Analytical Tools

3.1.1 The Far Multipole Expansion from the Charges

Suppose that n particles with charge qi located at ~ri(xi, yi, zi) with ri < r0, the electrostatic

potential at a point ~r(x, y, z) with r > r0 can be expressed as

φ =
n
∑

i=1

qi
√

(x− xi)2 + (y − yi)2 + (z − zi)2

=
n
∑

i=1

qi/

√

x2 + y2 + z2
√

√

√

√1 +
x2i+y

2
i +z

2
i

x2+y2+z2
−

2xix

x2+y2+z2
−

2yiy

x2+y2+z2
−

2ziz

x2+y2+z2

(3.1)

=
n
∑

i=1

dr · qi
√

1 + (x2i + y2i + z2i )d
2
r − 2xidx − 2yidy − 2zidz

= dr · φ̄M

with

dx =
x

x2 + y2 + z2
, dy =

y

x2 + y2 + z2
,

dz =
z

x2 + y2 + z2
, dr =

√

d2x + d2y + d2z,

φ̄M =
n
∑

i=1

{

qi/
√

1 + (x2i + y2i + z2i )d
2
r − 2xidx − 2yidy − 2zidz

}

.

If we choose dx, dy, and dz as DA variables, φ̄M can be expressed as a DA vector, which

can be considered as the Taylor expansion of φ̄M with dx, dy, and dz at infinity. dr does

not exist in the DA framework, because dx, dy, and dz are all infinitesimal, so is the sum of

their squares, and the square root operation on an infinitesimal is not well defined[14]. So

we can not express φ in the DA framework. But it is enough to have the expansion of φ̄M

in the DA framework and keep dr in mind. We will explain how it works in the following.
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3.1.2 Translation of The Far Multipole Expansion

The potential φ at (x, y, z) of a far multipole expansion at the origin (0, 0, 0) can be translated

into another far multipole expansion at the point (x′o, y′o, z′o). The new DA variables can be

chosen as

d′x =
x− x′o
r′2

=
x′

r′2
,

d′y =
y − y′o
r′2

=
y′

r′2
,

d′z =
z − z′o
r′2

=
z′

r′2
,

with r′ =
√

x′2 + y′2 + z′2. With some direct algebra, one can find the relation between the

new DA variables and the old DA variables as shown in Eq. (3.2).

dx = (d′x + x′o · (d′2x + d′2y + d′2z )) ·R,

dy = (d′y + y′o · (d′2x + d′2y + d′2z )) ·R, (3.2)

dz = (d′z + z′o · (d′2x + d′2y + d′2z )) ·R,

with

R =
1

1 + (x′2o + y′2o + z′2o )(d′2x + d′2y + d′2z ) + 2x′od′x + 2y′od′y + 2z′od′z
.

Eq. (3.2) can be considered as the map between the new DA variables and the old DA

variables, which we refer to M1. If we translate φ̄M in the old frame into φ̃M in the new

frame by

φ̃M = φ̄M ◦M1,
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where ◦ means the composition of two maps, the potential in the new frame can be written

as

φ′ = φ̃M · d′r ·
√
R = d′r · φ̄′M, (3.3)

knowing that dr in the old frame can be translated into the new frame as

dr =
1

√

(x− x′o + x′o)2 + (y − y′o + y′o)2 + (z − z′o + z′o)2

=
1

√

√

√

√

√

√

(x− x′o)2 + (y − y′o)2 + (z − zo)2 + x′2o + y′2o + z′2o

+2(x− x′o)x′o + 2(y − y′o)y′o + 2(z − z′o)z′o

=
1

√

1/d′2r + x′2o + y′2o + z′2o + 2x′od′x/d′2r + 2y′od′y/d′2r + 2z′od′z/d′2r

=
d′r

√

1 + (x′2o + y′2o + z′2o )d′2r + 2x′od′x + 2y′od′y + 2z′od′z

= d′r ·
√
R,

with

d′r =
√

d′2x + d′2y + d′2z .

Same as dr, d
′
r does not exist in the DA framework, but for now we only need to calculate

φ̄′M and keep the existence of d′r in mind.

3.1.3 Convert The Far Multipole Expansion into a Local Expan-

sion

Given a far multipole expansion at the origin (0, 0, 0), a local expansion at (x′o, y′o, z′o), which

creates the same potential on the observers, can be found. It is called “local” because
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(x′o, y′o, z′o) is close to the observer (x, y, z). So it is natural to choose the new DA variables

as

d′x = x− x′o = x′,

d′y = y − y′o = y′, (3.4)

d′z = z − z′o = z′.

(x′, y′, z′) are the new coordinates of the observer (x, y, z) if we shift the origin to (x′o, y′o, z′o).

The old and the new DA variables have the relation as Eq. (3.5) shows

dx =
x

x2 + y2 + z2
=

x′o + d′x
(x′o + d′x)2 + (y′o + d′y)2 + (z′o + d′z)2

= (x′o + d′x) · R,

dy =
y

x2 + y2 + z2
=

y′o + d′y
(x′o + d′x)2 + (y′o + d′y)2 + (z′o + d′z)2

= (y′o + d′y) ·R,

dz =
z

x2 + y2 + z2
=

z′o + d′z
(x′o + d′x)2 + (y′o + d′y)2 + (z′o + d′z)2

= (z′o + d′z) ·R.

with (3.5)

R =
1

(x′o + d′x)2 + (y′o + d′y)2 + (z′o + d′z)2
.

We note Eq. (3.5) as M2. To convert the far multipole expansion in Eq. (3.3) into a local

expansion, we need to work on the two parts separately. φ̄′M can be converted into φ̃L in the

new frame as

φ̃L = φ̄′M ◦M2,

and d′r can be converted into
√
R in the new frame. Therefore we have the local expansion

as

φL = φ̃M ·
√
R. (3.6)
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Note that by now we have gotten the expansion of the potential, not just a component of it,

as a DA vector.

3.1.4 The Local Expansion from the Charges

Consider an observer point ~r(x, y, z) within a spherical region of the radius r0 centered at

(x′o, y′o, z′o), the electrostatic potential on the observer from n particles outside the spherical

region can be expressed as a local expansion at (x′o, y′o, z′o). We choose the DA variables as

d′x = x− x′o = x′,

d′y = y − y′o = y′, (3.7)

d′z = z − z′o = z′.

Assuming the ith source particle has charge qi and located at ~ri(xi, yi, zi), the local

expansion of the potential is

φL =
n
∑

i=1

qi
√

(x− xi)2 + (y − yi)2 + (z − zi)2

=
n
∑

i=1

qi
√

(x′o − xi + d′x)2 + (y′o − yi + d′y)2 + (z′o − zi + d′z)2
(3.8)

3.1.5 Translate The Local Expansion

A local expansion at the origin (0, 0, 0) can be translated to (x′o, y′o, z′o), assuming both points

are close to the observer (x, y, z). Choosing the new DA variable as the same as Eq. (3.7),
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the relation between the old and the new DA variables is just a linear shift.

dx = x′o + d′x,

dy = y′o + d′y, (3.9)

dz = z′o + d′z.

We call eq. (3.9) the map M3, then the new local expansion can be calculated by

φ′L = φL ◦M3. (3.10)

3.1.6 Calculate the Potential and the Field from the Expansions

It is straightforward to calculate the potential from a local expansion or a multipole expan-

sion. Since we have the potential expressed as an pth order polynomial, we only need to plug

in the value of (dx, dy, dz) for each particle to obtain the potential on it.

The local expansion of the potential is a polynomial of the observer’s coordinates. Taking

the derivative of the potential with respect to a coordinate, one can obtain the (p − 1)th

order polynomial of the field on the respective direction.

To calculate the field by the multipole expansion is more complicated, because the DA

variables are not the coordinates, but some analytical functions of the coordinates. We need

to take the derivative with respect to the coordinates by the chain rule. After some direct
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algebra, we obtain the expression of the field as

Ex = {− ∂φ̄

∂dx
· (d2r − 2d2x) + 2

∂φ̄

∂dy
· dxdy + 2

∂φ̄

∂dz
· dxdz + φ̄ · dx} · dr

Ey = {2 ∂φ̄
∂dx
· dydx −

∂φ̄

∂dy
(d2r − 2d2y) + 2

∂φ̄

∂dz
· dydz + φ̄ · dy} · dr

Ez = {2 ∂φ̄
∂dx
· dzdx + 2

∂φ̄

∂dy
· dzdy −

∂φ̄

∂dz
· (d2r − d2z) + φ̄ · dz} · dr

with (3.11)

dr =
√

d2x + d2y + d2z.

When we calculate the field using Eq. (3.11), the part inside the brackets and dr needs to

be treated separately, because dr does not exist in the DA framework. Note that d2r can

be expressed as a DA vector, so the part inside the brackets can be calculated in the DA

framework. We first calculate the value of it. Then we calculate dr and the multiplication

for each particle.

3.2 Error Analysis

Figure 3.1: Far multipole expansion of the potential of a point charge

θ
~r

~rs rd

In order to give an error estimation of the far multipole expansion of the charges, let us

first consider a source charge inside a spherical region of radius a as shown in Figure 3.1.
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Without loss of the generality, we assume the center of the sphere is at the origin. The source

charge is at the position ~rs(xs, ys, zs), the observer point is ~r(x, y, z), the distance between

them is rd = |~rs−~r| and the angle between ~r and ~rs is θ. The potential on the observer can

be expressed as a far multipole expansion as shown in Eq. (3.1).

1/rd can be expressed as an Taylor expansion shown in Eq. (3.12),

1

rd
=

1

|~r − ~rs|
=
∞
∑

n=0

1

n!
· (−1)n · ~rns · n · ∇n

1

r
. (3.12)

In the above ·n· is the n-fold tensor contraction operation, which is defined as [7]

~An · n · ~Bn = Anα1...αnB
n
αn...α1

where the convention of implied summation over repeated Greek subscripts is followed. The

gradients of 1/r can be calculated as Eq. (3.13) shows according to the Maxwell Cartesian

tensors[7, 80],

∂
n1
α ∂

n2
β ∂

n3
γ

(

1

r

)

= (−1)nr−2n
F(n1)
∑

m1=0

F(n2)
∑

m2=0

F(n3)
∑

m3=0

(−1)m







n1

m1













n2

m2













n3

m3







×r2mf(n−m− 1)xn1−2m1yn2−2m2zn3−2m3 (3.13)

with n = n1+n2+n3, m = m1+m2+m3, f(v) = 1× 3× 5× ...× (2v+1), F(x) =
⌊x
2

⌋

and







n

m






=

n!

2mm!(n− 2m)!
.
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To compare with Eq. (3.12), we can also expand 1/rd in powers of r using the Legendre

Polynomials[94, 6].

1

rd
=



















∑∞
n=0

rns
rn+1Pn(cos θ) if

∣

∣

rs
r

∣

∣ < 1

∑∞
n=0

rn

rn+1
s

Pn(cos θ) if
∣

∣

rs
r

∣

∣ > 1

(3.14)

where Pn(cos θ) are Legendre Polynomials. Comparing Eq. (3.12) with Eq. (3.14), one can

see they have a term-by-term correspondence, which indicates

Pn(cos θ) =
(−1)n
n!

· rn+1 ·
(

~rs
rs

)n

· n · ∇n1
r
. (3.15)

Notice that the Legendre Polynomials Pn(cos θ) only depend on the angle θ.

The Taylor expansion of φ̄M in Eq. (3.1) can be expressed explicitly by tensors, such as

φ̄M =
N
∑

i=1

qi
√

1 + (x2i + y2i + z2i )d
2
r − 2xidx − 2yidy − 2zidz

=
N
∑

i=1

∞
∑

n=0

qi
n!
∂
n1
α ∂

n2
β ∂

n3
γ φ̄M|(0,0,0) · dαxd

β
yd
γ
z (3.16)

=
N
∑

i=1

∞
∑

n=0

~Ani · n · ~dnr .

where ∂α,∂β , and ∂γ refer to the partial derivatives of dx, dy, and dz, ~dr = ~r/r2, and

Ani,n1n2n3
=

qi
n!
∂
n1
α ∂

n2
β ∂

n3
γ φ̄M|(0,0,0)

=
qi
n!

F(n1)
∑

m1=0

F(n2)
∑

m2=0

F(n3)
∑

m3=0

(−1)m







n1

m1













n2

m2













n3

m3






(3.17)

×r2mi f(n−m− 1) · xn1−2m1
i y

n2−2m2
i z

n3−2m3
i .
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Comparing Eq. (3.17) with Eq. (3.13) we obtain

φ̄M =
N
∑

i=1

∞
∑

n=0

qi
rni
rn
· (−1)

n

n!
· rn+1
i ·

(

~r

r

)n

· n · ∇n 1

ri
(3.18)

=
N
∑

i=1

∞
∑

n=0

qi

(ri
r

)n
· Pn(cos θi),

where Eq. (3.15) is used to get the result. Hence the far multipole expansion of the potential

is

φ =
N
∑

i=1

∞
∑

n=0

qi ·
rni
rn+1

· Pn(cos θi). (3.19)

If we keep the first p terms in the expansion, The error can be estimated as follows.

|ǫ| =

∣

∣

∣

∣

∣

∣

N
∑

i=1

∞
∑

n=p+1

qi ·
rni
rn+1

· Pn(cos θi)

∣

∣

∣

∣

∣

∣

≤
N
∑

i=1

|qi| ·

∣

∣

∣

∣

∣

∣

∞
∑

n=p+1

an

rn+1

∣

∣

∣

∣

∣

∣

= C · a
p+1

rp+2
·
∣

∣

∣

∣

∣

∞
∑

n=0

(a

r

)n
∣

∣

∣

∣

∣

(3.20)

= C · a
p+1

rp+2
· 1

1− a
r

= C ·
(a

r

)p+1
· 1

r − a,

where C =
∑N
i=1 |qi| and ri ≤ a for any i.

When we translate a far multipole expansion from a child box’s center to its parent

box’s center, because the transfer map between the DA variables in different frame does not

contain a constant part, as shown in Eq. (3.2), the polynomial we obtain in the parent box

frame should be the same with the one calculated directly from the charges in the parent
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Figure 3.2: Local expansion of the potential of a point charge

θ
~r′

~rs

box frame by Eq. (3.1), so that the error has the same expression with Eq. (3.20) with r

and a defined in the parent box frame.

The local expansion from the charges is calculated as Eq. (3.8), which can be written as

Eq. (3.21) using Eq. (3.14).

φL =
N
∑

i=1

qi
√

(x′o − xi + dx)2 + (y′o − yi + dy)2 + (z′o − zi + dz)2

=
N
∑

i=1

qi
∣

∣~rs,i − ~r′
∣

∣

(3.21)

=
N
∑

i=1

∞
∑

n=0

qi ·
r′n

rn+1
s,i

· Pn(cos θi),

where ~rs is the position of a source charge in the observer’s local frame with ~rs,i = ~ri − ~r′o,

~r′ is the position of the observer in its local frame, and θ is the angle between ~rs and ~r′ as
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shown in Figure 3.2. If we keep the first p terms, then

|ǫ| =

∣

∣

∣

∣

∣

∣

N
∑

i=1

∞
∑

n=p+1

qi ·
r′n

rn+1
s,i

· Pn(cos θi)

∣

∣

∣

∣

∣

∣

≤
N
∑

i=1

|qi| ·

∣

∣

∣

∣

∣

∣

∞
∑

n=p+1

r′n

bn+1

∣

∣

∣

∣

∣

∣

= C · r
′p+1

bp+2
·
∣

∣

∣

∣

∣

∞
∑

n=0

(

r′

b

)n
∣

∣

∣

∣

∣

(3.22)

= C · r
′p+1

bp+2
· 1

1− r′
b

= C ·
(

r′

b

)p+1

· 1

b− r′ ,

where C =
∑N
i=1 |qi| and rs,i ≥ b for any i.

When we convert the far multipole expansion into a local expansion, the polynomial we

obtain for the local expansion is different with the one that is calculated directly from the

charges by Eq. (3.8). That’s because the transfer map between the DA variables contain a

constant term, so that the truncated terms of p+1 or higher order contribute to the constant

term of the local expansion, which is missing. From Eq. (3.5), we can see the constant term

of the transfer map is ~r′o/r′2o where ~r′o is the position of the local frame’s origin in the far

multipole frame, hence the missing terms are

Constmissing =
N
∑

i=1

∞
∑

n=p+1

~Ani · n ·
(

~r′o
r′2o

)n

, (3.23)

where ~Ani is defined in Eq. (3.17). Similar to Eq. (3.20), the error of the missing constant

part is

∣

∣ǫ′
∣

∣ ≤ C ·
(

a

r′o

)p+1

· 1

r′o − a
, (3.24)
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where C =
∑N
i=1 |qi| and ri ≤ a for any i. Then the error of the local expansion converted

from a far multipole expansion is

|ǫ| ≤ C ·
(

a

r′o

)p+1

· 1

r′o − a
+ C ·

(

r′

b

)p+1

· 1

b− r′ . (3.25)

In the translation of the local expansion of a parent box into its child boxes, since the

transfer map is linear, there is no truncation error created in this process.

3.3 The Multiple Level Fast Multipole Algorithm

3.3.1 Strategy of the MLFMA

In 1988 Carrier, Greengard and Rokhlin introduced the adaptive FMM [19] , which is often

referred as the MLFMA. The general strategy of the MLFMA is similar to the uniform

level FMM. In order to evaluate the electrostatic potential and/or field due to an arbitrary

distribution of charges, we divide the charges into groups and evaluate the interactions

between the groups far away enough by multipole expansions and calculate the interactions

between nearby particles directly.

To be more specific, consider a two dimensional example as shown in Figure 3.3. We want

to calculate the interaction of a bunch of charges with non-uniform distribution. Without

losing generality, we can enclose the charges with a square box, which we call the level zero

box. We select a number s. If the number of charges inside the box is larger than s, the

box is a parent box. It will be cut from the center into four equal square boxes, which are

its child boxes. All the child boxes form a new level. If a child box contains more than s

charges, it will be cut again and will have its child boxes. If the parent box is in level l, the
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child boxes are in level l + 1. This process results in the hierarchical structure of the boxes

that refine the level zero box into smaller and smaller regions. Different with the uniform

level FMM in [93], we do not use the same number of levels for the whole domain. For

each level of refinement, we only subdivide the boxes that contains more than s charges.

Generally where the higher charge density is, it is refined with the higher level boxes, as

shown in Figure 3.3, where s = 1. At each level of refinement, we only keep the nonempty

boxes. The empty boxes are discarded and completely ignored by the subsequent processes.

The three dimensional case can be treated in the same way; the only difference is the cube

box has eight child boxes.

Figure 3.3: The hierarchical structure of the boxes

3.3.2 Notation

We choose our notation following reference [19] as shown below. Note that all the boxes here

are nonempty boxes.

A child box is a nonempty box resulting from the division of a larger box.
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If a box has one or more child boxes, it is called a parent box. Otherwise it is called a

childless box.

The ancestor boxes of box b include b’s parent box, the parent box of the parent box,

and so on till the root box.

If two boxes share at least one vertex, they are called adjacent. Otherwise they are well

separated.

Colleagues are adjacent boxes of the same size (at the same level). A given box has at

most 27 colleagues including itself. A two dimensional example is given in Figure 3.4.

Figure 3.4: Box (b) and its colleagues (c)

b c

ccc

c

c c

Because of the hierarchical structure, any box b only directly interacts with the boxes

who are colleagues of b’s parent box and their descents, and b inherits the contribution

from other boxes from its parent box. There are four kinds of relations between b and the

boxes who directly interacts with it. Based on their sizes and positions, which determine the
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Figure 3.5: Case 1. Adjacent boxes

b

c

b c b

c

Figure 3.6: Case 2. Separated boxes of the same size

b b cc

interactions, we can define four lists for box b as follows:

The first kind of relation is shown in Figure 3.5. Box b and box c touch each other.

If both of them are childless, the field between the charged particles in b and c should be

calculated directly, regardless of the box sizes of them. If any of them is a parent box, no

actions can be taken on this stage. Hence we can define list 1 of the box b, denoted by Ub.

If b is a parent box, Ub is empty. If b is childless, any box that is childless and adjacent to b

is contained in Ub.

The second kind of relation is shown in Figure 3.6. Box b and box c have the same

size. They are separated, and the distance between them is equal to or larger than their

side length. In this case, regardless whether they are childless boxes or parent boxes, we

can always translate the far multipole expansions of one box into the local expansions in

the other box, according to Eq. (3.25) with Eq. (3.20). Box b and the boxes in list 2 of b,

denoted by Vb, have this kind of relation. Any box whose parent is a colleague of b’s parent

and who itself is well separated from b is contained in Vb.

The third kind of relation is shown in Figure 3.7 on the left. Box b and box c are
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Figure 3.7: Case 3 and case 4. Separated boxes of different sizes

b
c

c
b

separated, box b is larger than box c, and the distance in between is equal to or greater than

the side length of c, but less than the side length of b. If b is childless, because the distance

between any particle inside b and the center of c is larger than the side length of c, according

to Eq. (3.20) the field on the particles in b due to the particles in c could be calculated by the

far multipole expansion of c. For the same reason, according to Eq. (3.22) the field inside c

due to the particles in b could represented by a local expansion in c calculated directly from

the particles in b using Eq. (3.8). If b is a parent box, no action can be taken on this stage.

Hence we can define list 3 of the box b , denoted by Wb. If b is a parent box, Wb is empty.

If b is a childless box, any box whose parent is adjacent to b and who itself is not adjacent

to b is contained in Wb.

The forth kind of relation is shown in Figure 3.7 on the right. This is the same with the

third kind of relation, except that box b and box c are replaced by each other. Hence we can

define the List 4 of the box b, denoted by Xb. Any box whose list 3 includes b is contained

in Xb.

We can add an extra list, List 5, for the box b, denoted by Yb. Any box that is not

adjacent to b’s parent is contained in Yb.

A two dimensional example of the above lists is given in Figure 3.8.
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Figure 3.8: Box b and the associated lists 1-5
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3.3.3 Brief Description of the Algorithm

Same with the single level FMM, MLFMA can be divided into a upward process and a

downward process. The algorithm can be described as follows.

(1) Build up the hierarchical tree structure of boxes by firstly selecting a number s, then

cutting the boxes until the number of particles in each childless box is less than or equal to

s.

(2) Upward process. From the finest level to the coarsest level, calculate the multiple
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expansion for each box. If the box is childless, calculate its multipole expansion from the

particles inside using Eq. (3.1). If the box is a parent box, calculate its multipole expansion

by shifting and adding up the multipole expansions of its child boxes using Eq. (3.2) and

Eq. (3.3).

(3) Downward process. From the coarsest level to the finest level. For each box check

the boxes in its colleague list and in its parent box’s colleague list and the descents of these

boxes if needed, and take actions according to their relations. Considering box b, if c is

in Ub, calculate the field inside b due to particles in c by the Coulomb force law if they

are both childless boxes. If c is in Vb, convert the multiple expansion of c into the local

expansion of b. If c is in Wb, calculate the field inside b from the multipole expansion of c

using Eq. (3.11). If c is in Xb, calculate the local expansion of b due to the particles in c

using Eq. (3.8). Also translate the local expansion from the parent box into its child boxes.

After the downward process, all the boxes have a local expansion, which may come from

three sources, the particles inside other boxes, the multipole expansions of other boxes, and

the local expansions from the parent box. For all childless boxes, the field inside has been

partially calculated from the particles inside the near boxes and/or the multipole expansions

from some other boxes.

(4) Field calculation. For each childless box, calculate the field inside from the local

expansions and add the results to what have been calculated. By now we have calculated

the field for all the particles.

3.3.4 Data Structure

We use several arrays to save the necessary information for the boxes. The data is saved in

such a way that (1) only the non-empty boxes are saved; (2) Boxes are saved consecutively;
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(3) the coarser level boxes are saved before the finer level boxes, as Figure 3.9 shows; and (4)

different kinds of information are saved into different arrays, using the index of the element

in the arrays as the identification of the boxes, which means the elements with the same

index in different arrays store different information for the same box and the elements in the

same array with different indexes store the same information for different boxes. The data

structure is described with details in the following.

Figure 3.9: Sequenced boxes

Level 0 Level 1 Level 2 ...

We use the linked list structure to save the hierarchical structure of the boxes. Two one

dimensional arrays, box and nchld, are used, both having the same length as the number of

boxes. The ith element of box saves the index of the first child box of the box i, and the ith

element of nchld saves the number of child boxes of the box i. The ith element of both box

and nchld are zero if the box i is childless. So if the ith element of box has the value j, and

the corresponding element of nchld has the value k, we know that the box from j to j+k−1

are all child boxes of the box i. The value of each element from j to j + k − 1 in the array

box tells us where its first child box is, and the value of each box from j to j + k − 1 in the

array nchld tells us how many child boxes it has. Using box and nchld we can search the

hierarchical structure downwards, as shown in Figure 3.10. We use another one dimensional

array prnt with the same length as the number of boxes to save the index of the parent box

for each box. If the ith element of prnt has the value k, it means the parent box of the box i
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is the box k. The first element of prnt is zero, because the level zero box has no parent box.

Together with the array prnt, we can search the hierarchical structure upwards.

Figure 3.10: Storage of the hierarchical structure of the boxes
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The one dimensional array lvl saves the level for each box. The two dimensional array

cntr saves the coordinates of the center for each box. The one dimensional array mltp and

lcl save the far multipole expansion and the local expansion for each box respectively.

The coordinates of all the particles are saved in three vectors, x, y and z, and the fields

on them are saved in three other vectors Ex, Ey, and Ez. Some operations on the vector

data type can improve the efficiency [15]. The linked list structure is used again to save the

information about the particles inside each childless box. If the ith box is childless, the index

of the first particle inside it is saved in the ith element of the one dimensional array idx, and

the total number of particles inside is saved in the ith element of the one dimensional array

nptcl. For a parent box, the corresponding elements in idx and nptcl are both zero. There

is another one dimensional array link, whose length equals the number of particles. Each

element of link saves the index of the next particle, or zero if there are no more particles, in

the same childless box. In order to find all the particles inside any childless box i, we first

find the first particle from idx[i], then find the following from link[i], link[link[i]] , ... until
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we reach the zero. nptcl[i] gives the number of particles inside the box i, which is useful

when we need to create a vector to save the particles’ coordinates.

Each box may have at most 27 colleagues including itself. We use one dimensional

array clg to save the colleagues of all boxes. Each element of clg contains a vector, whose

first element is the total number of the saved colleagues for the corresponding box and the

following elements are the indexes of those colleagues. The vector length is at most 28. Note

that for a box b, only the colleagues whose indexes are behind b are saved.

Table 3.1: Variables and their sizes

Array box nchld lvl prnt cntr clg
Size 1×Nb 1×Nb 1×Nb 1×Nb 3×Nb 28×Nb
Array mltp lcl idx nptcl link
Size Nda ×Nb Nda ×Nb 1×Nb 1×Nb 1×Np

Vector x y z Ex Ey Ez
Size 1×Np 1×Np 1×Np 1×Np 1×Np 1×Np

Table 3.1 shows the variables and their sizes. Nb means the number of boxes, Np means

the number of particles, and Nda means the size of a DA vector, which is determined by

the order of the DA vector and the number of DA variables. If a DA vector is an nth order

polynomial of v variables, Nda = C(n+ v)/(C(n) ·C(v)), where C(n) means factorial n [14].

3.4 Numerical Results

In the following we present some numerical results from experimental calculations. All the

calculations are performed on a computer with a Four Core (Eight Hyperthreaded) Intel

Xeon Processor X5677 running at approximately 3.5 GHz, but our program is a single

process program. In Table 3.2 we list some calculation results of an electron bunch with

the uniform distribution. N is the total number of the electrons, s is the largest number of
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electrons that each childless box can hold, tM is the computation time using MLFMA, td

is the computation time using direct pair-to-pair formula, and Err1, Err2, and Err3 are

relative errors of Ex, Ey, and Ez, which is defined as

Err =

√

√

√

√

∑

i(EM,i − Ed,i)
2

∑

iE
2
d,i

, (3.26)

where EM is the electric field calculated by MLFMA and Ed is the electric field by direct pair-

to-pair formula. td for 400,000 or more electron cases is estimated according to the values

for less electron cases. Same results for an electron bunch with the Gaussian distribution

and a group of ten electron bunches, each one holding one tenth of the total electrons with

the Gaussian distribution, are listed in Table 3.3 and Table 3.4. From these results, we can

see the MLFMA has much better efficiency than the direct pair-to-pair calculation. If we

plot the computation time with the particle numbers, as shown in Figure 3.11, we can see

the computation time shows a roughly linear increase with the number of particles.

Figure 3.11: Relation between computation time and particle number
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Table 3.2: Comparison of the computation time for the uniform distribution bunches of n
particles by direct calculation (td) and MLFMA calculation (tM) with DA order p and each
childless box holding at most s particles, given the relative errors (Err1,Err2, and Err3) of
the field in three different direction

N s p tM (min) td (min) Err1 (×10−4) Err2 (×10−4) Err3 (×10−4)
1e5 400 5 0.292 75.315 1.241 1.388 1.271
2e5 400 5 1.655 300.030 1.498 1.504 1.498

4e5 400 5 1.801 1.205×103 1.482 1.519 1.554

6e5 400 5 2.395 2.711×103 1.538 1.550 1.524

8e5 400 5 3.026 4.820×103 1.522 1.497 1.537

1e6 400 5 3.785 7.532×103 1.520 1.402 1.526

Table 3.3: Comparison of the computation time for the Gaussian distribution bunches of n
particles by direct calculation (td) and MLFMA calculation (tM) with DA order p and each
childless box holding at most s particles, given the relative errors (Err1,Err2, and Err3) of
the field in three different direction

N s p tM (min) td (min) Err1 (×10−4) Err2 (×10−4) Err3 (×10−4)
1e5 400 5 0.693 75.315 4.074 3.181 3.509
2e5 400 5 1.448 300.030 4.174 3.260 3.370

4e5 400 5 2.624 1.205×103 4.051 3.281 3.509

6e5 400 5 4.325 2.711×103 4.189 3.268 3.501

8e5 400 5 5.932 4.820×103 4.122 3.307 3.668

1e6 400 5 7.420 7.532×103 3.995 3.200 3.464

Table 3.4: Comparison of the computation time for the Gaussian distribution bunch groups
of n particles by direct calculation (td) and MLFMA calculation (tM) with DA order p and
each childless box holding at most s particles, given the relative errors (Err1,Err2, and
Err3) of the field in three different direction

N s p tM (min) td (min) Err1 (×10−4) Err2 (×10−4) Err3 (×10−4)
1e5 400 5 0.449 75.315 2.864 4.257 3.262
2e5 400 5 1.256 300.030 5.276 4.954 4.040

4e5 400 5 2.475 1.205×103 1.505 3.852 3.124

6e5 400 5 3.374 2.711×103 7.115 3.332 3.765

8e5 400 5 5.321 4.820×103 7.693 4.574 4.163

1e6 400 5 7.412 7.532×103 2.972 6.436 3.652
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3.5 Increasing of The Accuracy

From the discussion about the error in section 3.2, one can see the error is determined by

the truncation order p and the distance between the observers and the sources. To increase

the accuracy, one natural way is to keep more terms in the multipole expansions and the

local expansions. Besides that, one can also increase the distance between the source box, in

which the charges are approximately represented by the multipole expansion, to the observer

box. One only needs to change the definition of the “adjacent boxes” as follows. For a box b

Figure 3.12: Box b and the associated lists 1-5 with na = 2
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with the side length sb, a box c with the side length sc is adjacent to b if the distance between

the center of b and the center of c is less than 0.5 · sb + na · sc, where na is a predefined

positive integer. When na = 1, the definition is the same with what in section 3.3.2. One

can choose a larger na for better accuracy. One example of na = 2 in two dimensional case

is shown in Figure (3.12). Comparing with Figure (3.8), one can see in Figure (3.8) the

distance between observer box b and any source box c in Vb, Wb or Xb is at least one times

the side length of c, referred to sc; however in Figure (3.12) this distance is at least 2 · sc.

It is easy to see for a given na, if a box c is well separated with box b, then there are at

least na boxes with the same size of c in between. So more boxes are included in the near

region of b, if we increase na. In Table 3.5, we present some numerical results for a bunch of

1,000,000 electrons with the Gaussian distribution. s is set to be 400. The electric fields are

calculated with different p and different na. Err is the average of Err1, Err2, and Err3.

Figure 3.13 shows the error goes down faster with the DA order p for a larger na, which is as

expected. From Eq. (3.20), Eq. (3.22) and Eq. (3.25) one can see the error is in proportion

to Kp. Considering two well separated boxes, K is determined by the rate of the box size

to their distance, and k is always less than one. When we increase na, K decreases, so that

the error converges faster. This explains Figure 3.13, in which when the error is plotted in

logarithm scale, it shows a linear relation with p, and the slope is larger when na is larger.

In practice, we care more about how much time is needed for a given accuracy. We plot the

error with the computation time for different na in Figure 3.14, in which the error and the

computation time shows a roughly linear relation in the logarithm scale and the larger na

leads to the larger slope. This fact suggests a larger na may be a wise choice if we want

to achieve very high accuracy, for example 1/100,000,000 or even better. For clarity, in the

following chapters we assume na = 1, if na is not specified.
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Table 3.5: Computation time tM and the relative error Err for a Gaussian bunch with
1000,000 electrons for different DA order p and different na, i.e. different definition of the
”adjacent boxes”

p na tM (min) Err p na tM (min) Err

3 1 3.275 5.805× 10−3 5 2 36.631 2.267× 10−5

4 1 4.916 1.314× 10−3 6 2 69.087 3.592× 10−6

5 1 8.528 3.553× 10−4 7 2 150.910 6.099× 10−7

6 1 16.866 1.008× 10−4 8 2 282.467 1.160× 10−7

7 1 32.620 3.124× 10−5 3 3 33.953 3.823× 10−4

8 1 61.569 8.566× 10−6 4 3 53.489 3.453× 10−5

9 1 115.170 3.243× 10−6 5 3 93.360 3.914× 10−6

10 1 212.149 1.032× 10−6 6 3 176.112 4.369× 10−7

3 2 13.270 1.113× 10−3 7 3 377.196 5.250× 10−8

4 2 20.947 1.434× 10−4 8 3 697.151 8.368× 10−9

Figure 3.13: Relation between the error and the DA order for different na, i.e. the different
definitions of the ”adjacent boxes”
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Figure 3.14: Computation time of different accuracies for different na, i.e. the different
definitions of the ”adjacent boxes”

r

�
��
�
�

��2��

��2��

��2��

��2��

��2�	

�3����

�3���

�3��

�����	
	���r	��
ri���n
� �� ��� �=����=���

�
-�-�
�
-�-�
�
-�-�

68



Chapter 4

Parallel Version of the Multiple Level

Fast Multipole Algorithm

4.1 Introduction

To simulate modern accelerators with high intensity beams, one may have to calculate the

interaction between billions of particles, which makes it necessary to take the advantage of

the parallel calculation and run the code in cluster machines with thousands of processors.

The single level fast multiple algorithm for uniformly distributed charged particles is easier

to parallelize. The MLFMA is relatively difficult to parallelize, because its hierarchical box

structure depends on the distribution of charged particles, which keeps changing during the

simulation and makes it difficult to predict how many boxes will be created and how many

boxes will have an interaction with a given box.

Our parallel approach is based on COSY Infinity 9.1 with MPI support. The official

release of COSY Infinity 9.1 does not have MPI support built in, which is likely being rolled

out in the official version 10. However, users can easily revise the source files and compile

COSY with MPI support following the instruction in COSY 9.1 programmer manual[15].

COSY supports the communication between the processes in a distributed cluster machine

by PLOOP, which has the following structure:

PLOOP I 1 NP ;
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...

STATEMENTS ;

...

ENDPLOOP PMAP ;

where NP is the number of processes and PMAP is an array whose last dimension is equal to

or greater than NP. PLOOP distributes the STATEMENTS over all processes. Each process

takes actions and writes its result into the respective element of PMAP to share with the

other processes. After PLOOP, each process receives the results from all the others. As

one can see, PLOOP is an all-to-all communication, which is the only MPI communication

that is currently supported by COSY. In our parallel MLFMA code, all the communications

between processes use PLOOP.

There are some good discussions on how to parallelize MLFMA in both the shared mem-

ory machine and the distributed memory machine. The topics cover the creation, storage,

and sort of the partial octree that represents the hierarchical box structure, the calculation

of the multipole expansions, the calculation of the local expansions and the fields in parallel.

In 1987, Zhao developed a parallel algorithm for the single level FMM in the distributed

memory machine [94], soon after which Greengard and Gropp developed the parallel algo-

rithm for the MLFMA in the shared memory machine [37]. The most challenging is the

parallel algorithm for the MLFMA in the distributed memory machine, which is highly de-

sired since most modern super computers with thousands of processors have the distributed

memory structure and support MPI. The hierarchical box structure of the MLFMA is highly

unbalanced. It is difficult to predict the total number of boxes and the number of interac-

tion boxes for each single box, so that it is difficult to predict the total calculation cost and

also difficult to decompose and distribute the work load to each process. The MLFMA is
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actively applied in solving Helmholtz equation related problems, such as the reflection of

electromagnetic waves, and the electrostatic potential related problems. Different parallel

algorithms have been presented in these two areas [79, 78, 4, 44, 89, 88, 29, 33] and many

discussions have been made [91, 81, 82], while people in other areas also made their contribu-

tion [21, 92]. Teng [86] and Aluru [79] independently developed different parallel algorithms

with provably good partitioning and load balancing. We borrowed some ideas, for example

the compressed tree from Aluru [3, 2], from the previous work. Now COSY only supports the

all-to-all communication, which is the most efficient way to communicate with all processes.

We develop our own algorithm based on the all-to-all communication, and this has an effect

on our algorithm, which will be explained in the following sections.

4.2 Hierarchical Tree Structure

4.2.1 Octree and Compressed Octree

It is natural to use a tree to present the hierarchical structure of the boxes. The largest

box that includes all the particles is the root of the tree. The child boxes of the largest box

construct the next level nodes connected to the root. A child box may also have child boxes,

which construct the following level nodes. In the three dimensional case, the hierarchical

structure of the boxes composes an octree. The data structure of a single level FMM is a

full tree. A two dimensional example is shown in Figure 4.1. As to a full tree, the number

of boxes (nodes) can be calculated as
∑L
n=0 4

L for the two dimensional case and
∑L
n=0 8

L

for the three dimensional case, where L is the depth of the tree. If the charged particles

have a uniform distribution, so that all the childless boxes hold the same or very similar

number of particles, L should satisfy 4L > N/s > 4L−1 or 8L > N/s > 8L−1 for two
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Figure 4.1: Full tree structure

dimensional and three dimensional, where N is the total number of particles and s is the

largest number of particles each childless box can hold. Thus L = ⌈log(N/s)− log 4⌉ or

L = ⌈log(N/s)− log 8⌉. The number of boxes inside the interaction list is also fixed, 27 for

the two dimensional and 189 for the three dimensional. With all these information, it is

easier to parallelize the single level FMM. However, the hierarchical structure of the boxes

for the MLFMA should be represented as a partial octree. A two dimensional example of

the partial tree and the corresponding hierarchical box structure is shown in Figure 4.2.

Comparing with the full tree for single level FMM in Figure 4.1, some notes are missing

in the partial tree, which is decided by the distribution of the charged particles. And it is

impossible to predict the number of boxes only from N and s, if the charge distribution is

arbitrary and unpredictable.

In a normal tree, a box could have only one child box, if the child box is not childless.

In this case, the box and its only child box contains the same group of particles. A path

as shown in Figure 4.3 could happen. All the boxes of (b, d, ..., e, f) contain the same group
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Figure 4.2: Partial tree structure

Figure 4.3: From a normal tree to a compressed tree
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of particles, although they have different sizes. If we use the normal tree structure, all the

boxes of (b, d, ..., e, f) will be stored in the memory, and their multipole expansions and local

expansions will be calculated, which is actually not necessary. To avoid this, a compressed

tree structure can be employed. The difference between a compressed tree and a normal

tree is any box in the compressed tree has at least two child boxes. As Figure 4.3 shows, to

change a normal tree into a compressed tree, one simply needs to remove all the boxes who

has only one child box, and links the remaining part of the branch to the parent box of the

removed boxes. We used the compressed octree in our algorithm.

Even if the compressed octree structure is used, it is still difficult to predict the number of
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boxes. In the worst case, the number of boxes could be very close to the number of particles.

Consider an two dimensional example in Figure 4.4. Assuming we have a bunch of charged

particles, which we enclosed by a square box, when we cut the box into the next level, we

find one particle in each box, except that the box in the lower right corner has more than s

particles inside. In the next step we only need to cut the box at the lower right corner. After

we cut it, the same thing appears and only the box in the lower right corner is left to be cut

again. We repeat this process until the box in the lower right corner encloses s− 2 particles.

In this way the number of boxes we generate is N − s+1, which is very close to the number

of particles N , since in general N is a very large number, from hundreds of thousands to

millions, while s is much smaller number, a few hundreds or less. In our code we do not want

to use the array with the length up to N to save the hierarchical box structure, because in

most cases we do not have so many boxes and it will be a waste of memory if we do so.

Instead we will estimate the length of the array according to our experience. If it turns out

the array is not long enough, the algorithm will quit and restart automatically with a larger

array.

4.2.2 Storage of the Compressed Octree

We use several arrays to save the octree and some related information. The data is saved in

such a way that (1) boxes are saved consecutively; (2) the higher level boxes are saved before

the lower level boxes, as Figure 4.5 shows; and (3) different kinds of information are saved

into different arrays, using the index of the element in the arrays as the identification of

the boxes, which means the elements with the same index in different arrays store different

information for the same box and the elements with different indexes in the same array

store the same kind of information for different boxes. Please note in the compressed tree
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Figure 4.4: The maximum number of boxes generated in the worst case
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Figure 4.5: Sequenced boxes

Level 0 Level 1 Level 2 ...

structure, there are two kinds of “level”. One is related to the position of a box inside the

tree, and the other is related to the size of a box. We use “level”, as in the above (2),

referring to the tree position level , and use “cutting level” referring to the box size level.

In a normal tree, all the boxes in the same level of the tree have the same box size, so there

is no difference between the two kinds of “level”. However in the compressed tree, since we

removed those boxes that have only one child each, we can not relate the box size directly

to its position in the tree. We have to use an extra number “cutting level” to represent the

box size. Take the compressed tree in Figure 4.3 as an example, box f and c are in the same

level, but f has a smaller size, hence a finer cutting level. The data structure is described

with details in the following.

We use the linked list structure to save the hierarchical structure of the boxes. Two one

dimensional arrays, box and nchld, are used, both having the same length as the number of

boxes. The ith element of box saves the index of the first child box of the box i, and the

ith element of nchld saves the number of child boxes of the box i. The ith element of both

box and nchld are zero if the box i is childless. So if the ith element of box has the value

j, and the corresponding element of nchld has the value k, we know that the box from j to

j + k − 1 are all child boxes of the box i. The value of each element from j to j + k − 1

in the array box tells us where its first child box is, and the value of each box from j to

j + k − 1 in the array nchld tells us how many child boxes it has. Using box and nchld
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Figure 4.6: Storage of the compressed tree
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we can search the compressed tree structure downwards, as shown in Figure 4.6. We use

another one dimensional array prnt with the same length as the number of boxes to save the

index of the parent box for each box. If the ith element of prnt has the value k, it means

the parent box of the box i is the box k. The first element of prnt is zero, because the level

zero box has no parent box. Together with the array prnt, we can search the compressed

tree structure upwards.

The one dimensional array lvl saves the level for each box. The two dimensional array

cntr saves the coordinates of the center for each box. Each processor save the coordinates

of npp particles in three vectors x, y, and z. The total particle number N = npp · np, if

our program runs on np nodes. Another three vectors, xx, yy and zz are used to save the

coordinates of all the particles, in order to decrease the communication time.

The linked list structure is used again to save the information about the particles inside

each childless box. If the ith box is childless, the index of the first particle inside it is

saved in the ith element of the one dimensional array idx, and the total number of particles

inside is saved in the ith element of the one dimensional array nptcl. For a parent box, the

corresponding elements in idx and nptcl are both zero. There is another one dimensional

array link, whose length equals the number of particles. Each element of link saves the index
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of the next particle, or zero if no more particles, in the same childless box. In order to find

all the particles inside any childless box i, we first find the first particle from idx[i], then

find the following from link[i], link[link[i]] , ... until we reach the zero. nptcl[i] gives the

number of particles inside the box i, which is useful when we need to create a vector to save

the particles’ coordinates.

4.2.3 Tree Construction

In the parallel algorithm, each process saves the coordinates of npp particles. The basic idea

of the tree construction in parallel is to let each process only deal with the npp particles saved

in itself. To determine whether a box should be split, we only need to know the number

of particles inside the box, which can be calculated by gathering the information from all

processes and take the summation. During the tree construction procedure, each process

uses a temporary array plink with the length npp to save which box each particle belongs

to. In the end we will gather plink from all processes, and by linking the paths saved in

different plink for each childless box, we can construct the array link. We will also gather

x, y, and z from all the processes and construct xx, yy, and zz for future computation. The

procedure of the parallel tree construction is shown in Figure 4.7.

The algorithm of the tree construction in parallel can be described as follows.

(1) Each process saves the coordinates of npp particles.

(2) Calculate the range of the coordinates in each process, gather the results from all

processes to determine the proper size of the root box that contains all the particles.

(3) Set the value of the first element in cntr, lvl and nptcl, which represents the root

box.

(4) Use two pointers to record the range of the boxes to treat. Initialize them as pnt1 = 1
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Figure 4.7: Parallel tree construction
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and pnt2 = 1.

(5) For all the boxes between pnt1 and pnt2, if it contains more than s particles, split

it into eight child boxes, distribute the particles into the child boxes and for each child box

save the number of particles inside it and save the particle list in idx and plink.

(6) For all the boxes between pnt1 and pnt2, gather the number of particles in their child

boxes. Check each box between pnt1 and pnt2 in sequence as follows. For each child box

take the summation of all processes to obtain the total particle number. If a box has only

one child box, replace the information of the parent box by its child box and split the child

box. Repeat until two or more child boxes are found. If a box has more than one child

boxes, set the respective values in box, nchld, and nptcl for the parent box, and in cntr, lvl,

and prnt for the child boxes.

(7) Set pnt1 = pnt2 + 1, and then make pnt2 point to the last element in the box array.

(8) Repeat (5) to (7) until all the childless boxes contain less than s particles.

(9) Gather the idx value for each childless box and plink from all processes, and set

proper values for idx and link.

(10) Scale x, y, and z so that the side length of the smallest childless box is 2. Gather

the scaled x, y, and z from all the processes and construct xx, yy, and zz, which save the

coordinates of all particles.

4.3 Calculation of the Far Multipole Expansions

4.3.1 Tree Partitioning

In order to increase the efficiency we want each process to deal with only a part of the tree.

We partition the whole tree in such a way that each process is assigned the same number
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Figure 4.8: Tree partitioning
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of childless boxes and all the ancestor boxes of them. Take the tree in Figure 4.8 as an

example. We have totally 18 childless boxes in the tree. Assume we want to distribute this

tree into four processes. First, we sequence all the childless boxes from left to the right, no

matter which level the box belongs. The we assign the first five childless boxes and their

ancestors to the first process, the following five to the second process, the following four to

the third process, and final four to the forth process. In this way we try to put as many

childless boxes who share the same ancestors as possible to the same process. In Figure 4.8

the belongings to the different processes are presented by different colors. One can see that

some ancestor boxes belong to multiple processes, which is presented by multiple colors. It

is clear that two consecutive processes can share at most L− 1 ancestor boxes, with L being

the depth of the tree. Since each parent box has at least two child boxes in the compressed

tree, if there are nc childless boxes, the length of the local tree is limited by 2l − 1, where

l = 1 +
⌈

(log nc − log np)/ log 2
⌉

.
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Figure 4.9: Parallel multipole expansion calculation
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4.3.2 Parallel Calculation of the Far Multipole Expansions

The local tree is saved in two arrays similar to box and prnt, which let us search upwards

and downwards the tree, in a sequence that a child box is always before its parent box. For

an arbitrary tree, the boxes can be sequenced by labeling them in the following way.

(1) Check all the boxes from the root of the tree.

(2) If the box is childless or all the child boxes of it have been labeled, label this box and

go back to its parent box. Otherwise check the first unlabeled child box of it.

(3) Continue until all the boxes are labeled.

The procedure of calculating the far multipole expansions in parallel is shown in Figure

4.9, and the algorithm can be described as follows.

(1) Each process calculates the far multipole expansions for the boxes in its own local

tree from the beginning to the end of the array. If the box is childless, the far multipole

expansion is calculated from the particles inside the box. If the box is a parent box, the far
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multipole expansion is calculated by shifting the far multipole expansions of its child boxes

to the center of the parent box and taking the summation. Since any box is sequenced before

its parent box, when we need to calculate the far multipole expansion of a parent box, the

far multipole expansions of all its child boxes have been calculated.

(2) Gather the far multipole expansions from all processes and save them in the array

mltp for future calculation. If a box belongs to multiple processes, which means its far

multipole expansion has been calculated by multiple processes, take the summation.

When using PLOOP to gather all the far multipole expansions in (2), the length of the

element in PMAP is determined by the longest local tree. The total memory needed is the

production of the memory needed to save the far multipole expansions of the longest local

tree and the number of processes, which is often more than the memory needed to save all

the far multipole expansions of the whole octree. In some case, when the local trees are

high unbalanced, the overestimation may drain too much memory and cause the failure of

the algorithm. An alternative that avoids this is to calculate the far multipole expansions

according to the different level in the whole octree, which can be described as follows.

(1) Find the boxes in the finest level of the whole octree and distribute them evenly to

all processes.

(2) Each process calculates the far multipole expansion for the boxes it gets.

(3) Communicate between all processes to share the far multipole expansions that are

calculated in (2).

(4) Find the boxes in the coarser level and repeat (2) and (3), until all the boxes are

treated.

In this way we will need L times of communication, where L is the depth of the whole

octree, but in each communication the memory needed is much less than the total memory
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needed to store the far multipole expansions of the whole octree. The overestimation in

PMAP is less than the memory needed to save np far multipole expansions. Note that the

sequenced local tree is still useful in the following calculation, although not used in the

calculation of far multipole expansions.

4.4 Calculation of the Local Expansions and the Fields

4.4.1 Relation between Boxes

To calculate the local expansions, we have to consider the relation between the boxes, which

is a little more complicated in a compressed tree than in a normal tree. For any arbitrary

two boxes, there are three kinds of relations between them according to their positions and

their sizes. Consider two boxes b and c. Without loss of the generality, we assume b is ether

larger than or have the same size with c, referred to as Sb ≥ Sc, where Sb and Sc are the

side length of b and c. d is the largest value of the projections of the distance between the

centers of b and c in x, y, and z direction. If d > (0.5+na) ·Sb, where na is a predetermined

positive integer, b and c are well separated; if (0.5+na) ·Sb > d > 0.5 ·Sb+na ·Sc, they are ill

separated; otherwise they are adjacent. Roughly say, if we can put na larger boxes between

the two boxes, they are well separated; if we can’t do that but we can put na smaller boxes

in between, they are ill separated; otherwise they are adjacent.Note that the value of d is

discrete. if d > (0.5+na) ·Sb, the smallest value of d is (0.5+na) ·Sb+0.5 ·Sc. Figure 4.10

shows examples for the three kinds of relations between two boxes for na = 1 and na = 2.

Note that when na > 1, the two boxes that are adjacent to each other are not necessarily

touching each other.

According to the strategy of the FMM, for any box b, the field or potential of those
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Figure 4.10: Relations between two boxes
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particles close to it is calculated directly, the contribution of those particles further away

is calculated by the multipole expansions or the local expansions, and as to those particles

more further away, their contributions are represented by the local expansions in the ancestor

boxes of b and will be transferred to b. So every box only interacts with those boxes who

do not have interactions with its ancestor boxes. For each parent box b, we set up an action

list. The list contains the following four kinds of boxes: (1) the boxes in the same level

of b , who are smaller than b and adjacent to or ill separated with b, (2) the boxes in the

same level of b, who are larger than b and adjacent to b, (3) the boxes in the lower level of

b, who are childless and adjacent to b, and (4) the box b itself. These boxes in the action

list of b and/or their descendants enclose the particles whose contributions are not included

in the local expansions of b or its ancestor boxes. And, these boxes will interact with the

child boxes of b. A childless box has no action list. The length of the action list is limited

by (2 · na + 1)D, where D is the dimension of the problem. D = 3 for a three dimensional

problem.
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The action lists for all the parent boxes can be generated in parallel as follows.

(1) Each process initializes the action list for the root, which only contains the root box

itself.

(2) Each process checks the local tree from the last element to the first element. If the

element b is a parent box, do step (3) to (5) to generate its action list. Note b is stored before

its parent box, so the action list of b’s parent box is always generated before b gets checked,

if we check the local tree backwards.

(3) Find the parent box of b. Check each box in the action list of b’s parent box. If the

box is childless and adjacent to b, add it into b’s action list. If the box is a parent box, check

all of its child boxes as step (4) states.

(4) If the box is larger than b and adjacent to b, add it to b’s action list. If the box is

smaller than or in the same size with b and adjacent to or ill separated with b, add it to b’s

action list.

(5) Add b itself into b’s action list.

4.4.2 Parallel Calculation of the Local Expansions and the fields

Assume we want to calculate the local expansion or the field insight the box b, and w is a

box in the action list of b’s parent box or its descendant. The different actions we can take

depend on the different conditions of b and w, which are shown in the Table 4.1. The ©

in the “Box size” column means both Sb < Sw and Sb ≥ Sw, and the © in the “box b”

and “Box w” columns means both “childless” and “parent”. Cw → Lb means to calculate

the local expansion in b by the charges in w; Mw → Cb means to calculate the field on the

charges inside b from the multipole expansion in w; Cw → Cb means to calculate the field

on the charges inside b from the charges inside w by the Coulomb’s theory; Mw → Lb means
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Table 4.1: Relations between two boxes and the respective actions

Relation Box size Box b Box w Action

ill separated
Sb < Sw

© childless Cw → Lb
© parent Check w’s descendants

Sb ≥ Sw
childless © Mw → Cb
parent © Add w into b’s action list

Adjacent © childless
childless Cw → Cb
parent Check w’s descendants

parent © Add w into b’s action list
well separated © © © Mw → Lb

to translate the multipole expansion in w into the local expansion in b.

The procedure to calculate the local expansions and the fields inside each box in parallel

is shown in Figure 4.11 and the algorithm can be described as follows.

(1) Each process creates the action list for each box in its local tree.

(2) Each process creates three arrays pex, pey, and pez to save the field in x, y, and z

direction of the particles inside the childless boxes in its local tree.

(3) Each process checks the local tree from the last element to the first element, and

calculates the local expansion and the field as steps (4) and (5) show.

(4) If a box b in the local tree is a parent box, we only need to calculate the local expansion

in it. The local expansion comes from three sources, inherited from b’s parent box, Cw → Lb,

and Mw → Lb, where w is a box in the action list of b’s parent box or its descendant. So

to calculate the local expansion of b, firstly check each box in the action list of b’s parent

box. If the box is a childless box, take actions according to Table 4.1. If the box is a parent

box, check all of its child boxes one by one and take actions according to Table 4.1. Then

translate the local expansion of b’s parent box into b and add it to the local expansion that

has been calculated from Cw → Lb, and Mw → Lb.

(5) If a box b in the local tree is a childless box, we need to calculate the field on the
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Figure 4.11: Parallel local expansion and field calculation
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charges inside it. The field comes from three sources, local expansion of b to the charges

inside it, Cw → Cb and Mw → Cb. Check each box in the action list of b’s parent box.

If the box is a childless box, take actions according to Table 4.1. If the box is a parent

box, check all of its child boxes one by one and take actions according to Table 4.1. Then

translate the local expansion of b’s parent box into b and add it to the local expansion that

has been calculated from Cw → Lb, and Mw → Lb. Finally calculate the field from the local

expansion of b and add it to the field that has been calculated from Cw → Cb andMw → Cb.

(6) Gather the field data from all the processes. Each process searches for the respective

field for its own particles. Note that the particles whose fields are calculated by a process

depends on the childless boxes in which they are enclosed, so generally they are not the same

particles stored in the process.

4.5 Numerical Results and Discussion

To test the performance of the parallel algorithm, we performed some calculations on our

small cluster machine with 48 nodes, each running at 2.2 GHz. Figure 4.12 shows the com-

putational cost to calculate the three dimensional electric field between 1,000,000 electrons

of the Gaussian distribution with different numbers of processes. It cost 894 seconds if using

only one node. As the number of processes increases, the cost of time decreases. And it cost

only 30 seconds when using all the 48 nodes. In these calculations, the DA order is kept up

to five and the relative error is less than 0.001. The parallel efficiency can be defined as

Eff =
Tseq(N)

q · Tp(N, np)
, (4.1)
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Figure 4.12: Computation time for 1,000,000 electrons with different number of processes
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where np is the number of processes, N is the number of unknowns, which is 1,000,000,

the number of particles, in this case, Tseq is the time cost of the sequential algorithm, and

Tp is the time cost of the parallel algorithm. As Figure 4.13 shows the parallel efficiency

decreases with the number of processes. When we use all the 48 nodes, the parallel efficiency

is still above 60%.

Currently we can calculate the three dimensional field for at most about 10,000,000

charged particles with the parallel algorithm. Using 96 nodes from the cluster machine of

MSU HPCC, it takes 167 seconds with the DA order up to five and relative error less than

0.001. The parallel efficiency is also about 60%. The bottleneck of the current parallel

algorithm is the memory cost. Without a proper compiler, for now we can only compile

COSY Infinity 9.1 as a 32 bit Fortran program; so each process can only assess no more than

2 GB memory. We save the coordinates of all particles and all the multipole expansions in

the local memory of each process. The memory cost increases with the number of particles,
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Figure 4.13: Parallel efficiency for 1,000,000 electrons with different number of processes
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no matter how many processes we use. Since the memory that each process can assess is

limited by 2 GB, the number of particles that we can treat is also limited. If we do not save

these data in the local memory of each process, one process may need to obtain some data

stored in another process in the calculation. Because we only have all-to-all communication,

all the processes have to stop and wait, even if the communication is only needed between

two processes. Since this kind of communication will happen frequently, the efficiency will

be heavily affected. In one sentence, we save this data in local memory to avoid too many

unnecessary all-to-all communications in order to keep a better efficiency. The price we paid

is the memory.
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Chapter 5

Using the Fast Multipole Method in

Beam Dynamics Simulations

The essential purpose of developing the DA based MLFMA is to simulate the space charge

effects in the high density system. In this chapter it will be presented how the algorithm

can be used in beam dynamics simulations. As an example, we simulated the photoemission

process of applying a laser beam on a metal surface, in which the space charge effect plays

an important role. The charge distributions are illustrated in different phase space plots in

the early stage soon after the electrons are created. Some related topics are discussed, such

as how to choose the proper units for the variables in the beam dynamics equations, how to

transform the space charge fields from the bunch frame to the laboratory frame, and how to

avoid artificial collisions between the charged particles.

5.1 Beam Dynamics Equations

The first step of tracking the motion of a charged particles in electromagnetic field is to find

the proper dynamics equations of (~p, ~x), where ~p represents the momentum and ~x represents

the position of the particle. The differential equation for ~x can be simply written down as

d~x

dt
=

~p

γm
, (5.1)
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where γ is the Lorentz factor and m is the static mass of the particle. The differential

equation of ~v can be derived from the Lorentz force formula and Newton’s second law.

d~p

dt
= ~F = q ~E + q~v × ~B = q ~E + q

~p

γm
× ~B, (5.2)

where t is the time, and ~E and ~B are the electric and magnetic fields experienced by the

particle. γ in Eq.(5.1) and Eq.(5.2) can be expressed as a function of p, such as

γ =

√

1 +
p2

m2c2
, (5.3)

where c is the speed of light. Using Eq.(5.3), catastrophic cancellation of significant digits

can be avoided in the computation. Then, the dynamics equations are

d~x

dt
=

~p

m

√

1 + p2

m2c2

,

d~p

dt
= q ~E +

q~p

m

√

1 + p2

m2c2

× ~B.

(5.4)

In order to avoid too small or too large numbers in calculation, an appropriate choice of

the units is necessary. For example, in most cases time t is a small number because of the

fast speed of the particles, but we can multiple with a constant number, the speed of light

c, to the time t and use meter as the unit, so that the scale of time is in a proper range.

Divided by c in both sides, Eq.(5.4) becomes
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d~x

dτ
= ~β =

~p

mc

√

1 + p2

m2c2

,

d~p

dτ
=
q

c
~E +

q~p

mc

√

1 + p2

m2c2

× ~B,

(5.5)

where τ = tc and ~β = ~v/c is the dimensionless Lorentz factor. If one chooses the following

units for the other variables,

~x = ~x[m] ~p = ~p[λeV/c], q = q[e], m = m[λeV/c2],

~E = ~E[λV/m], ~B = ~B[T] = ~B[Vs/m2], c = c[λm/s].

(5.6)

where λ is one of the SI prefixes such as k,M, G, etc., substituting them into Eq.(5.5), all

the units are canceled and one gets the dimensionless dynamics equations as Eq.(5.7) shows.

d~x

dτ
= ~β =

~p

m

√

1 + p2

m2

=
~p

γm
,

d~p

dτ
= q~E+ qc

~p

m

√

1 + p2

m2

× ~B = q
(

~E+ c~β × ~B
)

.

(5.7)

In the above, one coefficient λ is used to control the scale. In our simulation, we choose

λ = 106. Then the units are

~x = ~x[m] ~p = ~p[MeV/c], q = q[e], m = m[MeV/c2],

~E = ~E[MV/m], ~B = ~B[T] = ~B[Vs/m2], c = c[Mm/s].

(5.8)
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5.2 The Lorentz Transformation of the Space Charge

Field

In Eq.(5.7), all the physical quantities, including ~E and ~B, are measured in the laboratory

frame. ~E and ~B usually have two components, the external field and the space charge field.

The external field is often calculated in the laboratory frame. But the space charge field

is calculated as the static Coulomb field in the bunch frame, which moves together with

the bunch, under the assumption that all the particles have similar momenta. If the bunch

moves with a speed close to the speed of light, we have to consider the relativistic effects

and convert the space charge field from the bunch frame into the laboratory frame by the

Lorentz transform.

We refer to the laboratory frame as Σ and the bunch frame Σ′. All the physical quantities

measured in Σ are represented by an alphabet without prime and all that measured in Σ′

with a prime. For example, x, y, and z are position coordinates in Σ and x′, y′, and z′ are

position coordinates in Σ′. Assume in Σ the bunch moves with velocity ~vz in z direction,

which in practice can be chosen as the average velocity of all particles in z direction, then

we have

x′ = x,

y′ = y, (5.9)

z′ = γ · (z − vzt),

where γ =
√

1− v2z/c2. (x′, y′, z′) is used to calculate the Coulomb field between the particles

using the DA based MLFMA in Σ′. It is apparent that ~B′ = 0 in Σ′. Then we convert ~E′
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in Σ′ into ~E and ~B in Σ by Eq. (5.10).

Ex = γE′x, Bx = −γ vz
c2
· E′y,

Ey = γE′y, By = γ
vz
c2
· E′x, (5.10)

Ez = E′z, Bz = 0,

where c is the speed of light. Knowing ~E and ~B we can integrate the beam dynamics

equations in the laboratory frame.

5.3 Collisions Between Charged Particles in the Near

Region

Since the dynamics equations are numerically solved on discrete time steps, an artificial

collision between charged particles, as shown in Figure 5.1, could happen in the near region,

where the field is calculated directly by the the Coulomb force law. In the real world, the

charged particles feel a stronger repulsive force between them when they move closer and

thus they follow the traces like the green curves in the picture. But when we integrate the

dynamics equations in a discrete time step, the force between the pair of charged particles

is calculated at the very beginning and is kept as a constant during the whole time step.

The force is underestimated when the pair of particles move closer to each other. It could

happen that in some extreme case the two particles get very close to each other, as the black

lines show in the picture, and they will suddenly feel a very strong force in the next step,

which leads to a sudden increasing of their momentum. And later they will leave the bunch.

Actually when we simulate millions of particles, this artificial collision will not affect the
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Figure 5.1: The artificial collision

collective behavior if it only happens on a few particles. But it may affect some statistical

quantities, which are used to describe the collective behavior. For example, the r.m.s. value

of the positions, which is often used to describe the bunch size, may be increased simply

because the pair of particles in collision have left the bunch and contribute a huge distance

to the center of the bunch. So we need to prevent this collision from happening in the

simulation, or detect it when it happens and fix its effect. Another reason that we want to

prevent this artificial collision is due to the use of macroparticles. In many cases, we still use

one macroparticle to represent a group of particles to increase the efficiency, although the

MLFMA is applied. The macroparticles are treated as point charges in the near region field

calculation. However, as a group of particles, they in fact should have volume. When two

macroparticles go extremely close to each other, the two groups of real particles overlap each

other and the field between them will not go as high as the Coulomb force law calculates for

two point charges.

One easy way to detect the collision is to check the momentum dispersion of the bunch.
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The sudden increasing of the momentum of the particles experiencing collision often leads to

the discontinuity in the momentum dispersion curve. Figure 5.2 shows an example, in which

we simulate the free expansion of an electron bunch of 10,000 electrons for 10 ps in 200 steps.

No external field is applied and only the space charge field makes effects in the expansion

process. The dynamics equations are solved by the fourth order Runge-Kutta integrator

with fixed step size. The r.m.s. value of the momentum and the minimum distance between

all pairs of electrons are plotted in Figure 5.2. There are two jumps of the momentum

dispersion curve and for each one a local minimum value of the distance between electrons

can be found. We plot all the electrons in z − pz phase space, as shown in Figure 5.3, then

we found one pair of electrons that have much larger momenta than all the others. These

two electrons reached a very close distance in the last time step. Then in this time step, the

field between them goes extremely high, thus they feel a much large impulse than the other

electrons, which gives them much larger momenta than all the other electrons. While from

the charge density plot in Figure 5.4 we can see most electrons have very small momenta and

stay in the center of the space. The behavior of the two electrons do not affect the collective

behavior of the whole bunch and they will leave the bunch soon if they do not collide with

other electrons. But the values of their momenta are large enough to affect the r.m.s of the

momenta of the whole bunch.

We have three methods to avoid this. First, when we calculate the statistical quantities

of the whole bunch, we do not count the contribution of these two electrons. Second, we can

set a cut-off rate γ. When we calculate the field by the DA based MLFMA, we know exactly

how many particles each childless box holds. For each childless box, we calculate the average

distance ra. If the distance between two particles r is less than γ · ra, we use γ · ra instead of

r to calculate the field between these two particles. In this way we actually set a maximum
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Figure 5.2: Discontinuity of the momentum dispersion due to the near region collision
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Figure 5.3: Electrons in z − pz phase space
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Figure 5.4: Electron density in z − pz phase space
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Figure 5.5: Momentum dispersion after applying the first method
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Figure 5.6: Momentum dispersion after applying the second method
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Figure 5.7: Momentum dispersion after applying the third method
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force between each pair of particles for each childless box. Once the distance between a pair

of particles is less than the cut-off distance γ · ra, we use the maximum force to replace the

real force. Third, similarly to the second, when the distance between two particles r is less

than γ · ra, we use a three dimensional Gaussian distribution model, instead of the point

charge model, to represent the source particle. When the observer particle gets closer to the

center of the Gaussian distribution, the force it feels goes to zero. Figure 5.5, Figure 5.6

and Figure 5.7 respectively show the momentum dispersion curve after applying the above

method. In all the three cases the discontinuity disappears. In the last two simulations, γ

is chosen to be 0.001. The time step size need to be considered for the proper choice of γ,

because the change of the momentum depends on the impulse. Besides the above methods,

an integrator with automatic step size control can be employed to avoid this issue. One

needs to carefully choose the criteria of the step size control.

5.4 An Example of Photoemission Process Simulation

5.4.1 Model of the Photoemission Process

When an ultrafast laser pulse is applied on a gold film, electrons are generated. The the

motion of the electrons are dominated by the space charge field between them. We simulated

this process and the DA based MLFMA was used to calculate the space charge field. The

following model is used in the simulation. We let the gold film lie in the x− y plane, and z

direction is perpendicular to the film. The incident laser pulse is applied on the surface of

the gold film and the electrons come out of the surface after colliding with the photons and

absorbing their energy. Assume we know the Fermi energy of the gold film Ef , the work

function of the gold film W and the photon energy Eph = hν with ν the laser frequency.
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The highest possible energy of an electron inside the gold film is the Fermi energy Ef . We

assume the electron absorb all the energy of the photon after their collision. If the initial

energy of an electron is Ei, after the collision its energy is Ei + Eph. If this electron gets

enough energy to overcome the work function and escape from the gold film, we should

have Ei + Eph −W > Ef . So the lower bound of the energy for an electron to escape is

Ef −Eph +W . The higher bound is of course Ef . We assume the electrons have a uniform

distribution within the energy band of [Ef −Eph+W,Ef ]. After the collision, the energy of

the electron Ee is within the range of [Ef +W,Ef + Eph]. And the velocity of the electron

satisfies

v =

√

2Ee
m

, (5.11)

where m is the electron mass. To overcome the work function, the electron’s velocity in z

direction should be at least mv2/2 = Ef +W , so that

vz,min =

√

2(Ef +W )

m
. (5.12)

This implies that for a given energy Ee ∈ [Ef + W,Ef + Eph], only the electrons whose

velocities are inside an incident cone of the angle θmax with respect to the z direction can

escape, where

cos θmax =
vz,min
v

=

√

Ef +W

Ee
. (5.13)

From Eq. (5.13) we can see a smaller Ee leads to a smaller θ, and therefore a smaller cone.

If we assume the electron moves in a random direction after its collision with the photon,

Eq. (5.13) indicates the electrons with lower energies have lower possibilities to escape. The

possibility is in proportion to the solid angle of the cone, which is 2π(1 − cos θmax). The
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solid angle of a sphere is 4π, so we have the possibility to escape as

Pesc. =
2π(1− cos θmax)

4π
= 0.5 · (1− cos θmax),

where θmax is always a sharp angle. With a given energy Ee and a given outgoing angle θ,

the speed of the electron can be calculated by Eq. (5.11), and then the velocity in z direction

is

vz = v · cos θ. (5.14)

Given another angle φ ∈ [0, 2π], in the transverse directions we have

vx = v · sin θ · cosφ, and vy = v · sin θ · sinφ. (5.15)

Eq.(5.14) and Eq. (5.15) are the velocities on the metal side. If we assume the work function

is abrupt at the surface, the initial velocities of the electrons in the air side are

vxi = vx, vyi = vy, and vzi =
√

v2z − 2(Ef +W )/m. (5.16)

The algorithm of how we sample the electrons and simulate their motion is described

as follows. Note that if we do not specify the distribution of a random number, it has the

uniform distribution.

1. Assume the laser pulse has a Gaussian distribution with standard deviation σ in the

time domain. We cut the range of [−3σ,+3σ] into N even parts. The ith part covers from

t1 = −3σ+ (i− 1) · dt to t2 = −3σ+ i · dt, with dt = 6σ/N . If the total number of electrons

created during the photoemission process is Ne, the number of electrons created in the ith

104



time interval is (erf(t2/
√
2)− erf(t1/

√
2))/(2× 0.997).

2. For each outgoing electron, we generate its initial velocities and positions in the

following way. (a) Generate a random number Ee ∈ [Ef +W,Ef +Eph], calculate cos θmax

by Eq. (5.13), and then generate a random number c ∈ [0, 1]. (b) If c > 1 − cos θ, discard

Ee and repeat step (a). Otherwise accept Ee and continue. (c) Generate a random number

a ∈ [0, cos θmax] and another random number φ ∈ [0, 2π], let θ = arccos a, and calculate

the initial velocities by Eq. (5.14), Eq. (5.15) and Eq. (5.16). (d) Generate two random

numbers xi and yi of the Gaussian distributions with the standard deviations σx and σy

respectively for the initial coordinates in x and y direction. (e) The initial coordinate in z

direction is set to be zero.

3. For each outgoing electron, there is a positive residual left behind, assuming that other

electrons do not have enough time to compensate it. For each electron coming out of the

surface, there are three kinds of interactions: space charge field between the electrons, field

from the positive holes and the external field that is applied to help extract the electrons out.

The space charge field will be calculated by the DA based MLFMA. The external extracting

field is constant. The model of the positive residual field will be described in Section 5.4.2.

4. Solve the dynamics equations for the outgoing electrons. Once the z coordinate of an

electron is less than zero, remove it from our calculation.

5.4.2 Model of the Positive Residual Field

If we assume the incident laser pulse has a Gaussian distribution with standard deviation

σxy in the transverse plane, the outgoing electrons have the same transverse distribution and

so do the positive holes on the surface. Assume all positive residuals lie in a circular area

whose radius is 6σxy. We cut this area into Ns circular stripes whose width are all 6σxy/Ns.
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The radius of the inner side and the outer side of the ith stripe is r1i = (i− 1) · 6σxy/Ns and

r2i = i · 6σxy/Ns respectively. If the positive residuals have a distribution on the surface of

the form

f(r) =
1

2πσ2xy
exp

(

− r2

2σ2xy

)

(5.17)

and the total charges are Q, then the charges inside a circular area with radius r1 are

∫ 2π

0
dθ

∫ r1

0
f(r) · rdr = 2π

∫ r1

0

1

2πσ2xy
exp

(

− r2

2σ2xy

)

· rdr = 1− exp

(

− r21
2σ2xy

)

. (5.18)

So that the charges inside the ith stripe are

Qi = Q

[

exp

(

− r21i
2σ2xy

)

− exp

(

− r22i
2σ2xy

)]

. (5.19)

Then the whole area can be approximately represented by Ns rings with uniform charge

distribution. The radius of the ith ring is ri = 0.5 · (r1i + r2i) and the charge density of it

is ρi = Qi/2πri. The explicit formula for the three dimensional field of a uniformly charged

ring can be derived as follows.

Assume we have a uniformly charged ring, whose center is (0,0,z0) and whose radius is

r0, lying in the z = z0 plate. Its charge density is a constant number ρ. Using cylindrical
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coordinate, the electric field on an arbitrary point (r, θ, z) can be written as

φ =

∫ 2π

0

ρr0dθ0
√

(z − z0)2 + r2 + r20 − 2rr0 cos(θ0 − θ)

=

∫ 2π

0

ρr0dψ
√

(z − z0)2 + r2 + r20 − 2rr0 cosψ
(5.20)

= 2

∫ π

0

ρr0dψ
√

(z − z0)2 + r2 + r20 − 2rr0 cosψ
,

where ψ = (θ0 − θ) and the symmetry is used in the last step. Let

R2 = (r + r0)
2 + (z − z0)2, (5.21)

k2 = 4rr0/R
2. (5.22)

We have

(z − z0)2 + r2 + r20 − 2rr0 cosψ

= R2 − 2rr0 − 2rr0 cosψ

= R2 − 2rr0(1 + cosψ) (5.23)

= R2 − 4rr0 sin
2 ψ′

= R2(1− k2 sin2 ψ′),

where ψ = π − 2ψ′ and 1 + cosψ = 2 sin2 ψ′. Then the potential in Eq. (5.20) can be
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expressed as follows.

φ = 2

∫ π

0

ρr0dψ

R
√

1− k2 sin2 ψ′

= 2

∫ 0

π/2

ρr0(−2)dψ′

R
√

1− k2 sin2 ψ′

= 4

∫ π/2

0

ρr0dψ
′

R
√

1− k2 sin2 ψ′
(5.24)

=
4ρr0
R

K(k),

where K(k) is the complete elliptic integral of the first kind, which is defined as

K(k) =

∫ π/2

0

dα
√

1− k2 sin2 α
. (5.25)

The complete elliptic integral of second kind E(k) can be defined as

E(k) =

∫ π/2

0

√

1− k2 sin2 αdα, (5.26)

and K(k) and E(k) have the following relations in Eq. (5.27) and Eq. (5.28), which is going

to be used in our derivation.

dK

dk
=

E

k(1− k2) , (5.27)

dE

dk
=

E

k
− K

k
. (5.28)

In cylindrical coordinates, we have

~∇φ =
∂φ

∂ρ
ρ̂+

1

ρ

∂φ

∂θ
θ̂ +

∂φ

∂z
ẑ. (5.29)
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So that

Ez = −∂φ
∂z

= − ∂

∂z

(

4ρr0
R

K(k)

)

= −4ρr0
[

− 1

R2
K
∂R

∂z
+

1

R

∂K

∂k

∂

∂z

(√
4rr0
R

)]

=
4ρr0
R2

[

K +
1

R

∂K

∂k

√

4rr0

]

∂R

∂z
(5.30)

=
4ρr0
R2

[

K +

(

E

1− k2 −K
)]

z − z0
R

=
4ρr0
R3

E

1− k2 (z − z0),

and

Er = −∂φ
∂r

= − ∂

∂r

(

4ρr0
R

K(k)

)

= −4ρr0
∂

∂r

(

K(k)

R

)

= −4ρr0
[

− 1

R2
K
∂R

∂r
+

1

R

∂K

∂k

∂

∂k

(√
4rr0
R

)]

=
4ρr0
R2

[

K
∂R

∂r
+

1

R

∂K

∂k

(

√

4rr0
∂R

∂r

)

− ∂K

∂k

√

r0
r

]

=
4ρr0
R2

[(

K +
1

R

∂K

∂k

√

4rr0

)

∂R

∂r
− ∂K

∂k

√

r0
r

]

(5.31)

=
4ρr0
R2

[

E

1− k2
r + r0
R
−
√

r0
r

(

E

(1− k2)k −
K

k

)]

=
4ρr0
R2

[

E

1− k2
r + r0
R
− R

2r

(

E

1− k2 −K
)]

=
4ρr0
rR2

[

E

1− k2
r2 + rr0

R
− R

2

(

E

1− k2 −K
)]

.

In Eq. (5.30) and Eq. (5.31), relations as shown in Eq. (5.27), Eq. (5.28) and Eq. (5.32-5.35)
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are used.

∂R

∂z
=

z − z0
R

(5.32)

RK =
√

4rr0 (5.33)

∂R

∂r
=

r + r0
R

(5.34)

1

k

√

r0
r

=
R

2r
(5.35)

Now we can calculate the three dimensional field of a uniformly charged ring by Eq. (5.30)

and Eq. (5.31), in which the elliptic integral K(k) and E(k) can be calculated numerically

by Chebyshev polynomial expansions[23]. To check the validity of Eq. (5.30) and Eq. (5.31),

we let r = 0 and derive the formula for Ez and Er on the axis, which is well known. When

r = 0, k = 0, R =
√

r20 + (z − z0)2, and E(k) = E(0) = π/2. From Eq. (5.30), we get

Ez|r=0 =
4ρr0

(r20 + (z − z0))3/2
· π
2
· (z − z0)

=
2πρr0(z − z0)

(r20 + (z − z0))3/2
. (5.36)

From Eq. (5.31), we obtain

Er =
4ρr0
R2

[

E

1− k2
r + r0
R

+
R

2

(

K

r
− E

r(1− k2)

)]

=
4ρr0
R2

[I + II] , (5.37)
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where

I =
E

1− k2
r + r0
R

, (5.38)

II =
R

2

(

K

r
− E

r(1− k2)

)

. (5.39)

When r = 0,

I|r=0 =
πr0

2
√

r20 + (z − z0)2
. (5.40)

The other part is[49]

II =

∫ π/2

0

dα

r
√

1− k2 sin2 α
−
∫ π/2

0

√

1− k2 sin2 α
r(1− k2) dα

=
1

r

∫ π/2

0

k2 sin2 α− k2

(1− k2)
√

1− k2 sin2 α
dα (5.41)

=
4r0

(r + r0)2 + (z − z0)2
∫ π/2

0

sin2 α− 1

(1− k2)
√

1− k2 sin2 α
dα.

When r = 0, We have

II|r=0 =
4r0

r20 + (z − z0)2
∫ π/2

0
(sin2 α− 1)dα

= − πr0

r20 + (z − z0)2
. (5.42)

Then

Er|r=0 = I|r=0 + II|r=0 = 0. (5.43)

The expressions of Er and Ez on the axis in Eq.(5.43) and Eq.(5.36) are as expected.

In our simulation, we use 1000 stripes (Ns = 1000) to approximately calculate the field

of the positive residuals on a 101×101 grid, which covers the area of [0, 579µm]× [0, 579µm].
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Figure 5.8: Longitudinal field
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Figure 5.9: Radial field
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The longitudinal field and the radial field on the grid of one unit charge with Gaussian

distribution on the surface are shown respectively in Figure 5.8 and Figure 5.9. We assume

the charge distribution of the positive residuals does not charge, only the number of charges

changes and it is always equal to the number of electrons outside the surface. So at any time,
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fields always have the same shape as Figure 5.8 and Figure 5.9 show. But their strength

changes with time. If we have N particles outside the surface, which leaves N positive

residuals on the surface, the field on the grid of N residuals is just N times the field of a

unit charge. The fields on the particles are calculated by linear interpolation.

5.4.3 Comparison of the Simulation Results with the Experiment

Data

Our colleagues performed experiments to measure the ultrafast electron pulse dynamics im-

mediately following photoemission[84, 85] using a point projection imaging techniques[75].

The setup of the measurement system is shown in Figure 5.10. A 50 fs laser pulse is applied

on the gold photo cathode surface with a incidence of 45◦ to trigger the photoemission.

The laser has a Gaussian profile with an elliptical cross-section having σx = 115µm and

σy = 81µm. The wavelength of the laser is 266 nm, and the photon energy is 4.66 eV, which

is slightly higher than the work function of gold film that ranges from 4.0-4.6 eV[83], allowing

photoemission with a small energy spread. The exciting fluence of the laser pulse can be ad-

justed from 1-10 mJ/cm2. A positive electrode (anode) is separated 5 mm from the cathode,

providing an applied field (Fa) to facilitate the photoemission. The potential on the anode

can be adjusted from 0-2400 V, which leads to the range of Fa 0-0.4 MV/m calculated by

Field Precision, an electromagnetic field calculation program. The laser pulse together with

the the applied extracting field can produce a wide range from 104 to 108 electrons/pulse. A

point laser source is synchronized to the exciting laser beam with a well defined delay with

respect to photoemission. Once the electron pulse is emitted, the point electron source costs

a shadow of the electron pulse onto a metalized phosphor screen connected to an intensified
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Figure 5.10: Experiment setup, from Zhensheng Tao

CCD camera. The position and the size of the bunch can be obtained by measuring the

shadow patterns and fitting the experimental data with an analytical expression describing

the projection geometry[75].

Here we compare a group of experimental data with simulation results. In experiment we

set the extracting field Fa to be 0.32 MV/m and the fluence of the exciting laser 5mJ/cm2,

the electrons generated by photoemission is predicted to be in the order of 102[31] and the

electrons that survived after 100 ps are measured to be in the order of 106. There is a two

order’s drop of the electron population. In the simulation, we set the Fermi energy to be 5

eV, photon energy 4.65 eV, work function 4.45 eV. The FWHM of the laser pulse is 50 fs,

which means the standard deviation σ is 21.23 fs. To model the creation of the electrons,

we divide the time region of 6σ into 100 each pieces. In total 130 million electrons are

created, which are presented by 1.3 million macro-particles. Each macro-particle represents

100 electrons. Then we simulate the following 120 ps in 620 steps with various step sizes.
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The dynamics equations are solved by COSY’s intrinsic eighth order Runge-Kutta integrator.

The space charge field between the macro-particles are calculated by the DA based MLFMA.

A constant external field of 0.28 MV/m is applied to help extract the electrons. We save the

number of particles, the bunch size, and the momentum dispersion in each time step, and

save the positions and the momenta of all macro-particles in some selected steps. Figure

5.11 shows how the number of particles changes with respect to time. All the particles are

created in the first 120 fs. The peak value of the percentage is slightly less than one, which

means some particles go back to the surface almost immediately after they jump out. The

number of particles keeps decreasing. In the first 10 ps, the percentage decreases to 10%.

Then the curve becomes flatter. After 80 ps, the number of particles is almost a constant.

After 100 ps there are 7.26 million electrons, which agrees with the experiment in order.

Figure 5.11: Number of particles as a function of time
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The shadow pattern on the CCD screen can give us the information about the bunch

size and the position of the bunch. The raw data of the the shadow pattern at 70 ps is

shown in Figure 5.12. The horizontal axis represents the longitudinal position on the CCD

screen and the vertical axis the depth of the shadow. The peak at about 0.008 m tells us

where the bunch is in longitudinal direction and the shape of the peak give us information

about the longitudinal bunch size. In the simulation, we divide the 600 µm distance in the

longitudinal direction into 600 slots, each of which has the width of 1 µm. Then we count

the particle number in each slot. To compare with the simulation result, the position data of

the experiment is scaled as x
′
= (x− x(1))/33, where x is the data before scaling, x

′
is the

data after scaling and x(1) is the value of the first point before scaling. The shadow depth

data is scaled as y
′
= 5000 · y, where y is the data before scaling and y

′
is the data after

scaling. The simulation result and the experiment data at 70 ps, 80 ps, 90 ps and 100 ps are

compared in Figure 5.13, Figure 5.14, Figure 5.15 and Figure 5.16. Ignoring the data points

before 0.14 mm, the peak position, amplitude, and shape agree well in all cases. Figure 5.17

shows how the longitudinal bunch size evolves as time goes, in which the simulation and the

experiment agree too. The quadratic curve, instead of a linear line, is as expected due to

the space charge effect.
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Figure 5.12: Raw data of the shadow patterns at 70 ps
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Figure 5.13: Comparison of the experiment with the simulation at 70 ps
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Figure 5.14: Comparison of the experiment with the simulation at 80 ps
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Figure 5.15: Comparison of the experiment with the simulation at 90 ps
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Figure 5.16: Comparison of the experiment with the simulation at 100 ps
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Figure 5.17: Comparison of the bunch sizes in the experiment and the simulation
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Figure 5.18: The momentum dispersion as a function of time
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Simulations can give us some information that is difficult to measure directly in the exper-

iments, for example the momentum dispersion. Figure 5.18 shows the momentum dispersion

at different time in all the three directions. We are glad not to see any discontinuities. The

curves for the two transverse directions are almost identical because the whole system has

rotational symmetry in the simulation. For the same reason we also obtain two identical

curves of the transverse bunch sizes in Figure. 5.19.

More interesting is the charge distribution in different normal space and phase space.

Figure 5.20 shows the charge distribution in x − z phase space in the first 130 fs, during

which the laser pulse is applied on the surface and the electrons leave the surface and form

the bunch. Different color means different densities, and the brighter the color is, the higher

the density is. We can see how the electrons go out little by little, how they are accumulated

and how the bunch is generated. The center of the bunch has a higher density than the

edge has, which is reasonable since the Gaussian laser pulse has higher photon density at the
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Figure 5.19: The transverse bunch sizes evolve with time
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center too. Figure 5.21 shows the charge distribution in z − pz phase space in the first 130

fs. After the bunch is created, the charged particles form a triangle which covers the upper

left area in the z − pz phase space. The discontinuity in the first a few figures is due to the

discreteness in time of the integration.
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Figure 5.20: Charge distribution in x− z phase space in the first 130 fs
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Figure 5.20: (cont’d)

(e) t=63fs
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Figure 5.20: (cont’d)

(i) t=115fs
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Figure 5.21: Charge distribution in x− pz phase space in the first 130 fs

(a) t=13fs
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Figure 5.21: (cont’d)

(c) t=38fs
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Figure 5.21: (cont’d)

(g) t=89fs
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Figure 5.22 shows the charge distribution in x − z phase space at different times in the

following 120 ps, and Figure 5.23 shows the charge distribution in x− y phase space. In the

first 20 ps, the bunch is attached to the surface. During this period of time, the number of

particles decreases very fast as shown in Figure 5.11. From the x−y phase space distribution

we can see that the bunch has the highest density in the center at 1 ps and then the charge

density at the center is decreasing till 20 ps. This is because the charges at the center feel

a stronger space charge field and a stronger field from the positive residuals. After 60 ps,

the bunch starts to leave the surface and the number of particles is almost constant. In the

x − y phase space, most particles gather at the center again. Figure 5.24 shows the charge

distribution in z − pz phase space. At 10 ps, a linear chirp has been formed. As time goes,

the momentum difference between the two ends of the chirp increases due to the space charge

field, which is as expected.

From this example, we see the DA based MLFMA works well although the charge den-

sity keeps changing. The simulation helps us understand the experimental data. Similar

simulations can be used to study how the laser shape affects the photo electron distributions

and how the electron bunch evolves under different initial conditions and different external

fields.
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Figure 5.22: Charge distribution in x− z phase space in the following 120 ps
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Figure 5.22: (cont’d)

(e) t=50ps
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Figure 5.22: (cont’d)

(i) t=90ps
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Figure 5.23: Charge distribution in x− y phase space in the following 100 ps
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Figure 5.23: (cont’d)

(e) t=30ps
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Figure 5.23: (cont’d)
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Figure 5.24: Charge distribution in x− z phase space in the following 120 ps
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Figure 5.24: (cont’d)

(e) t=50ps
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Figure 5.24: (cont’d)

(i) t=90ps
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5.5 Benefit of Using the Grid-free Fast Multipole Method

The particle-in-cell (PIC) method is currently the most popular algorithm for the space

charge effect calculation in the beam community. There are two important differences that

distinguish the grid-free fast multipole method from the PIC method. First, the PIC method

depends on a grid, which makes it difficult to deal with systems with strongly nonuniform

charge distribution or/and complex geometry[68, 22]. Advanced techniques are often re-

quired to treat curved geometries by the PIC method. The fast multipole method is grid-free

and it treats any charge distribution and any geometry in a natural way. Some PIC pro-

grams can solve problems with regular boundaries, such as rectangular, circular, or elliptical

boundary. But they have difficulties to solve problems with irregular boundaries. The fast

multipole method can be combined with the boundary integral equation method (BIEM)

[76, 38, 64] to solve problems with complicated geometries. Second, the PIC method artifi-

cially smooths the field. In a highly correlated system, it is difficult to accurately calculate

the local interaction to simulate the fine structures by the PIC method without using a

very fine grid, which greatly increases the computation cost[68, 90, 22]. In the research on

advanced accelerators, sometimes a high density beam with a certain profile is desired[70].

For example, a flat beam may help to easily generate the accelerating wake field[61] and

a three dimensional uniformly-filled ellipsoidal electron bunch is good for high-power free

electron lasers[70]. The grid-free fast multipole method is an ideal simulation tool for these

problems since it accurately calculates the nearby interactions, which affect the fine structure

of the charge distribution. Besides the above-mentioned benefits, one can easily increase the

accuracy using the grid-free fast multipole method, whenever the high accuracy is needed.

As is described in the previous chapters, the accuracy can be increased by simply increasing
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the order of the multipole expansions or increasing the distance between a box and its near

neighbors. It does not depend on how we decompose the whole region into boxes. While

using the PIC algorithm, the accuracy is limited by the grid size. To increase the accuracy,

which requires finer grid size, is hard, especially for three dimensional problems.

Nowadays, accelerator physicists are trying to provide higher and higher intensity beams,

so that it becomes more and more important to understand the interaction between charged

particles. For example, muon cooling is an essential part in Fermilab’s Neutrino Factory and

Muon Collider program[36, 95], and some experiments have been launched in the interna-

tional MICE project[28]. Electron cooling for the ion beam is also a challenge in Jefferson

Lab’s MEIC project[1]. The electron cloud effect is being studied in the main injector of

Fermilab’s Project X[53, 54] and Cornell University’s CesrTA program[27, 67]. The space

charge effect, which is dominant in the photoemission process, has to be understood and

controlled in Cathode R&D for free electron laser (FEL) or electron microscope design[30].

Numerical simulation is a very useful tool for studies on collective effects, and it is inevitable

when the collective effects are strong and highly nonlinear. Because of its grid-free property

and good efficiency, the fast multipole method will be either a good cross-check to the clas-

sical PIC method or a challenger in high density highly correlated systems with complicated

geometries.
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APPENDIX
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Detailed Description of the DA-Based

MLFMA Algorithm

Choose DA order and s, the maximum number of particles inside a childless box.

Stage 1. Hierarchical structure of boxes.

Create the zero level box and put it into the array box. Update lvl, prnt, cntr, idx, nptcl,

and link if applicable.

if box[1] contains more than s particles

i1 ←the index of the last element in box. a← b means giving the value of b to a.

subdivide box[1] into eight boxes, add the nonempty boxes into box, update nchld, lvl,

prnt, cntr, idx, nptcl, and link if applicable.

i2 ←the index of the last element in box.

while i2 > i1

loop i = i1 + 1, i2, 1

if box[i] contains more than s particles

subdivide box[i] into eight boxes, add the nonempty boxes into box, up-

date nchld, lvl, prnt, cntr, idx, nptcl, and link if applicable.

endif

endloop
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i1 ← i2

i2 ←the index of the last element in box.

endwhile

endif

Comment We denote by nbox the total number of boxes formed in Stage 1. And we put

the in line comments inside the “{}”.

Stage 2. Multipole expansion.

loop i = nbox, 2,−1

if box[i] is childless

Calculate the multipole expansion around the center of box[i] according to the

particles inside by Eq. (3.1).

else {box[i] is a parent box}

Calculate the multipole expansion of box[i] by shifting the multipole expansions

of its child boxes to its center and take the summation using Eq. (3.2) and Eq.

(3.3). {Note again that in Eq. (3.3) we do not calculate d′r. }

endif

endloop

Comment Since we sort backwards from the last box, the multipole expansions of the child

boxes are always calculated before that of their parent box.

Stage 3. Fields.
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loop i = 2, nbox, 1

b← box[i].

clg[i]← 1&i. {Initialize the colleague list for b.}

if lvl[i] > 1

Inherit the local expansion from b’s parent box using Eq. (3.9) and Eq. (3.10).

endif

if b is childless

Calculate the interaction between the particles inside b directly, and save the

resulting field in E(b).

endif

loop j = 1, clg[prnt[i]]|1, 1

pclg ← clg[prnt[i]]|(j + 1).{Sort the colleague list of b’s parent box.}

loop k = box[pclg], box[pclg] + nchld[pclg]− 1, 1

w ← box[k]. {w is a child box of a colleague of b’s parent box.}

if k > i

if w is adjacent to b

Add w into b’s colleague list.

For the operations here, see description (1) in the following .

else

w is in the list Vb. Convert the multipole expansion of w into the local

expansion of b using Eq. (3.5) and Eq. (3.6), and add it to lcl[i]. In the
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same way convert the multipole expansion of b into the local expansion

of w and add it to lcl[k].

endif

endif

endloop

endloop

if b is childless

Calculate the field on the particles inside b according to the local expansion of b,

and add the result to E(b).

Add E(b) to the corresponding elements in Ex, Ey, and Ez.

endif

endloop

Comment We only calculate w that is behind b in the array box, because the interactions

between b and those boxes before b have already been calculated. The diagram of stage

3 is shown in Figure A.1.

Description (1)

if b is childless

if w is childless

w is in the list Ub. Calculate the contribution of the particles in w directly and

add the results to E(b). Use Newton’s third law to calculate the field on the
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Figure A.1: Diagram of stage 3
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particles inside w, and add the results to the corresponding elements in Ex, Ey,

and Ez.

else {w is a parent box.}

Check the descent of w. See description (2).

endif

elseif w is childless

Check the descent of b. See description (3).

endif

Description (2)

Create a stack.

Put all child boxes of w into the stack.

pnt←length of the stack.

while pnt > 0

d← stack[pnt].

pnt← pnt− 1. {Remove the last element from the stack.}

if d is not adjacent to b

d is in the list Wb. Calculate the fields on the particles inside b according to the

multipole expansion of d using Eq. (3.11), and add the results to E(b). Calculate

the local expansion around the center of d according to the charges inside b using

Eq. (3.7) and Eq. (3.8), and add the result to the corresponding element of lcl.
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Figure A.2: Diagram of description (2)
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else {d is adjacent to b.}

if d is childless

d is in the list Ub. Calculate the contribution of the particles in d directly

and add the results to E(b). Use Newton’s third law to calculate the field on

the particles inside d, and add the results to the corresponding elements in

Ex, Ey, and Ez.

else {d is a parent box.}

Add all the child boxes of d into the stack.

pnt←the length of the stack.

endif

endif

endwhile

Comment The diagram of description (2) is shown in Figure A.2.

Description (3)

The algorithm is the same with description (2). One only needs to replace all w by b and

all b by w, and finally add one more step to add E(w) to the corresponding elements in Ex,

Ey, and Ez.
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Figure A.3: Diagram of description (3)
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[71] G. Pöplau, U. Van Rienen, J. Staats, and T. Weiland. Fast algorithms for the tracking
of electron beams. energy, 1(5):0–001, 2000.

[72] G. Poplau, U. van Rienen, B. van der Geer, and M. de Loos. Multigrid algorithms for
the fast calculation of space-charge effects in accelerator design. IEEE Transactions
on Magnetics, 40(2 Part 2):714–717, 2004.
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