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ABSTRACT

APPLICATION OF RIGOROUS HIGH-ORDER METHODS AND NORMAL FORMS TO
NONLINEAR SYSTEMS

By

Adrian Weisskopf

The nonlinearities of dynamical systems often display the most interesting and fascinating behavior.

At the same time, those nonlinearities complicate finding closed form analytic solutions, especially

for complex systems, to the point where it is often impossible. Differential algebra (DA) based

methods allow us to analyze those systems with all their nonlinearities up to arbitrary order in an

automated, computer based framework that operates with floating point accuracy.

This thesis will investigate repetitive dynamical systems from seemingly unrelated fields of

study using DA methods such as DA based transfer and Poincaré maps, the DA normal form

algorithm, normal form defect studies, and verified methods based on Taylor Models. The common

mathematical underpinnings of those dynamical systems allow us to analyze them with different

techniques that have the same methods at their core.

Specifically, we will analyze resonances, associated fixed point structures, and oscillation periods

of particles in the accelerator storage ring of the Muon 𝑔-2 Experiment at Fermilab to gain a

detailed understanding of the stability of the system and the potential loss mechanism of particles.

If successful, the Muon 𝑔-2 Experiment raises existential questions about the completeness of the

Standard Model of particle physics, which makes our efforts to understand the stability of the system

highly relevant.

The same methods used for the analysis of the accelerator storage ring will also be used to generate

far reaching sets of satellite orbits for formation flying missions under the Earth’s gravitational zonal

perturbations. Our approach is particularly elegant and precise, and its theoretical limits are beyond

the range of practical applications.

One central method in both of those analyses is the DA normal form algorithm. Using the

mechanical device of the centrifugal governor as an illustrative example problem, the special



properties of the resulting normal form, the sensitivities and limitations of the algorithm, and its

resulting quantities are explained in detail.

We also will provide first results and an outlook for future work of the presented methods in the

realm of verified methods, and illustrate the current possibilities as well as future opportunities and

challenges. In particular, Taylor Model based verified global optimization is introduced and used to

calculate rigorous stability estimates for different configurations of the Muon 𝑔-2 Storage Ring.



To my parents and grandparents.
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Figure 5.30: The left plot shows stroboscopic tracking in the vertical phase space illustrating
orbit behavior with a single period-3 fixed point structure present. The orbits
only differ in their vertical phase space behavior – they all have the same
momentum offset of 𝛿𝑝 = 0.126 % and are at the momentum dependent
equilibrium point in radial phase space (𝑥 = 10.64 mm, 𝑎 = 0.045 mrad)
having no radial oscillation amplitude. The blue orbits indicate the island
patterns around the stable fixed points in the middle of the islands. The red
orbits are right at the edge before being caught around the fixed points. The
three unstable fixed points are in the space between the two red orbits, where
the islands almost touch. In the right plot, the attractive (green) and repulsive
(violet) eigenvectors of the linear dynamics around the unstable fixed points
are schematically shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Figure 5.31: Stroboscopic tracking in the vertical phase space illustrating orbit behavior
with two period-3 fixed point structures present. The orbits in each plot
only differ in their vertical phase space behavior. All orbits have the same
momentum offset of 𝛿𝑝 = 0.339 %. The four plots differ by their radial
amplitude around the momentum dependent equilibrium point in radial phase
space at (𝑥 = 27.7 mm, 𝑎 = 0.144 mrad). The radial amplitudes are: a)
𝑥amp = 6 mm, b) 𝑥amp = 4.8 mm, c) 𝑥amp = 4 mm, d) 𝑥amp = 1 mm. The blue
orbits indicate the island patterns around the stable fixed points. The red orbits
are right at the edge before being caught around the period-3 fixed points. The
green orbits are caught around both period-3 fixed point structures. The gray
orbits in d) emphasize that half of the fixed points from c) have indeed been
annihilated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 5.32: a) Shows how the muon loss ratio is composed of regular particles (purple) and
particles involved with period-3 fixed point structures (green). Of the period-3
particles (green), the fraction caught in islands structures is indicated by the
blue stripe pattern. In b) the loss ratio over time is shown for each subgroup
of lost particles to better understand which losses drive to overall loss from
plot a). The tracking starts after the initial 30 𝜇s of final beam preparation
when data taking is initiated. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 6.1: A contour plot of the Rosenbrock function with (𝑎, 𝑏) = (1, 100). . . . . . . . . 144

Figure 6.2: Projections of the multidimensional generalizations of the Rosenbrock function
(Eq. (6.2)) into 2D-subspaces around minimum at ®𝑥 = (1, 1, ..., 1), i.e., all
variables are equal one except for the ones shown in the respective plot. . . . . . 146

Figure 6.3: Verified global optimization of the 2D Rosenbrock function using COSY-GO
in different operation modes with fourth order Taylor Models for all modes
except interval evaluations (IN). . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xxi



Figure 6.4: No cluster effect for the COSY-GO operating mode QFB/LDB, but a significant
cluster effect for the IN evaluation. . . . . . . . . . . . . . . . . . . . . . . . . 149

Figure 6.5: Splitting comparison between fourth order Taylor Model approach with
QFB/LDB enabled and interval evaluation using the example of the modified
2D Rosenbrock function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Figure 6.6: Time consumption and number of steps in the optimization of the regular
𝑛 dimensional Rosenbrock function from Eq. (6.2) at various orders with
COSY-GO and QFB/LDB enabled. Additionally, the interval evaluation
performance is also shown for comparison. . . . . . . . . . . . . . . . . . . . . 151

Figure 6.7: Time consumption and number of steps in the optimization of the 𝑛 dimensional
Rosenbrock function with an additional artificial dependency problem 𝑓 =

𝑓2D− 𝑓2D+ 𝑓2D for various Taylor Model orders with COSY-GO and QFB/LDB
enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Figure 6.8: The Lennard-Jones potential for a pairwise interaction between two particles
as defined in Eq. (6.8). The potential well around the minimum is shown
on the left, while the right plot emphasizes its shallowness compared to the
steep potential wall for 𝑟 < 1. The potential is offset for the convenience of
calculation so that the single minimum 𝑈★

LJ has an energy of zero. . . . . . . . . 154

Figure 6.9: The particles 𝑝𝑖 are numbered according to their 𝑥 position. The variable 𝑣𝑥,𝑙
denotes the distance between particle 𝑝𝑙 and 𝑝𝑙+1. A configuration with any
𝑣𝑥,𝑙 > 1 (left picture) is never optimal, because the 𝑈𝑘 can always be lowered
by setting 𝑣𝑥,𝑙 = 1 (right picture). . . . . . . . . . . . . . . . . . . . . . . . . . 159

Figure 6.10: The relation between 𝑈LJ and the corresponding inter-particle distance(s).
Note that 𝑟max(𝑈LJ) is only defined for𝑈LJ ≤ 1. 𝑟min(𝑈LJ) is only decreasing
very slowly with increasing 𝑈LJ as the logarithmic plot on the right shows. . . 160

Figure 6.11: The plots show the values of the optimization variables 𝑣★
𝑥,𝑖

of the minimum
energy configuration of 𝑘 particles in 1D that resulted from the verified
global optimization using COSY-GO. The minimum energy configuration is
mirror symmetric with the middlemost distances between adjacent particles
asymptotically approaching 𝑟★ ≈ 0.998724135, the solution of the infinite
equidistant configuration from Eq. (6.41). The right plot shows the logarithm of
the difference between the calculated distances from the verified optimization
and 𝑟★. The ranges reflect the side-length of the remaining box. . . . . . . . . . 167

xxii



Figure 6.12: The plots show the values for the optimized variables 𝑣★
𝑥,𝑖

of the symmetric
minimum energy configuration of 𝑘 particles that resulted from the verified
global optimization. Again, the middlemost distances asymptotically approach
𝑟★ ≈ 0.998724135, the solution of the infinite equidistant configuration from
Eq. (6.41). The right plot shows the logarithm of the difference between the
calculated distances from the verified optimization and 𝑟★. The ranges reflect
the side-length of the remaining box. . . . . . . . . . . . . . . . . . . . . . . . 173

Figure 6.13: Performance of the minimum energy search for configurations of 𝑘 particles
in 1D using COSY-GO with different Taylor Model orders with QFB/LDB
enabled. The order of the Taylor Models is denoted by ‘O’. The results from
both Sec. 6.2.2.6 and Sec. 6.2.2.7 (’sym’) are shown. . . . . . . . . . . . . . . . 175

Figure 6.14: The particles 𝑝𝑖 are numbered according to their 𝑥 position. The variable 𝑣𝑥,𝑙
denotes the 𝑥 distance between particle 𝑝𝑙 and 𝑝𝑙+1. A configuration with
any 𝑣𝑥,𝑙 > 1 (left picture) is never optimal, because the overall potential can
always be lowered by setting 𝑣𝑥,𝑙 = 1 (right picture). . . . . . . . . . . . . . . . 180

Figure 6.15: The optimal 2D configuration of five particles is denoted by five dots. Enclose
all the five particles by a 2D rectangle using the minimum and maximum
coordinates in 𝑥 and 𝑦, shown by a solid line rectangle. Surround the resulting
rectangle with a band of width 1, and we have a initial search domain for the
sixth particle (shaded area). . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Figure 6.16: Schematic illustration of the upper bound on distance perpendicular to the 𝑥

axis (major axis) due to the requirement of having the longest distance between
𝑝1 and 𝑝𝑘 . 𝑝1 at 𝑥1 = 0 and 𝑝𝑘 at 𝑥𝑘 , where the major axis length 𝑟1𝑘 = 𝑥𝑘 . . . 182

Figure 6.17: Initial search domain for a configuration of 𝑘 particles in 2D. Note that the
initial domain width in 𝑥 direction is always 1 (see Eq. (6.72)) and that the 𝑥
position of particle 𝑝𝑖 determines the starting position in 𝑥 of the domain of
particle 𝑝𝑖+1. Particle 𝑝1 is fixed to the origin, particle 𝑝2 is bound by 𝑦2 ≤ 0,
and particle 𝑝𝑘 has a fixed 𝑦 value of zero. . . . . . . . . . . . . . . . . . . . . 183

Figure 6.18: Piecewise defined modified Lennard-Jones potential 𝑈̃LJ,sqr shown by the
black curve. The red curves shows the Lennard-Jones potential and the green
line shows the tangent of this Lennard-Jones potential of 𝑟sqr. The plot shown
here is an example case with 𝑟2

LB = 0.92. . . . . . . . . . . . . . . . . . . . . . 185

Figure 6.19: Taylor Model description of piecewise defined function. Each Taylor Model
is represented by three lines as previously done in Fig. 2.2. The central curve
denotes the polynomial part of the Taylor Model, while the curves above and
below it indicate the bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xxiii
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Figure 6.28: The normal form defect landscape of the radial (left side) and vertical (right
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Figure 6.41: Nonverified normal form defect for the phase space storage regions of the
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the normal form transformation up to order 2 instead of the full tenth order.
The individual plots show different momentum ranges, clarified by the label
at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii
indicate a normal form defect below 10−5. The yellow boxes denote normal
form defects up to 10−4. The orange boxes correspond to normal form defects
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Figure 6.44: Nonverified normal form defect for the phase space storage regions of the
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form defects up to 10−4. The orange boxes correspond to normal form defects
up to 10−3. The red boxes denote normal form defects up to 10−2.5, and the
black boxes indicate normal form defects larger than that. Each onion layer
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Figure 6.47: Nonverified normal form defect for the phase space storage regions of the
Muon 𝑔-2 Storage Ring simulation with an ESQ voltage of 18.3 kV using
the normal form transformation up to order 8 instead of the full tenth order.
The individual plots show different momentum ranges, clarified by the label
at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii
indicate a normal form defect below 10−5. The yellow boxes denote normal
form defects up to 10−4. The orange boxes correspond to normal form defects
up to 10−3. The red boxes denote normal form defects up to 10−2.5, and the
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Figure 6.48: Nonverified normal form defect for the phase space storage regions of the
Muon 𝑔-2 Storage Ring simulation with an ESQ voltage of 18.3 kV using
the normal form transformation up to order 9 instead of the full tenth order.
The individual plots show different momentum ranges, clarified by the label
at the top of each graph. The color scheme corresponds to the normal form
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Figure 6.49: Nonverified normal form defect for the phase space storage regions of the
Muon 𝑔-2 Storage Ring simulation with an ESQ voltage of 18.3 kV using
the normal form transformation up to the full tenth order. The individual
plots show different momentum ranges, clarified by the label at the top of each
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Figure 6.50: Nonverified normal form defect for the phase space storage regions of the
Muon 𝑔-2 Storage Ring simulation with an ESQ voltage of 18.3 kV using an
eleventh order map and its normal form transformation up to tenth order.
The individual plots show different momentum ranges, clarified by the label
at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii
indicate a normal form defect below 10−5. The yellow boxes denote normal
form defects up to 10−4. The orange boxes correspond to normal form defects
up to 10−3. The red boxes denote normal form defects up to 10−2.5, and the
black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of
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CHAPTER 1

INTRODUCTION

Henri Poincaré was a pioneer – his three volumes on ‘New Methods of Celestial Mechanics’ [74]

were one of the greatest methodological contributions not only to the field of celestial mechanics, but

also for the mathematical theory of dynamical systems in general. Numerous methods to describe

and analyze dynamical systems in various research areas have been established and developed based

on his work.

Poincaré’s ideas and concepts were groundbreaking, but strongly limited in their application.

Performing his perturbation theory approaches by hand requires a certain simplicity or algebraic

structure of the considered system. Many complex systems do not exhibit this simplicity and are

impossible to solve in a purely analytic closed form. Consequently, those systems are often reduced

in their complexity to ideal cases or simplified versions to solve them analytically.

Computer based numerical methods have been developed to solve complex systems for very

specific initial conditions with floating point accuracy. However, to develop sophisticated solutions

of complex systems, which are more general than just for a specific set of initial conditions, it is

critical to capture as much of the algebraic structure of the problem as possible. The differential

algebra (DA) framework developed by Berz et al. [19, 15, 18, 14] (Sec. 2.1) constitutes a hybrid

structure that manages both of these aspects. It captures the algebraic structure of a system up

to arbitrary order to carry out the perturbation part going back to Poincaré’s theory, while its

implementation in COSY INFINITY [27, 25, 61] allows for an automated calculation of algebraic

solutions in a computer environment based on floating point arithmetic.

This thesis will use this powerful hybrid and its associated methods to dive into the fascinating

world of nonlinear dynamical systems. The common mathematical underpinnings of many of those

systems make it possible to apply the highly developed DA methods to seemingly unrelated fields of

study using suitable transformations and projections. To emphasize this versatility of the methods,

we analyze one problem from the field of astrodynamics in Chapter 4, and one problem from the field
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of accelerator physics in Chapter 5. Additionally, we introduce a key technique – the DA normal

form algorithm [19] – in Chapter 3, where we analyze the well known system of the centrifugal

governor not in its usual linearized version, but with its high order nonlinearities.

The analysis in the field of accelerator physics in Chapter 5 is concerned with the stability and

the oscillation frequencies of particles in the storage ring of the Muon 𝑔-2 Experiment at Fermilab

(E989). We investigate the dependence of these frequencies on offsets in the momentum of the

particles and on the amplitudes of oscillation. Nonlinear effects of the various electric field and

magnetic field components of the storage rings that are used to confine the particles and bend their

trajectory cause these shifts in the frequencies, which potentially influences the beam’s susceptibility

to resonances. In fact, for the specific ring configurations considered in this thesis, the resonance

behavior and their associated fixed point structures make this analysis particularly interesting from a

dynamical systems point of view.

In contrast, the analysis in the field of astrodynamics in Chapter 4 is concerned with the

trajectories of satellites in low and medium Earth orbits under zonal gravitational perturbation. The

perturbation significantly distorts the orbits from their Keplerian form, causing them to rotate within

their orbital plane and precess around the Earth at different frequencies. We present a method that

elegantly solves one of the elementary challenges in astrodynamics, namely the bounded motion

problem, for orbits in the Earth’s zonally perturbed gravitational field. Our method generates large

continuous sets of orbits, for which any two orbits remain in bounded motion for time periods of

decades despite the perturbation.

An essential tool in all of those applications are DA transfer maps and Poincaré maps [19, 40]

(see Sec. 2.2). Instead of continuously working with the equations of motions in the form of ordinary

differential equations (ODE) as Poincaré did, we work with maps generated from those ODEs. They

yield an arbitrarily high order description of a system’s behavior between two discrete instances of

time or location. Maps are particularly useful for the analysis of repetitive systems in the form of

Poincaré return maps, where the maps represent the system’s behavior in a chosen cross section

of the motion for each turn. A repetitive application of the map to a state in that cross section
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corresponds to the propagation of the state in the system. Accordingly, the repetitive application

allows for a stroboscopic study of the repetitive motion with all the implications regarding its

stability.

Origin preserving Poincaré return maps, which are expanded around a linearly stable fixed point,

are the starting point of the DA normal form algorithm [19, 17, 16] (see Sec. 2.3). The linearly

stable fixed point corresponds to a stable equilibrium state in the Poincaré projection of the system.

With the DA normal form algorithm, the phase space behavior around the fixed point of the map is

transformed to normalized coordinates, which are closely related to action-angle coordinates. In

those normal form coordinates, the phase space behavior is rotationally invariant with only amplitude

dependent angle advancements up to the order of calculation. Accordingly, the angle advancements

and the amplitude describe the key aspects of the dynamics straightforwardly (see Sec. 2.3.1).

This generalized nonlinear normalization method up to arbitrary order is very powerful and has

many applications making it the main component of many techniques used in this thesis. Chapter 3

focuses on a detailed walk through of the DA normal form algorithm using the centrifugal governor

as an example. While the principal structure of the process is rather straightforward, the implications

of individual steps are not always obvious. This chapter allows discussing those intricacies in full

detail.

One critical aspect of the normal form transformation is its sensitivity to resonances (see

Sec. 2.3.2). Resonances can affect the normalization process such that the rotationally invariant

structure of the resulting normal form is perturbed depending on the strength of the resonances.

Hence, those resonances constitute one of the driving factors of the normal form defect (see Sec. 2.4),

which is a measure of the variance of the (pseudo-)invariants produced by the normal form. This

variance yields a local rate of divergence and can therefore be used as a stability estimate. Phase

space regions with large normal form defects can trigger diverging phase space behavior and indicate

less stable motion.

As an outlook for future developments, Chapter 6 discusses the first steps of enhancing the

methods for these specific applications by making them completely verified. We will see that
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fully transferring these methods to a verified version is everything but trivial and still to be further

investigated. As a starting point for the verified analysis, we introduce verified global optimization

[12, 69, 29, 63, 57, 43] and its application for a verified stability estimate of the Muon 𝑔-2 Storage

Ring.

The basis of this discussion and the global optimization method (see Sec. 2.6) are Taylor Models

[53, 58, 54, 55, 21, 75] (see Sec. 2.5), which yield a structure for verified computations by enhancing

the DA framework with rigorous remainder bounds.
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CHAPTER 2

METHODS

The methods used for this thesis are hybrids of numerical and analytical techniques based on a

differential algebra (DA) framework, which was first developed to its current extent by Berz et al.

[19, 14, 15]. The following summary and introduction to the DA framework (Sec. 2.1), DA maps

(Sec. 2.2), and the DA normal form algorithm (Sec. 2.3) are based on [19] and have been given in

similar form in my previous publications [95, 96, 93, 94].

In Sec. 2.3.1, the resulting quantities of the normal form, namely the tune, tune shifts, and

normal form radii, are discussed in more detail. The influence of resonances on the normal form is

described in Sec. 2.3.2. Sec. 2.4 yields an introduction to the normal form defect, a measure for the

non-invariance of the normal form radii, based on [29].

The introduction to Taylor Models (Sec. 2.5) for verified computations and their applications

including verified global optimization (Sec. 2.6) are based on the work of Makino and Berz et al.

[53, 58, 54, 55, 29, 62].

2.1 The Differential Algebra (DA) Framework

The fundamental purpose of the DA framework [19] is to provide a mathematical backbone

for computer based storage and manipulation of analytic functions. In principle, this is done by

representing an analytic function 𝑓 in terms of its Taylor polynomial expansion P 𝑓 up to order 𝑚,

similar to how real numbers are represented by an approximation up to a certain arbitrary number

of significant digits. In order to discuss the mathematical construction of the differential algebra

framework in more detail, we require the notation ‘=𝑚’ instead of just ‘≈’ to clarify that both sides

of such an equation are equivalent up to order 𝑚.

A Taylor polynomial expansion P 𝑓 up to order 𝑚 represents multiple analytic functions which

are equivalent up to order 𝑚. This gives rise to the definition of equivalence classes following

[19, p. 91]. The equivalence class [ 𝑓 ]𝑚 represents all elements 𝑓 of the vector space of 𝑚 times
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differentiable functions C𝑚 (R𝑛) with 𝑛 real variables that have identical derivatives at the origin up

to order 𝑚. The origin is chosen out of convenience and without loss of generality – any other point

may be selected. In the DA framework, the equivalence class [ 𝑓 ]𝑚 is represented by a DA vector,

which stores all the coefficients of the Taylor expansion of 𝑓 and the corresponding order of the

terms in an orderly fashion. Operations are defined on the vector space 𝑚𝐷𝑛 of all the equivalence

classes []𝑚 .

There are three operations: addition, vector multiplication, and scalar multiplication, which

yield results equivalent to the result up to order 𝑚 of adding two polynomials, multiplying two

polynomials, and multiplying a polynomial with a scalar. The first two operations on the equivalence

classes (DA vectors) form a ring. The scalar multiplication makes the three operations on the real (or

complex) DA vectors an algebra, where not every element has a multiplicative inverse. An example

of such elements without a multiplicative inverse is functions without a constant part like 𝑓 (𝑥) = 𝑥,

since 1/ 𝑓 (𝑥) = 1/𝑥 is not defined at the origin and can therefore not be expanded around it.

To make the algebra a differential algebra, the derivation 𝐷 satisfying the Leibniz rule

𝐷 ( 𝑓 𝑔) = 𝑓 𝐷 (𝑔) + 𝑔𝐷 ( 𝑓 )) (2.1)

is introduced, which is almost trivial in the picture of differentiating polynomial expansions. The

derivation opens the door to the algebraic treatment of ordinary and partial differential equations as

it is common in the study of differential algebras [77, 76, 45].

Implemented in COSY INFINITY [27, 25, 61], the DA framework allows preserving the

algebraic structure up to arbitrary order while manipulating the coefficients of the DA vectors with

floating point accuracy. Detailed examples of the operations on 1𝐷1 and 2𝐷1 are given in [19] and

[93], respectively. An example of a DA vector in the application of DA transfer maps and Poincaré

maps is given in Sec. 2.2.

2.2 DA Transfer Maps and Poincaré Maps

The dynamics of a system are often described by a set of ordinary differential equations (ODE)

¤®𝑧 = 𝑓 (®𝑧, 𝑡), which describe the incremental change of a state ®𝑧 over an independent variable 𝑡 like
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time. For practical purposes, it is often advantageous to generally describe the long term propagation

of a state ®𝑧.

In the terminology of dynamical system theory, a so-called flow operator M𝑇 is used to describe

the action of the system on a state ®𝑧 after a fixed time 𝑇 . Since it is often impossible to determine the

flow in a closed form, numerical integration of the ODE is required. The DA framework allows for a

hybrid integration that conserves the algebraic structure up to arbitrary order during the integration.

Integrating a local expansion 𝛿®𝑧ini around an initial state ®𝑧0 yields the final state ®𝑧fin in form of an

𝑚 order flow map M𝑇 , which depends on the expansion in (𝛿®𝑧ini, 𝛿 ®𝜂), where 𝛿 ®𝜂 is the expansion

around a reference set of parameters ®𝜂0.

More generally speaking, a transfer map M algebraically expresses how a final state ®𝑧fin is

dependent on an initial state ®𝑧ini and system parameters ®𝜂, as

®𝑧fin = M (®𝑧ini, ®𝜂) . (2.2)

Transfer maps are also called propagators or simply maps. The expansion point of the map

belongs to a chosen reference orbit/state of the system, e.g. a (pseudo-)closed orbit for a fixed point

map and/or the ideal orbit of the unperturbed system.

There are special transfer maps called Poincaré maps [74] that constrain the initial and final state

to Poincaré surfaces Sini and Sfin, respectively. For the simulation of storage rings and their particle

optical elements, this concept is used to represent how the state after a storage ring element depends

on system parameters and the state before the element. A setup of multiple consecutive storage ring

elements is described by the composition of their Poincaré maps.

Poincaré return maps represent the case where Sini is equal to Sfin. They are particularly useful for

the representation of dynamics in repetitive systems like the ones considered in this thesis. Multiple

applications of a Poincaré return map correspond to the propagation of the system. The Poincaré

return maps are particularly advantageous when they are origin preserving, i.e., the expansion point

is a fixed point of the map, because system dynamics represented by origin preserving Poincaré

return maps can be further analyzed by normal form methods and for the asymptotic stability of the

system.
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Constraining the map to the Poincaré surface S is often done by calculating the flow of an

ODE and projecting it onto the surface S. This reduces the dimension of the original map and

generates the Poincaré map. An implementation of a timewise projection onto a surface S defined

by 𝜎(®𝑧, ®𝜂) = 0 is outlined in [40].

The projection uses DA inversion methods that compute the inverse A−1 to the auxiliary map A,

which contains the constraining conditions of the Poincaré surface S. Given that A has no constant

part, the auxiliary map and its inverse satisfy

A−1 ◦A =𝑚 A ◦A−1 =𝑚 I . (2.3)

The basic idea of the projection of a transfer map M onto a surface defined by 𝜎(®𝑧, ®𝜂) = 0 is to

replace one of the variables or parameters of M by an expression in terms of all the other variables

and parameters such that the constraint 𝜎(M) = 0 is satisfied. This eliminates the corresponding

component of the map and thereby reduces its dimensionality. In [40], the timewise projection is

prepared by calculating an expansion of the map M in time 𝑡. The DA inversion methods are then

used to find the intersection time 𝑡★(®𝑧, ®𝜂) dependent on the state variables ®𝑧 and system parameters

®𝜂 such that

𝜎(M(®𝑧, ®𝜂, 𝑡★(®𝑧, ®𝜂))) = 0. (2.4)

2.3 The DA Normal Form Algorithm

The DA normal form algorithm [19] is an advancement from the DA-Lie based version, the first

arbitrary order algorithm by Forest, Berz, and Irwin [38]. Given an origin preserving map M of a

repetitive Hamiltonian system, where the components of the map are in phase space coordinates,

the DA normal form algorithm provides a nonlinear change of the phase space variables by an

order-by-order transformation to rotationally invariant normal form coordinates.

Implemented in COSY INFINITY [27, 25, 61], this is a fully automated process, which can be

performed up to arbitrary order. It is only limited by floating point accuracy and the capability of

the computer system to handle DA vectors of the chosen computation order 𝑚calc and dimension.
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In the standard configuration, order ten calculations of a three dimensional system (with six phase

space variables) are easily manageable.

In Chapter 3, the normal form algorithm is explained in great detail for the one dimensional

system (with two phase space variables) of a centrifugal governor. Here we want to explain the

more general form for a 2𝑛 dimensional symplectic system with an optional parameter dependence

on 𝑛𝜂 parameters summarized in ®𝜂. The explanations are largely based on [19].

For parameter dependent maps, the algorithm starts by expanding the origin preserving map

M(®𝑧, ®𝜂) around its parameter dependent fixed point ®𝑧PDFP( ®𝜂), which satisfies

M (®𝑧PDFP( ®𝜂), ®𝜂) = ®𝑧PDFP( ®𝜂). (2.5)

Defining the extended map N = (M − I®𝑧, ®𝜂), the parameter dependent fixed point ®𝑧PDFP is

determined by evaluating the inverse of N at the expansion point ®𝑧 = ®0:

(®𝑧PDFP ( ®𝜂) , ®𝜂) = N−1
(
®0, ®𝜂

)
. (2.6)

The map M is then expanded around its parameter dependent fixed point ®𝑧PDFP.

The resulting map M0 = L + ∑
𝑚 U𝑚 consists of a linear part L and the nonlinear parts U𝑚 of

order 𝑚. Due to the transformation to the parameter dependent fixed point, the map has no terms

that only depend on parameters. Accordingly, the entire linear part is independent of parameters.

The variables of the map are the canonical phase space coordinates ®𝑧 = ( ®𝑞0, ®𝑝0) and, if

applicable, parameters ®𝜂. The normal form algorithm transforms this map order by order up to the

full calculation order 𝑚calc of the map. For each order 𝑚, the transformation step has the following

form

M𝑚 = A𝑚 ◦M𝑚−1 ◦A−1
𝑚 , (2.7)

where A𝑚 is the transformation map (also just called transformation) and A−1
𝑚 is its inverse. The

result of the 𝑚th order transformation step is the map M𝑚 . Hence, M𝑚−1 is the result from the

previous transformation step or M0 from above. The last transformation step is for order 𝑚 = 𝑚calc.

The first step of the algorithm, for 𝑚 = 1, is to linearly decouple the map into 𝑛 two dimen-

sional subspaces. The linear transformation diagonalizes the system, transforming the (parameter
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dependent) fixed point map into the complex conjugate eigenvector space of its linear part. We

assume linearly stable behavior around the (parameter dependent) fixed point of the map with

distinct complex conjugate eigenvalue pairs of magnitude one since this property is shared among

all systems considered in this thesis (see [19] for other cases). If any of the eigenvalues 𝜆★ had an

absolute value larger than 1, the motion would be unstable since the state on the corresponding

eigenvector ®𝑣★ would grow in magnitude by a factor of |𝜆★| > 1 with each iteration. Additionally,

eigenvalues of symplectic maps come in reciprocal pairs such that eigenvalues with a magnitude

smaller than 1 have a reciprocal partner eigenvalue |𝜆★| > 1, which are again linearly unstable.

The complex conjugate eigenvalue pairs 𝑒
±𝑖𝜇 𝑗 of the diagonalized linear part are grouped

together such that the matrix 𝑅̂ of the diagonalized linear part R has the following decoupled form

𝑅̂ =

©­­­­­­­«

𝑅̂1
. . .

𝑅̂𝑙
. . .

𝑅̂𝑛

ª®®®®®®®¬
where 𝑅̂ 𝑗 =

©­­«
𝑒
+𝑖𝜇 𝑗 0

0 𝑒
−𝑖𝜇 𝑗

ª®®¬ . (2.8)

The resulting map of the first transformation step – linear transformation – is M1 = R+∑
𝑚 S𝑚 ,

where the new nonlinear terms of order 𝑚 that resulted from the linear transformation are denoted by

S𝑚 . The complex phase ±𝜇 𝑗 of the eigenvalue pairs will be of critical importance in the nonlinear

transformations of the algorithm.

In summary, the first transformation step performed the following operation

M1 = A1 ◦M0 ◦A−1
1 = A1 ◦ L ◦A−1

1 +
∑︁
𝑚

A1 ◦ U𝑚 ◦A−1
1 = R +

∑︁
𝑚

𝑆𝑚 , (2.9)

where A1 is the linear transformation from the original coordinate space ( ®𝑞0, ®𝑝0) to the complex

conjugate coordinate space ( ®𝑞1, ®𝑝1) and A−1
1 is its inverse for the transformation in the opposite

direction.

With the linearly decoupled map, the following steps of the normal form algorithm can be

performed for each of these linearly decoupled subspaces separately. The 𝑗 th subspace of the linearly
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decoupled map M1 can be explicitly written as

M1, 𝑗 ( ®𝑞1, ®𝑝1, ®𝜂) = R 𝑗 +
∑︁
𝑚

S𝑚, 𝑗 =
©­­«
𝑒
+𝑖𝜇 𝑗 0

0 𝑒
−𝑖𝜇 𝑗

ª®®¬
©­­«
𝑞1, 𝑗

𝑝1, 𝑗

ª®®¬
+

∑︁
𝑚=| | ®𝑘++®𝑘−||1+|| ®𝑘𝜂 | |1

©­­­«
S+
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

S−
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

ª®®®¬
𝑛∏
𝑙=1

(𝑞1,𝑙)
𝑘+
𝑙 (𝑝1,𝑙)

𝑘−
𝑙

𝑛𝜂∏
𝑢=1

(𝜂𝑢)𝑘
𝜂
𝑢 , (2.10)

where 𝑘+
𝑙

represents the positive integer exponent of 𝑞1,𝑙 , 𝑘−𝑙 represents the positive integer exponent

of 𝑝1,𝑙 , and 𝑘
𝜂
𝑢 represents the positive integer exponent of 𝜂𝑢. The positive integer exponents are

summarized in the vectors ®𝑘+, ®𝑘−, and ®𝑘𝜂, respectively. The 𝐿1-Norm | | · | |1 of the sum of these

vectors is used to ensure that only polynomial terms of order 𝑚 are considered.

To better understand the expression in Eq. (2.10), we present some terms of the M−
1, 𝑗 component

M−
1, 𝑗 ( ®𝑞1, ®𝑝1, ®𝜂) = 𝑒

−𝑖𝜇 𝑗 · 𝑝1, 𝑗 + S−
2
(
(2,0,...,0)𝑇 ,(0,...,0)𝑇 ,(0,...,0)𝑇

)
, 𝑗
· 𝑞2

1,1 + ... (2.11)

+ S−
2
(
(0,...,0,𝑘+

𝑗
=1,0,...,0)𝑇 ,(0,...,0,𝑘−

𝑙
=1,0,...,0)𝑇 ,(0,...,0)𝑇

)
, 𝑗
· 𝑞1, 𝑗 𝑝1,𝑙 + ...

+ S−
2
(
(0,...,0)𝑇 ,(0,...,0,1)𝑇 ,(1,0,...,0)𝑇

)
, 𝑗
· 𝑝1,𝑛𝜂1 + ...

Due to the linear transformation into the complex conjugate eigenvector space of the purely real

linear part, the two components of each subspace form a complex conjugate pair. The ‘+’ and ‘-’

notation is used, where the sign corresponds to the sign of the complex eigenvalue phase of the map

component of that subspace. Specifically, this means that

M+
1, 𝑗 = M−

1, 𝑗 with 𝑞1, 𝑗 = 𝑝1, 𝑗 and S+
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

= S−
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗 . (2.12)

This property is maintained throughout all the following nonlinear transformation steps, which are

performed order by order starting with order two. The general form of the nonlinear transformation

is A𝑚 =𝑚 I + T𝑚 , where T𝑚 is a polynomial containing only terms of order 𝑚. Hence, the

transformation A𝑚 is a near-identity transformation and a full identity up to order 𝑚 − 1. The

transformation A𝑚 is determined by finding T𝑚 such that the 𝑚th order of the resulting map M𝑚
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is simplified or even eliminated when the transformation A𝑚 and its inverse A−1
𝑚 =𝑚 I − T𝑚 are

applied to M𝑚−1 in the 𝑚th order nonlinear transformation step (see Eq. (2.7)).

The higher order terms of the transformation A𝑚 do not influence the 𝑚th order terms of the

map. Hence, they are irrelevant for the 𝑚th order transformation step and can be chosen freely, e.g.

to make the transformation symplectic with A𝑚 = exp(𝐿T𝑚 ) which we will do (see [19]). However,

the higher orders of the resulting map M𝑚 are strongly dependent on A𝑚 , its higher order terms,

and its corresponding inverse. In Chapter 3, the influences of the second order transformation on

the third order terms of the resulting map are analyzed in great detail. While these influences are

not to be dismissed, the key element of this 𝑚th order transformation step is the elimination of as

many 𝑚th order terms of the resulting map M𝑚 as possible by a smart choice of T𝑚 .

Given the map M𝑚−1, representing M simplified up to order 𝑚 − 1 and applying A𝑚 and its

inverse to it, yields [19, Eq. (7.60)]:

A𝑚 ◦M𝑚−1 ◦A−1
𝑚 =𝑚 (I + T𝑚) ◦ (R + S𝑚) ◦ (I − T𝑚)

=𝑚 (I + T𝑚) ◦ (R −R ◦ T𝑚 + S𝑚)

=𝑚 R + S𝑚 + [T𝑚 ,R] , (2.13)

where R is the diagonalized linear part and S𝑚 represents only the 𝑚th order terms of the map

M𝑚−1 (the leading order of terms that have not been simplified yet).

The equations above only consider terms up to order 𝑚, since terms of order 𝑚 + 1 and larger

are irrelevant for determining T𝑚 . The maximum simplification would be achieved by finding T𝑚

such that the commutator

C𝑚 = T𝑚 ◦R −R ◦ T𝑚 = [T𝑚 ,R] = −S𝑚 , (2.14)

which would eliminate all nonlinear terms S𝑚 of order 𝑚.

Since the commutator only involves T𝑚 and R we can investigate this transformation separately

in the 𝑛 individual subspaces. The components of the 𝑗 th subspace of the commutator C𝑚 = [T𝑚 ,R]
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are

C𝑚, 𝑗 =
∑︁

𝑚=| | ®𝑘++®𝑘−||1+|| ®𝑘𝜂 | |1

©­­­«
C+
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

C−
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

ª®®®¬
𝑛∏
𝑙=1

(𝑞𝑙)
𝑘+
𝑙 (𝑝𝑙)

𝑘−
𝑙

𝑛𝜂∏
𝑢=1

(𝜂𝑢)𝑘
𝜂
𝑢 , (2.15)

where

C±
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

= T ±
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

(
𝑒
𝑖 ®𝜇

(
®𝑘+−®𝑘−

)
− 𝑒

±𝑖𝜇 𝑗
)
. (2.16)

Accordingly, the commutator terms C±
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

can eliminate their corresponding nonlinear

terms of the map S±
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

by choosing

T ±
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

=

−S±
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

𝑒
𝑖 ®𝜇

(
®𝑘+−®𝑘−

)
− 𝑒

±𝑖𝜇 𝑗
, (2.17)

if

𝑒
𝑖 ®𝜇

(
®𝑘+−®𝑘−

)
− 𝑒

±𝑖𝜇 𝑗 ≠ 0. (2.18)

In other words, only the S±
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

terms corresponding to C±
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

for which the

condition (see [19, Eq. (7.65)])

mod2𝜋
©­«𝜇 𝑗 (𝑘+𝑗 − 𝑘−𝑗 ∓ 1) +

∑︁
𝑙≠ 𝑗

𝜇𝑙

(
𝑘+
𝑙
− 𝑘−

𝑙

)ª®¬ = 0, (2.19)

is satisfied, survive.

A straightforward solution of the condition in Eq. (2.19) is

𝑘+𝑗 − 𝑘−𝑗 = ±1 ∧ 𝑘+
𝑙
= 𝑘−

𝑙
∀𝑙 ≠ 𝑗 , (2.20)

where the first condition concerns the 𝑗 th subspace and the second condition is regarding all the

other subspaces 𝑙 with 𝑙 ≠ 𝑗 .

The surviving terms of the 𝑚th order transformation step in the 𝑗 th subspace can be generally

written as

S+
𝑚( ®𝑘+®𝑒 𝑗 ,®𝑘,®𝑘𝜂), 𝑗

and S−
𝑚( ®𝑘,®𝑘+®𝑒 𝑗 ,®𝑘𝜂), 𝑗

with 2| | ®𝑘 | |1 + 1 + || ®𝑘𝜂 | |1 = 𝑚, (2.21)

where the unit vector ®𝑒 𝑗 consists only of zeros except for a 1 at the 𝑗 th entry.
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From Eq. (2.21) it becomes clear that only certain terms of uneven order in the phase space

coordinates ( ®𝑞, ®𝑝) survive. These terms have the special property that each complex conjugate

phase space variable pair is raised to the same exponent except for the phase space variable pair of

the respective subspace. So, all even order terms in phase space coordinates can be eliminated by

the nonlinear normal form transformations.

The remaining terms of S𝑚 (from Eq. (2.21)) describe the entire dynamics of the systems in a

nutshell and are the key elements of the normal form and therefore essential for further analysis of

the dynamics.

Resonances between the complex phases ®𝜇 of the different subspaces in the denominator of

Eq. (2.17) can break this special structure and therefore the rotational invariance of the normal form

as will be discussed in Sec. 2.3.2. For now, we will continue only with the terms that are supposed

to survive, namely the terms specified in Eq. (2.21).

Once the nonlinear transformation steps transformed the map up to its full order 𝑚 = 𝑚calc, the

map has been significantly simplified to

©­­«
M+

𝑚, 𝑗

M−
𝑚, 𝑗

ª®®¬ =
©­­«
𝑞𝑚, 𝑗 𝑓

+
𝑗

(
𝑞𝑚,1𝑝𝑚,1, 𝑞𝑚,2𝑝𝑚,2, ..., 𝑞𝑚,𝑛𝑝𝑚,𝑛, ®𝜂

)
𝑝𝑚, 𝑗 𝑓

−
𝑗

(
𝑞𝑚,1𝑝𝑚,1, 𝑞𝑚,2𝑝𝑚,2, ..., 𝑞𝑚,𝑛𝑝𝑚,𝑛, ®𝜂

)ª®®¬ , (2.22)

where

𝑓 +𝑗 = 𝑒+𝑖𝜇 +
∑︁

𝑚=2| | ®𝑘 | |1+1+|| ®𝑘𝜂 | |1

S+
𝑚( ®𝑘+®𝑒 𝑗 ,®𝑘,®𝑘𝜂), 𝑗

𝑛∏
𝑙=1

(
𝑞𝑚,𝑙 𝑝𝑚,𝑙

) 𝑘𝑙 𝑛𝜂∏
𝑢=1

(𝜂𝑢)𝑘
𝜂
𝑢 . (2.23)

Since the original map is real, the last step of the algorithm is transforming the resulting map to

the real normal form basis ( ®𝑞NF, ®𝑝NF), which is composed of the real and imaginary parts of the

current complex conjugate basis ( ®𝑞𝑚 , ®𝑝𝑚). The relation between the bases is

𝑞NF, 𝑗 =
𝑞𝑚, 𝑗 + 𝑝𝑚, 𝑗

2
, 𝑝NF, 𝑗 =

𝑞𝑚, 𝑗 − 𝑝𝑚, 𝑗

2𝑖
, and (2.24)

𝑞𝑚, 𝑗 = 𝑞NF, 𝑗 + 𝑖𝑝NF, 𝑗 , 𝑝𝑚, 𝑗 = 𝑞NF, 𝑗 − 𝑖𝑝NF, 𝑗 . (2.25)

The squared normal form radius 𝑟2
NF, 𝑗 is given by the product of 𝑞𝑚, 𝑗 𝑝𝑚, 𝑗 , with

𝑞𝑚, 𝑗 𝑝𝑚, 𝑗 = 𝑞2
NF, 𝑗 + 𝑝2

NF, 𝑗 = 𝑟2
NF, 𝑗 . (2.26)
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Applying the basis transformation to the map components of M𝑚 in each subspace yields

MNF, 𝑗 = Areal, 𝑗 ◦M𝑚, 𝑗 ◦A−1
real, 𝑗

=
1
2

©­­«
1 1

−𝑖 𝑖

ª®®¬ ·
©­­«
𝑓 +
𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®𝜂

) (
𝑞NF, 𝑗 + 𝑖 𝑝NF, 𝑗

)
𝑓 −
𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®𝜂

) (
𝑞NF, 𝑗 − 𝑖 𝑝NF, 𝑗

)ª®®¬
=

©­­«
1
2

(
𝑓 +
𝑗
+ 𝑓 +

𝑗

)
𝑞NF, 𝑗 + 𝑖

2

(
𝑓 +
𝑗
− 𝑓 +

𝑗

)
𝑝NF, 𝑗

−𝑖
2

(
𝑓 +
𝑗
− 𝑓 +

𝑗

)
𝑞NF, 𝑗 + 1

2

(
𝑓 +
𝑗
+ 𝑓 +

𝑗

)
𝑝NF, 𝑗

ª®®¬
=

©­­«
Re

(
𝑓 +
𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®𝜂

))
−Im

(
𝑓 +
𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®𝜂

))
Im

(
𝑓 +
𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®𝜂

))
Re

(
𝑓 +
𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®𝜂

)) ª®®¬ ·
©­­«
𝑞NF, 𝑗

𝑝NF, 𝑗

ª®®¬ . (2.27)

Writing 𝑓 +
𝑗

and its complex conjugate counterpart 𝑓 −
𝑗

in terms of complex phases with

𝑓 ±𝑗
(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®𝜂

)
= 𝑒

±𝑖Λ 𝑗

(
𝑟2NF,1,...,𝑟

2
NF,𝑛,®𝜂

)
(2.28)

yields the following normal form

MNF, 𝑗 =
©­­«
cos

(
Λ 𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®𝜂

))
− sin

(
Λ 𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®𝜂

))
sin

(
Λ 𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®𝜂

))
cos

(
Λ 𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®𝜂

)) ª®®¬ ·
©­­«
𝑞NF, 𝑗

𝑝NF, 𝑗

ª®®¬ , (2.29)

which clearly shows the circular phase space behavior in normal form subspaces with only amplitude

®𝑟NF,sqr =
(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛

)
(2.30)

and parameter ®𝜂 depended angle advancements ®Λ.

The radii of the circular motion – the normal form radii – are constants of motion up to

the calculation order. The entire dynamics in the normal form are given by the constant angle

advancements ®Λ along the circular phase space curves. The rotational invariance implies an

interpretation of the normal form as an averaged representation of the original Poincaré return map

M, in the limit where the map application is repeated infinitely many times.

Normalizing the angle advancements ®Λ to [0, 1] yields the tunes ®𝜈 and amplitude and parameter

dependent tune shifts 𝛿®𝜈(®𝑟NF,sqr, ®𝜂). Accordingly,

®Λ(®𝑟NF,sqr, ®𝜂)
2𝜋

= ®𝜈 + 𝛿®𝜈(®𝑟NF,sqr, ®𝜂). (2.31)
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The normal form transformation A and its inverse A−1 are given by the composition of all the

individual transformations of each transformation step with

MNF = Areal ◦A𝑚 ◦A𝑚−1 ◦ ... ◦A1︸                                 ︷︷                                 ︸
A

◦M ◦A−1
1 ◦ ... ◦A−1

𝑚−1 ◦A
−1
𝑚 ◦A−1

real︸                                    ︷︷                                    ︸
A−1

. (2.32)

The normal form transformation A yields how the normal form variables (𝑞NF, 𝑗 , 𝑝NF, 𝑗 ) depend

on the original phase space variables ( ®𝑞0, ®𝑝0) and, if considered, system parameters ®𝜂, which

suggests the following notation for A and its inverse

A = ( ®𝑞NF ( ®𝑞0, ®𝑝0, ®𝜂) , ®𝑝NF ( ®𝑞0, ®𝑝0, ®𝜂)) (2.33)

A−1 = ( ®𝑞0 ( ®𝑞NF, ®𝑝NF, ®𝜂) , ®𝑞0 ( ®𝑞NF, ®𝑝NF, ®𝜂)) . (2.34)

2.3.1 Tunes, Tune Shifts, and Normal Form Radii

DA normal form methods are used to transform the origin preserving phase space Poincaré return

map to the rotationally invariant normal form up to calculation order. From the normal form,

the angle advancements ®Λ(®𝑟NF,sqr, ®𝜂) as a functions of amplitude ®𝑟NF,sqr and parameters ®𝜂 are

particularly straightforward to extract. Scaling the angle advancements in each of the normal form

phase spaces to [0, 1] instead of [0, 2𝜋] provides the average number of phase space revolutions

per system revolution represented by the Poincaré return map. In beam physics terminology, the

frequencies of normal form phase space revolutions is known as the tunes ®𝜈 and their amplitude and

parameter dependent tune shifts 𝛿®𝜈(®𝑟NF,sqr, ®𝜂) [19].

The tune 𝜈 𝑗 corresponds to the scaled complex phase 𝜇 𝑗 of the complex conjugate eigenvalues

𝜆±
𝑗

of the linear transformation. Hence, the tune is related to the linear motion around the expansion

point, i.e., the motion ‘infinitely close’ to the expansion point. Interpreting the tune and its tune shifts

as the phase space rotation frequency suggests that the tune – the phase space rotation frequency of

the expansion point – is a rotation with no amplitude, where the frequency is determined by the

linear motion around the expansion point. In particular, this means that different maps with the
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same expansion point can have different tunes depending on the linear motion around the expansion

point. Since the tunes are calculated from the linear coefficients directly without any nonlinear

transformations, performing the tune calculation with parameter dependent linear coefficients

directly yields the parameter dependent tune shifts.

The tune shifts indicate the change of the phase space rotation frequency dependent on the

phase space amplitudes 𝑟NF, 𝑗 and variations in the system parameters ®𝜂. Since the normal form

transformation is symplectic, it preserves the phase space volume, which is critical to understanding

the connection between the original phase space coordinates and their normal form radii. If the

system is only weakly coupled between the different phase spaces, the normal form radius 𝑟NF, 𝑗 is a

measure for the invariant phase space area of the 𝑗 th subspace denoted by 𝐴 𝑗 . Hence, the original

phase space coordinates of an invariant phase space orbit in the 𝑗 th subspace enclose the area 𝐴 𝑗 ,

which roughly corresponds to the normal form radius of 𝑟NF, 𝑗 =
√︁
𝐴 𝑗/𝜋.

The normal form radii are the link between the tune dependencies and the original coordinates.

The dependency of the tune shifts on the normal form radii is a result of the surviving terms S𝑚

of the nonlinear normal form transformations. However, the crucial terms are the T𝑚 terms from

Eq. (2.17) that are used to cancel all the other nonlinear terms S𝑚 . On the one hand, the T𝑚 terms

determine how the original coordinates ®𝑧 = ( ®𝑞, ®𝑝) and the system parameters ®𝜂 relate to the normal

form radii 𝑟NF, 𝑗 , since the T𝑚 are the essential part of the normal form transformation. On the

other hand, they influence the higher order nonlinear terms S𝑙 with 𝑙 > 𝑚, which either survive and

determine the dependency of the tune shifts on the normal form radii, or they determine the higher

order terms T𝑙 .

2.3.2 Resonances

The denominator of T𝑚 in Eq. (2.17) has a potentially large effect on the size of T𝑚 the closer it is

to satisfying the resonance condition in Eq. (2.19). If the condition is satisfied, the corresponding

nonlinear terms in S𝑚 cannot be eliminated. Accordingly, terms survive which do not fit the normal

form structure. They break the normal form by the size of their respective coefficient.
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If the condition is almost satisfied close to a resonance, then the denominator of T𝑚 becomes very

small, making T𝑚 very large. In this situation, there are two options. One option is to continue the

procedure with the very large T𝑚 coefficient, which conserves the normal form structure but yields

diverging coefficients in all higher order terms. The other option is to let the corresponding term

in S𝑚 survive, which breaks the normal form structure but avoids a divergence of the coefficients.

In practice, one chooses a cutoff value for the size of the denominator, which restricts the size

of potentially diverging coefficients. If the denominator is smaller than the cutoff value, the T𝑚

coefficient is set to zero, letting the corresponding S𝑚 term survive.

Rewriting the resonance condition in terms of tunes yields

®𝑤 · ®𝜈 = 𝑔, (2.35)

where ®𝑤 consists only of integer values and 𝑔 is a natural number N0. The values in ®𝑤 and 𝑔 are

chosen such that the greatest common divisor of all values is 1. With this definition, the order of the

resonance is given by 𝑚res = | | ®𝑤 | |1.

In the normal form algorithm a tune resonance defined by ( ®𝑤, 𝑔) appears in all terms

S±
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

for which

𝑤 𝑗 = 𝑘+𝑗 − 𝑘−𝑗 ∓ 1 ∧ 𝑤𝑙 = 𝑘+
𝑙
− 𝑘−

𝑙
∀𝑙 ≠ 𝑗 , (2.36)

and − 𝑤 𝑗 = 𝑘+𝑗 − 𝑘−𝑗 ∓ 1 ∧ −𝑤𝑙 = 𝑘+
𝑙
− 𝑘−

𝑙
∀𝑙 ≠ 𝑗 , (2.37)

according to Eq. (2.20). Resonances of order 𝑚res appear for the first time in the normal form

transformation step of order 𝑚NF = 𝑚res − 1.

Consider a four dimensional phase space system (𝑛 = 2) without parameter dependence, where

the eigenvalue phases 𝜇𝑖 satisfy the following order seven resonance 2𝜇1 − 5𝜇2 = −4𝜋. This

corresponds to the tune resonance condition of −2𝜈1 + 5𝜈2 = 2 denoted by ( ®𝑤, 𝑔) =
(
(−2, 5)𝑇 , 2

)
.

Given ®𝑤, the corresponding terms S±
𝑚( ®𝑘+,®𝑘−,®𝑘𝜂), 𝑗

in the normal form that encounter this resonance

are determined by all vectors ®𝑘+ and ®𝑘− that satisfy the conditions in Eq. (2.36) and Eq. (2.37).

Hence, the first terms of the normal form to encounter this resonance are the sixth order complex
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conjugate terms

S+
6((0,5)𝑇 ,(1,0)𝑇 ),1

and S−
6((1,0)𝑇 ,(0,5)𝑇 ),1

(2.38)

as well as S−
6((0,4)𝑇 ,(2,0)𝑇 ),2

and S+
6((2,0)𝑇 ,(0,4)𝑇 ),2

. (2.39)

Hence, for each subspace, one complex conjugate pair survives due to the resonance between 𝜇1

and 𝜇2, which break the rotational symmetry structure of the resulting normal form.

As we will see later on and as discussed in [98], resonances in the tune space correspond to

fixed point structures in the phase space, which often yields fascinating behavior especially for low

order resonances.

2.4 The Normal Form Defect

The volume conserving property of Hamiltonian systems expressed by Liouville’s theorem

is maintained by the normal form transformation. Given the rotational invariants of the normal

form, the size of the phase space volume is determined by the normal form radii. Accordingly,

the normal form phase space radii constitute invariants of motion up to the order of the normal

form transformation if no resonance conditions were encountered. However, they are usually not

invariants of the full (order) motion.

While the expansion of the transfer map improves in accuracy with every additional order

considered, the same is not guaranteed for the normal form transformation. It is unknown how well

or even if the normal form converges with higher orders. This is due to its sensitivity to resonances,

which may initiate asymptotic behavior once the order of a close-by resonance is reached. The

higher the order of the computation, the more resonances are potentially relevant. Depending on the

complexity of the original transfer map, it is usually unpredictable which resonances may affect the

normal form and in what way.

However, if the normal form transformation converges, its high order limit will yield the exact

invariants. In the case of exact invariants, the system is integrable and can be transformed into a

trivial system by introducing the invariants as variables. Those variables are known as action-angle

coordinates, where the action is constant and unique for each phase space curve and each point on
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the phase space curve is associated with the action-angle. For complex systems such as the ones

discussed in this thesis, there are no exact invariants that can be expressed in terms of finite order

terms. Thus, tools to assess the error of the calculated pseudo-invariants in the form of normal form

radii are useful.

The normal form defect represents the inaccuracy of the normal form radii as invariants

and is locally defined for each phase space state. Given an origin preserving fixed point map

M (𝑞, 𝑝) = (𝑄, 𝑃) of a repetitive system and the corresponding normal form transformation

A (𝑞, 𝑝) = (𝑞NF, 𝑝NF), the normal form defect 𝑑NF (®𝑧0) of the phase space state ®𝑧0 = (𝑞, 𝑝) is

given by the difference between the normal form radius 𝑟 (®𝑧1 = M (®𝑧0)) of the mapped phase space

state ®𝑧1 = M (®𝑧0) and the normal form radius 𝑟 (®𝑧0) of the original phase space state ®𝑧0. Generally,

the normal form radius 𝑟 of a phase space state ®𝑧 is the magnitude of the vector formed by the normal

form phase space state (𝑞NF, 𝑝NF) = A (®𝑧0), specifically

𝑟 (®𝑧) =
√︃
(𝑞NF (®𝑧))2 + (𝑝NF (®𝑧))2. (2.40)

Accordingly, the normal form defect is given by

𝑑NF (®𝑧0) = 𝑟1 − 𝑟0 = 𝑟 (®𝑧1) − 𝑟 (®𝑧0) = 𝑟 (M (®𝑧0)) − 𝑟 (®𝑧0)

=

√︃
(𝑞NF (M (®𝑧0)))2 + (𝑝NF (M (®𝑧0)))2 −

√︃
(𝑞NF (®𝑧0))2 + (𝑝NF (®𝑧0))2. (2.41)

The application of the one turn map represents the evolution of the system by describing how

each phase space state changes after one revolution of the system. The normal form defect indicates

how much the normal form radii, i.e., a (pseudo-)invariants of the motion, change between two states

of the motion connected by the map M. An increasing normal form radius with time indicates

diverging phase space behavior with larger amplitudes, i.e. the normal form defect measures the

local rate of divergence per map application.

Analyzing the normal form defect for a whole set of states within a certain phase space domain

D allows for stability estimations by placing an upper bound on the rate of divergence. The upper

bound can be determined in various ways, including rigorous global optimization methods on the

normal form defect over the given domain. The upper bound can serve as a Nekhoroshev-type
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stability estimate [73] that allows for the calculation of the minimum amount of revolutions of the

system 𝑁 , for which the motion will be guaranteed to stay within the allowed region D:

𝑁 =
𝑟max − 𝑟 (®𝑧ini)
max (𝑑NF (®𝑧)) with ®𝑧 ∈ D, (2.42)

where 𝑟 (®𝑧ini) is the upper bound of the normal form radius of the initial state of the system and

𝑟max is the lower bound of the maximum normal form radius corresponding to motion still within

the allowed region D (see Fig. 2.1).

𝑟 (®𝑧ini)

𝑟max
D

𝑁 𝑑NF(D)

Figure 2.1: Schematic illustration of the various normal form quantities involved in the calculation
of the minimum iteration number within allowed region D.

The concept of a Nekhoroshev-type stability estimate based on the normal form defect is

comparable to an augmented Lyapunov function [51]. A regular Lyapunov function 𝐿 is not

increasing along any phase space curve, with 𝐿 (M(®𝑧)) ≤ 𝐿 (®𝑧). This works very well for systems

with damping. For damped motion in a convex potential, the total energy function can serve

as a Lyapunov function. For systems without damping, this is a lot less straightforward. Under

the assumption that the normal form algorithm produces a normal form radius which is a true

invariant of the motion, the normal form transformation to calculate the normal form radius is a
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regular Lyapunov function proving eternal stability. However, the errors to the limited floating point

accuracy already break this hypothetical scenario. An augmented or pseudo-Lyapunov function

𝐿★ = 𝐿 + max (𝑑NF (D)) is increasing in a very slow and well estimated way with a verified upper

bound on the rate of increase per iteration

𝐿 (M(®𝑧)) ≤ 𝐿★ = 𝐿 (®𝑧) + max (𝑑NF (D)) . (2.43)

Thus, it cannot prove eternal stability, but it can rigorously estimate the long term stability. See

[23] and [48] for a detailed discussion.

In [29], this method was successfully used to analyze the long term stability of the Tevatron

storage ring at the Fermi National Accelerator Laboratory. However, it can be generally used in

dynamical systems applications to assess stability. Particularly, in complex systems where the

stability in different phase space regions is not evident, the Nekhoroshev-type stability estimate

based on the normal form defect is a great tool to capture the maximum rate of divergence.

2.5 Verified Computations Using Taylor Models (TM)

Based on DA vectors (Sec. 2.1), Taylor Models (TM) were developed by Makino and Berz

[53, 58, 54, 55, 21, 75] as a structure for rigorously verified computations, which deals much better

with issues known from interval arithmetic like the dependency problem [55], the wrapping effect

[62, 60, 24], and linear scaling of the overestimation with domain size. Accordingly, the following

introduction to TM and their application is largely based on their work [53, 58, 54, 55, 21, 75, 62].

To better understand the advantages of TM, we will first take a quick look at the alternative of

using interval arithmetic for verified computations.

2.5.1 Interval Arithmetic

Intervals are a basic concept to represent a range of numbers and are often used to capture uncertainty.

The interval 𝐼 = [𝑎, 𝑏] = {𝑥 | 𝑎 ≤ 𝑥 ≤ 𝑏} represents all numbers between 𝑎 and 𝑏, and the values 𝑎

and 𝑏 themselves.
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The basic interval arithmetic [67, 68, 47] for the addition, subtraction, multiplication, and

division of two intervals 𝐼1 = [𝑎1, 𝑏1] and 𝐼2 = [𝑎2, 𝑏2] are given by the following operations. The

addition yields

𝐼1 + 𝐼2 = [𝑎1 + 𝑎2, 𝑏1 + 𝑏2] . (2.44)

The subtraction operation 𝐼1 − 𝐼2 works equivalently by performing the addition of 𝐼1 with

−𝐼2 = [−𝑏2,−𝑎2].

The multiplication yields

𝐼1 · 𝐼2 = [min (𝑎1𝑎2, 𝑎1𝑏2, 𝑏1𝑎2, 𝑏1𝑏2) ,max (𝑎1𝑎2, 𝑎1𝑏2, 𝑏1𝑎2, 𝑏1𝑏2)] . (2.45)

The division is only possible if the divisor interval does not contain zero. If the divisor does not

contain zero, the division 𝐼1/𝐼2 is equivalently defined by multiplying 𝐼1 with

1
𝐼2

=

[
1
𝑏2

,
1
𝑎2

]
for 0 ∉ 𝐼2. (2.46)

This arithmetic provides the mathematically tightest bounds for certain operations like the square

of an interval, and when the quantities represented by 𝐼1 and 𝐼2 are independent. However, in many

cases, the calculated bounds are an overestimation due to the dependency problem, which is easily

illustrated by considering the difference between an interval and itself. The result of the expression

𝑥 − 𝑥 should be zero, but from the arithmetic above the difference between two identical intervals is

𝐼 − 𝐼 = [𝑎, 𝑏] − [𝑎, 𝑏] = [− (𝑏 − 𝑎) , (𝑏 − 𝑎)] , (2.47)

which has a width of 2 (𝑏 − 𝑎) instead of zero width.

Compared to DA vectors (see Sec. 2.1), which form a ring structure, intervals do not even form

a group structure, because neither for addition nor multiplication there is an inverse for intervals of

nonzero width.

For the interval evaluation of functions, further rules can be established. Monotonically

increasing functions 𝑓mon↗ like exp(𝑥) can be evaluated by

𝑓mon↗( [𝑎, 𝑏]) =
[
𝑓mon↗(𝑎), 𝑓mon↗(𝑏)

]
. (2.48)
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Monotonically decreasing functions 𝑓mon↘ can be equivalently evaluated by

𝑓mon↘( [𝑎, 𝑏]) =
[
𝑓mon↘(𝑏), 𝑓mon↘(𝑎)

]
. (2.49)

Trigonometric functions are compositions of monotonically increasing and monotonically

decreasing sections, which are well known. Accordingly, the interval evaluation of a trigonometric

function can be implemented based on many subcases depending on the size and position of the

interval.

Considering the function 𝑓 (𝑥) = sin(𝜋𝑥/2) − exp(𝑥) and evaluating it over the domain interval

𝐼1 = [−1, 1] yields

𝑓 (𝐼1) = sin
(
𝜋𝐼1
2

)
− exp (𝐼1) = 𝐼1 − [exp (−1) , exp (1)] (2.50)

=

[
−1 − 𝑒, 1 − 𝑒−1

]
⊂ [−3.718282, 0.632121] . (2.51)

We will compare this interval evaluation to the performance of different order Taylor Models in

the following section.

2.5.2 Taylor Models

Taylor Models [53, 58, 54, 55, 21, 75] are remainder-enhanced DA vectors. The DA part of the TM

of the function 𝑓 is an 𝑚th order Taylor polynomial in form of a regular DA vector. The remainder

part complements this by rigorously verified bounds on the error of using the truncated Taylor

expansion of 𝑓 up to order 𝑚 in form of a DA vector compared to 𝑓 itself. In contrast to regular DA

vectors, the function 𝑓 must be (𝑚 + 1) times continuously partially differentiable to evaluate the

reminder using the Taylor Remainder Theorem. Additionally, TM need to be defined over a domain

D to be able to rigorously bound the remainder.

The Taylor Remainder Theorem says: Given a function 𝑓 : ®D =

[
®𝑎, ®𝑏

]
⊂ R𝑛 → G ⊂ R being

(𝑚 + 1) times continuously partially differentiable on the domain ®D with ®𝑥0 ∈ ®D. Then for each
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®𝑥 ∈ ®D there is an 𝜂 ∈ (0, 1) such that

𝑓 (®𝑥) =
𝑚∑︁
𝑘=0

(
(®𝑥 − ®𝑥0) · ®∇®𝑦

) 𝑘
𝑓 (®𝑦)

𝑘!

�������
®𝑦=®𝑥0︸                                    ︷︷                                    ︸

P𝑚, 𝑓

+

(
(®𝑥 − ®𝑥0) · ®∇®𝑦

)𝑚+1
𝑓 (®𝑦)

(𝑚 + 1)!

�������
®𝑦=®𝑥0+(®𝑥−®𝑥0)𝜂︸                                              ︷︷                                              ︸

E𝑚,D, 𝑓

, (2.52)

where P𝑚, 𝑓 is the polynomial part and E is an expression for the remainder.

A Taylor Model is characterized by its order 𝑚, the function 𝑓 that it is representing, and the

domain D over which the representation of 𝑓 is within the verified bounds of the Taylor Model. We

denote a Taylor Model with

T𝑚,D, 𝑓 =

(
P𝑚, 𝑓 , 𝜖𝑚,D, 𝑓

)
, (2.53)

where P𝑚, 𝑓 is the Taylor polynomial term of order 𝑚 and 𝜖𝑚,D, 𝑓 is a rigorous verified estimation

𝜖𝑚,D, 𝑓 of the remainder size over the domain D such that for function 𝑓�� 𝑓 (®𝑥) − P𝑚, 𝑓 (®𝑥)
�� ≤ 𝜖

𝑚, ®D, 𝑓 ∀®𝑥 ∈ ®D. (2.54)

A Taylor Model can be visualized as a tube that wraps around the 𝑚th order DA representation

with a distance 𝜖 such that the original expression is guaranteed to lie within the tube over the given

domain D (see Fig. 2.2).

Except for order 𝑚 = 1, the Taylor Model bounding of 𝑓 significantly outperforms the interval

bounding. The tightness of the bounding also improves drastically with higher order Taylor Models.

With every additional order, the polynomial part clings closer to 𝑓 , and the reminder gets smaller

and smaller.

This tighter and tighter bounding with higher orders shows how the DA part of the Taylor Models

avoids more and more of the dependency problem. Dependent expressions like 1 + 𝑥 − 𝑥, which

may arise as the first order part of expressions like exp(𝑥) − sin(𝑥) are reduced to just 1 + 0 in the

DA part of the Taylor Model description. As we saw in Sec. 2.5.1, interval arithmetic is not able to

avoid this dependency problem.
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Figure 2.2: Verified representation of 𝑓 (𝑥) = sin(𝜋𝑥/2) − exp(𝑥) over the domain D = 𝐼1 = [−1, 1]
with interval methods using 𝑓 (D) and with Taylor Models (P𝑚, 𝑓 , 𝜖𝑚,D, 𝑓 ) of various orders 𝑚. The
original function 𝑓 (𝑥) is indicated by the black line, while its DA polynomial representation is
shown in green. The bounds at a distance 𝜖𝑚,D, 𝑓 from the DA polynomial are red. The two straight
blue lines indicate the bounds of the interval evaluation. Note that the scale of the 𝑦 axis is changing
to better illustrate the tightness of the Taylor Model representation with higher orders. Accordingly,
the interval bounds are only shown for order 𝑚 = 1 and order 𝑚 = 2.

The fourth order Taylor Model representation of the function 𝑓 (𝑥) = sin(𝜋𝑥/2) − exp(𝑥) over

the domain D = 𝐼1 = [−1, 1] would be

T4,𝐼1, 𝑓 (𝑥) =
(
−1 + (𝜋 − 2)𝑥

2
− 𝑥2

2
− (𝜋3 − 8)𝑥3

48
− 𝑥4

24
, 0.102345

)
. (2.55)
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2.6 Taylor Model based Verified Global Optimizers

The goal of a verified global optimizer [12, 69, 29, 63, 57, 43] is finding the optimum of a given

scalar objective function 𝑓 (®𝑥) of 𝑛var variables 𝑥𝑖 over a predefined 𝑛var dimensional global search

domain box ®B. Without loss of generality, it is assumed that the optimum is a minimum. If the

optimum is a maximum, consider the optimization of − 𝑓 (®𝑥).

Ideally, the result of global optimization yields the minimum 𝑓★ of the objective function

𝑓 (®𝑥) and all locations ®𝑥★, where the minimum is assumed within the global search domain box ®B.

However, straightforward and exact analytic solutions of the optimization problem only exist for

elementary objective functions. As soon as higher order terms and multiple variables are involved,

iterative algorithms to track down the optimum are inevitable. Consequently, results are often only

approximations of the actual minimum and all their locations where it is assumed. Verified global

optimizers compensate for the shortcoming of being unable to pinpoint the exact minimum by

yielding rigorously verified bounds on the minimum and its locations.

The fundamental idea of a verified global optimization algorithm is the efficient elimination of

subdomains/subboxes of the initial search box ®B by proving that those eliminated subboxes do not

contain the minimum. The basic steps of the algorithm are the following:

1. Split domain box ®B into subdomains ®B𝑖.

2. Determine a lower bound 𝑓𝑖,LB of 𝑓 over ®𝑥 ∈ ®B𝑖.

3. Calculate/Update the cutoff value C – the currently lowest known upper bound of the minimum.

4. Eliminate all boxes B𝑖 with a lower bound 𝑓𝑖,LB larger than the cutoff value C.

5. Restart the algorithm at step 1 for each of the non-eliminated domain boxes ®B#
𝑖
.

The more subdomain boxes are eliminated in step 4 in each iteration, the more effective the

algorithm. Accordingly, it is essential to use methods for very tight bounding in step 2 (making

𝑓𝑖,LB as large as possible), and to use heuristics to significantly improve the cutoff value C in step 3,

making it as small as possible.
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For the determination of the cutoff value C in step 3, any method or combination of methods that

produce a tight verified upper bound on the global minimum of the search domain are useful. A

typical technique is the verified evaluation of individual points within the domain box. The testing

points are chosen either randomly in a Monte-Carlo based approach or by heuristics, e.g., the results

of non-verified optimization over the domain. Depending on the computational effort of those

methods, the improvement of the cutoff value and its benefits for the algorithm must be weighed

against the computation time of the cutoff method.

For step 2, Taylor Models (see Sec. 2.5) are particularly useful, especially high order Taylor

Models, since they allow for very tight bounding compared to interval methods. This property can

mainly be ascribed to the avoidance of the dependency problem due to the DA vector part of the

TM. For very complex objective functions like the normal form defect (see Sec. 2.4), the evaluation

with very high order Taylor Models (e.g. order ten) can take considerably more time compared

to evaluations with lower order Taylor Models (e.g. order three). Again, the benefits of the more

precise bounding with high order Taylor Model evaluation have to be weighed against the associated

computation time. A rule of thumb is that the larger the evaluation domain and the more complex

the objective function, the larger the benefit of higher order Taylor Models.

For the rigorous bounding of Taylor Models, there are multiple approaches. The standard method

uses order bounds, where the terms belonging to each order are bound and summed up together

with the remainder bound. More sophisticated methods are discussed in great detail in [64]. They

can be briefly summarized as follows. The linear dominated bounder (LDB) is very efficient for

linear dominated domains. The quadratic dominated bounder (QDB) is good at determining the

minimum of a multidimensional quadratic dominated function but losses its efficiency with very

high dimensional problems. The quadratic fast bounder (QFB) is not as exact as the QDB but very

efficient in providing a good lower bound near a local minimum, where the Hessian matrix of the

objective function over the domain is positive definite.

To avoid an infinite continuation of the splitting, stop conditions are implemented, which are

checked before a domain box is split. A typical stop condition sets a lower bound on the size of
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the domain, either by setting a lower bound on the volume of the domain box or its side length.

Non-eliminated domain boxes below such a threshold values are not split.

Another possible stop condition is a lower bound on the tightness of the bounding of the

minimum of the objective function rather than the domain size. With such a stop condition in place,

the algorithm would not split a non-eliminated domain box over which the bounds of the minimum

are tighter than a certain given value. This is particularly useful if the exact minimum is not relevant

but rather the order of magnitude of the minimum.
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CHAPTER 3

AN EXAMPLE-DRIVEN WALK-THROUGH OF THE DA NORMAL FORM ALGORITHM

This chapter is based on my arXiv preprint and MSU Report MSUHEP-190617 Introduction to the

Differential Algebra Normal Form Algorithm using the Centrifugal Governor as an Example [94].

We provide a very detailed description of the steps involved in the DA normal form algorithm

(Sec. 2.3) and their implications for the normal form using the example of the centrifugal governor.

We pick this example because it is one dimensional and the derivation of the equations of motion and

the linearization of the motion are well known. This understanding yields the groundwork for the

non-trivial analysis of the nonlinear phenomena using the steps of the DA normal form algorithm.

3.1 The Centrifugal Governor

The centrifugal governor (see Fig. 3.1) is a device involving gravitational and centrifugal forces

with the rotation axis parallel to the direction of the gravitational force. We consider a mathematically

idealized governor, which consists of two massless rods of equal length 𝑅 suspended in a common

Figure 3.1: Schematic illustration of centrifugal governor.
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plane with the rotation axis. A point mass 𝑚 is attached at the end (opposite to where the rod is

mounted) of each of the rods. The angle between the rotation axis and the rod is denoted by the

angle 𝜙. A mechanism links the two rods and the rotation axis, which guarantees identical angles

and therefore identical behavior on both sides. An external torque applied via the rotation axis

ensures that the rotation frequency 𝜔 of the centrifugal governor arms is kept constant.

In the usual application of a centrifugal governor, the rotation frequency is not fixed but

negatively coupled to the angle 𝜙 through an additional mechanism external to the governor itself.

This additional mechanism makes the system self regulating by decreasing 𝜔 for an increase in

𝜙. Accordingly, in those applications, e.g. the steam engine, the rotation frequency 𝜔 changes

during the regulating process. However, as already mentioned above, for the introduction to the DA

normal form algorithm, we consider the motion of the system for a fixed rotation frequency 𝜔, i.e.

no self-regulating coupling mechanism between 𝜙 and 𝜔.

3.1.1 Units

To limit the number of parameters in the following calculations to just the rotation frequency 𝜔, we

scale time, distance, and mass in such a way that the mass 𝑚, the gravitational constant 𝑔, and the

length of the rods 𝑅 are all equal to one in their respective scaled units and therefore disappear from

the equations. Specifically, mass is considered in units of the point mass 𝑚, distances are considered

in units of the rod length 𝑅, and time is considered in units of

𝑇0 [s] =
√√√

𝑅[m]

𝑔

[
m
s2

] , (3.1)

such that the gravitational constant 𝑔 equal one in units of distance 𝑅 and time 𝑇0.

3.1.2 The Equilibrium Point

For any given fixed rotation frequency 𝜔, there is an angle 𝜙0 so that 𝜙(𝑡) = 𝜙0 is a solution of the

motion of the centrifugal governor arms. This equilibrium angle is characterized by the alignment

of the rods with the vector sum of the vertical gravitational force 𝐹grav and the radial centrifugal
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force 𝐹cent such that there is no torque acting on the rods in the common plane of the rods and the

rotation axis.

For any frequency 𝜔, 𝜙0 = 0 satisfies this requirement, since the centrifugal force is zero and

there is only the gravitational force acting vertically downwards. However, if the rotation frequency

𝜔 is sufficiently high enough (see Eq. (3.3)), a bifurcation of the equilibrium angle occurs – the

angle 𝜙0 = 0 becomes an unstable equilibrium state, while stable equilibrium angle 𝜙0(𝜔) > 0

arises, which satisfies the alignment condition with

tan 𝜙0 =
𝐹cent
𝐹grav

=
𝑚𝜔2𝑅 sin 𝜙0

𝑚𝑔
= 𝜔2 sin 𝜙0. (3.2)

For 𝜙0 > 0, this corresponds to

cos 𝜙0 =
1
𝜔2 ⇒ 𝜙0 = arccos

(
1
𝜔2

)
for 𝜔 > 1 = 𝜔min. (3.3)

Fig. 3.2 visualizes the stable equilibrium angle as a function of the rotation frequency 𝜔.

Since the vertical contribution of the gravitational force to the vector sum is nonzero and

independent of the rotation frequency, an equilibrium angle of 𝜙0 = 90° is only approached

asymptotically for the rotation frequency 𝜔 approaching infinity. The bifurcation of the equilibrium

state at 𝜔min = 1 is also clearly visible.
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Figure 3.2: Illustration of the stable equilibrium angle 𝜙0 of the arms of the centrifugal governor as
a function of the rotation frequency 𝜔. For 𝜔 > 𝜔min = 1, 𝜙0 = 0 is an unstable equilibrium angle.
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Tab. 3.1 lists stable equilibrium angles for some specific rotation frequencies, especially for the

fast-changing region between 𝜔 = 1 and 𝜔 = 2.

Table 3.1: List of stable equilibrium angles 𝜙0 of the centrifugal governor arms for some specific
rotation frequencies 𝜔.

𝜔 𝜙0 [deg] 𝜙0 [rad]

1 0° 0
√

2/ 4√3 30° 𝜋/6
4√2 45° 𝜋/4
√

2 60° 𝜋/3
2 ≈ 75.52° ≈ 1.318
20 ≈ 89.86° ≈ 1.568

lim𝜔→∞ 90° 𝜋/2

3.1.3 The Equations of Motion

To understand the dynamics of the centrifugal governor arms around an equilibrium state, we derive

the equations of motion for one of the two masses starting with the Lagrangian formulation of the

problem. It yields

𝐿 =
𝑚

2

(
¤𝜙2𝑅2 + 𝜔2𝑅2 sin2 𝜙

)
− 𝑚𝑔𝑅 (1 − cos 𝜙) =

¤𝜙2

2
−

(
−𝜔2 sin2 𝜙

2
+ (1 − cos 𝜙)

)
︸                              ︷︷                              ︸

𝑈eff

, (3.4)

where 𝑈eff is the effective or centrifugal-gravitational potential. In Fig. 3.3, we illustrate the

centrifugal-gravitational potential 𝑈eff for multiple rotation frequencies 𝜔.

The minimum of the effective potential well corresponds to the stable equilibrium angle discussed

in Sec. 3.1.2. The axis notations indicate that the width and the depth of the potential increase

with increasing rotation frequency 𝜔. The higher the rotation frequency 𝜔, the less relevant are the

gravitational influences and the deeper and the more symmetric the potential well. The asymmetry of

the effective potential is also apparent in the dynamics of the system, which we discuss in Sec. 3.1.4.
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Figure 3.3: Potential well of 𝑈eff for multiple oscillation frequencies 𝜔. The equilibrium angle 𝜙0
corresponds to the minimum of the potential well.

For the rest of the chapter, we will focus on the case 𝜔 =
√

2, which yields a clear 2:1 asymmetry

left and right of its equilibrium angle.

To continue the derivation of the equations of motion, we derive the generalized canonical

momentum 𝑝𝜙 to the position variable 𝜙 from the Lagrangian, where

𝑝𝜙 =
𝑑𝐿

𝑑 ¤𝜙
= 𝑚𝑅2 ¤𝜙 = ¤𝜙. (3.5)

Using the Legendre transformation, the Hamiltonian

𝐻 =
𝑝2
𝜙

2𝑚𝑅2 − 𝑚𝜔2𝑅2 sin2 𝜙
2

+ 𝑚𝑔𝑅 (1 − cos 𝜙) =
𝑝2
𝜙

2
+𝑈eff = 𝐸 (3.6)

is obtained, which is not explicitly time dependent and therefore a constant of motion. The

Hamiltonian also happens to correspond to the energy 𝐸 of this system.

The equations of motions are derived from the Hamiltonian via Hamilton’s equations where

¤𝜙 =
𝑑𝐻

𝑑𝑝𝜙
=

𝑝𝜙

𝑚𝑅2 = 𝑝𝜙 (3.7)

and ¤𝑝𝜙 = −𝑑𝐻

𝑑𝜙
= −𝑚𝑔𝑅 sin 𝜙 + 𝑚𝜔2𝑅2 sin 𝜙 cos 𝜙 = sin 𝜙

(
𝜔2 cos 𝜙 − 1

)
. (3.8)

In coordinates (𝛿𝜙, 𝛿𝑝𝜙) relative to the equilibrium state (𝜙0, 0), the equations of motions are

d𝛿𝜙
d𝑡

= 𝛿𝑝𝜙 and
d𝛿𝑝𝜙

d𝑡
= sin (𝜙0 + 𝛿𝜙)

(
𝜔2 cos (𝜙0 + 𝛿𝜙) − 1

)
. (3.9)
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3.1.4 Illustration of System Dynamics

With the equations of motion relative to the equilibrium state (Eq. (3.9)) and the understanding of

how the shape of the effective potential well changes with the rotation frequency 𝜔, we can now

interpret the dynamics of the centrifugal governor when the angle of the rods is perturbed from the

equilibrium angle 𝜙0 (𝜔).

In Fig. 3.4, the dynamics of the rods are shown for a rotation frequency of 𝜔 =
√

2, which

corresponds to an equilibrium angle of 𝜙0 = 60°. While the oscillation is periodic, it is asymmetric

around the equilibrium point, as we would expect from the asymmetric effective potential for 𝜔 =
√

2

in Fig. 3.3. The asymmetry of the oscillation is larger, the larger the angle during initiation. The

maximum downward angle displacement (often more generally referred to as amplitude) and the

maximum upward angle displacement of the governor’s arms relative to their equilibrium angle are

related through the effective potential, which corresponds to the energy of the vertical motion for
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Figure 3.4: Dynamics of the centrifugal governor for a rotation frequency of𝜔 =
√

2. The centrifugal
governor arms were initiated with ¤𝜙 = 𝑝𝜙 = 0 and at the following angles: 60°, 65.5°, 69.5°, 73.5°,
77.5°, 81.5°, 85.5°, and 89.5°. The left plot shows the oscillatory behavior around the equilibrium
angle at 𝜙0 = 60° over time. The right plot shows the stroboscopic phase space behavior from
repetitive map evaluation. To relate the phase space behavior to the position behavior in time, the 𝜙

axis of both plots are aligned.
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𝛿𝑝𝜙 = 0. For both those angle displacements, the effective potential has the same maximum value

or ‘invariant amplitude’ corresponding to the energy. The maximum amplitudes in the momentum

space in the right plot of Fig. 3.4 are related the same way. In other words, the phase space motion

in Fig. 3.4 corresponds to contour lines of the energy.

For future reference, it is useful to associate the term ‘amplitude’ not only with a physical

displacement or a maximum/minimum momentum but also with an abstract quantity that relates all

the different versions of phase space amplitudes like the energy in this case.

Apart from the asymmetric upward and downward position amplitudes, the left plot in Fig. 3.4

clearly shows a change in the period of oscillation depending on the angle during initiation, or more

generally speaking, depending on the invariant amplitude of the motion, e.g., the total energy of

the system. The larger the amplitude, the longer is the period of oscillation. This is particularly

prominent for the oscillation with the largest amplitude. It is also obvious, especially for the larger

amplitudes that the relation between the amplitude and the period is nonlinear.

However, there is no trivial way of extracting this nonlinear relation between the amplitude and

the period of oscillation from the equations of motion and/or the energy. Additionally, if we were

unaware of the function for the effective potential and energy, or were considering a more complex

system, it would also be very difficult to relate the different phase space amplitudes to each other.

The DA normal form algorithm generates both relations in an automated process up to calculation

order. In the order-by-order process, it determines an invariant amplitude up to calculation order as

a function of the original phase space variables and also determines the period of oscillation as a

function of that invariant amplitude.

All the normal form algorithm requires is an origin preserving transfer map (see Sec. 2.2),

which represents the flow of the ODEs (see Eq. (3.9)) relative to the linearly stable fixed point

of the considered phase space motion. For the centrifugal governor example, the equilibrium

phase space state (𝜙0, 0) constitutes such a phase space fixed point, as the right plot in Fig. 3.4

already indicated. In other words, we require a functional description of how the relative phase

space state 𝑧fin = (𝛿𝜙fin, 𝛿𝑝𝜙,fin) after a fixed time 𝑡0 depends on the initial relative phase space
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state 𝑧ini = (𝛿𝜙ini, 𝛿𝑝𝜙,ini). DA based maps (Sec. 2.2) can provide this functional description

up to arbitrary order. We will use them to represent the dynamics around the equilibrium state

corresponding to a rotation frequency of 𝜔 =
√

2, for the later analysis with the DA normal form

algorithm.

3.2 Map Calculation via Integration

As mentioned above, the following analysis of the centrifugal governor considers the system at a

fixed rotation frequency of 𝜔 =
√

2. We are interested in the dynamics around the corresponding

equilibrium state of the centrifugal governor arms at (60°, 0). The goal of this section is to generate

a DA map describing the phase space dynamics relative to that equilibrium state.

For consistency with the notation introduced in Sec. 2.3, we denote the phase space coordinates

relative to the equilibrium point with (𝑞0, 𝑝0) instead of the previously used
(
𝛿𝜙, 𝛿𝑝𝜙

)
. We will also

conduct the calculations in radians rather than degrees due to their slightly easier implementation.

The map is calculated by integrating the ODEs (see Eq. (3.9)) from the initial phase space state

(𝑞ini, 𝑝ini) =
(
𝜙0

(
𝜔 =

√
2
)
+ 𝛿𝜙, 𝛿𝑝𝜙

)
=

(𝜋
3
+ 𝑞0, 𝑝0

)
(3.10)

from 𝑡 = 0 until 𝑡 = 𝑡0 = 1. Since the flow of the ODEs in Eq. (3.9) remains expanded around the

equilibrium state for any 𝑡0, the time of the integration can be chosen freely.

The resulting map of the integration M0 = (𝑄(𝑞0, 𝑝0), 𝑃(𝑞0, 𝑝0))𝑇 has the following form:

M0 = C + L + ∑
𝑚 U𝑚 , where the constant part is denoted by C, the linear part with L and each of

the nonlinear parts of order 𝑚 with U𝑚 . Since the system is expanded around the equilibrium point,

the constant part of the map corresponds to the equilibrium state (𝜋/3, 0). The following explicit
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formulation of M0 up to order three introduces the notation of various coefficients of the map:

M0 (𝑞0, 𝑝0) =
©­­«
M+

0 (𝑞0, 𝑝0)

M−
0 (𝑞0, 𝑝0)

ª®®¬ =
©­­«
𝑄 (𝑞0, 𝑝0)

𝑃 (𝑞0, 𝑝0)

ª®®¬ =
©­­«
𝑞const

𝑝const

ª®®¬︸   ︷︷   ︸
C

+
©­­«
(𝑄 |𝑞0) (𝑄 |𝑝0)

(𝑃 |𝑞0) (𝑃 |𝑝0)

ª®®¬
©­­«
𝑞0

𝑝0

ª®®¬︸                         ︷︷                         ︸
L

+
©­­«
U+

2(2,0)

U−
2(2,0)

ª®®¬ 𝑞2
0 +

©­­«
U+

2(1,1)

U−
2(1,1)

ª®®¬ 𝑞0𝑝0 +
©­­«
U+

2(0,2)

U−
2(0,2)

ª®®¬ 𝑝2
0︸                                                      ︷︷                                                      ︸

U2

+
©­­«
U+

3(3,0)

U−
3(3,0)

ª®®¬ 𝑞3
0 +

©­­«
U+

3(2,1)

U−
3(2,1)

ª®®¬ 𝑞2
0𝑝0 +

©­­«
U+

3(1,2)

U−
3(1,2)

ª®®¬ 𝑞0𝑝
2
0 +

©­­«
U+

3(0,3)

U−
3(0,3)

ª®®¬ 𝑝3
0︸                                                                              ︷︷                                                                              ︸

U3

+... (3.11)

The position 𝑄 and momentum 𝑃 components of the map M0 correspond to the upper and

lower component and are denoted by ‘+’ and ‘-’, respectively. The coefficients in the upper and

lower component for the nonlinear 𝑚(= 𝑎 + 𝑏)th order terms 𝑞𝑎𝑝𝑏 are denoted by U±
𝑚(𝑎,𝑏) . The

coefficients in the linear matrix (𝑎 |𝑏) indicate the factor with which 𝑎 is linearly dependent on 𝑏.

The following Tab. 3.2 lists the values of the coefficients in Eq. (3.11) above. The integration

was performed with an order 20 Picard-iteration based integrator with stepsize ℎ = 10−3 over 1000

iterations within COSY INFINITY. Details on the implementation of the integrator are given in [93].

3.3 The DA Normal Form Algorithm

In Sec. 2.3, the general DA normal form algorithm [19] was introduced for a linearly stable 2𝑛

dimensional system with optional parameter dependence. This section provides a detailed example-

driven walk-through of the differential algebra based normal form algorithm for the symplectic one

dimensional (1D) system of the centrifugal governor without a parameter dependence.

The normal form resulting from the DA normal form algorithm constitutes circular motion with

a quasi-invariant as radius and only normal form phase space amplitude (and parameter) dependent

angle advancements. Fig. 3.5 illustrates the oscillatory phase space behavior of the governor’s arms

around the equilibrium point (left plot already seen in different orientation in Fig. 3.4) and compares
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Table 3.2: Integration result for map around equilibrium state (𝜙0(𝜔 =
√

2) = 𝜋/3, 0) integrated until
𝑡 = 1 using an order 20 Picard-iteration based integrator with stepsize ℎ = 10−3 over 1000 iterations
within COSY INFINITY. The component M+

0 = 𝑄(𝑞0, 𝑝0) is on the left, M−
0 = 𝑃(𝑞0, 𝑝0) on the

right.

Order Coeff. Value Coeff. Value
0 𝑞const 1.04719755 𝑝const 0
1 (𝑄 |𝑞0) 0.33918599 (𝑃 |𝑞0) -1.15214118
1 (𝑄 |𝑝0) 0.76809412 (𝑃 |𝑝0) 0.33918599
2 U+

2(2,0) -0.44622446 U−
2(2,0) -0.55821731

2 U+
2(1,1) -0.29304415 U−

2(1,1) -0.64033440
2 U+

2(0,2) -0.08403817 U−
2(0,2) -0.29304415

3 U+
3(3,0) 0.31844278 U−

3(3,0) 0.50817317
3 U+

3(2,1) 0.29904862 U−
3(2,1) 0.76091921

3 U+
3(1,2) 0.13758223 U−

3(1,2) 0.46230241
3 U+

3(0,3) 0.03017663 U−
3(0,3) 0.13758223

it to its associated rotationally invariant phase space behavior in the normal form representation. The

orientation of the phase space in Fig. 3.5 is according to the usual convention, where the position

𝑞 is on the horizontal axis and the momentum 𝑝 on the vertical axis. In Fig. 3.4, this convention

a) b)

Figure 3.5: Phase space behavior of the centrifugal governor arms around their equilibrium angle of
𝜙0(𝜔 =

√
2) = 60° provided by a tenth order Poincaré map of the system. a) shows the original

phase space behavior. b) shows the associated circular behavior in normal form.
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was ignored for the sake of a better understanding when comparing the phase space behavior to

the position behavior over time. Accordingly, the asymmetry with larger downwards amplitudes is

shown in the horizontal (𝜙) direction in Fig. 3.5a.

The transformation steps of the normal form algorithm are done order by order. With each

transformation step, the index of the map and the variables is going to increase by 1, i.e. as a result

of the first (order) transformation we get M1 dependent on the variables (𝑞1, 𝑝1). For each order 𝑚

there is a transformation A𝑚 and its inverse A−1
𝑚 , which are applied to resulting map of the previous

transformation M𝑚−1 to yield the resulting map of the 𝑚th order transformation

M𝑚 (𝑞𝑚 , 𝑝𝑚) = (A𝑚 ◦M𝑚−1 ◦A−1
𝑚 ) (𝑞𝑚 , 𝑝𝑚). (3.12)

The transformation A−1
𝑚 transforms (𝑞𝑚 , 𝑝𝑚) to (𝑞𝑚−1, 𝑝𝑚−1), which are the variables of the

map of the previous order M𝑚−1. The transformation A𝑚 transforms the intermediate result of

M𝑚−1 ◦A−1
𝑚 , which is in the (𝑞𝑚−1, 𝑝𝑚−1) phase space, back to the new phase space in (𝑞𝑚 , 𝑝𝑚).

The nonlinear normal form transformation steps below are calculated up to third order. It will

become obvious during the process that transformations of higher even and odd orders follow the

same pattern as the second and third order transformation, respectively.

3.3.1 The Parameter Dependent Fixed Point

The DA normal form algorithm starts with an origin preserving map. Accordingly, the result from

the integration is shifted to the equilibrium/fixed point MFP = M0 − C, hence MFP = L +∑
𝑚 U𝑚

is an origin preserving fixed point map with MFP(®0) = ®0.

If the map were dependent on changes 𝛿𝜂 of a system parameter 𝜂, e.g., changes in the driving

frequency 𝜔 = 𝜔0 + 𝛿𝜔, the normal form algorithm would require the calculation of the parameter

dependent fixed point ®𝑧(𝛿𝜂) = (𝑞FP(𝛿𝜂), 𝑝FP(𝛿𝜂)) such that MFP(®0, 𝛿𝜂) = ®0. In Eq. (3.3), the

relation of the equilibrium point (fixed point) and the driving frequency was already calculated

yielding the parameter dependent fixed point

®𝑧 (𝛿𝜔) =
(
arccos

(
1

(𝜔0 + 𝛿𝜔)2

)
, 0

)
for (𝜔0 + 𝛿𝜔)2 ≥ 1.
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For less straightforward systems, one uses the following inversion method on the extended map

(MFP − I®𝑧, I𝛿 ®𝜂) to find the parameter dependent fixed point ®𝑧(𝛿 ®𝜂) [19, Eq. (7.47)]:(
®𝑧 (𝛿 ®𝜂) , I𝛿 ®𝜂

)
=

(
MFP − I®𝑧, I𝛿 ®𝜂

)−1 (
®0, 𝛿 ®𝜂

)
, (3.13)

where I®𝑧 and I𝛿 ®𝜂 are the identity map of ®𝑧 and 𝛿 ®𝜂, respectively.

Given the parameter dependent fixed point, the map is expanded around it:

MPDFP = MFP (®𝑧 (𝛿 ®𝜂) + ®𝑧, 𝛿 ®𝜂) −MFP (®𝑧 (𝛿 ®𝜂) , 𝛿 ®𝜂) . (3.14)

To limit the complexity of the walk-through of the DA normal form algorithm, we will not

consider parameter dependence in the further calculations of this chapter and therefore proceed with

MFP.

3.3.2 The Linear Transformation

The first order transformation is the diagonalization, transforming the system into the eigenvector

space of the linear part L. In order to determine the transformation A1 and its inverse A−1
1 for the

diagonalization, we determine the eigenvalues 𝜆± and eigenvectors ®𝑣± of the linear matrix 𝐿̂ in the

linear part L. For this, we require that all eigenvalues of MFP are distinct. Furthermore, we only

consider cases where MFP is linearly stable, which means that all eigenvalues have an absolute

value |𝜆 | ≤ 1. This also means that det( 𝐿̂) ≤ 1, otherwise at least one of the eigenvalues is larger

than 1, making the system linearly unstable. Particularly interesting is the case det( 𝐿̂) = 1, which

indicates that the system is symplectic and only stable in the case of complex conjugate eigenvalues

𝜆± = 𝑒±𝑖𝜇. While there are procedures for the cases of real and degenerate eigenvalues with a

magnitude smaller than one (see [19]), this chapter only illustrates the procedures for the most

relevant and common symplectic case of only complex conjugate eigenvalues and eigenvectors.

Solving the characteristic polynomial yields the eigenvalues

𝜆± =
tr

(
𝐿̂
)

2
±

√︄
tr

(
𝐿̂
)2

4
− det

(
𝐿̂
)
= 𝑟𝑒±𝑖𝜇

with 𝑟 =

√︃
det

(
𝐿̂
)

and 𝜇 = sign (𝑄 |𝑝0) arccos

(
tr

(
𝐿̂
)

2𝑟

)
.
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To generalize the procedure of diagonalization, the Twiss parameters [32] are used with

𝛼 =
(𝑄 |𝑞0) − (𝑃 |𝑝0)

2𝑟 sin 𝜇
, 𝛽 =

(𝑄 |𝑝0)
𝑟 sin 𝜇

, and 𝛾 =
−(𝑃 |𝑞0)
𝑟 sin 𝜇

.

With this notation the linear matrix 𝐿̂ can be generally written as

𝐿̂ = 𝑟 ·
©­­«
cos 𝜇 + 𝛼 sin 𝜇 𝛽 sin 𝜇

−𝛾 sin 𝜇 cos 𝜇 − 𝛼 sin 𝜇

ª®®¬ .
The complex conjugate eigenvectors ®𝑣± associated with the complex conjugate eigenvalues 𝜆±

of 𝐿̂ are then obtained by solving
(
𝐿̂ − 𝜆±I

)
®𝑣± = ®0.

As a result, the following eigenvectors are calculated

®𝑣± =
©­­«

𝛽

−𝛼 ± 𝑖

ª®®¬ or ®𝑣± =
©­­«
𝛼 ± 𝑖

−𝛾

ª®®¬ ,
for the case that either 𝛽 = 0 or 𝛾 = 0. The transformation A−1

1 consist of the two complex conjugate

eigenvectors ®𝑣±, guaranteeing that A−1
1 (𝑞1, 𝑝1) is real just like the original variables (𝑞0, 𝑝0) and

the fixed point map MFP. The transformation A1 is calculated accordingly such that the resulting

map M1 = A1 ◦ MFP ◦ A−1
1 is in the complex conjugate eigenvector space and has complex

conjugate components M̄+
1 = M−

1 . For 𝛽 ≠ 0, the transformations are

A−1
1 =

©­­«
(𝑞0 |𝑞1) (𝑞0 |𝑝1)

(𝑝0 |𝑞1) (𝑝0 |𝑝1)

ª®®¬ =
1

2
√
𝛽

©­­«
𝛽 𝛽

𝑖 − 𝛼 −𝑖 − 𝛼

ª®®¬ and (3.15)

A1 =
©­­«
(𝑞1 |𝑞0) (𝑞1 |𝑝0)

(𝑝1 |𝑞0) (𝑝1 |𝑝0)

ª®®¬ =
𝑖
√
𝛽

©­­«
−𝑖 − 𝛼 −𝛽

−𝑖 + 𝛼 𝛽

ª®®¬ . (3.16)

For the centrifugal governor example with 𝜔 =
√

2, the eigenvalues are 𝜆± = 𝑟𝑒±𝑖𝜇 with

𝑟 = 1 and 𝜇 = 1.22474487. (3.17)

The Twiss parameters are

𝛼 = 0, 𝛽 = 0.816496581 ≈
√︂

2
3
, and 𝛾 = 1.22474487 ≈

√︂
3
2
.
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The resulting diagonalized map is of the form M1 = R+∑
𝑚 𝑆𝑚 , where S𝑚 are the transformed

nonlinear parts of order 𝑚 in the eigenvector space of 𝐿̂ and R is the diagonalized linear part, where

the linear matrix 𝑅̂ of R only consist of the eigenvalues 𝑒±𝑖𝜇 on its main diagonal:

M1 (𝑞1, 𝑝1) =
©­­«
𝑒𝑖𝜇 0

0 𝑒−𝑖𝜇

ª®®¬
©­­«
𝑞1

𝑝1

ª®®¬︸                ︷︷                ︸
R

+
©­­«
S+

2(2,0)

S−
2(2,0)

ª®®¬ 𝑞2
1 +

©­­«
S+

2(1,1)

S−
2(1,1)

ª®®¬ 𝑞1𝑝1 +
©­­«
S+

2(0,2)

S−
2(0,2)

ª®®¬ 𝑝2
1︸                                                     ︷︷                                                     ︸

S2

+
©­­«
S+

3(3,0)

S−
3(3,0)

ª®®¬ 𝑞3
1 +

©­­«
S+

3(2,1)

S−
3(2,1)

ª®®¬ 𝑞2
1𝑝1 +

©­­«
S+

3(1,2)

S−
3(1,2)

ª®®¬ 𝑞1𝑝
2
1 +

©­­«
S+

3(0,3)

S−
3(0,3)

ª®®¬ 𝑝3
0︸                                                                             ︷︷                                                                             ︸

S3

+... (3.18)

Tab. 3.3 lists the values to the coefficients above for the centrifugal governor example for a

rotation frequency corresponding to an equilibrium angle of 𝜙0(𝜔 =
√

2) = 𝜋/3 = 60°.

Table 3.3: Coefficients of M1 up to order three. Note the complex conjugate property S±
𝑚(𝑘+,𝑘−) =

S̄∓
𝑚(𝑘−,𝑘+) .

Order Coeff. Real Part Imaginary Part
1 e𝑖𝜇 0.339185989 0.940719334
1 e−𝑖𝜇 0.339185989 -0.940719334
2 S+

2(2,0) -0.216977793 -0.059191831
2 S−

2(2,0) 0.072325931 -0.102961500
2 S+

2(1,1) -0.258557455 0.368076331
2 S−

2(1,1) -0.258557455 -0.368076331
2 S+

2(0,2) 0.072325931 0.102961500
2 S−

2(0,2) -0.216977793 0.059191831

3 S+
3(3,0) 0.068036138 0.047162997

3 S−
3(3,0) -0.045160062 -0.016282923

3 S+
3(2,1) 0.259415349 -0.130475661

3 S−
3(2,1) -0.022283986 0.239186527

3 S+
3(1,2) -0.022283986 -0.239186527

3 S−
3(1,2) 0.259415349 0.130475661

3 S+
3(0,3) -0.045160062 -0.016282923

3 S−
3(0,3) 0.068036138 -0.047162997
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3.3.3 The Nonlinear Transformations

The nonlinear transformations are the key steps of the normal form algorithm. In this first part of

this subsection, we are going to look at an 𝑚th order transformation in general, before going through

the nonlinear transformation for orders two and three in detail.

3.3.3.1 General 𝑚th Order Nonlinear Transformation

All the following nonlinear transformation steps are done order by order and are all of the same

form: M𝑚 = A𝑚 ◦ M𝑚−1 ◦ A−1
𝑚 , where the 𝑚th transformation does not change any of the

lower order terms of M𝑚−1 that have already been transformed in the previous transformations.

Hence, M𝑚 differs from M𝑚−1 only in the orders 𝑚 and larger. The 𝑚th order transformation

A𝑚 = I + T𝑚 +O≥𝑚+1, specifically the polynomial T𝑚 of only 𝑚th order terms, is chosen such

that the 𝑚th order terms S𝑚 of the map M𝑚−1 are simplified or even eliminated.

Effects on the higher orders of M𝑚 due to the 𝑚th order transformation can only be considered

by adjusting the terms of order higher than 𝑚 of A𝑚 , namely O≥𝑚+1. In other words, finding T𝑚 is

essential to the DA normal form algorithm, while the termsO≥𝑚+1 can be chosen freely, e.g., to make

the transformation symplectic by choosing A𝑚 = exp(𝐿T𝑚 ) or to avoid higher order resonances.

Usually, the symplectic transformation is chosen since the calculation of the transformation A𝑚 and

its inverse are straightforward.

The flow operator 𝐿T𝑚 = (T +
𝑚 𝜕𝑞 + T −

𝑚 𝜕𝑝) in the exponential behaves in the following way:

exp
(
𝐿T𝑚

)
I =

(
𝐿0
T𝑚 + 𝐿1

T𝑚 + 1
2
𝐿2
T𝑚 +O>(𝑚+1)

)
I

=

(
1 + (T +

𝑚 𝜕𝑞 + T −
𝑚 𝜕𝑝) +

1
2
𝐿T𝑚 (T +

𝑚 𝜕𝑞 + T −
𝑚 𝜕𝑝) +O>(𝑚+1)

)
(𝑞, 𝑝)𝑇

= I + T𝑚 + 1
2
𝐿T𝑚T𝑚 +O>(𝑚+1) . (3.19)

So, the inverse is given by

A−1
𝑚 = exp

(
−𝐿T𝑚

)
= I − T𝑚 + 1

2
𝐿T𝑚T𝑚 −O>(𝑚+1) . (3.20)
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In the example case of the centrifugal governor, we investigate the DA normal form algorithm

up to order three, which means for 𝑚 = 3:

A3 = exp
(
𝐿T3

)
I =3 I + T3 (3.21)

A−1
3 = exp

(
−𝐿T3

)
I =3 I − T3. (3.22)

For the second order transformation it is necessary to consider the third order terms O3, since

they influence the third order terms of M2:

A2 = exp
(
𝐿T2

)
I =3 I + T2 +O3 (3.23)

A−1
2 = exp

(
−𝐿T2

)
I =3 I − T2 +O3, (3.24)

with

O3 =
1
2
𝐿T𝑚T𝑚 =

1
2
(T +

2 𝜕𝑞 + T −
2 𝜕𝑝)T2. (3.25)

As introduced in Sec. 2.1, the notation ‘=𝑚’ indicates that the quantities on both sides are equal

up to expansion order 𝑚.

In order to determine T𝑚 , we analyze the 𝑚th order transformation and only look at terms up to

order 𝑚 [19, Eq. (7.62)]:

A𝑚 ◦M𝑚−1 ◦A−1
𝑚 =𝑚 (I + T𝑚) ◦ (R + S𝑚) ◦ (I − T𝑚)

=𝑚 (I + T𝑚) ◦ (R −R ◦ T𝑚 + S𝑚)

=𝑚 R + S𝑚 + [T𝑚 ,R] . (3.26)

Various terms with orders higher than 𝑚 are ignored in the equations above. The goal is to

choose T𝑚 such that the commutator [T𝑚 ,R] = T𝑚 ◦R −R ◦ T𝑚 = −S𝑚 to simplify M𝑚 , i.e. the

result of Eq. (3.26). The polynomials in the upper and lower component of T𝑚 can be express as

T ±
𝑚 (𝑞, 𝑝) =

∑︁
𝑚=𝑘++𝑘−
𝑘±∈N0

T ±
𝑚(𝑘+,𝑘−)𝑞

𝑘+ 𝑝𝑘− . (3.27)

Hence, the commutator C𝑚 = [T𝑚 ,R] yields

C±𝑚 (𝑞, 𝑝) =
∑︁

𝑚=𝑘++𝑘−
𝑘±∈N0

T ±
𝑚(𝑘+,𝑘−)

(
𝑒𝑖𝜇(𝑘+−𝑘−) − 𝑒±𝑖𝜇

)
𝑞𝑘+ 𝑝𝑘− . (3.28)
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A term in S𝑚 can only be removed if and only if the corresponding term in the commutator C𝑚

is not zero. Terms of the commutator are zero, whenever the condition

𝑒𝑖𝜇(𝑘+−𝑘−) − 𝑒±𝑖𝜇 = 0 (3.29)

is satisfied, which is the case for 𝑘+ − 𝑘− = ±1. This (Eq. (3.29)) is the key condition of the DA

normal form algorithm, since it determines the surviving nonlinear terms S𝑚 . All other terms that

do not satisfy the condition are eliminated by choosing the coefficients of T𝑚 as follows

T ±
𝑚(𝑘+,𝑘−) =

−S±
𝑚(𝑘+,𝑘−)

𝑒𝑖𝜇(𝑘+−𝑘−) − 𝑒±𝑖𝜇
. (3.30)

Specifically, this means that the terms S+
𝑚(𝑘,𝑘−1) and S−

𝑚(𝑘−1,𝑘) always survive for all uneven

orders 𝑚 with 𝑚 = 𝑘 + 𝑘 − 1 = 2𝑘 − 1.

3.3.3.2 Explicit Second Order Nonlinear Transformation

The polynomial T𝑚 from Eq. (3.27) for 𝑚 = 2 yields

T2 (𝑞, 𝑝) =
(
T ±

2 |2, 0
)
𝑞2 +

(
T ±

2 |1, 1
)
𝑞𝑝 +

(
T ±

2 |0, 2
)
𝑝2

=
©­­«
T +

2(2,0)

T −
2(2,0)

ª®®¬ 𝑞2 +
©­­«
T +

2(1,1)

T −
2(1,1)

ª®®¬ 𝑞𝑝 +
©­­«
T +

2(0,2)

T −
2(0,2)

ª®®¬ 𝑝2. (3.31)

The commutator C2 = [T2,R] = T2 ◦R −R ◦ T2 of the second order nonlinear transformation

has only nonzero terms with

C2 (𝑞, 𝑝) = [T2,R] (𝑞, 𝑝) = (T2 ◦R −R ◦ T2) (𝑞, 𝑝)

=

(
T ±

2 |2, 0
)
𝑒2𝑖𝜇𝑞2 +

(
T ±

2 |1, 1
)
𝑞𝑝 +

(
T ±

2 |0, 2
)
𝑒−2𝑖𝜇𝑝2 − 𝑒±𝑖𝜇T ±

2 (𝑞, 𝑝)

=
©­­«
T +

2(2,0)

(
𝑒2𝑖𝜇 − 𝑒𝑖𝜇

)
T −

2(2,0)

(
𝑒2𝑖𝜇 − 𝑒−𝑖𝜇

)ª®®¬ 𝑞2 +
©­­«
T +

2(1,1)

(
1 − 𝑒𝑖𝜇

)
T −

2(1,1)

(
1 − 𝑒−𝑖𝜇

)ª®®¬ 𝑞𝑝 +
©­­«
T +

2(0,2)

(
𝑒−2𝑖𝜇 − 𝑒𝑖𝜇

)
T −

2(0,2)

(
𝑒−2𝑖𝜇 − 𝑒−𝑖𝜇

)ª®®¬ 𝑝2

(3.32)

eliminating all S2 terms by choosing

T ±
2(𝑘+,𝑘−) =

−𝑆±2(𝑘+,𝑘−)(
𝑒𝑖𝜇(𝑘+−𝑘−) − 𝑒±𝑖𝜇

) , (3.33)
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since the condition from Eq. (3.29) is not satisfied:

𝑒𝑖𝜇(𝑘+−𝑘−) − 𝑒±𝑖𝜇 ≠ 0 ∀𝑘+, 𝑘− ∈ N0 with 𝑘+ + 𝑘− = 2.

The values of the T ±
2(𝑘+,𝑘−) for the centrifugal governor example are given in Tab. 3.4. The

terms of O3 are calculated via Eq. (3.25) from T2 and are also given in Tab. 3.4 yielding all terms

of the transformation A2 and its inverse A−1
2 from Eq. (3.23) and Eq. (3.24).

Table 3.4: The values of the T ±
2(𝑘+,𝑘−) and O±

3(𝑘+,𝑘−) . Note that T2 and O3 and therefore A2 and
its inverse are real with A+

𝑚(𝑘+,𝑘−) = A−
𝑚(𝑘−,𝑘+) .

Order Coeff. Value Coeff. Value
2 T +

2(2,0) -0.195635573 T −
2(2,0) 0.065211858

2 T +
2(1,1) 0.391271145 T −

2(1,1) 0.391271145
2 T +

2(0,2) 0.065211858 T −
2(0,2) -0.195635573

3 O+
3(3,0) 0.051031036 O−

3(3,0) 0
3 O+

3(2,1) -0.034020691 O−
3(2,1) 0.051031036

3 O+
3(1,2) 0.051031036 O−

3(1,2) -0.034020691
3 O+

3(0,3) 0 O−
3(0,3) 0.051031036

To study how the second order transformation affects the third order terms S3 of the map M2,

the transformation is considered up to third order:

M2 =3 A2 ◦M1 ◦A−1
2

=3 (I + T2 +O3) ◦ (R + S2 + S3) ◦ (I − T2 +O3)

=3 (I + T2 +O3) ◦
(
R ◦ (I − T2 +O3) + S2 ◦ (I − T2 +O3) + S3 ◦ (I − T2 +O3)

)
=3 (I + T2 +O3) ◦

(
R −R ◦ T2 +R ◦O3 +

︷                 ︸︸                 ︷
S2 + S2→3 +���O≥4 +

︷     ︸︸     ︷
S3 +���O≥4

)
=3 R −R ◦ T2 +R ◦O3 + S2 + S2→3 + S3

+ T2 ◦ (R −R ◦ T2 +R ◦O3 + S2 + S2→3 + S3) +�
��O≥4

=3

︷                        ︸︸                        ︷
T2 ◦R +K2→3 +���O≥4 +R −R ◦ T2 +R ◦O3 + S2 + S2→3 + S3

=3 R + S2 + [T2 ◦R]︸            ︷︷            ︸
=0

+S3 + S2→3 +K2→3 +R ◦O3︸                                  ︷︷                                  ︸
S3,new

. (3.34)

47



All the crossed-out terms���O≥4 represent terms that do not contribute to the result up to order

three, since they are at least of order four. As a result of the second order transformation, the third

order terms have changed and are summarized by S3,new. They are composed of the third order

terms from after the linear transformation S3 and three new terms: S2→3 =3 S2 ◦ (I − T2) − S2,

K2→3 =3 T2 ◦ (R −R ◦ T2 + S2) − T2 ◦R and R ◦O3. While the last one is self-explanatory,

the first two are not intuitively understood. In Sec. 3.3.3.4 these terms are calculated more explicitly,

however, we recommend this section only for the very intrigued reader and encourage everyone else

to skip it to follow the steps in the normal form algorithm.

The result of the second order transformation M2 = R + S3,new for the example case of the

centrifugal governor is given in Tab. 3.5.

Table 3.5: New coefficients of third order of M2 after the second order transformation. Note that
the first order terms remain unchanged and that the second order terms are all eliminated by the
second order transformation. Interestingly, the second order transformation caused some terms of
the third order to disappear in this specific case, which is not a general property of the second order
transformation. The emphasized terms are surviving the third order transformation as explained in
the following subsection.

Order Coeff. Real Part Imaginary Part
3 S+

3,new(3,0) 0.061270641 0.073920008
3 S−

3,new(3,0) 0 0
3 S+

3,new(2,1) 0.470359667 -0.169592994
3 S−

3,new(2,1) 0 0.288035295
3 S+

3,new(1,2) 0 -0.288035295
3 S−

3,new(1,2) 0.470359667 0.169592994
3 S+

3,new(0,3) 0 0
3 S−

3,new(0,3) 0.061270641 -0.073920008
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3.3.3.3 Explicit Third Order Nonlinear Transformation

The third order transformation follows the same scheme as above (see Eq. (3.26)) only that the

commutator C3 = [T3 ◦R] has terms that are zero

C3 =
©­­«
T +

3(3,0)

(
𝑒3𝑖𝜇 − 𝑒𝑖𝜇

)
T −

3(3,0)

(
𝑒3𝑖𝜇 − 𝑒−𝑖𝜇

)ª®®¬ 𝑞3 +
©­­«

0

T −
3(2,1)

(
𝑒𝑖𝜇 − 𝑒−𝑖𝜇

)ª®®¬ 𝑞2𝑝

+
©­­«
T +

3(1,2)

(
𝑒−𝑖𝜇 − 𝑒𝑖𝜇

)
0

ª®®¬ 𝑞𝑝2 +
©­­«
T +

3(0,3)

(
𝑒−3𝑖𝜇 − 𝑒𝑖𝜇

)
T −

3(0,3)

(
𝑒−3𝑖𝜇 − 𝑒−𝑖𝜇

)ª®®¬ 𝑝3, (3.35)

with C+3(2,1) = C−3(1,2) = 0. This means that the terms S+
3,new(2,1) and S−

3,new(1,2) cannot be

eliminated. All the other terms are eliminated by choosing

T ±
3(𝑘+,𝑘−) =

−𝑆±3,new(𝑘+,𝑘−)(
𝑒𝑖𝜇(𝑘+−𝑘−) − 𝑒±𝑖𝜇

) for 𝑘+ − 𝑘− ≠ ±1. (3.36)

The values of T ±
3(𝑘+,𝑘−) for the centrifugal governor example are given in Tab. 3.6.

After the third order transformation the resulting map is of the following form

M3 =
©­­«
𝑒𝑖𝜇 0

0 𝑒−𝑖𝜇

ª®®¬
©­­«
𝑞3

𝑝3

ª®®¬︸                ︷︷                ︸
R

+
©­­«
S+

3,new(2,1)

0

ª®®¬ 𝑞2
3𝑝3 +

©­­«
0

S−
3,new(1,2)

ª®®¬ 𝑞3𝑝
2
3︸                                               ︷︷                                               ︸

S3,transformed

=
©­­«

(
𝑒𝑖𝜇 + S+

3,new(2,1)𝑞3𝑝3
)
𝑞3(

𝑒−𝑖𝜇 + S−
3,new(1,2)𝑞3𝑝3

)
𝑝3

ª®®¬ =
©­­«
𝑓 + (𝑞3𝑝3) 𝑞3

𝑓 − (𝑞3𝑝3) 𝑝3

ª®®¬ . (3.37)

Table 3.6: The values of the T ±
3(𝑘+,𝑘−) . The values for T +

3(2,1) and T −
3(1,2) cannot be calculated

because the denominator in Eq. (3.36) is zero. Note that T +
3(𝑘+,𝑘−) = T −

3(𝑘−,𝑘+) .

Order Coeff. Value Coeff. Value
3 T +

3(3,0) 0.051031036 T −
3(3,0) 0

3 T +
3(2,1) – T −

3(2,1) -0.153093109
3 T +

3(1,2) -0.153093109 T −
3(1,2) –

3 T +
3(0,3) 0 T −

3(0,3) 0.051031036
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The corresponding values for the coefficients can be found in Tab. 3.3 for the linear terms and

in Tab. 3.5 for the third order terms. The complex conjugate property of the map M+
3 = M−

3 is

maintained.

While all nonlinear transformations follow the same structure, there is a fundamental difference

between even and odd order transformation steps. For even order transformations there are

no regularly surviving terms as shown for the second order transformation. For uneven order

transformations, there are some terms of a special structure that do survive as shown for third order

transformation. Higher even and odd order transformations will behave in the same way, and we

will stop the process of the detailed walk-through here, after the third order transformation. In

principle, the calculation of the transformations can be continued up to arbitrary order. With each

transformation, the higher order terms are changed and in the end only the terms S+
𝑚(𝑘,𝑘−1) and

S−
𝑚(𝑘−1,𝑘) of uneven orders survive. Hence, the components M±

𝑚 can also be factorized into the

𝑓 ± (𝑞𝑚𝑝𝑚) notation (see Eq. (3.37)) for higher orders.

3.3.3.4 The Effect of the Second Order Transformation on Third Order Terms

The following calculation investigates the term S2→3 as was previously done in [93] and was added

here for sake of completeness.

S2→3 =3 S2 ◦ (I − T2) − S2

=3 S2(2,0)
(
𝑞 − T +

2

)2
+ S2(0,2)

(
𝑝 − T −

2

)2
+ S2(1,1)

(
𝑞 − T +

2

) (
𝑝 − T −

2

)
− S2

=3
((((((((((((((((((((

S2(2,0)𝑞
2 + S2(1,1)𝑞𝑝 + S2(0,2) 𝑝

2 − S2︸                                               ︷︷                                               ︸
=0

+
((((((((((((((((((((((((

S2(2,0)
(
T +

2

)2
+ S2(1,1)T +

2 T −
2 + S2(0,2)

(
T −

2

)2︸                                                         ︷︷                                                         ︸
≥O4

− 2S2(2,0)T +
2 𝑞 − S2(1,1)

(
T +

2 𝑝 + T −
2 𝑞

)
− 2S2(0,2)T −

2 𝑝. (3.38)

As derived in the beginning of Sec. 3.3.3.3, the surviving parts of S2→3 after the third order
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transformation are S+
2→3(2,1) and its complex conjugate counterpart S−

2→3(1,2):

S+
2→3(2,1) = −2S+

2(2,0)T
+

2(1,1) − S+
2(1,1)

(
T +

2(2,0) + T −
2(1,1)

)
− 2S+

2(0,2)T
−

2(2,0)

=
2S+

2(2,0)S
+
2(1,1)

1 − 𝑒𝑖𝜇
+
S+

2(1,1)S
+
2(2,0)

𝑒2𝑖𝜇 − 𝑒𝑖𝜇
+
S+

2(1,1)S
−
2(1,1)

1 − 𝑒−𝑖𝜇
+
S+

2(0,2)S
−
2(2,0)

𝑒2𝑖𝜇 − 𝑒−𝑖𝜇
. (3.39)

This illustrates the complexity of these terms since every single term from S2 is relevant for

them. Each term of S2 is again dependent on the terms of U2. The relation is given by the linear

transformation S2 = A1 ◦ U2 ◦A−1
1 . In principle, one can extend the calculation above to express

S+
2→3(2,1) in terms of U2 and the Twiss parameters as done in [93]. The main insight however is

that due to the significant influence of lower order transformation on higher order terms it is almost

impossible to determine a priory which terms are the relevant ones for characteristics of the normal

form.

In the following calculation we are investigating the term K2→3, which was not previously

investigated in [93].

K2→3 = T2 ◦ (R −R ◦ T2 + S2) − T2 ◦R

= T2 ◦ (R −K2) − T2 ◦R

=3 T2(2,0)
(
𝑒𝑖𝜇𝑞 −K+

2

)2
+ T2(0,2)

(
𝑒−𝑖𝜇𝑝 −K−

2

)2

+ T2(1,1)
(
𝑒𝑖𝜇𝑞 −K+

2

) (
𝑒−𝑖𝜇𝑝 −K−

2

)
− T2 ◦R

=3
((((((((((((((((((((((((((

T2(2,0)𝑒
2𝑖𝜇𝑞2 + T2(1,1)𝑞𝑝 + T2(0,2)𝑒

−2𝑖𝜇𝑝2 − T2 ◦R︸                                                                  ︷︷                                                                  ︸
=0

+
(((((((((((((((((((((((

T2(2,0)
(
K+

2

)2
+ T2(1,1)K+

2K
−
2 + T2(0,2)

(
K−

2

)2︸                                                        ︷︷                                                        ︸
≥O4

− 2T2(2,0)K+
2𝑒

𝑖𝜇𝑞 − T2(1,1)
(
K+

2𝑒
−𝑖𝜇𝑝 +K−

2 𝑒
𝑖𝜇𝑞

)
− 2T2(0,2)K−

2 𝑒
−𝑖𝜇𝑝, (3.40)

where

K2 = R ◦ T2 − S2 → K±
2 = 𝑒±𝑖𝜇T ±

2 − S±
2 . (3.41)
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So,

K2→3 =3 2T2(2,0)S+
2 𝑒

𝑖𝜇𝑞 + T2(1,1)
(
S+

2 𝑒
−𝑖𝜇𝑝 + S−

2 𝑒
𝑖𝜇𝑞

)
+ 2T2(0,2)S−

2 𝑒
−𝑖𝜇𝑝

− 2T2(2,0)T +
2 𝑒2𝑖𝜇𝑞 − T2(1,1)

(
T +

2 𝑝 + T −
2 𝑞

)
− 2T2(0,2)T −

2 𝑒−2𝑖𝜇𝑝. (3.42)

The surviving terms of K2→3 after the third order transformation are K+
2→3(2,1) and its complex

conjugate counterpart K−
2→3(1,2) are

K+
2→3(2,1) = 2T +

2(2,0)S
+
2(1,1)𝑒

𝑖𝜇 + T +
2(1,1)

(
S+

2(2,0)𝑒
−𝑖𝜇 + S−

2(1,1)𝑒
𝑖𝜇

)
+ 2T +

2(0,2)S
−
2(2,0)𝑒

−𝑖𝜇 − 2T +
2(2,0)T

+
2(1,1)𝑒

2𝑖𝜇

− T +
2(1,1)

(
T +

2(2,0) + T −
2(1,1)

)
− 2T +

2(0,2)T
−

2(2,0)𝑒
−2𝑖𝜇

=
−2S+

2(2,0)S
+
2(1,1)

𝑒𝑖𝜇 − 1
−
S+

2(1,1)
1 − 𝑒𝑖𝜇

(
S+

2(2,0)𝑒
−𝑖𝜇 + S−

2(1,1)𝑒
𝑖𝜇

)
+

2S+
2(0,2)S

−
2(2,0)

𝑒2𝑖𝜇 − 𝑒−𝑖𝜇

+
S+

2(1,1)

(
2S+

2(2,0) + S−
2(1,1)

)
2 (cos 𝜇 − 1) −

S+
2(1,1)S

+
2(2,0)

2𝑒2𝑖𝜇 − 𝑒𝑖𝜇 − 𝑒3𝑖𝜇 −
2S+

2(0,2)S
−
2(2,0)

2𝑒2𝑖𝜇 − 𝑒−𝑖𝜇 − 𝑒5𝑖𝜇 . (3.43)

Also for K+
2→3(2,1) and K−

2→3(1,2) the intertwine dependency on all terms of S2 becomes

apparent highlighting the complex relation between lower order and higher order terms.

3.3.4 Transformation back to Real Space Normal Form

Since the original map M0 only operates in real space, the normal form map MNF should also only

operate in real space. This is why the current map M𝑚 , where 𝑚 is the order of last transformation,

is transformed to a real normal form basis (𝑞NF, 𝑝NF) composed of the real and imaginary parts of

the current complex conjugate basis (𝑞𝑚 , 𝑝𝑚). Based on [19, Eq. (7.58) and (7.59) and (7.67)] the

bases are related as follows

𝑞NF =
𝑞𝑚 + 𝑝𝑚

2
and 𝑝NF =

𝑞𝑚 − 𝑝𝑚

2𝑖
, (3.44)

and

𝑞𝑚 = 𝑞NF + 𝑖 𝑝NF and 𝑝𝑚 = 𝑞NF − 𝑖 𝑝NF with (3.45)

𝑞𝑚𝑝𝑚 = 𝑞2
NF + 𝑝2

NF = 𝑟2
NF. (3.46)
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The associated transfer matrix

Areal =
1
2

©­­«
1 1

−𝑖 𝑖

ª®®¬ =
©­­«
(𝑞NF |𝑞𝑚) (𝑞NF |𝑝𝑚)

(𝑝NF |𝑞𝑚) (𝑝NF |𝑝𝑚)

ª®®¬ (3.47)

to the real normal form basis is obtained from the equations above. The inverse relation is given by

A−1
real =

©­­«
1 𝑖

1 −𝑖

ª®®¬ =
©­­«
(𝑞𝑚 |𝑞NF) (𝑞𝑚 |𝑝NF)

(𝑝𝑚 |𝑞NF) (𝑝𝑚 |𝑝NF)

ª®®¬ . (3.48)

The transformation back to the real space (into normal form space) yields

MNF = Areal ◦M𝑚 ◦A−1
real =

1
2

©­­«
1 1

−𝑖 𝑖

ª®®¬ ·
©­­«
𝑓 +

(
𝑟2
NF

)
(𝑞NF + 𝑖 𝑝NF)

𝑓 −
(
𝑟2
NF

)
(𝑞NF − 𝑖 𝑝NF)

ª®®¬
=

©­­«
1
2
(
𝑓 + + 𝑓 +

)
𝑞NF + 𝑖

2
(
𝑓 + − 𝑓 +

)
𝑝NF

−𝑖
2

(
𝑓 + − 𝑓 +

)
𝑞NF + 1

2
(
𝑓 + + 𝑓 +

)
𝑝NF

ª®®¬
=

©­­«
Re

(
𝑓 +

(
𝑟2
NF

))
−Im

(
𝑓 +

(
𝑟2
NF

))
Im

(
𝑓 +

(
𝑟2
NF

))
Re

(
𝑓 +

(
𝑟2
NF

)) ª®®¬ ·
©­­«
𝑞NF

𝑝NF

ª®®¬ . (3.49)

For the example of the centrifugal governor up to order three the normal form is

MNF =
©­­«
cos 𝜇 + 1

2Re
(
S+

3,new(2,1)

)
𝑟2
NF − sin 𝜇 − 1

2 Im
(
S+

3,new(2,1)

)
𝑟2
NF

sin 𝜇 + 1
2 Im

(
S+

3,new(2,1)

)
𝑟2
NF cos 𝜇 + 1

2Re
(
S+

3,new(2,1)

)
𝑟2
NF

ª®®¬ ·
©­­«
𝑞NF

𝑝NF

ª®®¬ . (3.50)

The Tab. 3.7 below yields the values for the normal form map of our example case.

Table 3.7: The normal form map MNF up to order three. The component M+
NF is on the left, M−

NF
on the right.

Order Coeff. Value Coeff. Value
1 M+

NF(1,0) 0.339185989 M−
NF(1,0) 0.940719334

1 M+
NF(0,1) -0.940719334 M−

NF(0,1) 0.339185989

3 M+
NF(3,0) 0.470359667 M−

NF(3,0) -0.169592994
3 M+

NF(2,1) 0.169592994 M−
NF(2,1) 0.470359667

3 M+
NF(1,2) 0.470359667 M−

NF(1,2) -0.169592994
3 M+

NF(0,3) 0.169592994 M−
NF(0,3) 0.470359667
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The normal form transformation from M0 to MNF can be obtained by the combination of all

the single transformations yielding

MNF = Areal ◦A𝑚 ◦A𝑚−1 ◦ ... ◦A1 ◦AFP︸                                           ︷︷                                           ︸
A

◦M0

◦A−1
FP ◦A−1

1 ◦ ... ◦A−1
𝑚−1 ◦A

−1
𝑚 ◦A−1

real︸                                              ︷︷                                              ︸
A−1

. (3.51)

The values of the coefficients of the full normal form transformation A are given in Tab. 3.8.

Table 3.8: The normal form transformation A up to order three. The component A+ is on the left,
A− on the right.

Order Coeff. Value Coeff. Value
1 A+

1(1,0) 1.106681920 A−
1(1,0) 0

1 A+
1(0,1) 0 A−

1(0,1) -0.903602004

2 A+
2(2,0) 0.319471552 A−

2(2,0) 0
2 A+

2(1,1) 0 A−
2(1,1) 0.521694860

2 A+
2(0,2) 0.425962069 A−

2(0,2) 0

3 A+
3(3,0) -0.046111747 A−

3(3,0) 0
3 A+

3(2,1) 0 A−
3(2,1) -0.414150918

3 A+
3(1,2) -0.399635138 A−

3(1,2) 0
3 A+

3(0,3) 0 A−
3(0,3) 0.025100056

Writing the complex conjugate functions 𝑓 ± from the equations above (particularly Eq. (3.49))

in a complex notation as

𝑓 ±
(
𝑟2
NF

)
= 𝑒

±𝑖Λ
(
𝑟2NF

)
(3.52)

illustrates circular behavior of the normal form:

MNF =
©­­«
cos

(
Λ

(
𝑟2
NF

))
− sin

(
Λ

(
𝑟2
NF

))
sin

(
Λ

(
𝑟2
NF

))
cos

(
Λ

(
𝑟2
NF

)) ª®®¬ ·
©­­«
𝑞NF

𝑝NF

ª®®¬ . (3.53)

It shows that the normal formMNF consists of circular curves in phase space with only amplitude

dependent angle advancements Λ
(
𝑟2
NF

)
.
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3.3.5 Invariant Normal Form Radius

The squared normal form radius 𝑟2
NF is related to the original coordinates (𝑞0, 𝑝0) by the normal

form transformation A, where

𝑟2
NF (𝑞0, 𝑝0) =

(
𝑞2

NF (𝑞0, 𝑝0) + 𝑝2
NF (𝑞0, 𝑝0)

)
=

(
A2
+ +A2

−
)
(𝑞0, 𝑝0) . (3.54)

Explicitly calculating the squared normal form radius with the normal form transformation A up

to order three from Tab. 3.8 yields

𝑟2
NF =3 1.224745𝑞2

0 + 0.816497𝑝2
0 + 0.707107𝑞3

0 (3.55)

≈
√︂

3
2
𝑞2

0 +
√︂

2
3
𝑝2

0 +
1
√

2
𝑞3

0 (3.56)

=3
2
√

2
√

3

(
𝐸

(𝜋
3
+ 𝑞0, 𝑝0

)
− 𝐸

(𝜋
3
, 0

))
, (3.57)

where

𝐸 (𝑞, 𝑝) = 𝑝

2
+ −𝜔2 sin2 𝜙

2
+ (1 − cos 𝜙) (3.58)

can be straightforwardly derived from Eq. (3.4) and Eq. (3.6). This direct relationship between the

energy 𝐸 , as an invariant or constant of motion, and the squared normal form radius up to order

three confirms that the normal form radius constitutes a constant of motion up to calculation order.

The invariant of motion is a family of functions that remain constant for all phase space states

(𝑞, 𝑝) along their phase space motion. In particular, if 𝐼 (𝑞, 𝑝) is an invariant of motion, then so

is 𝐼2(𝑞, 𝑝) or any other function 𝑓 (𝐼), which is defined by the resulting values of 𝐼. Furthermore,

𝐼 (𝑄(𝑞, 𝑝), 𝑃(𝑞, 𝑝)) is also an invariant if (𝑄, 𝑃) belong to the same phase space curve as (𝑞, 𝑝).

Transfer maps can yield such relations (𝑄(𝑞, 𝑝), 𝑃(𝑞, 𝑝)), since they can represent how a phase

space final state (𝑄, 𝑃) depends on the phase space initial state (𝑞, 𝑝).

Accordingly, the energy 𝐸 and the normal form radius 𝑟2
NF are both functions of the same family

and related by the transformations explained in the paragraph above. Up to order three, this relation

includes a shift by a constant and scaling, but the relation might reveal itself to be more complex

than this with higher orders.
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3.3.6 Angle Advancement, Tune and Tune Shifts

In the beam physics terminology, the angle advancements Λ
(
𝑟2
NF

)
are scaled to the interval [0, 1]

instead of [0, 2𝜋] and referred to as the tune and amplitude dependent tune shifts [19]. The angle

advancement can be calculated from the normal form map via

Λ

(
𝑟2
NF = 𝑞2

NF, 𝑝NF = 0
)
= arccos

©­­­«
M+

NF

���
𝑝NF=0

𝑞NF

ª®®®¬ = arccos
(
Re

(
𝑓 +

(
𝑟2
NF

)))
. (3.59)

For the centrifugal governor example up to order three, the angle advancement is given by

Λ

(
𝑟2
NF = 𝑞2

NF

)
= arccos

(
cos 𝜇 + 1

2
Re

(
S+

3,new(2,1)

)
𝑟2
NF

)
= 𝜇 −

Re
(
S+

3,new(2,1)

)
2 sin 𝜇

𝑟2
NF. (3.60)

Note that 𝜇 is the eigenvalue phase of the original linear part (see Eq. (3.17)). The tune and tune

shifts are calculated from Eq. (2.31), with

Λ

(
𝑟2
NF

)
2𝜋

= 𝜈

(
𝑟2
NF

)
= 0.1949242 − 0.07957747𝑟2

NF, (3.61)

where the constant part is the tune already known from the linear transformation with

𝜈 =
𝜇

2𝜋
=

1.22474487
2𝜋

= 0.1949242. (3.62)

With the expression of 𝑟2
NF in terms of the original coordinates (𝑞0, 𝑝0) from Eq. (3.55) the

tune and tune shifts are evaluated to

𝜈 (𝑞0, 𝑝0) = 0.1949242 − 0.0974621𝑞2
0 − 0.0649747𝑝2

0 − 0.05626977𝑞3
0. (3.63)

This yields a key insight into the centrifugal governor behavior for 𝜔 =
√

2. We already know

that the centrifugal governor is rotating at
√

2/(2𝜋) ≈ 0.225 revolutions per 𝑇0 for 𝜔 =
√

2. The

tune of about 0.195 tells us that the centrifugal governor arms oscillate at a frequency of about

0.195 + 𝑐 oscillations per 𝑇0 around their equilibrium position. The negative tune shifts additionally

show that this frequency is decreasing for increasing amplitude of oscillation.
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Since the map can only compare initial and final state of the oscillation after the integration

time of 1 𝑇0 we only know how much the oscillation cycle has advanced over this period, but not

how many additional full oscillations 𝑐 have been completed in the meantime. By doing the same

process as above for the centrifugal governor with 𝜔 =
√

2 for a Poincaré map after time 𝑡 = 2𝜋/
√

2,

i.e. one full centrifugal governor revolution, yields

𝜈 (𝑞0, 𝑝0) = 0.8660254 − 0.4330127𝑞2
0 − 0.2886751𝑝2

0 − 0.25000000𝑞3
0, (3.64)

which is exactly a factor of 2𝜋/
√

2 larger than the tunes from Eq. (3.63). This means that 𝑐 must be

zero and we did not miss any full oscillations during the integration up to 𝑡 = 1.

From Eq. (3.63) we can directly calculate the period of oscillation from normal form 𝑇NF, which

is just 1/𝜈 (𝑞0, 𝑝0).

To compare the calculated normal form period 𝑇NF to the actual period of oscillation, we flip

the horizontal and vertical axis from Fig. 3.4 and overlay the oscillatory plot with the calculated

periods (see Fig. 3.6). The centrifugal governor arms are initiated with multiple angle offsets with

𝑝𝜙 = 0 relative to their equilibrium angle at 𝜙0 = 60°. If the normal form calculation of the period

0
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Figure 3.6: Comparison between the calculated period with normal form methods𝑇NF = 1/𝜈(𝑞0, 𝑝0)
for calculation order ten (O10) and calculation order three (O3) to the actual period of oscillation
given by the oscillatory behavior of the centrifugal governor arms for 𝜔 =

√
2 from Fig. 3.4.
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is correct, the calculated period will agree with the time when the equilibrium governor arms reach

their initial position amplitude after one actual period of oscillation.

The higher the amplitude of oscillation, the more relevant are higher order effects. Accordingly,

the accuracy drops with larger amplitudes. The order three calculation performs well between

35°(𝛿𝜙 = −25°) and 75°(𝛿𝜙 = +15°), while the order ten calculation can extend an accurate

description over the range from 25°(𝛿𝜙 = −35°) to 85°(𝛿𝜙 = +25°).

The normal form algorithm can also be performed with parameters, e.g., depending on changes

to 𝜔. In Tab. 3.9 result for the amplitude and parameter 𝛿𝜔 dependent tunes shifts are listed. It

shows that the 𝛿𝜔 dependent tune shifts are positive, which means that an increase in 𝜔 increases

the oscillation frequency of centrifugal governor arms. This is related to the deeper potential well.

This knowledge about the dependency of the tunes on parameter shifts can help by the selection

of a suitable 𝜔, e.g., to avoid resonances between the governors revolution frequency and the

oscillation frequency of the arms. While such a resonance is irrelevant in this simplified example it

might be critical when the governor is part of a more complex system.

Table 3.9: Tune and coefficients of amplitude and parameter 𝛿𝜔 dependent tune shifts for centrifugal
governor with 𝜔0 =

√
2.

Exponents Exponents
Coefficient 𝑞0 𝑝0 𝛿𝜔 Coefficient 𝑞0 𝑝0 𝛿𝜔

0.1949242003 0 0 0 -0.0562697698 3 0 0
0.3355884937 0 0 1 -0.0307638305 2 0 1

-0.0974621002 2 0 0 0.1741334861 1 1 1
-0.0649747334 0 2 0 0.1123973696 0 2 1
0.1591549431 1 0 1 -0.0435458248 1 0 2

-0.5753522001 0 0 2 -0.0142179396 0 1 2
0.0866936204 0 0 3

3.4 Visualization of the Different Order Normal Forms and Conclusion

In this chapter, we considered the system of a centrifugal governor with a fixed rotation frequency

of 𝜔 =
√

2 and analyzed it using the DA normal form algorithm.

To visualize the effect of the different steps in the DA normal form algorithm, Fig. 3.7 shows
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phase space tracking pictures for incomplete normal form maps. Given the tenth order Poincaré map

which describes the behavior of the centrifugal governor for 𝜔 =
√

2, these incomplete normal form

maps stopped the normal form transformations at an order 𝑛 < 10 such that the resulting incomplete

normal form map is only normalized up to order 𝑛. There is no practical use for these incomplete

normal form maps other than showing the progress of the normal form algorithm, since to make use

of the normal form properties completion of the normal form transformation to the full order of

the map is required. The phase space behavior in the full order normal form with its rotationally

invariant property was previously shown in Fig. 3.5.

The difference between a) and b) in Fig. 3.7 shows the effect of the linear transformation, which

scales the variables to create circles close to the expansion point. The nonlinear distortions for larger

amplitudes are still present. With the second and third order transformation, these distortions are

removed in the normal form, however still not forming perfect circles for larger amplitudes.

As a result of the DA normal form algorithm, we were able to produce invariants of motion up

to calculation order. Specifically, we could show how the squared normal form radius is directly

related to the energy 𝐸 up to calculation order (see Eq. (3.57)), which is a constant of motion for

this system.

The normal form algorithm also provided transformations from the original coordinates to the

normal form coordinates, which were used to relate the phase space amplitudes to the normal form

invariant.

Finally, the normal form produced the period of oscillation of the centrifugal governor arms

around their equilibrium angle depending on the amplitude of oscillation. The preformed calculation

of order ten did not capture all the relevant high order effects at vary large amplitudes. However,

yet higher order calculation would describe the period of oscillation for these amplitudes more

accurately.
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a) b)

c) d)

Figure 3.7: Phase space tracking of incomplete normal form maps of order ten of the centrifugal
governor arms with a fixed rotation frequency of 𝜔 =

√
2. The original map (a), only linear normal

form transformation (b), and only normal form transformations up to order two (c) and three (d),
respectively. The normal form up to the full tenth order was illustrated in Fig. 3.5.
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CHAPTER 4

BOUNDED MOTION PROBLEM

This chapter contains large parts of my paper Bounded motion design in the Earth zonal problem using

differential algebra based normal form methods published in Celestial Mechanics and Dynamical

Astronomy, Vol. 132, 14 (2020) [95]. The paper was authored by Roberto Armellin, Martin Berz,

and me.

Given the detailed understanding of the differential algebra (DA) normal form algorithm from

Sec. 2.3 and Chapter 3, we present its application in a new technique for the calculation of

entire continuous sets of orbits, which remain in long term relative bounded motion under zonal

gravitational perturbation. We will see that the application of the DA normal form algorithm in this

particular case is only possible due to a well-chosen Poincaré surface for the Poincaré return map

(Sec. 2.2), which captures the critical phase space behavior at the right space-time instance, which

requires a combination of dimension-reducing phase space projections.

4.1 Introduction to Bounded Motion

The term ‘bounded motion’ is used in the field of astrodynamics to describe a special orbital

flight pattern of two objects (usually man-made satellites), where the two objects remain in close

proximity to each other over an extended period of time. Both objects are on orbits around a common

central gravitational body like a planet, moon, asteroid, or star, and their relative distance is bounded.

In practice, bounded motion finds application in cluster flight [31] and formation flying [5]

missions, which can offer many advantages compared to single spacecraft missions. From the

scientific standpoint, they enable measurements of unprecedented spatial and temporal correlation,

but they also have economic advantages such as allowing for redundancies within the spacecraft

group, a distribution of the payload, and the adaptability of the mission by exchanging modules of

the group. Missions such as PRISMA [33], GRACE [66], and TerraSAR-X and TanDEM-X [34]

demonstrated the practicability of formation flying and stimulated further research in the field.
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Moving from an ideal unperturbed system with elliptical Kepler orbits to the realistic mission

case by considering perturbations to the dynamics makes it not trivial to find bounded motion orbits.

The dominating perturbation is often due to the oblateness of the central body and the associated

zonal perturbation from the second zonal harmonic coefficient 𝐽2 of the gravitational potential. This

zonal perturbation introduces a drift in the right ascension of the ascending node (RAAN) ΔΩ, the

argument of periapsis, and the mean anomaly. The drift in each of the quantities is oscillating at

different frequencies, which drastically increases the complexity of the bounded motion problem.

Additional non-zonal gravitational perturbations break the rotational symmetry of the system and

the regular oscillations in each of the quantities mentioned above, which complicates the problem

even more.

To minimize the extent of formation-keeping maneuvers with control strategies during a mission,

it is of great interest to the astrodynamical community to find ‘naturally’ bounded motion orbits for

models considering as many perturbations as possible, which leave only the unmodeled perturbations

to be corrected by control maneuvers. In this chapter and in [95], we present a method that allows

for the design of long term relative bounded motion considering a zonal gravitational model using

normal form methods. Since [95] contains an extensive literature review of previous approaches,

only contributions directly linked to our technique for the zonal problem will be mentioned below.

The pioneering work by Broucke [30] on families of two dimensional quasi-periodic invariant

tori around stable periodic orbits of the Ruth-reduced axially symmetric system was used by Koon

et al. [46] in combination with Poincaré section techniques to study the 𝐽2 problem. While this

method improved first order approaches, long term bounded motion was still not achieved by placing

orbits on the center manifold. Xu et al. [100] pointed out that long term bounded motion in the

zonally perturbed system could only be achieved when the RAAN drift ΔΩ and nodal period 𝑇𝑑 are

on average the same for each of the bounded modules (see Sec. 4.2.5). These constraints are weaker

than the constraints originally derived by Martinusi and Gurfil [65].

In [9], a fully numerical technique based on stroboscopic maps was used to obtain entire families

of quasi-periodic orbits producing bounded relative motion about a periodic one. This method was
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then used to study both: bounded motion about asteroids [8] and in low Earth, medium Earth, and

geostationary orbits [10]. Numerical approaches yield bounded relative orbits with arbitrary size

over very long periods of time (or infinite time in theory). However, they require complex and

time-consuming algorithms.

In [42], a compromise between the analytic and numerical technique was presented based on the

use of DA. DA techniques were used to expand to high order the mapping between two consecutive

equatorial crossings (i.e., Poincaré maps). This enabled the study of the motion of a spacecraft for

many revolutions by the fast evaluation of Taylor polynomials. The problem of designing bounded

motion orbits was then reduced to the solution of two nonlinear polynomial equations, namely

constraining the mean nodal period 𝑇𝑑 and drift of the right ascension of the ascending node ΔΩ.

The derived method showed an accuracy comparable with that of fully numerical methods but with

a reduced complexity due to the introduced polynomial approximations. The main drawback of

this technique consisted of the calculation of the mean 𝑇𝑑 and ΔΩ using numerical averaging over

thousands of nodal crossings. This process resulted in the computationally intensive part of the

algorithm and was also responsible for accuracy degradation in the case of very large separations.

The advantage of our approach is that it overcomes this limitation when calculating bounded

motion orbits under zonal perturbation by the introduction of DA based normal form (DANF)

methods. In particular, the high-order DANF algorithm is used to transform the Poincaré map into

normal form space, in which the phase space behavior is circular and can be easily parameterized

by action-angle coordinates (see Fig. 4.3). The action-angle representation of the normal form

coordinates is then used to parameterize the original phase space coordinates of the Poincaré return

map. The original map is averaged over a full phase space revolution by a path integral along the

angle parameterization, yielding the Taylor expansion of the averaged bounded motion quantities 𝑇𝑑

and ΔΩ, for which the bounded motion conditions are straightforwardly imposed. Sets of highly

accurate bounded orbits are obtained in the full zonal problem, extending over several thousand

kilometers and valid for decades. This method avoids the numerical averaging introduced in [42].

The superiority in terms of elegance, computational time, and accuracy of the new algorithm will be
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demonstrated using similar test cases to those presented in [42] and [10].

Before introducing our approach from [95], we start with some basics on the orbital motion

under gravitational perturbation. Later we will show our results for the full zonal problem [95].

4.2 Understanding Orbital Motion Under Gravitational Perturbation

We consider the orbital motion around a single central body of mass, where the motion is only

determined by the gravitational potential of the central body. Perturbations due to atmospheric drag,

solar radiation pressure, or the gravitational field of other space bodies are ignored. We also ignore

parabolic and hyperbolic orbits, which escape the gravitational potential due to their large enough

kinetic energy.

4.2.1 The Perturbed Gravitational Potential

Any gravitational potential 𝑈 can be expressed in terms of spherical harmonics 𝑌𝑙,𝑚 and the

corresponding coefficients 𝑘𝑙,𝑚:

𝑈 (𝑟, 𝜃, 𝜙) = −𝜇

𝑟

(
1 +

∞∑︁
𝑙=1

𝑙∑︁
𝑚=−𝑙

𝑘𝑙,𝑚

(
𝑅0
𝑟

) 𝑙
𝑌𝑙,𝑚 (𝜃, 𝜙)

)
, (4.1)

where (𝑟, 𝜃, 𝜙) are spherical coordinates with the origin at the center of mass and where 𝜇 is the

product of the gravitational constant and the mass of the central body. The coefficients of the 𝑌𝑙,𝑚

are often split into 𝑘𝑙,𝑚 · 𝑅𝑙0 to make them independent of the size 𝑅0 of the central body.

The orientation of the coordinate system is usually chosen such that 𝑧 (𝜃 = 0) aligns with the

dominating symmetry axis of the central body. The plane perpendicular to 𝑧, i.e. the 𝑥𝑦 plane or

𝜃 = 𝜋/2 plane, is referred to as the equatorial plane.

The spherical harmonics can be grouped into three categories. Zonal terms (𝑚 = 0) are

independent of the longitude 𝜙 creating zones in the vertical/latitudinal direction. Sectional terms

(𝑚 = 𝑙) on the other hand are independent of the latitude 𝜃 creating sections longitudinally. Tesseral

terms (0 < 𝑚 < 𝑙) are dependent on both 𝜙 and 𝜃 creating a chessboard pattern on the sphere. Each
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of these terms is considered a gravitational perturbation to the spherically symmetric potential

𝑈0 = −𝜇

𝑟
, (4.2)

which only depends on the distance 𝑟.

The gravitational potentials of many rotating central bodies are dominated by their low order

zonal terms, in particular, 𝑌2,0, since centrifugal effects of the rotation often cause a zonally

dependent mass distribution with more mass at the equator and less mass at the poles compared

to the sphere. Considering only the effects of zonal perturbations is also referred to as the zonal

problem and is going to be the basis of our analysis. The axial symmetry conserves the angular

momentum component along the symmetry axis and simplifies the potential significantly as the

spherical harmonics 𝑌𝑙,𝑚 reduce to the ordinary Legendre polynomials 𝑃𝑙 , with

𝑈 (𝑟, 𝜃) = −𝜇

𝑟

(
1 +

∞∑︁
𝑙=1

𝐽𝑙

(
𝑅0
𝑟

) 𝑙
𝑃𝑙 (cos 𝜃)

)
. (4.3)

4.2.2 The Equations of Motion

To calculate the behavior of an object in the perturbed gravitational field, we derive the equations

of motion, which describe the dynamics as a set of mathematical functions. To be consistent

with previous approaches and [95], we will use cylindrical coordinates. The starting point of the

derivation is the Lagrangian

𝐿 =
1
2

(
¤𝜌2 + ¤𝑧2 + 𝜌2 ¤𝜙2

)
−𝑈 (𝜌, 𝑧, 𝜙) (4.4)

of the system in cylindrical coordinates (𝜌, 𝑧, 𝜙), where 𝜌 is the distance in the equatorial plane

such that 𝑟 =
√︁
𝜌2 + 𝑧2 yields the total distance between the orbiting object and the center of mass.

The potential takes the following form in cylindrical coordinates

𝑈 (𝜌, 𝑧, 𝜙) = −𝜇

𝑟

[
1 +

∞∑︁
𝑙=1

𝑙∑︁
𝑚=0

(
𝑅0
𝑟

) 𝑙
𝑃𝑙,𝑚

( 𝑧
𝑟

) (
𝐶𝑙,𝑚 cos (𝑚𝜙) + 𝑆𝑙,𝑚 sin (𝑚𝜙)

) ]
, (4.5)

where 𝑃𝑙,𝑚 are the associated Legendre polynomials.
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For the zonal problem (𝑚 = 0), the 𝑃𝑙,𝑚 reduce to the ordinary Legendre polynomials 𝑃𝑙 . The

coefficients 𝐶𝑙,0 of the zonal problem are often denoted by 𝐽𝑙 .

The canonical momenta
(
𝑣𝜌, 𝑣𝑧, 𝑣𝜙

)
to the position variables (𝜌, 𝑧, 𝜙) are given by

𝑣𝜌 =
𝜕𝐿

𝜕 ¤𝜌 = ¤𝜌 𝑣𝑧 =
𝜕𝐿

𝜕 ¤𝑧 = ¤𝑧 𝑣𝜙 =
𝜕𝐿

𝜕 ¤𝜙
= 𝜌2 ¤𝜙 � H𝑧, (4.6)

where H𝑧 is the angular momentum component along the symmetry axis 𝑧 and the canonical

momentum to the angle 𝜙. From the Lagrange-Euler equations it follows that

¤H𝑧 = −𝜕𝑈

𝜕𝜙
, (4.7)

which is zero for the zonal problem due to the axial symmetry making H𝑧 a constant of motion.

Using the Legendre transformation, the Hamiltonian

𝐻 =
1
2

(
𝑣2
𝜌 + 𝑣2

𝑧 +
H2

𝑧

𝜌2

)
+𝑈 (𝜌, 𝑧, 𝜙) (4.8)

is obtained. Due to the time independence of the system (d𝑡𝐻 = 0), the Hamiltonian is equivalent

to the energy 𝐸 , which is a constant of motion.

The equations of motion are derived from the Hamiltonian via the Hamilton equations

¤𝜌 = 𝑣𝜌 ¤𝑧 = 𝑣𝑧 ¤𝜙 =
H𝑧

𝜌2 (4.9)

¤𝑣𝜌 =
H2

𝑧

𝜌3 − 𝑑𝑈

𝑑𝜌
¤𝑣𝑧 = −𝑑𝑈

𝑑𝑧
¤H𝑧 = −𝑑𝑈

𝑑𝜙
. (4.10)

The time evolution X (𝑡) of the state X = (𝑟, 𝑣𝑟 , 𝑧, 𝑣𝑧, 𝜙,H𝑧)𝑇 of a spacecraft is determined by

integrating the system of ODEs ¤X = 𝑓 (X ) from above. The orbit O of the spacecraft is described

by the set of all states X (𝑡).

4.2.3 The Kepler Orbit

Before we investigate the orbital behavior under perturbation, it is advisable to understand the

unperturbed system with the spherically symmetric gravitational potential 𝑈0. The orbiting motion

of an object in the unperturbed potential takes the Keplerian form of a closed ellipse, which makes

the motion two dimensional. The plane in which the ellipse lies is called the orbital plane.
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The traditional orbital elements (𝑎, 𝑒, 𝑖,Ω, 𝜔, 𝜈(𝑡)), also called Keplerian elements, characterize

the position and orbit of the object using the elliptical shape as well as the equatorial plane of

the central body as a reference (see [5] for a detailed description). The variables 𝑎 and 𝑒 define

the size (semi-major axis) and shape (eccentricity) of the ellipse, respectively. To describe the

orientation of the orbital plane with respect to the central body, the reference direction 𝑥 within

the equatorial plane is defined. Except for orbits within the equatorial plane, the elliptical orbit

intersects with the equatorial plane in two places. The intersection in the 𝑧 direction (from south

to north) is called the ascending node �. The angle between the equatorial plane and the orbital

plane is called the inclination 𝑖. The angle between the reference direction 𝑥 and the ascending

node within the equatorial plane is the longitude or right ascension of the ascending node (RAAN)

Ω. The argument of periapsis 𝜔 describes the orientation of the ellipse within the orbital plane as

the angle between the ascending node and the periapsis (closest point of the ellipse to the origin).

The true anomaly 𝜈(𝑡) yields the position of the object along the ellipse as the angle between the

periapsis and the object. The time between two consecutive ascending nodes is called the nodal

period 𝑇𝑑 , with 𝑇𝑑 = 𝑡 (�𝑛+1) − 𝑡 (�𝑛).

4.2.4 Orbits Under Gravitational Perturbation

The elliptical orbits deform under gravitational perturbations such that the orbits no longer close

after a revolution around the central body.

The description of perturbed orbits using Keplerian elements has to be carefully considered, since

the four elements (𝑎, 𝑒, 𝜔, 𝜈) are based on the assumption of an elliptical orbit in an unperturbed

system. The elements 𝑖 and Ω, on the other hand, only describe the orientation of the orbital

plane, determined by position and velocity vectors of the orbiting object, but make no assumptions

about the shape of the orbit. In practice, the Keplerian elements are calculated at each point in

time assuming the orbit is an ellipse in an unperturbed system while propagating the object in the

perturbed system.

This representation is particularly helpful when the gravitational potential is only slightly

67



perturbed. It shows how the unperturbed elliptical orbit is influenced by the perturbations at each

point in time. In Fig. 4.1, the orbital elements of a low Earth orbit (O2 from Sec. 4.4.1) under zonal

perturbation are shown. As a reference, the orbit is also initiated with the same starting conditions

but propagated considering only the spherically symmetrical part of the Earth’s gravitational field.
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Figure 4.1: The behavior of the Keplerian elements of a low Earth orbit under zonal gravitational
perturbations up to 𝐽15 (purple) and as a regular Kepler orbit in the unperturbed gravitational field
(green) over time. Left and right plots show different time scales of the behavior. Note that the
vertical scales of Ω and 𝜔 are adjusted in the right plot to show the long term behavior.

Compared to the unperturbed motion, the behavior of the Keplerian elements under zonal

perturbation is quite complex. There are multiple oscillations happening at different frequencies.

On the short time scale (see left plots in Fig. 4.1), there is the semi-periodic behavior associated

with one orbital revolution with a nodal period of roughly 103 min. As already mentioned in the

introduction, the zonal perturbation introduces a drift of the orbital plane, which is indicated by the

increasing Ω in Fig. 4.1. The corresponding long term behavior suggests that the orbital plane is

rotating around the symmetry axis in about 365 days. However, as we will discover in Sec. 4.4.1 and

in particular in Fig. 4.4 neither the nodal period 𝑇𝑑 nor the drift in the ascending node are constant,
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but they are also oscillating. The nodal period 𝑇𝑑 , the RAAN-drift ΔΩ, and the long term behavior

of 𝑎, 𝑒, and 𝑖 are oscillating at the frequency of the rotation of the argument of periapsis 𝜔, which

has a period of roughly 129 days.

4.2.5 The Bounded Motion Conditions by Xu et al.

Considering that each orbit is individually influenced by the gravitational perturbations determining

its shape and orbital period, bounded motion conditions link two orbits in space-time.

Xu et al. [100] showed that the conditions for bounded motion between two orbits O1 and O2

require the following conditions to be met:

𝑇𝑑 (O1) = 𝑇𝑑 (O2) (4.11)

ΔΩ (O1) = ΔΩ (O2) . (4.12)

In other words, any two orbits are in sync, if both, their average nodal period 𝑇𝑑 and their

average drift of the ascending node ΔΩ, are the same.

The time related condition is linked to the space related condition by the space-time event at the

ascending node, where the object passes through the equatorial plane from south to north. The time

difference between two consecutive ascending nodes is the nodal period 𝑇𝑑 . The angular difference

between two consecutive ascending nodes is denoted by ΔΩ, also referred to as the RAAN-drift. It

is defined by

ΔΩ = 𝜙 (�𝑛+1) − 𝜙 (�𝑛) − 2𝜋sgn (H𝑧) , (4.13)

where −2𝜋sgn (H𝑧) ensures that ΔΩ is the shortest angular distance between the two consecutive

ascending nodes.

Under zonal perturbation, the nodal period 𝑇𝑑 and the RAAN-drift ΔΩ show regular oscillatory

behavior (see Fig. 4.4), making their average values constants of motion. The basic goal of our

approach is finding a way of cleverly calculating those average values and relating them to the

constants of motion H𝑧 and 𝐸 . Given the relation, H𝑧 and 𝐸 can be chosen such that the bounded

motion conditions are satisfied and the associated orbits are bound.
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4.2.6 The Fixed Point Orbit

Under zonal perturbation, there are special orbits for which the nodal period 𝑇𝑑 and the RAAN-drift

ΔΩ are constant. The associated reduced state Z = (𝜌, 𝑣𝜌, 𝑧 = 0, 𝑣𝑧) at the ascending nodes remains

unchanged, which is why these orbits are called fixed point orbits. The orbits are also known as

quasi-circular orbits, which originates from the idea of having the elliptical reference shape of the

orbit rotate within the orbital plane under zonal perturbation. The fact that 𝑟 = 𝜌 is constant at the

ascending node for those orbits suggests that the rotating reference shape of the orbit in the orbital

plane is a circle. The Keplerian elements of such a quasi-circular orbit (see Fig. 4.2) show however

that 𝑒 oscillates around a value slightly greater than zero, which is the reason for the word ‘quasi’.

More insightful is the idea that the perturbations influence the orbit just right to yield periodic

behavior after just one orbital revolution around the central body.

Compared to the Keplerian elements of non-quasi-circular orbits like the one shown in Fig. 4.1,

the orbital behavior of the quasi-circular orbit is a lot more regular. Its nodal period 𝑇𝑑 and ascending

node drift ΔΩ are constant and not oscillating as Fig. 4.4 reveals. Since the long term oscillation has
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Figure 4.2: Keplerian elements of a quasi-circular low Earth orbit under Earth’s zonal gravitational
perturbation.
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no amplitude, the entire dynamics of a quasi-circular orbit are already captured by the time scale of

minutes shown in Fig. 4.2.

For our approach, these fixed point orbits serve as a reference for entire families of orbits which

all share the same average nodal period 𝑇𝑑 and the same average RAAN-drift ΔΩ. Our method

calculates a manifold in (𝜌, 𝑣𝜌, 𝑧, 𝑣𝑧,H𝑧, 𝐸) around the fixed point, where the manifold is defined

such that any two points on the manifold satisfy the bounded motion condition.

In the fully gravitationally perturbed system the axial symmetry vanishes, which introduces a

𝜙 dependence and results in H𝑧 no longer being a constant of motion. Accordingly, fixed point

orbits in the fully gravitationally perturbed systems must have a fixed point property in the full

state X = (𝜌, 𝑣𝜌, 𝑧 = 0, 𝑣𝑧, 𝜙,H𝑧). We will discuss fixed point orbits in the fully perturbed system

and the possibilities of creating bounded motion manifolds around them in more detail later in this

chapter, but first, we will present the method and results from [95], where manifolds of bounded

motion orbits for the zonal problem are calculated.

4.3 Method of Bounded Motion Design Under Zonal Perturbation

This section is from [95]. The goal is to generate a Poincaré return map P that describes the

dynamics of the system by characterizing how a state (Xini, 𝑡 = 0) ∈ O within a Poincaré surface S

returns to S. Defining a suitable Poincaré surface is the first step in generating the map. Secondly, a

reference orbit with fixed point properties has to be identified to ensure that the expansion point

of the map returns to itself. The Poincaré return map is then calculated as an expansion around

the reference orbit before being averaged using DA normal form methods. This yields the average

nodal period 𝑇𝑑 and average ascending node drift ΔΩ as a function of the system parameters and

expansion variables around the reference orbit. Using DA inversion methods, the system parameters

can be determined such that the bounded motion conditions are met.
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4.3.1 The Poincaré Surface Space

The bounded motion conditions are defined regarding the ascending node of two orbits. To be

able to enforce the bounded motion condition on our map, we choose the set of ascending nodes

(𝑧 = 0, 𝑣𝑧 ≥ 0) as the Poincaré surface. The Poincaré surface S� can be divided into subsurfaces

S�,H𝑧,𝐸
for specific angular momentum components H𝑧 and energies 𝐸 . These surfaces contain

all states with the parameters (H𝑧, 𝐸) that lie in the equatorial plane (𝑧 = 0) and satisfy 𝑣𝑧 > 0. The

restriction of 𝑣𝑧 to positive values makes the relation between 𝐸 and 𝑣𝑧 (see Eq. (4.8)) bijective and

therefore locally invertible in S�,H𝑧,𝐸
, so

S�,H𝑧,𝐸
=

X | 𝑧 = 0, 𝑣𝑧 =

√︄
2 (𝐸 −𝑈 (𝑟)) − 𝑣2

𝑟 −
(
H𝑧

𝑟

)2 . (4.14)

This means that any state X ∈ S�,H𝑧,𝐸
is uniquely determined by (𝑟, 𝑣𝑟 , 𝜙), since 𝑧 = 0 and

𝑣𝑧 (𝑟, 𝑣𝑟 ,H𝑧, 𝐸).

4.3.2 The Fixed Point Orbit

The orbit associated with the fixed point state is called reference orbit. The reference orbit has the

special property that it returns to the same reduced state Z = (𝑟, 𝑣𝑟 , 𝑧, 𝑣𝑧)𝑇 after each revolution

with a constant nodal period 𝑇★
𝑑

and a constant angle advancement in 𝜙, which is also referred to as

the fixed point drift in the ascending node ΔΩ★.

For a certain set of parameters (H𝑧, 𝐸), we use DA inversion techniques iteratively to find the

fixed point orbit (see Sec. 2.2 and Sec. 2.3). The iteration is initialized with an educated guess of

the fixed point corresponding to the ascending node state

Z0 =

(
𝑟 = − 1

2𝐸
, 𝑣𝑟 = 0, 𝑧 = 0, 𝑣𝑧 (𝑟,H𝑧, 𝐸)

)𝑇
, (4.15)

where 𝑟 is set to the apsides of an elliptical orbit in an unperturbed gravitational field with a specific

orbital energy 𝐸 (see [97]).

For each iteration step 𝑛, the state Z𝑛−1 is expanded in the variables (𝑟, 𝑣𝑟 ). After a full orbit

integration until the next ascending node intersection, the map M is timewise projected onto the
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Poincaré surface S�,H𝑧,𝐸
(see Sec. 2.2). The resulting Poincaré map P represents the one turn map

in dependence on variations (𝛿𝑟, 𝛿𝑣𝑟 ) in the variables (𝑟, 𝑣𝑟 ). The difference between the constant

part of the map P and the initial state Z𝑛−1 in the components 𝑟 and 𝑣𝑟 is denoted by Δ𝑟 and Δ𝑣𝑟 ,

respectively. The Poincaré map without its constant part is indicated by P′. The next initial state

Z𝑛 for the iterative process will be given by the evaluation of

©­­«
Z𝑟,𝑛

Z𝑣𝑟 ,𝑛

ª®®¬ =
©­­«
P′
𝑟 (𝛿𝑟, 𝛿𝑣𝑟 ) − 𝛿𝑟

P′
𝑣𝑟

(𝛿𝑟, 𝛿𝑣𝑟 ) − 𝛿𝑣𝑟

ª®®¬
−1

(𝛿𝑟 = −Δ𝑟, 𝛿𝑣𝑟 = −Δ𝑣𝑟 ) . (4.16)

The process is repeated until the offset (Δ𝑟,Δ𝑣𝑟 ) is smaller than a threshold value e.g. 1E-14.

The resulting Z𝑛 is then the ascending node state of the fixed point orbit.

4.3.3 The Calculation of Poincaré Return Map

Given a fixed point state Z★ from Sec. 4.3.2 for the parameter set (H𝑧, 𝐸), the Poincaré return map

P : (S�, 𝑡) → (S�, 𝑡) is calculated as a DA expansion around that reference orbit. In the first

step, the flow M of the fixed point and its neighborhood in S� (expansion in (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)) is

obtained by integrating the system of ODEs from the initial state until the reference/fixed point orbit

is an element of S�,H𝑧,𝐸
again after 𝑇★

𝑑
. In other words, the state is integrated until the orbit of X 0

intersects with the equatorial plane from south to north again.

While the reference orbit itself is in S�,H𝑧,𝐸
⊂ S� after 𝑇★

𝑑
, the expansion around the reference

orbit is not in S�,H𝑧+𝛿H𝑧,𝐸+𝛿𝐸 ⊂ S� due to changing nodal periods of the orbits within the

expansion. In order to project the flow M after 𝑇★
𝑑

onto the Poincaré surface S�,𝐸+𝛿H𝑧,𝐸+𝛿H𝑧
, a

timewise projection is calculated following Sec. 2.2 and [40]. The flow M is expanded in time to

find the intersection time 𝑡intersec(𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) such that

P𝑧 = M𝑧 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸, 𝑡intersec (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)) = 0 (4.17)

and P = (M(𝑡intersec), 𝑇★𝑑 + 𝑡intersec) ∈ (S�,H𝑧+𝛿H𝑧,𝐸+𝛿𝐸 , 𝑡) ⊂ (S�, 𝑡).

The time component P𝑇𝑑
of the Poincaré return map yields the dependence of the nodal period

𝑇𝑑 on the system parameters and expansion variables.
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4.3.4 The Normal Form Averaging

Given the fixed point Poincaré return map P with

P (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) =

©­­­­­­­­­­­­­­­«

P𝑟 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)

P𝑣𝑟 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)

P𝑧 = 0

P𝑣𝑧 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)

P𝜙 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)

P𝑇𝑑
(𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)

ª®®®®®®®®®®®®®®®¬

(4.18)

we are using only the first two components (in 𝑟 and 𝑣𝑟 ) of the Poincare map for the calculation

of phase space transformation provided by the DA normal form algorithm, since the motion is

determined by only the (𝑟, 𝑣𝑟 ) phase space and the parameters (H𝑧, 𝐸). The reduced map is denoted

by K = (P𝑟 ,P𝑣𝑟 )𝑇 .

The normal form transformation A(𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) (see Eq. (2.33)) and its inverse are used

to transform the map K such that

A ◦K ◦A−1 (𝑞NF, 𝑝NF, 𝛿H𝑧, 𝛿𝐸) = KNF (𝑞NF, 𝑝NF, 𝛿H𝑧, 𝛿𝐸) (4.19)

is rotational invariant in the normal form phase space coordinates (𝑞NF, 𝑝NF) up to the order

of calculation. In other words, the distorted phase space curves in original phase space coordi-

nates (P𝑟 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸),P𝑣𝑟 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)) are transformed to circles in the normal form

coordinates (𝑄NF(𝑞NF, 𝑝NF, 𝛿H𝑧, 𝛿𝐸), 𝑃NF(𝑞NF, 𝑝NF, 𝛿H𝑧, 𝛿𝐸)) as Fig. 4.3 illustrates.

By rewriting the normal form coordinates (𝑞NF, 𝑝NF) in an action-angle representation (𝑟NF,Λ)

with ©­­«
𝑞NF

𝑝NF

ª®®¬ = 𝑟NF
©­­«
cosΛ

sinΛ

ª®®¬ , (4.20)

each normal form phase space curve is characterized by the normal form radius (action) 𝑟NF and the

path along each curve is parameterized by the angle Λ. Using the inverse normal form transformation

A−1 (see Eq. (2.34)), the original phase space variables (𝛿𝑟, 𝛿𝑣𝑟 ) of P (and K) are expressed in
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Figure 4.3: a) Distorted phase space behavior in the original phase space (𝑞, 𝑝) and b) circular
behavior in the corresponding normal form phase space (𝑞NF, 𝑝NF). In a), the phase space angle
advancement Λ𝑘 and the phase space radius 𝑟𝑖 are not constant by continuously change along each
of the phase space curves. In b), the phase space behavior is rotationally invariant (‘normalized’)
with a constant radius 𝑟NF and a constant but amplitude dependent angle advancement Λ(𝑟NF).

terms of the action-angle representation and variations in the system parameters (𝛿H𝑧, 𝛿𝐸):

(𝛿𝑟, 𝛿𝑣𝑟 ) = A−1 (𝑞NF (𝑟NF,Λ) , 𝑝NF (𝑟NF,Λ) , 𝛿H𝑧, 𝛿𝐸) . (4.21)

The Poincaré map P (𝑟NF,Λ, 𝛿H𝑧, 𝛿𝐸) is then averaged over a full phase space revolution, by

integrating along the angle Λ:

P (𝑟NF, 𝛿H𝑧, 𝛿𝐸) =
1

2𝜋

∮
P (𝑟NF,Λ, 𝛿H𝑧, 𝛿𝐸) 𝑑Λ. (4.22)

The numerical averaging presented in [42] is done in the time domain, which cannot incorporate

the slightly different oscillation frequencies of the relevant quantities 𝑇𝑑 and ΔΩ for the different

orbits. The key advantage of the normal form representation is that the different oscillation

frequencies are captured by the amplitude dependent angle advancement in the normal form. The

generalized parameterization of all normal form phase space curves makes the averaging independent

of those differences in the frequency.

Splitting the integration into subsections minimizes the error of the numerical integration and

considerably improves the quality and accuracy of the averaging. For 𝑛 separate parameterization

©­­«
𝑞NF

𝑞NF

ª®®¬ = 𝑟NF
©­­«
cos

(
2𝜋(𝑘−1)

𝑛

)
− sin

(
2𝜋(𝑘−1)

𝑛

)
sin

(
2𝜋(𝑘−1)

𝑛

)
cos

(
2𝜋(𝑘−1)

𝑛

) ª®®¬
©­­«
cosΛ

sinΛ

ª®®¬ 𝑘 ∈ {1, 2, ..., 𝑛} , (4.23)
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each section is integrated over the symmetric interval of Λ ∈ [−𝜋/𝑛, 𝜋/𝑛].

The result of the averaging yields every component of P averaged over a full phase space curve.

In particular, it yields the averaged drift in the ascending node ΔΩ (𝑟NF, 𝛿H𝑧, 𝛿𝐸) and average

nodal period 𝑇𝑑 (𝑟NF, 𝛿H𝑧, 𝛿𝐸).

For mission design purposes the abstract quantity 𝑟NF is expressed by the original coordinates

(𝛿𝑟, 𝛿𝑣𝑟 ) and the parameters (𝛿H𝑧, 𝛿𝐸) with

𝑟2
NF(𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) =

(
𝑞2

NF + 𝑝2
NF

)
(𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) (4.24)

using the normal form transformation A, which yields how (𝑞NF, 𝑝NF) depend on the original

coordinates (𝛿𝑟, 𝛿𝑣𝑟 ) and the parameters (𝛿H𝑧, 𝛿𝐸).

The average drift in the ascending node ΔΩ (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) and the average nodal period

𝑇𝑑 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) are then projected such that the bounded motion conditions are satisfied, with

ΔΩ★ = ΔΩ (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 ) , 𝛿𝐸 (𝛿𝑟, 𝛿𝑣𝑟 )) (4.25)

𝑇★
𝑑
= 𝑇𝑑 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 ) , 𝛿𝐸 (𝛿𝑟, 𝛿𝑣𝑟 )) . (4.26)

In this process, DA inversion methods are used to find 𝛿H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 ) and 𝛿𝐸 (𝛿𝑟, 𝛿𝑣𝑟 ). The

dependence of H𝑧 and 𝐸 on orbital parameters for bounded motion orbits were previously discussed

in [90, 79].

Theoretically, one could have proceeded with the abstract invariant of motion 𝑟NF to satisfy the

bounded motion condition with 𝛿H𝑧 (𝑟NF) and 𝛿𝐸 (𝑟NF). For specific bounded orbits one would

then have chosen a value for 𝑟NF to calculate (𝛿H𝑧, 𝛿𝐸) and afterwards the initial values for (𝑟, 𝑣𝑟 )

by using Eq. (4.21), where Λ can be chosen freely.

4.4 Bounded Motion Results

The following results were already discussed in [95]. In this section, we will apply the normal

form methods for bounded motion of low Earth and medium Earth orbits. For this, we use fixed

point orbits of the zonal problem that have previously been investigated by He et al. [42] for the low

Earth orbit (LEO) and Baresi and Scheeres [10] for the medium Earth orbit (MEO).
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As explained above, the fixed point Poincaré maps P are calculated as an expansion in the

variables (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) around the respective fixed point orbit. In the calculation we consider

zonal perturbations up to the 𝐽15-term, since investigations in [42] indicated no considerable

influence of 𝐽𝑘 terms for 𝑘 > 15. We are using DA maps of 8th order, which provide the best

balance of accuracy and computation time. Additionally, the following dimensionless units are

used: distances are considered in units of the average Earth radius 𝑅0 = 6378.137 km and time is

considered in units of 𝑇0 = 806.811 s such that the gravitational constant assumes the value 𝜇 = 1.

Thus, velocities are in units of 𝑅0/𝑇0 = 7.905 km/s.

It will be shown that the DANF method provides entire sets of bounded motions that extend far

beyond the realistic/practical scope. Since the approach is based on polynomial expansions, it is

obvious it will have to fail at some point. After presenting the bounded motion results for the LEO

and MEO case, we take a look at the limitations of the DANF method and the resulting sets for very

large distances between orbits.

4.4.1 Bounded Motion in Low Earth Orbit

In a first comparison, we are investigating bounded motion around a pseudo-circular LEO that was

also considered in [42]. The pseudo-circular orbit corresponds to the reduced fixed point state

(𝑟★, 𝑣★𝑟 ) = (1.14016749,−1.05621369E-3) (4.27)

for the parameters (H𝑧, 𝐸) = (−0.16707295,−0.43870527). The orbit has a fixed nodal period

of 𝑇★
𝑑
= 7.64916169 (≈ 103 min) and a constant ascending node drift of ΔΩ★ = 1.22871195E-3

rad (0.0704◦). The vertical position 𝑧 of the Poincaré fixed point orbit are defined by the Poincaré

section (𝑧 = 0) and Eq. (4.14) with 𝑣★𝑧
(
𝑟★, 𝑣★𝑟 ,H𝑧, 𝐸

)
= 0.92518953.

The computation of the Poincaré map took 165 seconds on a Lenovo E470 with an Intel®CoreTM

i5-7200U CPU 2.5GHz. The map confirms the fixed point property of the orbit, since the offset

of the constant part of the map from the initial coordinates is well within the numerical error

of the integration with (Δ𝑟,Δ𝑣𝑟 ,Δ𝑧,Δ𝑣𝑧) = (4E-15, 5E-13,−1E-15,−4E-15). The normal form
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transformation of the reduced fixed point Poincaré map K = (P𝑟 ,P𝑣𝑟 )𝑇 is calculated via the DA

normal form algorithm (in 90 milliseconds). The circular phase space behavior in normal form

space is parameterized using the action-angle notation (𝑟NF,Λ). The phase space parameterization

is transformed back to the original coordinates of the Poincaré map. The Poincaré map is averaged

(in 52 milliseconds) over a full phase space rotation using 8 subsections following the procedure

outlined in Sec. 4.3.4. Afterwards, the variable 𝑟NF is expressed in terms of 𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧 and 𝛿𝐸

before the variations in the constants of motion (𝛿H𝑧, 𝛿𝐸) are matched dependent on (𝛿𝑟, 𝛿𝑣𝑟 ) such

that the averaged expressions for 𝑇𝑑 and ΔΩ satisfy the bounded motion conditions (Eq. (4.25) and

Eq. (4.26)). Note that above we are not listing the computation time for the computation steps that

are performed very quickly.

Considering bounded orbits initiated with the same 𝑣𝑟 as the pseudo-circular orbit (𝛿𝑣𝑟 = 0), the

dependence of H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) and 𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0) are provided in Tab. 4.1.

Table 4.1: The expansion of H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) and 𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0) for relative bounded motion orbits
with an average nodal period 𝑇𝑑 = 7.64916169 (≈103 min) and an average ascending node drift of
ΔΩ = 1.22871195E-3 rad. The expansion is relative to the pseudo-circular LEO from [42].

H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) = 𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0) =
− 0.16707295 − 0.43870527
+ 0.32072807 𝛿𝑟2 − 0.31602983E-3 𝛿𝑟2

+ 0.25767948E-3 𝛿𝑟3 − 0.25390482E-6 𝛿𝑟3

− 0.19132824 𝛿𝑟4 − 0.31003174E-3 𝛿𝑟4

+ 0.53296708E-4 𝛿𝑟5 − 0.85361819E-6 𝛿𝑟5

+ 0.12006391E-1 𝛿𝑟6 − 0.32152252E-3 𝛿𝑟6

+ 0.60713391E-3 𝛿𝑟7 − 0.24661573E-5 𝛿𝑟7

− 0.19751494 𝛿𝑟8 − 0.21784073E-3 𝛿𝑟8

To show that the expansion of 𝛿H𝑧 and 𝛿𝐸 provide relative bounded motion orbits, we illustrate

the long term behavior of three LEOs relative to one another. The first orbit is the fixed point/pseudo-

circular orbit and is denoted by O0. The second orbit (O1) is initiated at 𝛿𝑟 = 0.06 with 𝛿𝑣𝑟 = 0.

The third orbit (O2) is initiated at 𝛿𝑟 = 0.13 with 𝛿𝑣𝑟 = 0. The last two both have an initial

longitudinal offset of 𝜙 = 0.5◦ relative to O0. The specific values of the orbits are given in Tab. 4.2.

In the (𝛿𝑟, 𝛿𝑣𝑟 ) phase space, O1 and O2 oscillate around the fixed point (𝑟0, 𝑣𝑟,0) of O0.
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Table 4.2: The LEOs below are all initiated at 𝑣𝑟,0 = −1.05621369E-3 and 𝑟0 = 1.14016749 + 𝛿𝑟,
and have an average nodal period of 𝑇𝑑 = 7.64916169 (≈103 min) and an average ascending node
drift of ΔΩ = 1.22871195E-3 rad. The pseudo-circular LEO from [42] is denoted by O0.

𝛿𝑟 𝛿𝑣𝑟 𝜙 H𝑧 𝐸

O0 0.00 0 0.0◦ -0.16707295 -0.43870527
O1 0.06 (383 km) 0 0.5◦ -0.16592075 -0.43870642
O2 0.13 (829 km) 0 0.5◦ -0.16170668 -0.43871071

Accordingly, the altitude of those orbits is also changing and roughly captured by 𝑟0 ± 𝛿𝑟, which

means that O2 already reaches very low altitudes around 𝑟 = 1.01.

In Fig. 4.4 we show that the bounded motion conditions are met: the oscillatory behavior of the

nodal period 𝑇𝑑 and the ascending node drift ΔΩ of the two orbits O1 and O2 average out to the

same value, respectively, which corresponds to the constant nodal period 𝑇★
𝑑

and constant ascending

node drift ΔΩ★ of the fixed point orbit O0.
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Figure 4.4: Oscillatory behavior of the bounded motion quantities 𝑇𝑑 and ΔΩ of the bounded LEOs
O1 and O2 initiated at 𝛿𝑟 = 0.06 and 𝛿𝑟 = 0.13, respectively. Additionally, the constant nodal
period 𝑇★

𝑑
= 7.64916169 and constant ascending node drift of ΔΩ★ = 0.0704◦ of the fixed point

orbit O0 are shown. The periods of oscillation are 1763 orbital revolutions (126 days) for O2, 1810
orbital revolutions (129 days) for O1, and 1823 orbital revolutions (130 days) for 𝛿𝑟 → 0 of O0.
The shown results are generated by numerical integration.

The bounded motion is further confirmed by Fig. 4.5, which shows the total distance between

the three LEOs respectively for 14 years. Furthermore, Fig. 4.5 illustrates the relative radial and

along-track distance between the orbit pairs from the perspective of one of the orbits in the pair.
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Figure 4.5: Relative bounded motion of LEOs with an average nodal period of 𝑇𝑑 = 7.64916169
(≈103 min) and an average node drift of ΔΩ = 1.22871195E-3 rad for 14 years. The total relative
distance between the orbits is shown in the left plot and the right plot shows the relative radial and
along-track distance between orbit pairs from the perspective of one of the orbits in the pair. The
oscillation in the relative distance between O2 and O1 is caused by the rotating orbital orientation
of the orbits at different frequencies.

Apart from yielding long term bounded motion, the normal form methods also provide the

average angle advancement Λ in the (𝑟, 𝑣𝑟 ) phase space. This angle advancement is directly linked

to the rotation frequency 𝜔𝑝 of the orbit (and its apsides) within its orbital plane, which causes the

oscillation of 𝑇𝑑 and ΔΩ shown in Fig. 4.4 with 𝜔𝑝 . One (𝑟, 𝑣𝑟 ) phase space rotation corresponds

to one revolution of the orbit (and its apsides) within its orbital plane. Accordingly, the frequency

𝜔𝑝 = Λ/2𝜋 is equivalent to the definition of the tune and the tune shifts 𝜈 + 𝛿𝜈, which are just

the normalized angle advancement separated into its constant part (the tune 𝜈) and its amplitude

dependent part (the tune shifts 𝛿𝜈). The normal form yields the average angle advancement Λ

dependent on (𝑟NF, 𝛿H𝑧, 𝛿𝐸). After normalizing Λ, by division by 2𝜋, and replacing 𝑟NF by

an expression of (𝛿𝑟, 𝛿𝑣𝑟 ) and (𝛿H𝑧, 𝛿𝐸) according to Eq. (4.24), and using the expressions for

(𝛿H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 ), 𝛿𝐸 (𝛿𝑟, 𝛿𝑣𝑟 )) from earlier, the frequency 𝜔𝑝 (𝛿𝑟, 𝛿𝑣𝑟 ) is obtained for the bounded

motion orbits around the fixed point LEO. The coefficients of 𝜔𝑝 for 𝛿𝑣𝑟 = 0 are given in Tab. 4.3.
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Table 4.3: Expansion of 𝜔𝑝 (𝛿𝑟, 𝛿𝑣𝑟 = 0) of relative bounded motion LEOs with an average nodal
period 𝑇𝑑 = 7.64916169 (≈103 min) and an average node drift of ΔΩ = 1.22871195E-3 rad. The
expansion is relative to the pseudo-circular LEO from [42].

𝜔𝑝 (𝛿𝑟, 𝛿𝑣𝑟 = 0) =
+ 0.54868728E-3
+ 0.10803872E-2 𝛿𝑟2

+ 0.86800515E-6 𝛿𝑟3

+ 0.10552068E-2 𝛿𝑟4

+ 0.29106874E-5 𝛿𝑟5

− 0.76284414E-3 𝛿𝑟6

+ 0.39324207E-5 𝛿𝑟7

− 0.35077526E-1 𝛿𝑟8

Accordingly, the periods of the oscillations of the nodal periods 𝑇𝑑 and the ascending node

drifts ΔΩ in Fig. 4.4 (in units of orbital revolutions) are just the inverse of the frequencies

𝜔𝑝 (𝛿𝑟 = 0.06) = 5.52590498E-4 and 𝜔𝑝 (𝛿𝑟 = 0.13) = 5.67242676E-4. These frequencies also

help explain the oscillation of the total relative distance range between O1 � O2 over 13.3 years in

Fig. 4.5.

While O1 shows repetitive behavior after 1809.7 orbital revolutions (129.3 days), the behavior of

O2 is repetitive after 1762.9 orbital revolutions (125.9 days). Accordingly, the two orbits will be in

and out of sync regarding their orbital orientation, while maintaining bounded due to the matching

average nodal period and ascending node drift. Specifically, the two orbits will be back in sync after

about 68170 orbital revolutions (4869 days ≡ 13.3 years) as Fig. 4.5 illustrates, since O1 will have

turned 37.7 times while O2 will have turn exactly once less, namely, 36.7 times, bringing them both

back into the same orbital orientation to one other before moving apart again.

In conclusion, our first comparison showed the superiority of the normal form methods,

particularly, compared to the iterative map evaluation method in [42], where numerical adjustments

to the method were required to provide long term relative bounded motion for 𝛿𝑟 = 0.11.

In Sec. 4.4.3 we will show that the DANF method even provides hypothetical long term bounded

motion up to 𝛿𝑟 = 0.3, which covers all realistic cases until 𝛿𝑟 ≈ 0.14 and further hypothetical

(non-practical) cases with altitudes below the Earth’s surface.
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In the next comparison, we are going to investigate bounded motion much farther from the

Earth’s surface. Accordingly, we expect a larger theoretical and practical bounded motion range

from the DANF method, due to a weaker influence of the zonal perturbations.

4.4.2 Bounded Motion in Medium Earth Orbit

In this comparison, we are considering a medium Earth orbit (MEO) from [10, p. 11] ini-

tiated at 𝑟 = 26562.58 km, 𝑣𝑟 = −9.05E-4 km/s and 𝑣𝑧 = 3.18 km/s. In the units of

𝑅0 = 6378.137 km and 𝑇0 = 806.811 s, the zonal problem with 𝐽2 to 𝐽15 yields a fixed

point orbit at (𝑟★, 𝑣★𝑟 ) = (4.17198963,−1.14150072E-4) and 𝑣★𝑧 = 0.40154964 for the param-

eters (H𝑧, 𝐸) = (1.16863390,−0.11984818). The fixed point orbit has a fixed nodal period

𝑇★
𝑑
= 53.5395648 (≈12 hours) and constant drift in the ascending node of ΔΩ★ = −3.35410945E-4

rad (-0.0192◦). The angular momentum component H𝑧 is positive for this orbit in contrast to the

LEO from Sec. 4.4.1, which means that ¤𝜙 is positive and the orbit is moving eastwards.

The same computer system as in Sec. 4.4.1, took 131 seconds for the computation of the map.

The offset of the integration with (Δ𝑟,Δ𝑣𝑟 ,Δ𝑧,Δ𝑣𝑧) = (−4E-15,−2E-13,−4E-15, 2E-16) is well

within the range of the numerical error of the integration. After the normal form transformation

(in 100 milliseconds) and the averaging (in 62 milliseconds) following the same procedure as in

Sec. 4.4.1, the dependencies of the constants of motion (H𝑧, 𝐸) on (𝛿𝑟, 𝛿𝑣𝑟 ) were calculated. Below,

Tab. 4.4 yields H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) and 𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0).

To illustrate that the DANF methods also provide bounded motion for this set of parameters, we

consider the long term behavior of three MEOs relative to one another. The fixed point/pseudo-

circular orbit denoted by O0. Since 𝑟★ of the fixed point MEO is about four times the 𝑟★ of the low

Earth fixed point orbit from the previous section, the bounded orbits are initiated at four times the

distance compared to the LEO investigation in Sec. 4.4.1. The orbit O1 is initiated at 𝛿𝑟 = 0.24

(1531 km) with 𝛿𝑣𝑟 = 0 and O2 is initiated at 𝛿𝑟 = 0.52 (3317 km) with 𝛿𝑣𝑟 = 0. These relative

distances are already larger than distances that are used in practice. Again, both orbits have an initial

longitudinal offset of 𝜙 = 0.5◦ relative to O0. The specific values of the orbits are given in Tab. 4.5.
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Table 4.4: The expansion of H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) and 𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0) for relative bounded motion MEOs
with an average nodal period of 𝑇𝑑 = 53.5395648 (≈ 12 h) and an average ascending node drift of
ΔΩ = −3.35410945E-4 rad. The expansion is relative to the pseudo-circular MEO from [10].

H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) = 𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0) =
+ 1.16863390 − 0.11984818
− 0.16787983 𝛿𝑟2 − 0.11295792E-05 𝛿𝑟2

− 0.57819536E-5 𝛿𝑟3 − 0.38903865E-10 𝛿𝑟3

+ 0.72342680E-2 𝛿𝑟4 − 0.16786161E-07 𝛿𝑟4

+ 0.16208617E-6 𝛿𝑟5 − 0.34176382E-11 𝛿𝑟5

− 0.69493130E-4 𝛿𝑟6 − 0.28279909E-08 𝛿𝑟6

+ 0.11561378E-6 𝛿𝑟7 + 0.27190622E-12 𝛿𝑟7

+ 0.54888817E-4 𝛿𝑟8 − 0.51224108E-10 𝛿𝑟8

Table 4.5: The MEOs below are all initiated at 𝑣𝑟,0 = −1.14150072E-4 and 𝑟0 = 4.17198963 + 𝛿𝑟 ,
and have an average nodal period of 𝑇𝑑 = 53.5395648 (≈ 12 h) and an average ascending node drift
of ΔΩ = −3.35410945E-4 rad. The orbit O0 is the pseudo-circular MEO from [10].

𝛿𝑟 𝛿𝑣𝑟 𝜙 H𝑧 𝐸

O0 0.0 0 0.0◦ 1.16863390 -0.119848175
O1 0.24 (1531 km) 0 0.5◦ 1.15898794 -0.119848240
O2 0.52 (3317 km) 0 0.5◦ 1.123766254 -0.119848482

Equivalent to Fig. 4.4 we show that the bounded motion conditions are met for the chosen MEOs

in Fig. 4.6. The oscillatory behavior of the nodal period 𝑇𝑑 and the ascending node drift ΔΩ of

the two orbits O1 and O2 average out to the same value, respectively, which correspond to the

constant nodal period 𝑇★
𝑑

and constant ascending node drift ΔΩ★ of the fixed point orbit O0. In

contrast to the investigated LEOs, the oscillation period of the bounded motion quantities of the

MEOs increases with increasing 𝛿𝑟. The period of oscillation in the MEO cases is also about two

orders of magnitude longer with periods of 47 and 53 years for O1 and O2, respectively, compared

to the LEOs.

Using the normal form methods, the rotation frequency 𝜔𝑝 of the orbital orientation within its

orbital plane is calculated as described in Sec. 4.4.1. The results from the expansion of 𝜔𝑝 confirm

these periods of oscillation with 𝜔𝑝 (0.24) = 2.88842404E-5 and 𝜔𝑝 (0.52) = 2.58516089E-5. The

expansion of 𝜔𝑝 dependent on 𝛿𝑟 is given in Tab. 4.6.
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Figure 4.6: Oscillatory behavior of the bounded motion quantities 𝑇𝑑 and ΔΩ of the bounded MEOs
O1 and O2 initiated at 𝛿𝑟 = 0.24 and 𝛿𝑟 = 0.52, respectively. Additionally, the constant nodal
period 𝑇★

𝑑
= 53.5395648 and constant ascending node drift of ΔΩ★ = −0.0192176316 deg of the

fixed point orbit O0 are shown. The periods of oscillation are 38682 orbital revolutions (52.9 years)
for O2, 34621 orbital revolutions (47.4 years) for O1, and 33671 orbital revolutions (46.1 years) for
𝛿𝑟 → 0 of O0. The shown results are generated by numerical integration.

Table 4.6: Expansion of 𝜔𝑝 (𝛿𝑟, 𝛿𝑣𝑟 = 0) of relative bounded motion orbits with an average nodal
period of 𝑇𝑑 = 53.5395648 (≈ 12 h) and an average ascending node drift of ΔΩ = −3.35410945E-4
rad. The expansion is relative to the pseudo-circular MEO from [10].

𝜔𝑝 (𝛿𝑟, 𝛿𝑣𝑟 = 0) =
+ 0.29699500E-04
− 0.14137545E-04 𝛿𝑟2

− 0.48691156E-09 𝛿𝑟3

− 0.22644327E-06 𝛿𝑟4

− 0.43912160E-10 𝛿𝑟5

− 0.10717280E-05 𝛿𝑟6

− 0.10374073E-09 𝛿𝑟7

+ 0.23789772E-05 𝛿𝑟8

Fig. 4.7 shows the long term bounded motion behavior by illustrating the relative total distance

between the orbits and their relative radial and along-track distances. Due to the long oscillation

periods in the bounded motion quantities of 47 and 53 years for O1 and O2, respectively, the

oscillation in the total distance between O1 and O2 is about 456 years and can therefore only be

partially shown. After 456 years the orbital orientation of O1 will have turned 9.6 times and align

again with the orbital orientation of O2, which will have turned 8.6 times.
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Figure 4.7: Relative bounded motion of MEOs from Tab. 4.5 with an average nodal period of
𝑇𝑑 = 53.5395648 (≈ 12 h) and an average ascending node drift of ΔΩ = −3.35410945E-4 rad over
70 years. The total relative distance between the orbits is shown in the left plots and the right plot
shows the relative radial and along-track distance between orbit pairs from the perspective of one of
the orbits in the pair. The ‘breathing’ of the relative total distance between O2 and O0 originates
from the rotating orbital orientation of pseudo-elliptical O2 relative to the pseudo-circular O0. Due
to the very long rotation periods, only the first 70 years of the relative distance oscillation and
radial/along-track behavior between O2 and O1 could be shown.

The ‘breathing’ of the relative distance between the orbits is particularly noticeable for the orbit

pair of O2 and O0. The frequency of the ‘breathing’ is 2𝜔𝑝 which is a result of the rotation of the

orbital orientation of the pseudo-elliptical O2 relative to the pseudo-circular O0. Since the orbital

shape of the pseudo-elliptical O2 is approximately symmetric along its semi-major axis, one full

rotation of the orbital orientation corresponds to two breathing cycles.

In conclusion, our methods also provided an entire set of long term relative bounded motion

around the considered fixed point MEO from [10], which was validated far beyond practical relative

distances. In the following section, the limitations of our method are investigated. The investigations

will show that the validity of the sets presented in Sec. 4.4.1 and Sec. 4.4.2 extends over about twice

the already presented distance from their respective fixed point orbits.
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4.4.3 Testing the Limitations of the DANF Method

The previous two sections illustrated the validity of the DANF method for all practical relative

distances for bounded motion and beyond. In this section, we move even further away from any

practical relevance of the calculated sets of bounded motion to the limitations of our method. Since

it is based on polynomial expansions, it is obvious it will fail at some point and we want to show

when and how this failing process takes place.

First we pick a number of test orbits from the calculated bounded motion sets (see Tab. 4.7).

In contrast to previous examples, no initial longitudinal offset relative to the respective fixed point

orbits are set.

Table 4.7: The following orbit parameters are obtained by evaluating H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) and
𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0) from Tab. 4.1 and Tab. 4.4 for various 𝛿𝑟 keeping 𝛿𝑣𝑟 = 0.

Test LEOs Test MEOs
𝛿𝑟 H𝑧 𝐸 𝛿𝑟 H𝑧 𝐸

O0 0.00 -0.16707295 -0.43870527 O0 0.0 1.1686339 -0.11984817
O0.15 0.15 -0.15995246 -0.43871254 O0.6 0.6 1.1091311 -0.11984854
O0.20 0.20 -0.15454760 -0.43871843 O0.7 0.7 1.0881027 -0.11984873
O0.25 0.25 -0.14777078 -0.43872632 O0.8 0.8 1.0641420 -0.11984890
O0.30 0.30 -0.13975416 -0.43873648 O0.9 0.9 1.0373802 -0.11984910
O0.35 0.35 -0.13066556 -0.43874929 O1.0 1.0 1.0079682 -0.11984932
O0.40 0.40 -0.12071669 -0.43876526 O1.1 1.1 0.97607833 -0.11984957

O1.2 1.2 0.94190725 -0.11984984
O1.3 1.3 0.90567972 -0.11985014
O1.4 1.4 0.86765361 -0.11985047

Fig. 4.8 illustrates the behavior of the bounded motion quantities 𝑇𝑑 and ΔΩ for the chosen orbits

of the LEO bounded motion set. Both quantities show oscillatory behavior centered at or close to

𝑇★
𝑑

and ΔΩ★, respectively. With increasing distance 𝛿𝑟, the influence of higher order oscillations

becomes apparent. The frequency and amplitude of oscillation of the bounded motion quantities

also increase with increasing distance 𝛿𝑟 .

If the bounded motion conditions are not met or only met approximately, the orbits will start

drifting apart. This effect is illustrated in Fig. 4.9, which shows very slowly diverging behavior of

approximately 2.6 km/year for 𝛿𝑟 = 0.3 (1913 km) and a stronger divergence of approximately 10.6
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Figure 4.8: The behavior of the bounded motion quantities 𝑇𝑑 and ΔΩ for the test orbits from
Tab. 4.7 of the calculated LEO bounded motion set generated by numerical integration. For large 𝛿𝑟 ,
the influences of higher order oscillations are apparent. The frequency and amplitude of oscillation
increase with increasing 𝛿𝑟 . The amplitude of ΔΩ is particularly sensitive to 𝛿𝑟.

km/year for 𝛿𝑟 = 0.4 (2551 km) in the left plot. The thickening curves in the radial/along-track

representation of the relative orbit motion are a further indication of divergence. The strength

of divergence in Fig. 4.9 can be directly linked to the size of the offsets in the bounded motion

quantities from 𝑇★
𝑑

and ΔΩ★, shown in Fig. 4.8.

From Fig. 4.8 and Fig. 4.9 we conclude that our method and the resulting expansions in H𝑧 and

𝐸 for long term bounded motion of at least 10 years around the fixed point LEO from [42] start

to lose their significant accuracy for 𝛿𝑟 ≥ 0.3 to satisfy the bounded motion conditions with the

required precision. Note that 𝛿𝑟 = 0.3 (1913 km) is already a purely theoretical orbit with altitudes

of more than 1000 km below the Earth’s surface, which means that our expansions in H𝑧 and 𝐸

provided reliable bounded motion beyond realistic distances (𝛿𝑟 ≤ 0.14) between orbits.

The behavior of the bounded motion quantities 𝑇𝑑 and ΔΩ for the chosen orbits of the MEO

bounded motion set (from Tab. 4.7) are shown in Fig. 4.10. In contrast to the test LEOs, the

amplitude and period of oscillation of the bounded motion quantities are decreasing with increasing

distance 𝛿𝑟, which causes the almost steady behavior of 𝛿𝑟 = 1.4 over the shown timespan and

generally suppresses higher order oscillations that were seen for the LEOs. While the oscillations of
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Figure 4.9: Distance between the orbits in the calculated bounded motion set and O0 is determined
in regular time intervals with numerical integration over more than ten years. The left plot only
shows the upper bound to avoid overlaps. Thin horizontal lines at the initial upper bound emphasize
small changes. The dotted light blue curve (right) originates from an unintended near-resonance
between the chosen time interval for distance evaluations and the orbital behavior. A measurable
increase in relative distances (left) over 10 years for 𝛿𝑟 ≥ 0.3 is supported by thickening curves in
the radial/along-track behavior (right).

𝑇𝑑 are approximately centered around 𝑇★
𝑑

(except for O1.4), the center of oscillation is increasingly

diverging from ΔΩ★ to lower ΔΩ for 𝛿𝑟 ≥ 0.8. In other words, the expansions in 𝛿H𝑧 and 𝛿𝐸 start

failing in producing related orbits that satisfy the bounded motion condition.

The consequence of this offset in the bounded motion condition is diverging behavior between

the orbits, which can be seen in Fig. 4.11. The upper bound of the total distance between the orbits

starts diverging for those very large distances and the thickening curves in the radial/along-track

representation of the distance of the orbits from the perspective of O0 further indicate this divergence.

Additionally, Fig. 4.11 shows the ‘breathing’ in the total relative distance between the orbits with

2𝜔𝑝 , which is due to the rotating orbital orientation of the orbits relative to the pseudo-circular fixed

point orbit as already mentioned in the section above.

From Fig. 4.10 and Fig. 4.11, we conclude that our method and the resulting expansions in H𝑧

and 𝐸 for long term bounded motion of at least 70 years around the fixed point MEO from [10]
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Figure 4.10: Behavior of the bounded motion quantities 𝑇𝑑 and ΔΩ for the test orbits from Tab. 4.7
of the calculated MEO bounded motion set generated by numerical integration. In contrast to the
investigated LEOs, the frequency and amplitude of oscillation decrease with increasing 𝛿𝑟 such
that O1.4 appears almost steady. For 𝛿𝑟 ≥ 0.8 the center of oscillation of ΔΩ start to drift to more
negative values and away from ΔΩ★. To capture both, the oscillatory behavior around ΔΩ★ and
the drift of the center of oscillation for very large 𝛿𝑟, two plots with a different scale and range are
shown for ΔΩ.

start to lose their significant accuracy for 𝛿𝑟 ≥ 0.9 to satisfy the bounded motion conditions with

the required precision. Interestingly, the very long ‘breathing’ periods for very large distances like

𝛿𝑟 = 1.3 suggested (temporary) bounded motion for the first 70 years when looking at Fig. 4.11,

while Fig. 4.10 reveals the underlying diverging behavior due to the mismatched bounded motion

conditions.

4.5 Conclusion

The normal form methods presented in this chapter yield parameterized sets of the constants of

motion (H𝑧 (𝛿𝑟), 𝐸 (𝛿𝑟)) for bounded orbits with an average nodal period and average ascending

node drift corresponding to the fixed nodal period and ascending node drift of the reference (fixed
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Figure 4.11: Distance between the orbits in the calculated bounded motion set and O0 is determined
in regular time intervals by numerical integration over more than 70 years. The left plot only shows
the upper bound to avoid overlaps. Thin horizontal lines at the initial upper bound emphasize small
changes. The ‘breathing’ of the total relative distance from the orbital rotation is clearly visible.
Its period increases with increasing 𝛿𝑟 until being unrecognizable due to the strong divergence
for 𝛿𝑟 ≥ 1.4, which is supported by thinker curves in the right plot. The weaker divergence over
the 70-year timespan is already noticeable for 𝛿𝑟 ≥ 0.9. The divergence is caused by the offset in
respective bounded motion quantities (see Fig. 4.10).

point) orbit. The range of 𝛿𝑟 for which bounded motion orbits can be obtained is dependent on the

closeness to the Earth. The closer to the Earth, the stronger the influence of the zonal perturbation

on the orbits. Hence, the dynamics of bounded orbits initiated with 𝛿𝑟 differ much more when they

are in a LEO than when they are in a MEO.

In comparison to the approach in [42], our method avoided the time-consuming and inaccurate

numerical averaging, by using a normal form based parameterization for the averaging. As a result,

the range of the bounded motion provided by our methods is more than twice as large as the range of

the results in [42]. Additionally, our method does not require a separate calculation for each 𝛿𝑟 , but

rather provides an expansion in (𝛿𝑟, 𝛿𝑣𝑟 ), which covers all orbits up to a certain maximum range

that varies with the altitude of the reference trajectory.

While the method in [10] has the advantage of allowing for the calculation of bounded orbits up

90



to arbitrary distances 𝛿𝑟, it lacks the ability to provide parameterized sets of bounded motion just

like [42].

The normal form methods are also able to provide parameterized sets of the rotation frequency

of the orbits within their orbital plane. This rotation is due to the zonal perturbations in the

gravitational field of the Earth since there is no rotation of the orbit for the spherically symmetric

case. With increasing distance from the Earth’s center 𝜌, the zonal perturbations 𝐽𝑙 fall off with

𝜌−𝑙−1. Accordingly, it is not surprising that the rotation frequency of the MEOs is so much lower

than the rotation frequency of the LEOs. Similarly, the 𝛿𝑟 dependence of the bounded motion is a

lot less sensitive for the MEOs compared to the LEOs.

91



CHAPTER 5

STABILITY ANALYSIS OF MUON 𝑔-2 STORAGE RING

This chapter contains parts from my paper Computation and consequences of high order amplitude-

and parameter-dependent tune shifts in storage rings for high precision measurements published

in the International Journal of Modern Physics A, Vol. 34, No. 36, 1942011 (2019) [96]. The

paper was authored by David Tarazona, Martin Berz, and me. The analysis and results from [96] are

presented here and they are complemented by additional investigations into period-3 fixed point

structures and their relevance in muon loss mechanisms, which was partly discussed in [88].

The differential algebra (DA) map methods (Sec. 2.2) and DA normal form methods (Sec. 2.3)

are used to analyze the dynamics of particles in the storage ring of the Muon 𝑔-2 Experiment at

Fermilab. In contrast to the scenarios in Chapter 3 and Chapter 4, this case of study considers two

phase space dimensions. We chose a configuration of the storage ring which was utilized during

one of the first data-collecting stages. This configuration is particularly interesting because of the

closeness to a low-order resonance and its influence on the stability and loss rates of particles.

5.1 Introduction

Nonlinear effects of electric and magnetic field components of storage rings to confine the

particles and bend their trajectory can cause substantial amplitude dependent tune shifts within the

beam. Additionally, tune shifts are often sensitive to variations of system parameters, e.g., offsets of

the total particle momentum 𝛿𝑝 relative to the reference momentum 𝑝0 of the storage ring. Such

amplitude and parameter dependent tune shifts lead to particles within the beam that oscillate at

different frequencies, which potentially affects the beam’s susceptibility to resonances and therefore

its dynamics and stability. Thus, it is critical for high precision measurements like the Muon 𝑔-2

Experiment to analyze and understand these influences.

In this chapter, we investigate the dynamics within the Muon 𝑔-2 Storage Ring, which is the

fundamental component of the Muon 𝑔-2 Experiment, using Poincaré return maps and DA normal
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form methods. A one-turn Poincaré return map yields the state of particles at a certain azimuthal

location within the ring dependent on their state in the previous turn and on system parameters. The

application of DA normal form methods to such maps allows for the calculations of the tune shifts

and quasi-invariants of the motion around a (stable) fixed point of the map. Additionally, these maps

can be used to track the phase space behavior stroboscopically. Before explaining the methods and

the results, the following paragraphs will yield a short introduction to the Muon 𝑔-2 Experiment and

its relevance.

The goal of the Muon 𝑔-2 Experiment at Fermilab (E989) [1] is the measurement of the

anomalous magnetic dipole moment of the muon

𝑎𝜇 ≡
𝑔𝜇 − 2

2
, (5.1)

where the 𝑔-factor relates the spin and magnetic moment of a particle. Dirac theory predicts the

factor to be two for charged leptons like the muon [35, 36], but hyperfine structure experiments

showed that 𝑔 ≠ 2 [70, 71]. The largest radiative correction was introduced by Schwinger to explain

the difference [80, 81]. Over the years more corrections were explored to gain an understanding of

the deviation (𝑔-2, where the name of the experiment comes from) [6].

Today, the most successful theory in particle physics is the standard model (SM). The most

accurate calculation of the magnetic dipole moment anomaly of the muon using the standard model,

𝑎SM
𝜇 , reaches a precision of 0.39 ppm [6]. The Muon 𝑔-2 Experiment E821 conducted at the

Brookhaven National Laboratory (BNL) yielded a result with a precision of 0.54 ppm [11], which

differed from the SM calculation by 3.6 standard deviations. The E989 at Fermilab is the latest

experiment in a series of measurements aimed at pushing the precision of the measured result

even higher to reach a precision of 0.14 ppm such that the discrepancy between measurement and

calculation reaches more than five standard deviations [92]. In this case, the result would be a very

strong indication that the standard model is unable to describe this anomaly and would call for

adjustments to the model or new theories. The results from the first set of measurements at E989

[1, 4, 2, 3] were in agreement with the measurement from BNL and had a precision of 0.46 ppm.

Combined with the result from BNL, this yields an experimental precision of 0.35 ppm and a
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discrepancy of 4.2 standard deviations from theory predictions [1]. Expectations are that the five

standard deviations are reached with the next sets of results from E989.

The experimental technique of the Muon 𝑔-2 Experiment can be briefly summarized as follows

[39]: a highly spin-polarized beam of muons is created as a decay product of high energy protons,

which decay into pions, which then decay into (positively charged) muons. The muons are delivered

through the Muon Campus, which is part of the accelerator complex at Fermilab [87, 83], and

injected into the Muon 𝑔-2 Storage Ring. During the first revolutions within the storage ring, the

muon beam is prepared to adjust the emittance and limit fluctuations of the total momentum of

the muons to the acceptance range of about ±0.5% relative to the reference momentum 𝑝0. The

prepared beam then orbits in the storage ring with only the vertical magnetic field and the four

electrostatic quadrupole systems (ESQ) acting on it. The constant magnetic field forces the beam to

circle around within the ring and causes the spin of the muons to precess. The four ESQ confine and

focus the muons vertically [82]. The muons decay while they orbit and their spins precess. Their

decay products, positrons, are measured by the calorimeter system [39] around the beamline in

order to determine the spin precession frequency of the muons, which is then used together with a

high-precision measurement of the magnetic field [3] to calculate the muon anomalous magnetic

moment [11].

Understanding the behavior of the muon beam in the storage ring is particularly important to

identify and address problems. One issue is muon loss, which introduces a systematic bias for the

average spin precession frequency of the remaining particles, which affects the overall result of the

measurement.

To better understand the dynamics of the muons and our methods of their analysis, we start

with the introduction from [96] into how the Poincaré maps for the storage ring are generated.

Then, we discuss the concept of closed orbits and the relevance of the momentum dependent closed

orbit. Afterwards, the tune shift analysis from [96] is presented, which serves as the basis of our

subsequent investigations into muon loss and the relevance of resonances and their associated fixed

point structures.
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5.2 Storage Ring Simulation Using Poincaré Maps

A storage ring is composed of various particle optical elements, each of which can be simulated

in COSY INFINITY [61, 26]. For each particle optical element, there is a hypothetical ideal orbit,

usually along the center of the element [19]. The ideal orbit is often characterized by a predetermined

set of system parameters ®𝜂0, for example, a specific total reference momentum of the particles. If

the element is simulated as ideal, namely without perturbations, the actual trajectory of a particle

initiated on the ideal orbit when entering the element (at ®𝑧0) follows the ideal orbit throughout the

element. However, with perturbations like imperfections in the associated fields of the element, a

particle initiated at ®𝑧0 might follow a trajectory different from the ideal orbit. Hence, the ideal orbit

describes the actual trajectory of a particle initiated at ®𝑧0 in the unperturbed case.

To analyze how an element influences the transverse phase space behavior around the ideal orbit,

Poincaré maps (see Sec. 2.2) are used. The Poincaré surfaces correspond to the transverse storage

ring cross section perpendicular to the optical axis at azimuthal locations before (S𝑖) and after the

element (S 𝑓 ). The Poincaré map P is expanded around the ideal orbit and expresses how the relative

phase space state ®𝑧 𝑓 ∈ S 𝑓 after the particle optical element depends on variations in the system

parameters ®𝜂 and on the relative phase space state ®𝑧𝑖 ∈ S𝑖 before the element, with ®𝑧 𝑓 = P (®𝑧𝑖, ®𝜂).

The phase space states relative to the ideal orbit ®𝑧 consist of the horizontal (𝑞1, 𝑝1) = (𝑥, 𝑎) and

vertical (𝑞2, 𝑝2) = (𝑦, 𝑏) phase space components within the Poincaré surface S. For unperturbed

elements, the Poincaré map P is origin preserving, with P (®0, ®0) = ®0, since the trajectory follows

the ideal orbit.

The transverse phase space behavior after a full revolution in the storage ring is given by the

Poincaré return map M, which is generated by composing the individual Poincaré maps P𝑖 of the

individual storage ring elements according to the storage ring setup (M = P𝑘 ◦P𝑘−1 ◦ ... ◦P2 ◦P1)

such that the ideal orbits connect.

For the simulation of the Muon 𝑔-2 Storage Ring, a detailed nonlinear model [85, 86] of the

storage ring particle optical elements has been set up using COSY INFINITY. The simulation

considers the magnetic field that guides the beam around the storage ring and the four-fold symmetric
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electrostatic quadrupole system (ESQ) [82], which focuses the beam vertically. The ESQ is not

ideal, which makes the simulation of the higher multipole components a critical aspect of the model.

Additionally, perturbations due to the ESQ fringe fields and imperfections in the vertical magnetic

field can be taken into account based on experimental field measurement data [3].

The model represents the magnetic field inhomogeneities by fitting 2D magnetic multipoles up

to fifth order to measurement data of the magnetic field within the Muon 𝑔-2 Storage Ring (see

[3, 85, 86] for details). The ESQ [82] is considered by the corresponding electrostatic potential as a

2D multipole expansion up to tenth order to accurately model the nonlinearities of the system up

to the significant contribution of the 20th-pole. The fringe fields of the ESQ – the fall-off of the

electric field at the edges of the ESQ components – are simulated based on numerical calculations

performed with the code COULOMB [91].

The generated Poincaré return maps are expanded in the transverse phase space plane relative

to the ideal orbit, where the radial phase space is denoted by (𝑥, 𝑎) and the vertical phase space is

denoted by (𝑦, 𝑏). The coordinates 𝑥 and 𝑦 indicate the position in the radially outward and vertically

upward direction relative to the ideal orbit. The components 𝑎 = 𝑝𝑥/𝑝0 and 𝑏 = 𝑝𝑦/𝑝0 are the

momenta perpendicular to the ideal orbit, namely 𝑝𝑥 and 𝑝𝑦, scaled by the reference momentum of

the particles 𝑝0. Additionally, the maps are expanded in the relative offset 𝛿𝑝 = Δ𝑝/𝑝0 with respect

to the reference momentum 𝑝0 to represent particles with a relative momentum offset. The relative

change 𝛿𝑝 corresponds to the change of the system parameter ®𝜂.

To distinguish the effect of various elements of the storage ring and their perturbations on

the dynamics of the particles, we simulated different configurations of the components in [96].

Specifically, the influence of perturbations due to ESQ fringe fields and influence from imperfections

in the vertical magnetic field were studied separately. We also considered the system for two ESQ

voltages, namely 18.3kV and 20.4kV. In this chapter of the thesis, however, we will only consider an

ESQ voltage of 18.3 kV, since it offers the most interesting nonlinear dynamics and was a set-point

used during the first data collection of the Muon 𝑔-2 Experiment. We are also only considering

the map with the magnetic field imperfections since investigations in [96] indicated that it is the
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dominating perturbation and therefore yields the most realistic results. The main insights from [96]

regarding the other cases will still be mentioned at the appropriate places in the text below.

5.3 The Closed Orbit

Closed orbits return to themselves after each storage ring revolution, which makes them fixed

points of the Poincaré return maps. There are also low period closed orbits that return to themselves

after a few turns 𝑛. These orbits correspond to low period fixed point structures in the 𝑛-turn

Poincaré return map. While there are also unstable fixed points, which are discussed later, we will

first focus on the properties of the stables ones.

The closed orbit is a reference for the associated particles since they oscillate around it with

the closed orbit representing an equilibrium state. Accordingly, the closed orbit is sometimes also

referred to as the reference orbit. In the stroboscopic view of the Poincaré return maps, the fixed

point mimics an equilibrium point of the oscillatory phase space behavior around it. Using the DA

normal form algorithm (see Sec. 2.3) on an origin preserving Poincaré return map, the transverse

oscillation frequencies around the fixed point can be calculated. In the rest of this section, we will

focus on how these closed orbits and their associated fixed points in the Poincaré return maps are

determined.

5.3.1 The Closed Orbit Under Perturbation

If all components are simulated to be unperturbed, then the Poincaré return map is a composition

of origin preserving Poincaré maps and hence also origin preserving. However, if the simulation

considers perturbations, the actual trajectory of the expansion point may be distorted from the ideal

orbit and hence not a closed orbit. Accordingly, the expansion point of the associated Poincaré

return map may not be a fixed point and the map may not be origin preserving.

However, if the perturbation is sufficiently small, a fixed point ®𝑧FP will continue to exist.

Parameterizing the strength of the perturbation with ®𝜂, the origin preserving fixed point map

of the unperturbed system is given by M (®𝑧, ®𝜂 = 0). To analyze the preservation of the param-
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eter dependent fixed point, an extended map N (®𝑧, ®𝜂) = (M(®𝑧, ®𝜂) − ®𝑧, ®𝜂) is defined [19]. If

det(Jac(N (®𝑧, ®𝜂))) |(®𝑧,®𝜂)=(®0,®0) ≠ 0 then, according to the inverse function theorem, an inverse of

the map N exists for a neighborhood D around the evaluation point (®0, ®0) of the Jacobian. The

parameter dependent fixed point ®𝑧FP( ®𝜂) of M and hence the closed orbit of the system exists as

long as (0, ®𝜂) is within the neighborhood for which invertibility has been asserted. If this is the

case and the inverse N−1 around (®0, ®0) is given, then the parameter dependent fixed point can be

calculated via

(®𝑧FP( ®𝜂), ®𝜂) = N−1
(
®0, ®𝜂

)
. (5.2)

Expanding the map around the parameter dependent fixed point yields the origin preserving

Poincaré return map under perturbations in the system parameters.

The perturbation due to imperfections in the magnetic field distorts particles from the ideal

orbit of the E989 storage ring. Accordingly, the Poincaré return map from the composition of the

individual particle optical elements is not origin preserving. Using the method above, the fixed point

of the map – the phase space coordinates of the closed orbit at the azimuthal location of the map – is

calculated and the map is expanded around it. The result is an origin preserving fixed point map.

Calculating the fixed point for Poincaré return maps at multiple azimuthal locations of the ring

indicates the form of the closed orbit (see Fig. 5.1).

The collimator locations are highlighted because they are of particular relevance for muon losses.

They constitute the narrowest part around the storage region restricting the muons to amplitudes of

𝑟 =
√︁
𝑥2 + 𝑦2 < 45 mm = 𝑟0 relative to the center of the ring, i.e. the ideal orbit. Muons hitting a

collimator during data taking for the measurement are known as lost muons.

While the radial/horizontal motion of the closed orbit along the storage ring is close to sinusoidal,

the vertical phase space motion is disturbed into more complex behavior. In the 𝑥𝑦 projection,

distorted elliptical motion around the ideal orbit along the center of the ring is indicated. All these

deviations from the ideal orbit are triggered by the weak coupling of radial and vertical motion due

to ppm-level imperfections of the skew quadrupole magnetic field. The form of the closed orbit is

determined by the distribution of such magnetic field imperfections as well as the fields of the ESQ
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Figure 5.1: The fixed points of Poincaré return maps from various azimuthal locations around the
ring indicate the behavior of the closed orbit (for 𝛿𝑝 = 0). The projections of the four dimensional
fixed points into subspaces illustrate the influence of the magnetic field perturbations on the closed
orbit around the ring. The results from the five collimator locations (C1-C5) are highlighted with
red color. The 𝑥 coordinate corresponds to displacements in the radially outward direction, while
the 𝑦 coordinate indicates the displacement in the vertically upward direction.

specified by the voltage.

The closed orbit we found here and showed in Fig. 5.1 is considering a particle with no

momentum offset (𝛿𝑝 = 0). Following the argumentation above the closed orbit continues to exist

with perturbations in 𝛿𝑝 as will be investigated in the next section.
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5.3.2 The Momentum Dependence of the Closed Orbit

The closed orbit additionally depends on system parameters like the momentum offset of the

particles. Just like for the magnetic field perturbation, Eq. (5.2) is used to calculate the parameter

dependent fixed point (PDFP) of the origin preserving Poincaré return map, where the parameter is

the momentum offset 𝛿𝑝. The phase space coordinates of the momentum dependent fixed point at

the collimator locations in the ring are shown in Fig. 5.2.

The primary effect of the momentum offset comes from the interaction of the charged particles
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Figure 5.2: Changes of the closed orbits due to relative changes 𝛿𝑝 in the total initial momentum.
The plots illustrate absolute coordinates with respect to the ideal orbit at the center of the ring for
the five collimator locations (C1-C5).
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with the unperturbed part of the vertical magnetic field. The Lorentz force, which determines the

orbit radius, is directly proportional to the velocity of the particle, which is relativistically related

to the momentum of the particle. This behavior is clearly visible in the horizontal components of

Fig. 5.2. The radial position of the parameter dependent fixed point 𝑥PDFP changes dominantly

linearly at about 79 mm/% with the momentum offset at all collimator locations. The associated

dependence of the horizontal momentum 𝑎PDFP incorporates the changing radial orientation of the

momentum dependent closed orbit with respect to the Poincaré surface and the different orientations

at the various collimator locations.

The vertical components 𝑦PDFP and 𝑏PDFP of the closed orbit are mostly dependent on the

azimuthal location of the map and change only slightly with a momentum offset.

5.3.3 The Relevance of Closed Orbits

The momentum dependent closed orbits correspond to fixed points in the Poincaré return maps.

Particles that are not on a closed orbit oscillate around the momentum dependent closed orbit

corresponding to their specific momentum offset. In the stroboscopic view of the Poincaré return

maps, this corresponds to stroboscopic oscillatory behavior around the fixed point in both phase

spaces in form of distorted ellipses as Fig. 5.3 indicates.

Given a particle with distorted elliptical phase space behavior and its corresponding momentum

dependent fixed point ®𝑧PDFP(𝛿𝑝), we define the oscillation amplitudes 𝑥amp and 𝑦amp independently

from each other. In the radial phase space 𝑥amp = |𝑥0 − 𝑥PDFP(𝛿𝑝) | for 𝑎0 = 𝑎PDFP(𝛿𝑝) and

𝑦amp = |𝑦0 − 𝑦PDFP(𝛿𝑝) | for 𝑏0 = 𝑏PDFP(𝛿𝑝) in the vertical phase space.

The oscillation amplitudes of these transverse oscillations are determined by the phase space

position of the particle and the momentum dependent fixed point. Particles with the same oscillation

amplitudes but different momentum offsets will follow roughly the same motion, but at different

locations in phase space. On the other hand, particles at the same phase space location may follow

entirely different orbital motion depending on their corresponding momentum dependent fixed point.

In summary, the phase space motion of a particle is characterized by its momentum dependent fixed

101



−6
−4
−2

0
2
4
6

−40 −20 0 20 40

𝑎
[m

ra
d]

𝑥 [mm]

P1
P2

P3
P4 −40

−30
−20
−10

0
10
20
30
40

−1 0 1

y
[m

m
]

b [mrad]

−40
−30
−20
−10

0
10
20
30
40

−40 −20 0 20 40

y
[m

m
]

x [mm]

−6
−4
−2

0
2
4
6

−40 −20 0 20 40

𝑎
[m

ra
d]

𝑥 [mm]

P1
P2

P3
P4 −40

−30
−20
−10

0
10
20
30
40

−1 0 1

y
[m

m
]

b [mrad]

−40
−30
−20
−10

0
10
20
30
40

−40 −20 0 20 40

y
[m

m
]

x [mm]

Figure 5.3: Phase space behavior of four particles in different phase space regions with various
amplitudes and momentum offsets. Particle 4 (yellow) hits the collimator (circle in the 𝑥𝑦 plot)
and is lost. The momentum dependent radial position 𝑥 of the particles is particularly prominent.
The individual particles are characterized by the parameter set

(
𝑥amp, 𝑦amp, 𝛿𝑝

)
. For particle

1 (P1) the parameter set is (6 mm, 12 mm,−0.39%). For particle 2 (P2) the parameter set is
(12 mm, 6 mm,−0.39%) . For particle 3 (P3) the parameter set is (27 mm, 16 mm, +0.13%). For
particle 4 (P4) the parameter set is (6 mm, 25 mm, +0.39%).

point, its amplitudes of oscillation, and its oscillation frequencies, which are addressed in detail in

Sec. 5.4.

The collimators restrict the maximum amplitudes of oscillation around the associated momentum

dependent fixed points. Fig. 5.4 illustrates the shape of the viable phase space region around a

momentum dependent fixed point. The closeness of the reference closed orbit to the collimators

increases the risk of muon loss. While particles with low momentum offset are only at risk of getting

lost when they have relatively large oscillation amplitudes, particles with a large momentum offset

may already be lost with seemingly small amplitudes of oscillation.

Since the semi-major and semi-minor axis of the distorted elliptical phase space behavior are

not necessarily aligned with the position and momentum axis and vary for each particle, there is no

straightforward definition of the amplitude of oscillation. The DA normal form algorithm takes care

of this by transforming the distorted ellipses in phase space to circles such that the amplitudes of

oscillation are just the radii of the circles – the normal form radii. We will investigate the relationship

between the original phase space coordinates and the normal form radii more closely later on and

also use its advantages, but for now, we want to focus on practically relatable quantities in the

original phase space, rather than abstract quantities like the normal form radius.
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Figure 5.4: Schematic illustration of viable 𝑥𝑦 region around a momentum dependent fixed point.
The region contains all rectangles centered at the fixed point, which do not overlap with the collimator
circle.

5.4 Tune Analysis

The following tune analysis investigates the oscillation frequency around the reference closed

orbits depending on the momentum offset and the amplitude of oscillation. The tunes shall shed

light on average loss times and the involvement of resonances.

5.4.1 Tunes of the Momentum Dependent Closed Orbit

Given the parameter dependent fixed point map representing the phase space behavior around the

momentum dependent closed orbit of the Muon 𝑔-2 Storage Ring model, the diagonalization in the

DA normal form algorithm is used to determine the tunes of the momentum dependent closed orbit.

The calculated tunes of the closed orbit (for 𝛿𝑝 = 0) differ only very slightly depending on the

azimuthal location of the Poincaré return map yielding

𝜈𝑥 = 0.944462633(8 ± 3) and 𝜈𝑦 = 0.330814444(7 ± 6), (5.3)

which is expected since they all describe the linear motion around same closed orbit. The proximity

of the vertical tune 𝜈𝑦 to the low 1/3-resonance will be investigated more closely later. The radial
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tune 𝜈𝑥 is even closer to a higher order resonance namely the 17/18-resonance. Without loss of

generality, we will use the Poincaré return map at collimator C3 for our further map investigations.

The Fig. 5.5 illustrates the momentum dependence of the tunes over the momentum offset range

of 𝛿𝑝 ∈ [−0.5%, 0.5%] and indicates the linear dependence (chromaticities) 𝜉𝑖 as a reference.

For |𝛿𝑝 | < 0.25% the momentum dependence of both tunes is predominantly linear with

𝜉𝑥 = −0.131999346 and 𝜉𝑦 = 0.389753993. (5.4)

For |𝛿𝑝 | > 0.33% however, the tunes are dominated by an order eight dependence on relative

momentum offsets 𝛿𝑝. This eighth order dependence results from the strong ninth order terms in the

original map, which are linear in the phase space components and of order eight in the momentum

dependence, representing the earlier mentioned significant influence of the 20th-pole of the ESQ

potential (see Sec. 5.2).

Interestingly, the linear coefficient and the eighth order coefficient of the vertical momentum

dependent tune shifts are both larger by a factor of three and opposite in sign compared to their

radial counterparts. Additionally, the momentum dependent vertical tune shifts away from the

1/3-resonance.

The investigation in [96] indicated a strong influence of the ESQ voltage on the linear motion
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Figure 5.5: Vertical and horizontal tune dependence in the model of the Muon 𝑔-2 Storage Ring of
E989 on relative offsets 𝛿𝑝 from the reference momentum 𝑝0.
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around the respective expansion points and therefore the tunes. The momentum dependence of the

tunes – the momentum dependent tune shifts – however is only slightly changed by the ESQ voltage

(see [96] for more details).

5.4.2 The Amplitude Dependent Tune Shifts

The DA normal form algorithm provides the transformation ANF from the original phase space

coordinates (𝑥, 𝑎) and (𝑦, 𝑏) to rotationally invariant normal form coordinates (𝑞NF,1, 𝑝NF,1) and

(𝑞NF,2, 𝑝NF,2). The amplitude and parameter dependent tune shifts 𝜈𝑖 (𝑟NF,1, 𝑟NF,2, 𝛿𝑝) can be

extracted from the normal form map, where the amplitudes are given by the normal form radii

𝑟NF,𝑖 =
√︃
𝑞2

NF,𝑖 + 𝑝2
NF,𝑖.

This full description of the tunes and their dependence on phase space amplitudes and momentum

offsets is extremely powerful. However, the abstract normal form radii are not as practically useful

as the previously defined oscillation amplitudes 𝑥amp and 𝑦amp in original phase space coordinates.

To address this, Fig. 5.6 illustrates the dependence of the tunes on the radial phase space amplitude

𝑥amp and the dependence on the vertical phase space amplitude 𝑦amp, separately. This is done by

calculating the corresponding normal form coordinates and normal form radii and using those for

the tune evaluation.

The amplitude dependence is never linear but always appears as even orders. Investigations

in [96] indicated that amplitude dependent tune shifts, just like momentum dependent tune shifts,

are only weakly influenced by the ESQ voltages and the field perturbations. Similar to the purely

momentum dependent tune shifts, the sign of the momentum offset seems to only play a minor role

compared to the magnitude of the offset.

The radial amplitude dependence of the tunes is relatively well behaved. Again, there is the

dominating eighth order dependence related to the strong ninth order nonlinear terms resulting from

the 20th-pole of the ESQ potential, which shifts the tunes of the radial phase space up and tunes of

the vertical phase space down with increasing radial amplitude and magnitude of the momentum

offset.
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Figure 5.6: Amplitude dependent tune shifts in the model of the Muon 𝑔-2 Storage Ring of E989.
The black line indicates the amplitude dependent tune shifts for 𝛿𝑝 = 0, while the other lines
have a momentum offset specified by their color. For the left plots regarding the radial amplitude
dependence, the vertical amplitude relative to the momentum dependent fixed point is set to zero and
vice versa for the plots regarding the vertical amplitude dependence on the right. The lines end when
the total 𝑥𝑦 amplitude of the particle relative to the ideal orbit reaches the collimator at 𝑟0 = 45 mm.

The vertical amplitude dependence however is more complex as it varies strongly with the

magnitude of the momentum offset. Regarding the vertical tune, this is particularly critical due to the

crossing of the 1/3-resonance tune for some vertical amplitude and momentum offset combinations.

Such low resonances can have a major influence on the dynamics of particles which is why we will

closely investigate these cases later.

Even though the purely momentum dependent tune shifts (𝑥amp = 0, 𝑦amp = 0) and the tune
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shifts purely dependent on the vertical amplitude (𝑥amp = 0, 𝛿𝑝 = 0) shift in the same direction –

up for radial tunes and down for vertical tunes – there are opposing cross-terms, which depend both

on the vertical amplitude and the momentum offset that trigger this nontrivial tune shift behavior.

In Fig. 5.7 to Fig. 5.9 the combined effects of simultaneous radial and vertical amplitudes on

the tune shifts are illustrated for selected momentum offsets. The behavior for the intermediate

momentum offsets may be interpolated from the given plots. Again, the sign of the momentum

offset has only a minor influence on the form of the tune shifts compared to its magnitude.

Note that Fig. 5.7 to Fig. 5.9 only illustrates tunes for phase space states within the viable phase

space around the corresponding momentum dependent fixed point. Accordingly, not all lines extend

over the full 45 mm range of 𝑦amp and some lines for large 𝑥amp are not shown, since their total 𝑥𝑦

amplitude of the particle relative to the ideal orbit reaches the collimator at 𝑟0 = 45 mm.

The combined effects in Fig. 5.7 to Fig. 5.9 emphasize the strong nonlinear character of the

tune dependencies, which was already indicated in Fig. 5.6. The wave-like structure illustrates how

different order terms dominate at different vertical amplitudes 𝑦amp depending on both, the radial

amplitude 𝑥amp and the momentum offset 𝛿𝑝. Additionally, for almost every momentum offset there

are combinations of oscillation amplitudes for which the vertical 1/3-resonance tune is crossed.

Investigations in [96] did not show this strong nonlinear behavior of the combined effects on the

tune shifts in such clarity.
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Figure 5.7: Behavior of combined amplitude dependent tune shifts at multiple momentum offsets
for an ESQ voltage of 18.3 kV.
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Figure 5.8: Behavior of combined amplitude dependent tune shifts at multiple momentum offsets
for an ESQ voltage of 18.3 kV.
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Figure 5.9: Behavior of combined amplitude dependent tune shifts at multiple momentum offsets
for an ESQ voltage of 18.3 kV.
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5.4.3 The Tune Footprint

The tune footprint visualizes the projection of a beam distribution into tune space. The COSY

INFINITY based model [85, 86] of the Muon 𝑔-2 Storage Ring is used to generate the realistic beam

distribution of 37738 particles from orbit tracking of the muon beam until it is circulating in the

storage ring, prepared for data analysis. In particular, the model considers the imperfect injection

process, which attempts to align the injected beam with the ideal orbit of the storage ring as well as

possible. The model also considers the mispowered ESQ components to imitate the preparation

mechanism during the first turns of the beam in the storage ring at E989. Further details of the

tracking model and on how a realistic distribution of particles is obtained are elaborated in [85, 86].

The variables (𝑥, 𝑎, 𝑦, 𝑏, 𝛿𝑝) relative to the ideal orbit are illustrated in Fig. 5.10 as projections

into the (𝑥, 𝑎), (𝑦, 𝑏), and (𝑥, 𝑦) subspaces.

The beam distribution tends towards higher total momenta in the range of 𝛿𝑝 ∈ [−0.2%, 0.4%]

while overall staying well within the momentum acceptance range of ±0.5%. The spread of the

vertical momentum component 𝑏 is about a factor two to three smaller than its horizontal counterpart

𝑎. The position space (𝑥𝑦) is filled up to the limitations due to the collimators.

The distributions of the horizontal and vertical tunes are illustrated by the tune footprint in

Fig. 5.11, where the vertical tunes of the particle distribution are plotted against their horizontal tunes

as previously done in [56]. The tune footprint of the tenth order calculation is overlaid by the result

of an eighth order calculation to emphasize the influence of the strong ninth order nonlinearities

of the map caused by the 20th-pole of the ESQ potential. The tune footprint of the tenth order

calculation is five to six times larger in each dimension than its eighth order counterpart.

Additionally, particles in different momentum offset ranges are highlighted to illustrate the

behavior of this specific group. The tune footprint can be segmented into three groups characterized

by their momentum offset which generates a tune footprint in the shape of a ‘T’.

The tune footprint for the other ESQ voltages in [96] has a similar distribution for the order eight

and order ten calculations, respectively. While the reference tunes are mainly determined by the

ESQ voltage, the relative tune shifts behave very similarly. If the ESQ voltage were to place the
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Figure 5.10: Projections of the distribution of the variables (𝑥, 𝑎, 𝑦, 𝑏, 𝛿𝑝) in the realistic beam
simulation at the azimuthal ring location of the central kicker.

reference tunes very close to a resonance line, we expect the tune distribution and tune shifts to

behave differently.

Fig. 5.11 shows that the vertical 1/3-resonance tune cannot only be reached hypothetically for

the apparent case of a nominal set-point away from resonances. A substantial part of particles is

close to or on this low order resonance. The overlaid eighth order calculation shows that this is

triggered by the strong ninth order nonlinearities of the map caused by the 20th-pole of the ESQ

potential. The segmentation with regard to the momentum offset of the particles into subgroups

additionally shows that the vertical 1/3-resonance tune is crossed in each of those groups. The

resonance point (17/18, 1/3) is also covered and surrounded by many particles and might have a
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Figure 5.11: The tune footprint of a realistic beam distribution at the azimuthal ring location of
the central kicker. The tune footprint from the 10th order calculation is colored according to the
momentum offset of the individual particles. The black lines correspond to resonance conditions.
In a) the 8th order calculation (green) is overlaid to illustrate the drastic influence of the strong ninth
order nonlinearities of the map caused by the 20th-pole of the ESQ potential. In b) the particles
with a momentum offset −0.3% < 𝛿𝑝 < 0.1% are overlaid in green. In c) the particles with a
momentum offset 0.1% < 𝛿𝑝 < 0.28% are overlaid in green. In d) the particles with a momentum
offset 0.28% < 𝛿𝑝 < 0.5% are overlaid in green.

particularly strong impact.

5.5 Stability and Loss Mechanisms

Muons are lost when they hit structural parts of the storage ring and lose the energy necessary

to remain within the storage region during data taking. Collimators, which are inserted at various
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azimuthal locations in the ring (see Fig. 5.1), constitute the narrowest part around the storage region.

They restrict the muons to amplitudes of 𝑟 =
√︁
𝑥2 + 𝑦2 < 45 mm = 𝑟0 relative to the ideal orbit.

Our previous analysis is very helpful for gaining a general understanding of certain properties

of the system, e.g. the momentum dependence of the reference orbit, and the momentum and

amplitude dependent shifts in the oscillation frequency of orbits around their repetitive reference orbit.

This analysis showed that the vertical 1/3-resonance tune is relevant for various combinations of

amplitudes and momentum offsets. However, only tracking analysis can yield the actual phase space

behavior of lost particles and particles involved with the vertical 1/3-resonance tune. Additionally,

we saw that the radial tune is very close to the high order 17/18-resonance, which we will also look

at more closely.

For the tracking analysis, we use both one-turn maps as well as sectional maps. The one-turn

Poincaré return map yields the state of a muon at the azimuthal location of the central kicker

depending on its state in the previous turn. Sectional maps transfer the state of a muon to the

azimuthal location of the collimators. Accordingly, the muons are not tracked continuously, but

stroboscopically at specific azimuthal locations e.g. at the respective collimator locations.

There are two common approaches for tracking analysis. For a general understanding of the

phase space dynamics of the storage ring, one could track a particle distribution, which is evenly

distributed in all phase space dimensions and over momentum offset range. However, the implication

from such an analysis for the actual muon beam might be limited, since the actual muon beam is not

evenly distributed. Accordingly, we track the realistic particle distribution of 37738 particles from

Sec. 5.4.3.

We take the distribution of particles at the central kicker after 200 turns (corresponding to

about 30 𝜇s) from the injection, which is when data taking begins. During this initial 30 𝜇s after

injection, the muon beam and the system are conditioned for data taking [2]. The beam is tracked

for additional 4500 turns (670 𝜇s), while determining and recording various orbit parameters that

shall be analyzed in detail below.
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5.5.1 The Normal Form Defect of Tracked Particles

As explained in Sec. 2.4, the normal form defect yields the inaccuracies in the normal form, i.e.,

how much the pseudo-invariants (the normal form radii) vary per turn. Using tracking simulations,

one can evaluate a related quantity that we will call the long term normal form defect

𝑑NF,lt = 𝑟NF,max − 𝑟NF,min. (5.5)

It yields the difference between the maximum and the minimum normal form radius of a single

particle orbit over the many turns of the long term tracking. Thus, provides the normal form radius

range of the orbital pattern. The maximum per turn normal form defect 𝑑NF,max of the particle is

the maximum rate of change of the normal form radius during the orbital pattern.

In Fig. 5.12 the particles are grouped by the maximum per turn normal form defect they

encountered during the 4500 turns of tracking. The rate of particles getting lost is strongly correlated

with the size of the maximum normal form defect they encountered. More than 91% of particles
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Figure 5.12: The left plot shows in violet the ratio of particles that have a larger 𝑑NF,max then the
corresponding 𝑥 value. The green boxes indicate the ratio of particles lost in each 𝑑NF,max group,
e.g., particles that encounter a maximum normal form defect larger than 2−7 = 7.8 · 10−3 are all lost
(loss ratio of 1). The right plot shows the ratio between the normal form radius range over 4500
turns (𝑑NF,lt) and the maximum encountered normal form defect 𝑑NF,max for each particle. The
particles are grouped into surviving and lost particles.
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have a maximum normal form defect smaller than 2−11 = 4.9 · 10−4 and none of those particles is

lost. With larger maximum normal form defects, the loss rate increases significantly. Particles that

encounter a maximum normal form defect larger than 2−7 = 7.8 · 10−3 are all lost. This confirms

that the size of the per turn normal form defect is a good indication for losses, in the sense that the

larger the per turn normal form defect the more likely the particle gets lost.

The right side of Fig. 5.12 illustrates the ratio of the long term normal form defect 𝑑NF,lt to

the maximum per turn normal form defect 𝑑NF,max of a particle. Considering that 𝑑NF,lt over

4500 turns is only a factor of eight to 16 larger than 𝑑NF,max for surviving particles illustrates

the overestimation of Nekhoroshev-type stability estimates (see Sec. 2.4) based on the per turn

normal form defect. Additionally, the ratio is much more shifted to higher factors for lost particles,

indicating less overestimation for lost particles with Nekhoroshev-type stability estimates.

In Fig. 5.13 the relevance of the resonances – especially low order resonances like the vertical

1/3-resonance tune – on the long term normal form defect becomes obvious. Since the tunes are

dependent on the normal form radii, a larger long term normal form defect automatically corresponds

to a larger tune range of a particle.
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Figure 5.13: The plots show the long term normal form defect dependent on the calculated tune
range of each particle. The dots are the minimum calculated tune of each particle while tracking.
Red dots indicate that the respective particle is lost over the 4500 tracking turns. The gray lines show
the calculated tune range of each particle. The left plot illustrates the radial long term normal form
defect with respect to the radial tune and the 17/18 resonance (green line). The right plot shows the
vertical long normal form defect with respect to the vertical tune and the 1/3 resonance (green line).
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In the plot of the vertical tune against the vertical long term normal form defect, there is a

‘spike’ facing roughly 45◦ away from the resonance line. In Fig. 5.14, the tune range of these ‘spike’

particles is analyzed to determine a resonance as a potential trigger of the increasing normal form

defect. The analysis indicates that the 10th order 6𝜈𝑥 + 4𝜈𝑦 = 7 resonance might be the cause of

this spike, but it remains unknown why the normal form defect increases along this resonance with

increasing distance from the 1/3-resonance.

The normal form radii are the oscillation amplitudes in the high order normalized, linearly

decoupled phase space. They are closely related to the oscillation amplitudes in the respective

phase spaces relative to the momentum dependent closed orbit. The strong variation in the normal

form radii (the large long term normal form defect) of some orbits indicates that the corresponding

oscillation amplitude of those orbits around their respective reference orbits is also not constant. To

investigate this more closely, the following section investigates the orbits of all lost particles.
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N

F,
lt,
𝑦

6𝜈𝑥 + 4𝜈𝑦 − 7

Figure 5.14: The tune range of the particles forming the spike in Fig. 5.13 are shown on the left.
The right plot shows the normal form defect of the particles depends on their closeness to the
6𝜈𝑥 + 4𝜈𝑦 = 7 resonance (green line).

5.5.2 Lost Muon Studies

In this section, we track and investigate all 259 muons of the distribution from Sec. 5.4.3 that are

lost at collimator C3 and/or C4 over the 4500 turns. In Fig. 5.15 to Fig. 5.29, 15 of those lost

particles are picked to illustrate the different phase space behaviors observed for lost particles. Each

figure illustrates the behavior of a different particle and is made up of six plots. The scaling of the
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plots is the same for all figures. In each figure, the left two plots show the radial and vertical phase

space behavior. The 𝑥𝑦 behavior is shown in the top center plot above the normal form phase space

behavior (𝑞NF,2, 𝑝NF,2). The top right plot shows the normal form radius 𝑟NF =

√︃
𝑟2
NF,1 + 𝑟2

NF,2

over the number of turns, and the bottom right plot shows the tune footprint of the particle. In the

caption, the momentum offset of the particle is mentioned.

One striking property that many of the lost muons share is the appearance of threefold-symmetry

patterns in the vertical phase space projections. The calculated tunes of these lost particles are all

crossing or proceed very close to the vertical 1/3-resonance. These threefold-symmetry patterns

often include significant modulations in the vertical oscillation amplitude, which is additionally

shown by the changing overall normal form radius 𝑟NF and the variations in the calculated tunes

shown in the tune footprint. While there are many patterns, there are two that stick out, namely, the

island pattern (see for example Fig. 5.17) and the shuriken pattern (see for example Fig. 5.23). In

Sec. 5.5.3, we will understand how all these patterns are related to period-3 fixed point structures.

The patterns come in stable, semi-stable, and unstable forms. This tendency to unstable behavior

is often associated with a large radial amplitude and/or a closeness to the (𝜈𝑥 , 𝜈𝑦) = (17/18, 1/3)

resonance point. The ‘fuzzyness’ of the vertical phase space pattern in (𝑦, 𝑏) compared to the

pattern in the corresponding normal form phase space (𝑞NF,2, 𝑝NF,2) is related to the radial phase

space motion. Due to the weak coupling between the radial and vertical phase space from the

imperfections in the magnetic field, large amplitudes in (𝑥, 𝑎) notably affect the motion in (𝑦, 𝑏),

which does not happen in the decoupled normal form phase space.

This ‘fuzzyness’ might also trigger the jumping between different patterns for orbits, which

are close to the border between two patterns (see Fig. 5.31). While studying the figures below, pay

attention to the modulation frequency of the vertical amplitude / the normal form radius. Shuriken

and unstable patterns yield the slowest modulations followed by large and small island patterns. The

fastest modulations occur in almost regularly looking patterns in form of distorted ellipses. There

also seems to be a correlation between the size of the modulation and its frequency, i.e., the larger

the modulation the slower its frequency.
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Figure 5.15: The radial and vertical phase space behavior indicates that this particle (𝛿𝑝 = 0.015%) oscillates at constant amplitudes
around its momentum dependent reference orbit. The overall normal form radius is constant and confirms this. Accordingly, the tune
footprint of the particle is a single dot. This is a trivial large amplitude loss.
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Figure 5.16: The vertical phase space behavior of this particle (𝛿𝑝 = 0.196%) has a slight triangular deformation. The overall normal
form radius indicates a modulated amplitude and the spread out tune footprint starts right after the vertical 1/3-resonance line. Despite
slight influence of the resonance, the rather elliptical phase space behavior makes this a trivial large amplitude loss.
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Figure 5.17: This particle (𝛿𝑝 = −0.088%) is caught around a period-3 fixed point structure in the vertical phase space, which is related to
the vertical 1/3-resonance. We refer to these structures as islands and the loss mechanisms is called island related loss.
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Figure 5.18: This particle (𝛿𝑝 = −0.015%) forms large islands around a period-3 fixed point structure in the vertical phase space, which is
associated with a major modulation of the oscillation amplitude.
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Figure 5.19: This particle (𝛿𝑝 = −0.127%) jumps between the islands. The large radial amplitude and/or the closeness to the (17/18, 1/3)
resonance point might have triggered the jump. This is an example of moderate unstable behavior around a period-3 fixed point structure.
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Figure 5.20: This particle (𝛿𝑝 = 0.024%) shows a different kind of moderate unstable behavior around a period-3 fixed point structure,
where the island size varies. The particle has both, a large radial amplitude and the closeness to the (17/18, 1/3) resonance point.
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Figure 5.21: This particle (𝛿𝑝 = 0.140%) forms a shuriken like shape in the vertical phase space. In this pattern there are two period-3
fixed point structures involved indicated by the double crossing of the vertical 1/3 resonance line.
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Figure 5.22: This particle (𝛿𝑝 = 0.196%) illustrates moderate unstable behavior in a shuriken pattern. The radial amplitude is not
particularly large, but the resonance point (17/18, 1/3) is very close, which might be the trigger of the unsuitability. The unstable behavior
is also visible in the continuously increasing normal form radius.
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Figure 5.23: This particle (𝛿𝑝 = 0.242%) illustrates a shuriken pattern, where the two period-3 fixed point structures are more obvious.
The muon experiences a major modulation in the vertical oscillation amplitude and performs a double crossing of the vertical 1/3
resonance line.
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Figure 5.24: This particle (𝛿𝑝 = −0.096%) shows a shuriken pattern with unstable tendencies. The large radial amplitude and/or the
closeness to the radial 17/18 resonance line might be the trigger for the instability.
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Figure 5.25: This particle (𝛿𝑝 = −0.159%) shows a shuriken pattern with a moderate instability. The two period-3 fixed point structures
are so close together that the particle gets temporarily caught around the inner one of them in an island pattern.
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Figure 5.26: This particle (𝛿𝑝 = 0.181%) shows the pattern of a very blunt shuriken. The vertical amplitude oscillation is only moderate
and illustrates there can be almost regular behavior between two period-3 fixed point structures.
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Figure 5.27: This particle (𝛿𝑝 = 0.106%) is characterized by a very large vertical amplitude, which is additionally modulated by the
shuriken pattern. Its one of the very few particles for which the orbit considerably overlaps with the collimator boundary.
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Figure 5.28: This particle (𝛿𝑝 = 0.118%) shows strong instabilities caused by a combination of a very large vertical amplitude in
combination with a period-3 fixed point structure, which occasionally captures the orbit in an island pattern.
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Figure 5.29: This particle (𝛿𝑝 = 0.010%) diverges due to its unstable orbit. The approach of the unstable fixed point with such a large
vertical amplitude are likely the trigger of the divergence.
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Another property that many lost particles share is a significant momentum offset, which radially

shifts their respective reference orbit closer to the boundaries of the collimator. The dependence of

the radial position of the reference orbit on the momentum offset decreases the maximum survivable

size of those rectangular shapes in 𝑥𝑦 space significantly as previously discussed in Sec. 5.3.3 and

illustrated in Fig. 5.4.

Last but not least, there are also particles like the one shown in Fig. 5.15, which get lost simply

because of their constant but large oscillation amplitudes in the radial and/or vertical direction.

However, it is not always obvious to distinguish them from particles that are under the influence of a

period-3 fixed point structure like the particle in Fig. 5.16.

Fig. 5.15 to Fig. 5.29 also indicate that the 𝑥𝑦 pattern of lost particles often only barely touches

the collimator boundary. For these cases, it may take many revolutions for both oscillations, in the

radial and vertical direction, to reach their maximum simultaneously [84].

5.5.3 Period-3 Fixed Point Structures

There are period-3 fixed point structures in the vertical phase space as seen, for example, in Fig. 5.17.

The period-3 fixed points are a property of the vertical projection of the stroboscopic muon tracking.

They are associated with the vertical 1/3-resonance, which is particularly relevant due to the strong

eight order nonlinear tune shifts from the strong ninth order nonlinear field contributions of the 20th

order multipole of the potential from the ESQ [82].

The period-3 fixed point structure corresponds to an orbit, which vertically oscillates around its

momentum dependent reference orbit with a period of exactly three turns, i.e. a vertical betatron

tune of 1/3. However, such an orbit is not necessarily a closed orbit, which closes after three turns,

because while the vertical behavior might be exactly resonant after three turns, the radial behavior is

not.

There are stable fixed points and unstable fixed points within the period-3 fixed point structures.

Accordingly, the term ‘period-3 fixed points’ describes a set of 6 fixed points at the same amplitude

in 𝑦𝑏, where every other fixed point is stable. The positions of the period-3 fixed points in the

134



vertical phase space depend on the momentum offset 𝛿𝑝 and the radial phase space (due to coupling).

The combination of stable and unstable fixed points creates island patterns around the stable fixed

points as shown in Fig. 5.30.
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Figure 5.30: The left plot shows stroboscopic tracking in the vertical phase space illustrating orbit
behavior with a single period-3 fixed point structure present. The orbits only differ in their vertical
phase space behavior – they all have the same momentum offset of 𝛿𝑝 = 0.126 % and are at the
momentum dependent equilibrium point in radial phase space (𝑥 = 10.64 mm, 𝑎 = 0.045 mrad)
having no radial oscillation amplitude. The blue orbits indicate the island patterns around the
stable fixed points in the middle of the islands. The red orbits are right at the edge before being
caught around the fixed points. The three unstable fixed points are in the space between the two red
orbits, where the islands almost touch. In the right plot, the attractive (green) and repulsive (violet)
eigenvectors of the linear dynamics around the unstable fixed points are schematically shown.

The unstable fixed points are located in the blank space between the islands. The linear dynamics

around them are characterized by an attractive eigenvector with a corresponding eigenvalue smaller

than one and a repelling eigenvector with an eigenvalue larger than one. Those unstable fixed points

give rise to chaotic behavior because two phase space orbits that are initially near yield widely

diverging dynamical behavior from each other once they come close to the unstable fixed point. The
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inner red orbit and the adjacent blue island orbit in Fig. 5.30 illustrate this chaotic behavior. They

both approach the unstable fixed points along the attractive eigenvector (green), but the unstable

eigenvector (violet) ejects them in opposite directions.

While the inner red orbit appears almost regular like the black orbits of lower amplitudes, the

muon on the blue orbit with a slightly larger amplitude gets ejected outwards by the unstable fixed

point, which drastically increases its vertical amplitude. In the case shown in Fig. 5.30, the stable

fixed point is able to keep the particle in an island orbit. In Fig. 5.29, on the other hand, the particle

cannot remain on the island orbit and diverges. In [98, 99], a similar analysis of the accelerator

transfer map representing the Tevatron is performed and rigorous methods to determine the position

of those fixed point structures are presented.

It is also not uncommon for two period-3 fixed point structures to be present simultaneously

in the vertical phase space. Often the structures are oriented such that a stable fixed point of

structure with the larger amplitude is ‘above’ an unstable fixed point of the structure with the lower

amplitude. In Fig. 5.31 a phase space region with two period-3 fixed point structures for orbits with

𝛿𝑝 = 0.339 % is shown.

The different plots illustrate how the relative position and interaction of the two period-3 fixed

point structures drastically changes the dynamics for particles that are initiated on initially very near

orbits. This further emphasizes the potential to chaotic behavior caused by the unstable fixed points

within those period-3 fixed point structures.

The two period-3 fixed point structures can be well separated, as shown in a), yielding the known

island patterns with ‘regular’ orbits in between. However, the structures can also move into each

other such that some orbits are caught between the two period-3 fixed point structures and follow

the shape of a threefold shuriken around the two island patterns as shown in green in b) and c).

When the two period-3 fixed point structures come even closer, the opposite fixed points of the

two period-3 fixed point structures can annihilate each other, resulting in triangular patterns with

rounded corners (see gray patterns in d)).
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Figure 5.31: Stroboscopic tracking in the vertical phase space illustrating orbit behavior with two
period-3 fixed point structures present. The orbits in each plot only differ in their vertical phase
space behavior. All orbits have the same momentum offset of 𝛿𝑝 = 0.339 %. The four plots differ
by their radial amplitude around the momentum dependent equilibrium point in radial phase space
at (𝑥 = 27.7 mm, 𝑎 = 0.144 mrad). The radial amplitudes are: a) 𝑥amp = 6 mm, b) 𝑥amp = 4.8 mm,
c) 𝑥amp = 4 mm, d) 𝑥amp = 1 mm. The blue orbits indicate the island patterns around the stable
fixed points. The red orbits are right at the edge before being caught around the period-3 fixed
points. The green orbits are caught around both period-3 fixed point structures. The gray orbits in
d) emphasize that half of the fixed points from c) have indeed been annihilated.
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While the period-3 fixed point structures often lead to a significant vertical amplitude modulation,

many of them are well within the boundary of the collimators like the examples shown in Fig. 5.30

and Fig. 5.31. So, the involvement of a particle in a period-3 fixed point structure or two does not

necessarily mean that it is lost, but the additional modulation of the vertical amplitude drastically

increases the risk of getting lost for those particles.

All orbit patterns shown in Fig. 5.15 to Fig. 5.29 can be found in a similar form either in Fig. 5.30

or Fig. 5.31. In other words, we fully understand what is causing the different types of patterns. The

major difference for some particles is the stability of their pattern. The phase space regions chosen

in Fig. 5.30 and Fig. 5.31 are stable and do not share the characteristics of unstable orbits which are

large radial amplitudes and/or closeness to the 17/18 resonance point.

5.5.4 Muon Loss Rates from Simulation

We have seen what different phase space tracking patterns can arise due to period-3 fixed point

structures. We also saw that these structures can be responsible for losses due to the modulation of

the oscillation amplitude in the vertical phase space. To get a more general understanding of how

prominent these patterns are among the entire distribution and how common they are among lost

particles, we need a mechanism to characterize these patterns in a way that can be automatically

detected.

The various degrees of instabilities, especially among particles involved with period-3 fixed

point structures make a generalized categorization difficult. There is no obvious distinction between

certain unstable islands and certain shuriken patterns, and also no clear distinction between very

blunt shuriken patterns and very triangularly deformed regular elliptical patterns. Accordingly, we

only make two distinctions. First, we try to distinguish between particles involved with the vertical

1/3-resonance and particles that are not. Among the particles that are involved with the vertical

1/3-resonance, we make a further distinction between pure island patterns and everything else. A

pure island pattern is a (non-across-jumping) island pattern. Fig. 5.19 shows an across-jumping

island structure, where the orbit jumps from one fixed point island to another. In comparison,
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Fig. 5.20 also shows an unstable island pattern, but one that remains on the island around the fixed

points.

For reference, we will call particles that we detect as being involved with the vertical 1/3-

resonance ‘period-3 particles’ and all the others ‘regular particles’. Of the period-3 particles, we

will only give a special name to the ‘island particles’, because the period-3 non-island particles are a

very diverse group, which is not easily described by a single word without mischaracterizing at least

some of its elements.

Since the transition between patterns is continuous as the gray orbits in Fig. 5.31d illustrates, the

category of period-3 particles and the category of regular particles might have elements that are

almost identical.

The following paragraph clarifies how we define the different categories with our detection

mechanisms. We start by explaining how we identify period-3 particles. We consider the vertical

phase space in polar coordinates and look at the phase space behavior in steps of three. The first

three vertical phase space angles during tracking are denoted by 𝜙1,1, 𝜙2,1 and 𝜙3,1, and the next

three angles are denoted by 𝜙1,2, 𝜙2,2 and 𝜙3,. Starting from the initial angle 𝜙1,1, we have angles

after each turn as 𝜙2,1, 𝜙3,1, 𝜙1,2, 𝜙2,2, 𝜙3,2, ..., 𝜙1,𝑛, 𝜙2,𝑛, 𝜙3,𝑛 until the total turn number is

reached. For our tracking, its 4500 turns in total, which corresponds to 𝑛 = 1500. Additionally,

we define the angle advances Δ𝜙𝑖,𝑛 = 𝜙𝑖,𝑛 − 𝜙𝑖,𝑛−1. To avoid ambiguity in the value for the angles,

we require that value for 𝜙𝑖,𝑛 is chosen such that 𝜙𝑖,𝑛 ∈
[
𝜙𝑖,𝑛−1 − 𝜋, 𝜙𝑖,𝑛−1 + 𝜋

]
. If there is a sign

change from Δ𝜙𝑖,𝑛−1 to Δ𝜙𝑖,𝑛 the sign-change-count 𝜅𝑖 is increased by one. If all 𝜅𝑖 are nonzero

after the 4500 turns, then we categorize the particle as period-3 particle.

To identify island particles, we use the definitions from above and additionally introduce the

range D𝑖,1 =
[
𝜙𝑖,1, 𝜙𝑖,1

]
of the angles for each of the three potential island locations. With every

iteration step the ranges of the angles are updated to

D𝑖,𝑛 =
[
D𝑖,𝑛,LB,D𝑖,𝑛,UB

]
=

[
min

(
𝜙𝑖,𝑛,D𝑖,𝑛−1,LB

)
,max

(
𝜙𝑖,𝑛,D𝑖,𝑛−1,UB)

) ]
. (5.6)

The abbreviations ‘LB’ and ‘UB’ denote the lower and upper bound of the range respectively.

Note that the rule to avoid ambiguity in the value for the angles from above also applies here. All
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particles for which the sum of the three ranges is less than a full revolution (2𝜋) after the 4500

tracking turns are considered island particles. In other words, island particles satisfy

3∑︁
𝑖=1

|D𝑖,1500 | < 2𝜋. (5.7)

With these recognition mechanisms implemented, we were able to characterize all particles

and determine their proportion as presented in Tab. 5.1. Period-3 particles are dominating among

lost particles. Accordingly, period-3 particles and island particles, in particular, are more prone to

be lost. But by far not every period-3 particle or island particle is lost. More than 77% of island

particles and more than 92% of period-3 particles survive the 4500 turns. As Fig. 5.30 illustrates,

sometimes the amplitude of these period-3 structures is so low that the additional modulation of the

amplitude is not enough to be critical.

Table 5.1: Percentages of different characterization groups. Read as follows: 𝑥 % of Base particles
have the property Property. All particles that hit a collimator during the 4500 turns of tracking are
considered lost.

XXXXXXXXXXXXProperty
Base All Lost Period-3 Island

Lost 0.686% 100% 7.44% 22.2%
Period-3 7.06% 76.4% 100% 100%
Island 1.00% 32.4% 14.2% 100%

While island particles make up only 1/7 of period-3 particles, they are responsible for almost

half the losses associated with period-3 particles. This is particularly surprising because the island

particle category excludes most unstable patterns by definition (exceptions are moderate instabilities

that do not contravene the recognition criteria like the particle shown in Fig. 5.20). On the other

hand, period-3 particles cover a wide range of patterns some of which barely show a modulation of

the vertical amplitude as the example of the gray orbits in Fig. 5.31d shows.

To understand how the losses occur over time, we plot the accumulative loss ratio over the 4500

turns in Fig. 5.32. Island loss is the fastest growing loss over the first 1000 turns before settling

almost asymptotically. This is explained by different modulation frequencies around the period-3

fixed point structures. The closer to the unstable fixed point, the larger the modulation and the
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slower the modulation frequency. Accordingly, the island modulation is on average faster than the

shuriken modulation.
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Figure 5.32: a) Shows how the muon loss ratio is composed of regular particles (purple) and particles
involved with period-3 fixed point structures (green). Of the period-3 particles (green), the fraction
caught in islands structures is indicated by the blue stripe pattern. In b) the loss ratio over time is
shown for each subgroup of lost particles to better understand which losses drive to overall loss
from plot a). The tracking starts after the initial 30 𝜇s of final beam preparation when data taking is
initiated.

5.6 Conclusion

The Poincaré return map description of the storage ring model of the Muon 𝑔-2 Experiment

[85] and its analysis with DA normal form methods yielded many insightful characteristics of the

system. We gained an understanding of the form of the closed orbit within the storage ring as well

as details on how it changes with an offset in the momentum 𝛿𝑝. Considering that particles oscillate

around their corresponding reference orbit, which is the closed orbit of their momentum offset, the

radial shift of the closed orbit with momentum offset is particularly critical. This shift brings the

equilibrium state of the radial oscillation closer to the collimator boundary, which increases the risk
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of particles getting lost.

The tune analysis provided a detailed understanding of how the oscillation frequencies of

particles depend on their momentum offset and their amplitudes relative to their respective reference

orbit. This analysis showed that particles over the entire momentum offset range could cross the

vertical 1/3-resonance frequency for certain vertical and radial amplitude combinations.

The strong ninth order nonlinearities of the map caused by the 20th-pole of the ESQ potential

have a significant effect on amplitude and parameter dependent tune shifts. This property manifests

itself in the dominating eighth order dependencies in the amplitude and momentum dependent tune

shifts and the drastic change in the tune footprint for calculations of order 𝑚 > 8, which include the

ninth order terms of the original map.

Further tracking analysis revealed period-3 fixed point structures in the vertical phase space.

They are associated with the vertical 1/3-resonance tune and cause significant vertical amplitude

modulations to the particles that are caught around them. We were able to connect all vertical phase

space patterns of lost particles either with regular distorted elliptical patterns or with patterns that

arise around one or two of these period-3 fixed point structures. Additionally, instabilities caused by

large radial amplitudes and/or closeness to the (17/18) resonance point significantly mixed multiple

of the known orbit patterns. This only allowed for a limited automatic recognition of patterns, which

in turn revealed valuable insights about the effect of these period-3 fixed point structures on the loss

rates of muons in the storage ring. Particles associated with period-3 fixed point structures are at a

higher risk of getting lost.
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CHAPTER 6

VERIFIED CALCULATIONS USING TAYLOR MODELS

In this chapter, we take steps towards making the methods presented above self-verified.

Since many aspects that have to be carefully considered for a rigorous transfer to the verified

world lay beyond the scope of this thesis, this chapter will only yield a discussion of the basic

principles behind some of them. However, the aspect of verified global optimization and its

application to the normal form defect for verified stability estimates will be analyzed in greater

detail.

To introduce the concept of verified global optimization using Taylor Models (TM), we first

apply it to two well-known example optimization problems. First, in Sec. 6.1, we run a Taylor

Model based verified global optimization in different operating modes on the 2D and the generalized

Rosenbrock function, as it is one of the most commonly used examples to test global optimization

algorithms.

In Sec. 6.2, we discuss the optimization problem of finding minimum energy configurations

of particles that have their pairwise interaction energy modeled by the Lennard-Jones potential.

It is one of the simplest examples to explain, yet arbitrarily complex to solve depending on the

number of particles in the configuration and the dimensionality of the configuration. In comparison

to the Rosenbrook example, the setup of the Lennard-Jones optimization problem is more complex

especially for configuration in 2D and 3D.

In Sec. 6.3, we discuss the intricacies of using the methods from Chapter 4 and Chapter 5 for

a verified stability analysis of those dynamical systems. In particular, we take a detailed look at

options of utilizing the normal form defect from Sec. 2.4 as a measure of stability. With the gained

understanding of verified global optimization from Sec. 6.1 and Sec. 6.2, we analyze its application

to the normal form defect to calculate verified stability estimates for the simulated phase space

behavior in the Muon 𝑔-2 Storage Ring.
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6.1 The Rosenbrock Optimization Problem

6.1.1 The Rosenbrock Function

The Rosenbrock function

𝑓 (𝑥, 𝑦) = (𝑎 − 𝑥)2 + 𝑏

(
𝑦 − 𝑥2

)2
(6.1)

was introduced by Howard H. Rosenbrock [78]. It is a non-convex function that is commonly used

as a test problem for optimization algorithms. The parameters are usually set to (𝑎, 𝑏) = (1, 100),

and so we will use those parameters here as well. Fig. 6.1 illustrates the Rosenbrock function for

those parameters.
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Figure 6.1: A contour plot of the Rosenbrock function with (𝑎, 𝑏) = (1, 100).

The Rosenbrock function is also referred to as Rosenbrock’s valley function or Rosenbrock’s

banana function for obvious reasons. It is characterized by a long and deep valley, the floor of which

constitutes a shallow valley. This shallowness is one of the aspects that challenges optimizers.
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There are various multidimensional generalizations of the Rosenbrock function to compare more

advanced optimization algorithms. In this work, we will use the following generalized form

𝑓𝑛D (®𝑥) =
𝑛−1∑︁
𝑖=1

[
100

(
𝑥𝑖+1 − 𝑥2

𝑖

)2
+ (1 − 𝑥𝑖)2

]
, (6.2)

where 𝑛 ≥ 2 is the dimension and 𝑥𝑖 are the optimization variables.

Note that this generalized definition is consistent with the definition of the 2D Rosenbrock

function from above and also retains the difficulties of the original problem of a deep valley with

a long and shallow valley floor, but with a complexity that increases with 𝑛. Unless specified

otherwise, we will refer to the generalized Rosenbrock function as the Rosenbrock function or the

objective function of the optimization.

The Rosenbrock function is a composition of quadratic expressions. Because of the double

squares, the Rosenbrock function is always a fourth order polynomial. Additionally, none of the

individual terms in the sum can be negative. Hence, a global minimum would be reached if all

individual terms of the sum are zero. The (1 − 𝑥𝑖)2 terms are only zero for 𝑥𝑖 = 1, which also yields

zero for the remaining terms. Accordingly, ®𝑥★ = (1, 1, ..., 1) is the single global minimum of the

Rosenbrock function for which every term is zero and therefore the overall objective function is zero.

In Fig. 6.2, the Rosenbrock function is illustrated in multiple 2D projections around its minimum

at ®𝑥★. In other words, all 𝑥𝑖 are set to one except for the variables shown in the projection.

The Rosenbrock function also has a dependency problem. For the first variable 𝑥1, the following

dependent terms appear

100
(
𝑥2 − 𝑥2

1

)2
+ (1 − 𝑥1)2 . (6.3)

For any of the variables 𝑥𝑖 with 1 < 𝑖 < 𝑛, there is one additional dependent term with

100
(
𝑥𝑖+1 − 𝑥2

𝑖

)2
+ (1 − 𝑥𝑖)2 + 100

(
𝑥𝑖 − 𝑥2

𝑖−1

)2
. (6.4)

The last variable 𝑥𝑛, only appears in one term, namely

100
(
𝑥𝑛 − 𝑥2

𝑛−1

)2
. (6.5)
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Figure 6.2: Projections of the multidimensional generalizations of the Rosenbrock function (Eq. (6.2))
into 2D-subspaces around minimum at ®𝑥 = (1, 1, ..., 1), i.e., all variables are equal one except for
the ones shown in the respective plot.

6.1.2 Global Optimization Using COSY-GO

The global optimization is performed using COSY-GO [63, 64, 59]. In the most advanced setting

(QFB/LDB), the algorithm uses both of the advanced Taylor Model based bounding methods, namely,

the quadratic fast bounder (QFB) and the linear dominated bounder (LDB), which were mentioned

in Sec. 2.6 and were introduced in [64]. Additionally, COSY-GO also uses naive Taylor Model

bounding and interval evaluations (IN). For comparisons, COSY-GO offers to run an optimization

with some of the advanced methods disabled. By ranking the bounding methods in the order: QFB,
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LDB, naive TM, and IN, the operating mode is denoted by its highest ranking bounding method,

e.g., the running mode LDB indicates that LDB, naive TM, and IN are used but not QFB.

Because the global minimum of the Rosenbrock function is already known, we are just

interested in the algorithm’s performance to narrow down the domain of the minimum and its value.

Accordingly, we can choose an arbitrary search domain for the optimization that includes ®𝑥★. We

will investigate the Rosenbrock function over the domain [−1.5, 1.5]𝑛.

For the optimization, we evaluate the objective function the way it is written in Eq. (6.2) and

not expanded out in a single second, third, and fourth order polynomial terms. We also clarify that

the optimization is performed with no additional knowledge about the derivatives of the objective

function.

6.1.2.1 Illustration of the Cluster Effect and Dependency Problem using the 2D Rosenbrock
Function

In Fig. 6.3, the performance of COSY-GO on the 2D Rosenbrock function is visualized in the form

of its splitting pattern. It shows the individual boxes analyzed in the various operation modes. All

calculations are performed with fourth order Taylor Models (TM) except for the interval evaluation,

which does not use TM.

The significant differences in the splitting patterns are the number of splits, and the way boxes

are split. For the operating mode in naive TM and IN, boxes are always split in half, where each

of the two modes has its own methods of deciding in which variable domain the box is split, i.e.,

for 2D either splitting in 𝑥 or in 𝑦. With LDB and QFB, the boxes are decreased in size as the

respective method sees fit. Especially close to the minimum this avoids the cluster effect [44, 37].

In Fig. 6.4, the boxing close to the minimum is illustrated, which clearly shows the cluster effect and

its avoidance using QFB/LDB.

Another advantage of the Taylor Model based approach is the avoidance of the dependency

problem [55]. However, due to the simplicity of the 2D Rosenbrock function and its weak dependency

problem in the form from Eq. (6.2), the advantages of the Taylor Model based methods are not so
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Figure 6.3: Verified global optimization of the 2D Rosenbrock function using COSY-GO in different
operation modes with fourth order Taylor Models for all modes except interval evaluations (IN).

prominent relative to the IN evaluations.

To still visually emphasize the advantages of the TM operations over intervals, we artificially

increase the dependency problem in the objective function by modifying it to 𝑓 = 𝑓2D − 𝑓2D + 𝑓2D.

In Fig. 6.5, the QFB/LDB methods using fourth order Taylor Models are compared to the interval

method for the modified objective function.

Even though the fourth order TM representation of the modified objective function only differs

from the TM representation of the non-modified objective function by a slightly different remainder

bound, the behavior and efficiency of the algorithm with QFB/LDB change more for the modified
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Figure 6.4: No cluster effect for the COSY-GO operating mode QFB/LDB, but a significant cluster
effect for the IN evaluation.

objective function than one would initially expect. This is because the algorithm in the QFB/LDB

mode also performs intermediate steps with lower order Taylor Models, which are quicker to evaluate

but less accurate. Those lower order evaluations are more sensitive to the dependency problem,

which explains the effect of those intermediate steps on the splitting decisions.
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Figure 6.5: Splitting comparison between fourth order Taylor Model approach with QFB/LDB
enabled and interval evaluation using the example of the modified 2D Rosenbrock function.

6.1.2.2 Performance of COSY-GO for High Dimensional Rosenbrock Function

Next, we analyze the performance of COSY-GO for the optimization of the higher dimensional

Rosenbrock function in the form from Eq. (6.2). The search domain of the optimization is always

set to [−1.5, 1.5]𝑛. Accordingly, the search volume increases exponentially with the dimension of

the objective function.

As a stopping condition of the algorithm, we require that boxes with a side length 𝑠 < 1E-6 are

not split. Ideally, the optimizer reduces the search volume of 3𝑛 by at least a factor of 3,000,000𝑛 to

a single box with a volume smaller than (1E-6)𝑛. In the most advanced setting (QFB/LDB), which

requires a minimum Taylor Model order of two, COSY-GO manages to reduce the search domain to

a single box with a side length 𝑠 < 1E-6 for every dimension 𝑛 that we tested.

Fig. 6.6 illustrates how the performances of COSY-GO in the evaluation of the generalized

Rosenbrock function from Eq. (6.2) varies for different Taylor Model orders in the QFB/LDB mode.

For comparison, the performance of using interval evaluations is also shown.

The second order calculation outperforms the higher order calculations in both aspects, regarding

the speed and the number of required steps. On the one hand, the evaluation of higher order Taylor
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Figure 6.6: Time consumption and number of steps in the optimization of the regular 𝑛 dimensional
Rosenbrock function from Eq. (6.2) at various orders with COSY-GO and QFB/LDB enabled.
Additionally, the interval evaluation performance is also shown for comparison.

Models takes longer than the evaluation of lower order Taylor Models. On the other hand, higher

order Taylor Models usually provide tighter bounds, which decreases the number of required steps.

Regarding the second aspect, the result from Fig. 6.6 on the required steps is rather unusual, because

the low order Taylor Model of second order requires fewest steps than the higher order Taylor

Models. This phenomenon is specific to certain objective functions, like the Rosenbrock function

here, for which the higher order do not bound tighter than the lower order ones.

If we analyze the Rosenbrock function with the artificially increased dependency problem, the

second order calculation behaves as one would expect, namely requiring more steps than its higher

order counter parts (see Fig. 6.7). The interval evaluation dies of the dependency problem when

aiming for 𝑠 < 1E-6, which is why it is not shown in Fig. 6.7.

For all calculations using QFB/LDB, the global minimum of the generalized Rosenbrock function

could be bound to [−1E306, 2E-27]. This bound is very tight considering the high dimensionality

and the required verified computations based on floating point numbers. The optimization variables

of all calculations are contained in [0.999999998, 1.000000002]𝑛, which is a box of side length

4E-9 and hence almost three orders of magnitude smaller than the minimum split size. This is

because QFB and LDB are not bound to splitting boxes in half, but they can decrease their size as
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Figure 6.7: Time consumption and number of steps in the optimization of the 𝑛 dimensional
Rosenbrock function with an additional artificial dependency problem 𝑓 = 𝑓2D − 𝑓2D + 𝑓2D for
various Taylor Model orders with COSY-GO and QFB/LDB enabled.

far as their rigorous methods allow them to.

In summary, the example cases of the Rosenbrock functions illustrated that Taylor Model based

global optimizers, and COSY-GO in particular, can handle high dimensional objective functions very

efficiently. The QFB and LDB avoid the cluster effect, while the Taylor Model evaluation significantly

decreases the dependency problem. For the 𝑛 = 15 dimensional non-expanded Rosenbrock function,

a reduction of the search volume by a factor of more than 4E157 was accomplished in 84017 steps

and less than 36 seconds (see Fig. 6.6) on an Intel®CoreTM i5-7200U CPU 2.5GHz.

6.2 The Lennard-Jones Potential Problem

6.2.1 Introduction

In this section, the capabilities of a Taylor Model based verified global optimizer are demonstrated

on the example of finding minimum energy configurations of particles when the well-known

Lennard-Jones potential models their pairwise interactions. First, we introduce the Lennard-Jones

potential and the principal aspects of the optimization problem. Then, we discuss the setup of the

optimization problem for particle configurations in 1D before presenting the results of the verified

optimization. Lastly, we discuss the more involved setup of the optimization problem in 2D and 3D
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and present the associated verified optimization results.

6.2.1.1 The Lennard-Jones Potential 𝑈LJ

The 12-6 Lennard-Jones potential

𝑈LJ (𝑟) = 4𝑈0

[(𝜎
𝑟

)12
−

(𝜎
𝑟

)6
]

(6.6)

is used as a simplified model to describe the interaction between two electrically neutral atoms or

molecules with a distance 𝑟 > 0 between them. It was proposed by Lennard-Jones [50] as a specific

version of the more general 𝑟−𝑎-𝑟−𝑏 type potentials he suggested in [49] to model such interactions.

The 𝑟−12 term represents the strong repulsion of particles at very small distances. The attraction

for moderate distances, which quickly decreases with larger distances, is modeled by the 𝑟−6 term.

The parameter 𝑈0 scales the depth of the potential well, which is related to the strength of the

interaction between the two particles. The Van-der-Waals radius 𝜎 is also referred to as the particle

size and indicates where the sign of the potential changes. It represents the distance at which the

interaction potential of the two particles assumes the same value as for the configuration where the

two particles are infinitely far away from each other.

The potential assumes its single minimum at the equilibrium distance of 𝑟★ =
6√2𝜎. For

distances smaller than the equilibrium distance, the potential is strictly monotonically decreasing,

and for distances larger than the equilibrium distance, the potential strictly monotonically increasing.

The values 𝜎 and 𝑈0 depend on the particles involved in the modeled pairwise interaction. For

our analysis, we will only consider one sort of particle corresponding to only one set of values for 𝜎

and 𝑈0. To simplify the potential, we consider distances 𝑟 and 𝜎 in units of the equilibrium distance
6√2𝜎, and energy in units of 𝑈0. This yields

𝑈LJ,lit = 𝑟−12 − 2𝑟−6, (6.7)

a form of the Lennard-Jones potential that is often used in literature. However, we offset this

potential by one for convenience of the calculations and optimization in this section. So, we define
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the Lennard-Jones potential of two identical particles with a distance 𝑟 > 0 between them as

𝑈LJ (𝑟) = 1 + 𝑟−12 − 2𝑟−6, (6.8)

so that its single minimum 𝑈★
LJ at 𝑟★ yields

𝑈★
LJ = 0 and 𝑟★ = 1. (6.9)

In Fig. 6.8, the single pairwise interaction potential between two identical particles from Eq. (6.8)

is shown. Note the shallowness of the potential and the large range of function values.
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Figure 6.8: The Lennard-Jones potential for a pairwise interaction between two particles as defined
in Eq. (6.8). The potential well around the minimum is shown on the left, while the right plot
emphasizes its shallowness compared to the steep potential wall for 𝑟 < 1. The potential is offset for
the convenience of calculation so that the single minimum 𝑈★

LJ has an energy of zero.

6.2.1.2 Configurations of Particles S𝑘

Consider a configuration S𝑘 of 𝑘 identical particles that have their pairwise interaction modeled by

the Lennard-Jones potential from Eq. (6.8). The overall interaction potential𝑈𝑘 of that configuration

is given by

𝑈𝑘 =

𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

𝑈LJ
(
𝑟𝑖 𝑗

)
, (6.10)
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the sum of all pairwise interaction potentials 𝑈LJ, where 𝑟𝑖 𝑗 = 𝑟 𝑗𝑖 is the distance between the

particles 𝑝𝑖 and 𝑝 𝑗 .

The number of pairwise interactions

𝑛pairs =
𝑘 (𝑘 − 1)

2
(6.11)

roughly increases with the square of the number of particles 𝑘 .

Note that

𝑈𝑘,lit =
𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

𝑈LJ,lit
(
𝑟𝑖 𝑗

)
= 𝑈𝑘 − 𝑛pairs, (6.12)

allowing a direct calculation of the results in terms of 𝑈𝑘,lit from our results in terms of 𝑈𝑘 .

We denote the global minimum of 𝑈𝑘 by 𝑈★
𝑘

. It corresponds to the lowest energy configurations

S★
𝑘

. Those minimum energy configurations are of practical importance for the formation of

molecules, assuming nature is sufficiently described by this model and finds the lowest energy

configurations when assembling molecules instead of just a local minimum.

The minimum energy configurations and their associated minimum energy depend on whether

the configurations are considered in 1D, 2D, or 3D. Thus, we will discuss those cases of minimum

energy configuration in different spatial dimensionality 𝑛dim separately.

The following notation is used to distinguish between those cases of one, two, or three spatial

dimensions when it is relevant. The overall interaction potential is denoted by 𝑈𝑘,𝑛dim and its

global minimum by𝑈★
𝑘,𝑛dim

. The corresponding configurations are denoted by S𝑘,𝑛dim and S★
𝑘,𝑛dim

,

respectively.

6.2.1.3 The Lennard-Jones Optimization Problem and its Challenges

The goal of the Lennard-Jones optimization problem is the following: Given 𝑘 ≥ 2 identical

particles with their pairwise interaction modeled by the Lennard-Jones potential from Eq. (6.8) find

the global minimum of the overall interaction energy (Eq. (6.10)) and the corresponding optimal

configurations. We will conduct this optimization in a verified fashion for configurations in 1D, 2D,

and 3D separately.
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This problem is particularly interesting and challenging for global optimization because the

objective function is non-convex, highly nonlinear, and potentially high dimensional depending on

the number of particles 𝑘 considered. The function values become exceedingly large when two

particles get too close to each other, while the actual resulting local minima are often very shallow.

This last aspect is reminiscent of the Rosenbrock function and its long and shallow valley with

rapidly rising function values outside the valley.

A further prominent aspect of the system is the strong interdependence – changing the position of

a single particle of a 𝑘-particle configuration changes 𝑘 − 1 interactions and their contributions to the

objective function. Accordingly, the dimensionality and hence the complexity of the optimization

problem can be increased as desired by simply increasing the number of particles.

This interdependence also complicates the preparation of the optimization including finding

appropriate variables and a tight initial search domain that is also guaranteed to contain all global

solutions. Often, some regions of the search space can be excluded by showing that they cannot

contain the global minimum, which decreases the initial search volume.

To clearly describe our methods of choosing appropriate optimization variables and their

corresponding initial search domains despite this complexity, we build them step by step and start

with the analysis of 1D Lennard-Jones configurations (𝑛dim = 1). Based on the understanding of the

1D case, we then adapt the choice of variables and their domains to describe the global optimization

of configurations in 2D and 3D.

Note that there will be no detailed discussion the trivial cases when 𝑘 ≤ 𝑛dim + 1, since

obvious configurations exist where every single pairwise interaction potential of the 𝑛pairs pairwise

Lennard-Jones interactions is at its minimum 𝑈★
LJ = 0. In other words, all distances between

particles are optimal with 𝑟𝑖 𝑗 = 𝑟★ = 1. In particular, the configuration S★
2 is a line segment, 𝑆★3

is an equilateral triangle in 2D and 3D, and 𝑆★4 is a regular tetrahedron in 3D. All of these trivial

configurations are of unit length with 𝑈★ = 0.
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6.2.2 Minimum Energy Lennard-Jones Configurations in 1D

To find minimum energy configurations of 𝑘 particles in 1D using verified global optimization, we

first describe the solution space of all possible minimum energy configurations in terms of a set of

optimization variables (see Sec. 6.2.2.1). Then, we determine special characteristics of minimum

energy configurations in 1D to reduce the initial search domain. Specifically, we calculate an upper

bound on the maximum distance of two adjacent particles denoted by 𝑣𝑥,UB, and an upper bound on

any 𝑟𝑖 𝑗 of the configuration denoted by 𝑟𝑘,UB. Further, we determine an upper bound 𝑈𝑘,UB on the

minimum energy, which is then used as an initial cutoff value C for the verified global optimizer

(see Sec. 2.6) and for the calculation of a lower bound on 𝑟𝑖 𝑗 denoted 𝑟𝑘,LB. Before we present the

results of the verified global optimization, we analytically evaluate the distance of adjacent particles

in an infinite equidistant configuration as a reference value for the verified global optimization.

6.2.2.1 Coordinate System, Numbering Scheme, and Variable Definition in 1D

Any configuration S𝑘,1D of 𝑘 particles in 1D can be described by placing it on the 𝑥 axis with the

left most particle at the origin. The particles 𝑝𝑖 are numbered from 1 to 𝑘 according to their 𝑥

position 𝑥𝑖 such that

𝑥𝑖 ≤ 𝑥 𝑗 for 𝑖 < 𝑗 with 𝑥1 = 0. (6.13)

Note that 𝑝1 is fixed to the origin and the configuration is forced to extend along the positive 𝑥 axis.

We denote the distance between two adjacent particles 𝑝𝑖 and 𝑝𝑖+1 by

𝑣𝑥,𝑖 = 𝑥𝑖+1 − 𝑥𝑖 ≥ 0 for 𝑖 ∈ {1, 2, ..., 𝑘 − 1}, (6.14)

and we choose 𝑣𝑥,𝑖 as the optimization variables.

The number of optimization variables for 1D configurations is denoted by 𝑛1D,var, with

𝑛1D,var = 𝑘 − 1. (6.15)
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In Sec. 6.2.2.7, we optimize symmetric configurations in 1D for which the number of variables,

denoted by 𝑛1D,sym,var, are roughly half of 𝑛1D,var, with

𝑛1D,sym,var =


(𝑘 − 1)/2

𝑘/2

if 𝑘 odd

if 𝑘 even
, (6.16)

because for symmetric configurations

𝑣𝑥,𝑖 = 𝑣𝑥,𝑘−𝑖 . (6.17)

The distance 𝑟𝑖 𝑗 between any two particles 𝑝𝑖 and 𝑝 𝑗 with 𝑖 < 𝑗 can be expressed in terms of

𝑣𝑥,𝑖 by

𝑟𝑖 𝑗 = 𝑥 𝑗 − 𝑥𝑖 =

𝑗−1∑︁
𝑛=𝑖

𝑣𝑥,𝑛. (6.18)

6.2.2.2 Upper Bounds 𝑟𝑘,UB and 𝑣𝑥,UB on Inter-Particle Distances of Minimum Energy
Configurations in 1D

Only changing the distance 𝑣𝑥,𝑙 between the two adjacent particles 𝑝𝑙 and 𝑝𝑙+1 moves the right-side

subconfiguration composed of the particles 𝑝 𝑗 with 𝑗 > 𝑙 along the 𝑥 axis, while leaving the left-side

subconfiguration of particles 𝑝𝑖 with 𝑖 ≤ 𝑙 unchanged. We denote all 𝑟𝑖 𝑗 that depend on 𝑣𝑥,𝑙 by

𝑟𝑖 𝑗 (𝑣𝑥,𝑙), which is the cases when 𝑝𝑖 belongs to the left-side and 𝑝 𝑗 belongs to the right-side,

satisfying 𝑖 ≤ 𝑙 < 𝑗 (see Eq. (6.18)).

If 𝑣𝑥,𝑙 > 1 for any 𝑙, all 𝑣𝑥,𝑙-dependent 𝑟𝑖 𝑗 (𝑣𝑥,𝑙 > 1) are at least of length 𝑟𝑖 𝑗 (𝑣𝑥,𝑙 > 1) ≥ 𝑣𝑥,𝑙 > 1.

By setting 𝑣𝑥,𝑙 = 1, all 𝑣𝑥,𝑙-dependent 𝑟𝑖 𝑗 (𝑣𝑥,𝑙 = 1) are shortened such that

𝑟𝑖 𝑗 (𝑣𝑥,𝑙 > 1) > 𝑟𝑖 𝑗 (𝑣𝑥,𝑙 = 1) ≥ 1, (6.19)

which monotonically lowers𝑈LJ of every involved particle pair (see monotonicity argument of single

Lennard-Jones potential 𝑈LJ in Sec. 6.2.1.1), while leaving the uninvolved interaction energies

unchanged (see Fig. 6.9).

This monotonically lowers 𝑈𝑘,1𝐷 such that any configuration S𝑘,1D with any 𝑣𝑥,𝑖 > 1 cannot be

optimal. Thus, 𝑣𝑥,𝑖 = 1 is the upper bound on any 𝑣𝑥,𝑖 in optimal configurations S★
𝑘,1D. We denote
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𝑣𝑥,𝑙>1 𝑣𝑥,𝑙=1

... ...𝑝1 𝑝2 𝑝𝑙 𝑝𝑙+1 𝑝𝑘 𝑝1 𝑝2 𝑝𝑙 𝑝𝑙+1 𝑝𝑘

Figure 6.9: The particles 𝑝𝑖 are numbered according to their 𝑥 position. The variable 𝑣𝑥,𝑙 denotes
the distance between particle 𝑝𝑙 and 𝑝𝑙+1. A configuration with any 𝑣𝑥,𝑙 > 1 (left picture) is never
optimal, because the 𝑈𝑘 can always be lowered by setting 𝑣𝑥,𝑙 = 1 (right picture).

this upper bound with 𝑣𝑥,UB. So,

𝑣𝑥,UB = 1. (6.20)

Additionally, this also yields an upper bound 𝑟𝑘,UB for any 𝑟𝑖 𝑗 within a minimum energy

configuration of 𝑘 particles in 1D, with

𝑟𝑘,UB =

𝑘−1∑︁
𝑛=1

𝑣𝑥,UB = 𝑘 − 1. (6.21)

6.2.2.3 The Upper Bound 𝑈𝑘,UB on the Minimum Energy

The potential 𝑈𝑘,𝑛dim of any configuration S𝑘,𝑛dim can serve as an upper bound on the minimum

energy 𝑈★
𝑘,𝑛dim

because by definition 𝑈𝑘,𝑛dim always satisfies

𝑈𝑘,𝑛dim ≥ 𝑈★
𝑘,𝑛dim

. (6.22)

We denote upper bound configurations by S𝑘,𝑛dim,UB and their associated potential by

𝑈𝑘,𝑛dim,UB. A good S𝑘,𝑛dim,UB yields a tight upper bound on the minimum energy, which

can then be used as an initial cutoff value C for the verified global optimizer and for the determination

of a good lower bound 𝑟𝑘,LB on any 𝑟𝑖 𝑗 (see Sec. 6.2.2.4). Note that the argumentation so far is not

specific to only 1D configurations and will be used later on for the multidimensional cases.

For 1D, a good S𝑘,1D,UB is given by mirroring the first half of S★
𝑘−1,1D onto its second half

to replace it such that the resulting S𝑘,1D,UB is mirror symmetric. The mirror is placed slightly

off-center to generate a 𝑘-particle upper bound configuration from the optimal (𝑘 − 1)-particle

configuration. Specifically, the mirror is placed on particle 𝑝(𝑘+1)/2 when 𝑘 is odd, and in the

middle between particle 𝑝𝑘/2 and 𝑝𝑘/2+1 when 𝑘 is even. This mirror symmetric configuration

yields an upper bound 𝑈𝑘,1D,UB on 𝑈★
𝑘,1D.
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6.2.2.4 The Lower Bound 𝑟𝑘,LB on 𝑟𝑖 𝑗

Determining a lower bound 𝑟𝑘,LB on 𝑟𝑖 𝑗 is critical for the verified optimization. It is essential

to formally show that 𝑟𝑖 𝑗 ≥ 𝑟𝑘,LB > 0 because the objective function is not defined for 𝑟𝑖 𝑗 = 0.

Additionally, a lower bound often helps reducing the initial search domain of the optimization

variables.

To determine 𝑟𝑘,LB on 𝑟𝑖 𝑗 , we first determine the inverse relation between 𝑈LJ and 𝑟 over the

two domain sections, where the relation is bijective, namely, 𝑟 ≤ 1 and 𝑟 ≥ 1, denoted by 𝑟min and

𝑟max, respectively. Solving the quadratic equation hidden in 𝑈LJ(𝑟) from Eq. (6.8) yields

𝑟 (𝑈LJ) =


𝑟min(𝑈LJ) =

(
1 +

√
𝑈LJ

)−1
6

𝑟max(𝑈LJ) =
(
1 −

√
𝑈LJ

)−1
6

for 0 ≤ 𝑈LJ

for 0 ≤ 𝑈LJ ≤ 1
, (6.23)

where 𝑟min ≤ 1 is monotonically decreasing with increasing 𝑈LJ and 𝑟max ≥ 1 is monotonically

increasing with increasing 𝑈LJ. Fig. 6.10 illustrates 𝑟 (𝑈LJ).
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Figure 6.10: The relation between 𝑈LJ and the corresponding inter-particle distance(s). Note that
𝑟max(𝑈LJ) is only defined for 𝑈LJ ≤ 1. 𝑟min(𝑈LJ) is only decreasing very slowly with increasing
𝑈LJ as the logarithmic plot on the right shows.

The potential 𝑈𝑘 from any configuration S𝑘 satisfies

𝑈𝑘 ≥ 𝑈LJ(𝑟𝑖 𝑗 ) (6.24)
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for any 𝑟𝑖 𝑗 of S𝑘 . In other words, 𝑈𝑘 is an upper bound on all pairwise interactions 𝑈LJ(𝑟𝑖 𝑗 ) of S𝑘 .

Having the monotonicity property of 𝑟min, an upper bound on 𝑈LJ(𝑟𝑖 𝑗 ) yields a lower bound on

𝑟𝑖 𝑗 via Eq. (6.23). Thus, 𝑟min(𝑈𝑘 ) is a lower bound on all 𝑟𝑖 𝑗 of S𝑘 . More generally, it is a lower

bound on all 𝑟𝑖 𝑗 in any S′
𝑘

for which 𝑈′
𝑘
≤ 𝑈𝑘 , specifically for 𝑈′

𝑘
= 𝑈★

𝑘
. Thus, we use

𝑟𝑘,LB = 𝑟min(𝑈𝑘,UB), (6.25)

with 𝑈𝑘,UB from Sec. 6.2.3.3 as a lower bound on any 𝑟𝑖 𝑗 in any configuration with 𝑈𝑘 ≤ 𝑈𝑘,UB,

which includes all configurations considered in the optimization.

Note that this method is independent of 𝑛dim. Hence, we will also use it for configurations in 2D

and 3D later on to calculate a lower bound on any 𝑟𝑖 𝑗 .

6.2.2.5 The Infinite 1D Equidistant Configuration

Before we investigate finite minimum energy configurations of 𝑘 ≥ 2 particles in 1D, we derive the

minimum energy state of an infinite equidistant 1D configurations [13, 52]. This one dimensional

optimization problem can be solved analytically and shall serve as a reference for the results of

verified optimization of finite minimum energy configurations in 1D in Sec. 6.2.2.6 and Sec. 6.2.2.7.

We start our derivation by considering 𝑘 particles on a line, where the interaction between the

particles is modeled by the Lennard-Jones potential 𝑈LJ from Eq. (6.8). The distance between any

two adjacent particles is a constant value 𝑟 > 0. The overall potential of such a configuration is

𝑈𝑘 (𝑟) =
𝑘−1∑︁
𝑗=1

(𝑘 − 𝑗)𝑈LJ ( 𝑗𝑟) , (6.26)

where (𝑘 − 𝑗) indicates how often an inter-particle distance of length 𝑗𝑟 occurs in the configuration.

Expanding the overall potential yields

𝑈𝑘 (𝑟) =
𝑘−1∑︁
𝑗=1

(𝑘 − 𝑗)
(
1 + 𝑗−12𝑟−12 − 2 𝑗−6𝑟−6

)
(6.27)

=

𝑘−1∑︁
𝑗=1

(𝑘 − 𝑗) + ©­«𝑘
𝑘−1∑︁
𝑗=1

𝑗−12 −
𝑘−1∑︁
𝑗=1

𝑗−11ª®¬ 𝑟−12 − 2 ©­«𝑘
𝑘−1∑︁
𝑗=1

𝑗−6 −
𝑘−1∑︁
𝑗=1

𝑗−5ª®¬ 𝑟−6, (6.28)
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where we denote the summation of the 𝑗−𝑠 by the function 𝜁𝑙 (𝑠) with

𝜁𝑙 (𝑠) =
𝑙∑︁
𝑗=1

𝑗−𝑠 = 1 + 2−𝑠 + 3−𝑠 + ... + 𝑙−𝑠, for 𝑠 > 0, 𝑙 ≥ 1. (6.29)

The function 𝜁𝑙 (𝑠) satisfies

𝜁𝑙 (𝑠) < 𝜁𝑙+1(𝑠) and (6.30)

1 < 𝜁𝑙 (𝑠2) < 𝜁𝑙 (𝑠1) for 0 < 𝑠1 < 𝑠2 and ∀𝑙 > 1. (6.31)

For 𝑙 = 1,

𝜁1(𝑠) =
1∑︁
𝑗=1

𝑗−𝑠 = 1−𝑠 = 1. (6.32)

Using Eq. (6.29), we rewrite Eq. (6.28) as

𝑈𝑘 (𝑟) =
𝑘−1∑︁
𝑗=1

(𝑘 − 𝑗) + [𝑘𝜁𝑘−1(12) − 𝜁𝑘−1(11)] 𝑟−12 − 2 [𝑘𝜁𝑘−1(6) − 𝜁𝑘−1(5)] 𝑟−6. (6.33)

To find 𝑟 that minimizes 𝑈𝑘 (𝑟), we solve

𝑑𝑈̂𝑘 (𝑟)
𝑑𝑟

����
𝑟=𝑟★∈R+

= 0 for 𝑟★ > 0. (6.34)

Specifically,

0 =
𝑑𝑈̂𝑘 (𝑟)

𝑑𝑟

����
𝑟=𝑟★∈R+

= −12𝑟−13
★ [𝑘𝜁𝑘−1(12) − 𝜁𝑘−1(11)] + 12𝑟−7

★ [𝑘𝜁𝑘−1(6) − 𝜁𝑘−1(5)]

⇒ 𝑟★ =

(
𝑘𝜁𝑘−1(12) − 𝜁𝑘−1(11)
𝑘𝜁𝑘−1(6) − 𝜁𝑘−1(5)

) 1
6
=

(
𝜁𝑘−1(12) − 1

𝑘
𝜁𝑘−1(11)

𝜁𝑘−1(6) − 1
𝑘
𝜁𝑘−1(5)

) 1
6
. (6.35)

As a cross-check, we evaluate 𝑟★ for 𝑘 = 2 using Eq. (6.32) with

𝑟★ =

(
𝜁1(12) − 1

2 𝜁1(11)
𝜁1(6) − 1

2 𝜁1(5)

) 1
6
=

(
1 − 1

2
1 − 1

2

) 1
6
= 1, (6.36)

which agrees with Eq. (6.9) as expected.

As a second calculation, we evaluate 𝑟★ for 𝑘 = 3 with

𝑟★ =

(
1 + 2−12 − 1

3 − 1
32−11

1 + 2−6 − 1
3 − 1

32−5

) 1
6
=

(
2731
2752

) 1
6
∈ [0.9987241350, 0.9987241351] . (6.37)
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For the limit of 𝑘 → ∞, we note that 𝜁∞(𝑠) corresponds to the Riemann zeta function [89]

𝜁 (𝑠) =
∞∑︁
𝑗=1

1
𝑗 𝑠
, (6.38)

where

𝜁 (2) = 𝜋2

6
≈ 1.644934 (6.39)

is known from the Basel problem [7].

With this and under consideration of Eq. (6.31), any 𝜁 (𝑠) with 𝑠 > 2 converges to values smaller

than 𝜋2/6 but larger than 1. Specifically,

𝜁 (6) = 𝜋6

945
and 𝜁 (12) = 691𝜋12

638512875
. (6.40)

Accordingly, the limit of

lim
𝑘→∞

𝑟★ =

(
𝜁𝑘−1(12) − 1

𝑘
𝜁𝑘−1(11)

𝜁𝑘−1(6) − 1
𝑘
𝜁𝑘−1(5)

) 1
6
=

(
𝜁 (12)
𝜁 (6)

) 1
6

= 𝜋 · 6
√︂

691
675675

∈ [0.9971792638858069273, 0.9971792638858069274] . (6.41)

The upper bound 𝑣𝑥,UB = 1 from Sec. 6.2.2.2 already told us that 𝑟★ ≤ 1. Finding 𝑟★ so close to

1 illustrates the steepness of the Lennard-Jones potential for 𝑟 < 1.

6.2.2.6 The Verified Global Optimization Results for Configurations of 𝑘 Particles in 1D

As discussed above in Sec. 6.2.2.1, place the configuration on the positive 𝑥 axis and number the

particles 𝑝𝑖 from 1 to 𝑘 according to their 𝑥 position 𝑥𝑖 such that

𝑥𝑖 ≤ 𝑥 𝑗 for 𝑖 < 𝑗 with 𝑥1 = 0. (6.42)

The distances

𝑣𝑥,𝑖 = 𝑥𝑖+1 − 𝑥𝑖 ≥ 0 for 𝑖 ∈ {1, 2, ..., 𝑘 − 1}, (6.43)

serve as optimization variables, which yields

𝑛1D,var = 𝑘 − 1 (6.44)
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optimization variables, as previously noted in Eq. (6.15).

The distances 𝑟𝑖 𝑗 for the objective function are calculated from the optimization variables 𝑣𝑥,𝑖

according to Eq. (6.18).

The initial search domain of the optimization is determined by the upper and lower bound (𝑣𝑥,UB

and 𝑣𝑥,LB) on the distances of two adjacent particles from Sec. 6.2.2.2 and Sec. 6.2.2.4. Specifically,

𝑣𝑥,𝑖 ∈ [𝑣𝑥,LB, 𝑣𝑥,UB] = [𝑟𝑘,1D,LB, 1] for 𝑖 ∈ {1, 2, ..., 𝑘 − 1}. (6.45)

While the upper bound 𝑣𝑥,UB = 1 remains unchanged for all 𝑘 , the lower bound 𝑣𝑥,LB = 𝑟𝑘,1D,LB

depends on 𝑈★
𝑘−1 and 𝑈𝑘,UB (see Sec. 6.2.2.3 and Sec. 6.2.2.4).

We start from 𝑘 = 2, which represents a single pair of particles. From Eq. (6.9) we know the

solution of this trivial case is

𝑈★
2,1D = 0 and 𝑣★

𝑥,1 = 1. (6.46)

We follow the method in Sec. 6.2.2.3 to construct S3,1D,UB. The mirror is placed on the particle

𝑝2 to mirror-copy 𝑆★2,1D to the right, which yields S3,1D,UB with 𝑣𝑥,1 = 𝑣𝑥,2 = 1. Thus,

𝑈3,1D,UB = 𝑈LJ(𝑣𝑥,1) +𝑈LJ(𝑣𝑥,2) +𝑈LJ(𝑣𝑥,1 + 𝑣𝑥,3) (6.47)

= 2𝑈LJ(1) +𝑈LJ(2) = 𝑈LJ(2) ≤ 0.968994140625. (6.48)

Using this upper bound in Eq. (6.25) together with the equation for 𝑟min in Eq. (6.23) according

to the method in Sec. 6.2.2.4, we have

𝑟3,1D,LB = 𝑟min(𝑈3,1D,UB) ≥ 0.89206405909675. (6.49)

Thus, the initial search domain for 𝑘 = 3 is

𝑣𝑥,𝑖 ∈ [𝑣𝑥,LB, 𝑣𝑥,UB] = [0.89206405909675, 1] for 𝑖 ∈ {1, 2}. (6.50)

Starting with 𝑘 = 3, we iteratively perform the verified optimization for the 𝑘 particle case and

use the result to calculate𝑈𝑘+1,1D,UB (see Sec. 6.2.2.3), 𝑟𝑘+1,1D,LB (see Sec. 6.2.2.4), and the initial

search domain for the 𝑘 + 1 particle case.
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The verified global optimization is performed with the Taylor Model based verified global

optimizer COSY-GO [63, 64] in its most advanced setting with QFB/LDB enabled. An attempt to

run the optimization using Interval evaluations already fails for the simplest non-trivial case of three

particles in 1D. Hence, this section will only run COSY-GO in its most advanced setting.

The principle algorithm of the verified global optimizer was outlined in Sec. 2.6. As a stopping

condition, we use the threshold length 𝑠min = 10−6 for all computation with COSY-GO in this

chapter. A box under investigation is split into smaller boxes for further investigation unless the box

is too small with all the side-lengths less than 𝑠min. The upper bound 𝑈𝑘,1D,UB from Sec. 6.2.2.3 is

used as an initial cutoff value C for the optimizer.

Tab. 6.1 shows the results of the verified optimization. The resulting optimized variables 𝑣★
𝑥,𝑖

are listed in Tab. 6.2 and shown in Fig. 6.11. Note that the floating point inaccuracies begin to

accumulate with increasing 𝑘 such that the bounding of 𝑈★
𝑘,1D in Tab. 6.1 gets less and less tight.

Table 6.1: Verified global optimization results for 𝑈★
𝑘,1D. The 𝑘 particles form 𝑛pairs pairwise

interactions. The upper bound 𝑈𝑘,1D,UB on the minimum energy (see Sec. 6.2.2.3) was used to
calculate 𝑟𝑘1D,UB, which sets the lower bound of the initial search domain (see Sec. 6.2.2.4 and
Eq. (6.45)). The optimizer COSY-GO with QFB/LDB enabled was operated with Taylor Models of
third order. The number of remaining boxes with all side-lengths 𝑠 < 𝑠min is denoted by 𝑛fin.

𝑘 𝑛pairs 𝑛fin 𝑟𝑘,1D,LB 𝑈𝑘,1D,UB 𝑈★
𝑘,1D

3 3 1 0.89206405909675 0.96899414062500 0.96887586964482
77

4 6 1 0.84674764946679 2.93492994152107 2.93486371189821
13

5 10 1 0.81433688881131 5.90034265454486 5.90034204308601
589

6 15 1 0.78913201707003 9.86568839948674 9.86568807046348
29

7 21 1 0.76858739727728 14.83099005904041 14.83099004536567
39

8 28 1 0.75130633425847 20.79627461693932 20.79627460947671
30

9 36 1 0.73643514933217 27.76155137645473 27.76155137570017
69956

10 45 1 0.72341340859215 35.72682430087453 35.72682430044963
875

11 55 1 0.71185356795324 44.69209518551362 44.69209518543888
767

12 66 1 0.70147671889115 54.65736491976443 54.65736491972036
1862

13 78 1 0.69207564364786 65.62263397159721 65.62263397158539
307

14 91 1 0.68349232451704 77.58790260143020 77.58790260142233
1933

15 105 1 0.67560361208721 90.55317096078578 90.55317096078190
7808
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Table 6.2: Verified global optimization results for configurations of 𝑘 particles in 1D. The variable 𝑣★
𝑥,𝑖

is the optimal distance between
two adjacent particles 𝑝𝑖 and 𝑝𝑖+1, with 1 ≤ 𝑖 < 𝑘 , and the mirror symmetry can be observed.

𝑘 𝑖 𝑣★
𝑥,𝑖

3 1 0.99872417
0

3 2 0.99872417
0

4 1 0.99864309
299

4 2 0.99739647
38

4 3 0.99864309
299

5 1 0.99863238
26

5 2 0.99730683
71

5 3 0.99730683
71

5 4 0.99863238
26

6 1 0.99863018
03

6 2 0.99729422
07

6 3 0.99721518
03

6 4 0.99729422
07

6 5 0.99863018
03

7 1 0.99862959
40

7 2 0.99729148
30

7 3 0.99720200
182

7 4 0.99720200
182

7 5 0.99729148
30

7 6 0.99862959
40

8 1 0.99862940
18

𝑘 𝑖 𝑣★
𝑥,𝑖

8 2 0.99729070
48

8 3 0.99719907
885

8 4 0.99718863
41

8 5 0.99719907
885

8 6 0.99729070
48

8 7 0.99862940
18

9 1 0.99862934
07

9 2 0.99729044
18

9 3 0.99719822
795

9 4 0.99718563
36

9 5 0.99718563
36

9 6 0.99719822
795

9 7 0.99729044
18

9 8 0.99862934
07

10 1 0.99862933
01

10 2 0.99729035
04

10 3 0.99719792
61

10 4 0.99718474
42

10 5 0.99718258
27

10 6 0.99718474
42

10 7 0.99719792
61

𝑘 𝑖 𝑣★
𝑥,𝑖

10 8 0.99729035
04

10 9 0.99862933
01

11 1 0.99862934
897

11 2 0.99729033
8996

11 3 0.99719782
46

11 4 0.99718443
07

11 5 0.99718168
32

11 6 0.99718168
32

11 7 0.99718443
07

11 8 0.99719782
46

11 9 0.99729033
8996

11 10 0.99862934
897

12 1 0.99862937
892

12 2 0.99729034
8990

12 3 0.99719780
36

12 4 0.99718433
389

12 5 0.99718138
094

12 6 0.99718079
34

12 7 0.99718138
094

12 8 0.99718433
389

12 9 0.99719780
36

𝑘 𝑖 𝑣★
𝑥,𝑖

12 10 0.99729034
8990

12 11 0.99862937
892

13 1 0.99862940
889

13 2 0.99729036
8985

13 3 0.99719780
30

13 4 0.99718430
380

13 5 0.99718127
076

13 6 0.99718047
7997

13 7 0.99718047
7997

13 8 0.99718127
076

13 9 0.99718430
380

13 10 0.99719780
30

13 11 0.99729036
8985

13 12 0.99862940
889

14 1 0.99862943
885

14 2 0.99729039
8981

14 3 0.99719782
25

14 4 0.99718430
373

14 5 0.99718124
066

14 6 0.99718036
7979

14 7 0.99718016
7959

𝑘 𝑖 𝑣★
𝑥,𝑖

14 8 0.99718036
7979

14 9 0.99718124
066

14 10 0.99718430
373

14 11 0.99719782
25

14 12 0.99729039
8981

14 13 0.99862943
885

15 1 0.99862946
881

15 2 0.99729042
8977

15 3 0.99719785
20

15 4 0.99718432
368

15 5 0.99718124
060

15 6 0.99718033
7969

15 7 0.99718005
7941

15 8 0.99718005
7941

15 9 0.99718033
7969

15 10 0.99718124
060

15 11 0.99718432
368

15 12 0.99719785
20

15 13 0.99729042
8977

15 14 0.99862946
881
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Figure 6.11: The plots show the values of the optimization variables 𝑣★
𝑥,𝑖

of the minimum energy
configuration of 𝑘 particles in 1D that resulted from the verified global optimization using COSY-GO.
The minimum energy configuration is mirror symmetric with the middlemost distances between
adjacent particles asymptotically approaching 𝑟★ ≈ 0.998724135, the solution of the infinite
equidistant configuration from Eq. (6.41). The right plot shows the logarithm of the difference
between the calculated distances from the verified optimization and 𝑟★. The ranges reflect the
side-length of the remaining box.

The left plot of Fig. 6.11 shows that the distance between adjacent particles barley changes in

the middle of the configuration. However, the logarithmic plot on the right clearly shows that the

distances get shorter towards the center of the configuration.

The ranges in the right plot correspond to the side-length of the remaining box and its position.

We observe that the optimal configurations are symmetric and the 𝑣★
𝑥,𝑖

asymptotically approaches 𝑟★

(Eq. (6.41)), the solution for the infinite equidistant configuration in 1D from Sec. 6.2.2.5.

In Tab. 6.2, we see that the verified bounds for 𝑘 = 3 agree with the calculation of the equidistant

configuration in Eq. (6.37).

Tab. 6.3 lists the performance of COSY-GO for different Taylor Model orders. Usually, the

higher the order of computation, the tighter the bounding and the lower the required number of

steps, which is what we see in Tab. 6.3. At the same time, higher order computations are more time
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demanding per step. These two factors, the computation time per step and the required number of

steps, do not scale the same way with higher orders. For this particular example, calculations of

order three (O3) are the most time efficient.

Table 6.3: Performance of verified global optimization using COSY-GO with QFB/LDB enabled on
minimum energy search of a 1D configuration of 𝑘 particles. The Taylor Model orders are denoted
by ‘O’. Since QFB requires a minimum order of two, order one calculations are not listed.

Computation time [s] Steps
𝑘 𝑛1D,var 𝑛pairs O2 O3 O4 O5 O2 O3 O4 O5
3 2 3 0.011 0.017 0.010 0.015 14 10 10 8
4 3 6 0.014 0.014 0.013 0.016 24 15 14 14
5 4 10 0.027 0.021 0.021 0.016 36 23 22 18
6 5 15 0.044 0.050 0.026 0.047 57 29 28 25
7 6 21 0.085 0.043 0.034 0.079 83 34 33 33
8 7 28 0.203 0.136 0.058 0.163 130 43 42 41
9 8 36 0.560 0.136 0.101 0.332 236 60 53 52
10 9 45 1.728 0.330 0.179 0.616 475 98 66 65
11 10 55 3.373 0.747 0.438 1.828 925 176 90 81
12 11 66 7.191 0.962 0.969 3.068 1908 294 133 98
13 12 78 17.99 3.796 5.121 7.399 3975 454 292 131
14 13 91 31.96 7.276 9.480 8.928 7690 657 492 160
15 14 105 64.35 8.550 18.25 18.91 15902 994 795 199

Compared to the O2 calculation, the longer computation times of the O3 calculations per step

are overcompensated by the tighter bounding and the associated reduction in the number of steps

required for the verified optimization. With higher order calculations, the number of steps can be

reduced even further, but the computation time per step increases significantly, such that O4 is the

second most time efficient and O5 the third most time efficient despite their further reduction of

calculation steps.

As 𝑘 increases, the complexity of the problem increases quadratically as 𝑛pairs indicates. The

time efficiency of the different computation orders can change with the complexity of the objective

function.
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6.2.2.7 The Verified Global Optimization Results for Symmetric Configurations of 𝑘 Particles
in 1D

Assuming that the Lennard-Jones minimum energy configurations in 1D are indeed symmetric, this

section analyzes the associated optimization problem. Considering symmetric 1D configurations

roughly reduces the number of optimization variables to describe the configurations to half, since

𝑣𝑘−𝑖 = 𝑣𝑖 . (6.51)

This yields

𝑛1D,sym,var =


(𝑘 − 1)/2

𝑘/2

if 𝑘 odd

if 𝑘 even
, (6.52)

optimization variables as previously noted in Eq. (6.16).

All other parameters of the optimization like the initial search domain and the method of

calculated 𝑈𝑘,1D,UB from Sec. 6.2.2.3 remain unchanged.

As above in Sec. 6.2.2.6, we start with the trivial S★
2,1D to determine 𝑈3,1D,UB (see Eq. (6.48)).

We then use this upper bound and 𝑈★
𝑘,1D in Eq. (6.25) to determine 𝑟3,LB,1D (see Eq. (6.49)) and

with this the initial search domain (see Eq. (6.50)).

Starting with 𝑘 = 3, we perform the verified optimization for the 𝑘 particle case and use the

result to calculate 𝑈𝑘+1,1D,UB (see Sec. 6.2.2.3), 𝑟𝑘+1,LB,1D (see Sec. 6.2.2.4), and the initial search

domain for the 𝑘 + 1 particle case.

Tab. 6.4 shows the verified results of the optimization using Taylor Models of order three. Note

that the floating point inaccuracies begin to accumulate with increasing 𝑘 such that the bounding of

𝑈★
𝑘,1D in Tab. 6.1 gets less and less tight. For 𝑘 ≥ 23, the number of final boxes increases drastically.

Due to the high dimensionality, 𝑈𝑘 gets so shallow over the 𝑛1D,sym,var dimensional domain that

the limit of the floating point accuracy prevents narrowing down the minimum to a single final box

of side-lengths 𝑠min < 10−6.

The resulting values of the 𝑣★
𝑥,𝑖

are listed in Tab. 6.5 and Tab. 6.6 below. For 𝑘 ≥ 23, all the

resulting the final boxes are represented by one big box that contains all of them rigorously. Hence,

the presented 𝑣★
𝑥,𝑖

are the side-lengths of this big box.
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Table 6.4: Verified global optimization results on the minimum energy 𝑈★
𝑘,1D of symmetric

configurations. The upper bound 𝑈𝑘,1D,UB on the minimum energy (see Sec. 6.2.2.3) was used to
calculate 𝑟𝑘1D,UB, which sets the lower bound of the initial search domain (see Sec. 6.2.2.4 and
Eq. (6.45)). The optimizer COSY-GO with QFB/LDB enabled was operated with Taylor Models of
third order. The number of remaining boxes with all side-lengths 𝑠 < 𝑠min is denoted by 𝑛fin.

𝑘 𝑛pairs 𝑛fin 𝑟𝑘,1D,LB 𝑈𝑘,1D,UB 𝑈★
𝑘,1D

3 3 1 0.89206405909675 0.96899414062500 0.96887586964482
77

4 6 1 0.84674764946679 2.93492994152101 2.93486371189821
13

5 10 1 0.81433688881131 5.90034265454486 5.90034204308601
589

6 15 1 0.78913201707003 9.86568839948674 9.86568807046348
29

7 21 1 0.76858739727728 14.83099005904040 14.83099004536567
40

8 28 1 0.75130633425847 20.79627461693931 20.79627460947671
32

9 36 1 0.73643514933217 27.76155137645471 27.76155137570016
69958

10 45 1 0.72341340859215 35.72682430087450 35.72682430044963
878

11 55 1 0.71185356795324 44.69209518551359 44.69209518543886
772

12 66 1 0.70147671889115 54.65736491976435 54.65736491972037
1870

13 78 1 0.69207564364786 65.62263397159714 65.62263397158541
315

14 91 1 0.68349232451704 77.58790260143012 77.58790260142233
1941

15 105 1 0.67560361208721 90.55317096078569 90.55317096078190
7818

16 120 1 0.66831174278786 104.51843914138416 104.51843914138084
7582

17 136 1 0.66153786375283 119.48370720063325 119.48370720063014
2375

18 153 1 0.65521749055526 135.44897517554651 135.44897517554319
3522

19 171 1 0.64929724579321 152.41424309061438 152.41424309061040
0067

20 190 2 0.64373246921844 170.37951096241994 170.37951096241495
0320

21 210 1 0.63848543480271 189.34477880243068 189.34477880241960
0544

22 231 2 0.63352399921567 209.31004661870341 209.31004661869639
7876

23 253 2048 0.62882056259331 230.27531441704119 230.27531441702488
0327

24 276 4096 0.62435125909424 252.24058220167566 252.24058220160723
58147

25 300 4096 0.62009531904927 275.20584997563225 275.20584997554147
1139

26 325 8192 0.61603456097294 299.17111774124430 299.17111774114182
0645

170



Table 6.5: Verified global optimization results for symmetric configurations of 𝑘 particles in 1D for 𝑘 = 3 to 𝑘 = 20. 𝑣★
𝑥,𝑖

is the optimal
distance between two adjacent particles 𝑝𝑖 and 𝑝𝑖+1, and 𝑝𝑘−𝑖−1 and 𝑝𝑘−𝑖. The results for 𝑘 = 21 to 𝑘 = 26 are listed in Tab. 6.6.

𝑘 𝑖 𝑣★
𝑥,𝑖

3 1 0.99872416
1

4 1 0.99864307
0

4 2 0.99739647
38

5 1 0.99863236
28

5 2 0.99730681
72

6 1 0.99863016
05

6 2 0.99729420
09

6 3 0.99721518
03

7 1 0.99862956
43

7 2 0.99729145
32

7 3 0.99720198
85

8 1 0.99862937
21

8 2 0.99729067
51

8 3 0.99719904
888

8 4 0.99718863
42

9 1 0.99862930
11

9 2 0.99729040
21

9 3 0.99719818
799

9 4 0.99718559
40

10 1 0.99862928
06

𝑘 𝑖 𝑣★
𝑥,𝑖

10 2 0.99729031
09

10 3 0.99719788
66

10 4 0.99718469
47

10 5 0.99718258
27

11 1 0.99862929
02

11 2 0.99729027
02

11 3 0.99719777
51

11 4 0.99718438
12

11 5 0.99718163
37

12 1 0.99862930
899

12 2 0.99729027
8997

12 3 0.99719773
43

12 4 0.99718427
396

12 5 0.99718131
01

12 6 0.99718078
35

13 1 0.99862932
896

13 2 0.99729028
8993

13 3 0.99719773
37

13 4 0.99718423
387

13 5 0.99718119
084

𝑘 𝑖 𝑣★
𝑥,𝑖

13 6 0.99718040
04

14 1 0.99862934
894

14 2 0.99729030
8990

14 3 0.99719774
33

14 4 0.99718422
382

14 5 0.99718115
075

14 6 0.99718028
7987

14 7 0.99718016
7959

15 1 0.99862937
891

15 2 0.99729032
8987

15 3 0.99719775
30

15 4 0.99718423
377

15 5 0.99718114
069

15 6 0.99718023
7978

15 7 0.99717995
50

16 1 0.99862940
887

16 2 0.99729036
8983

16 3 0.99719778
26

16 4 0.99718425
373

16 5 0.99718116
064

𝑘 𝑖 𝑣★
𝑥,𝑖

16 6 0.99718024
7971

16 7 0.99717992
40

16 8 0.99717995
21

17 1 0.99862944
884

17 2 0.99729039
8979

17 3 0.99719781
22

17 4 0.99718428
369

17 5 0.99718119
059

17 6 0.99718025
7966

17 7 0.99717992
33

17 8 0.99717981
21

18 1 0.99862947
880

18 2 0.99729042
8976

18 3 0.99719784
19

18 4 0.99718431
365

18 5 0.99718121
055

18 6 0.99718027
7962

18 7 0.99717993
28

18 8 0.99717980
15

18 9 0.99717990
898

𝑘 𝑖 𝑣★
𝑥,𝑖

19 1 0.99862950
877

19 2 0.99729046
8972

19 3 0.99719788
15

19 4 0.99718434
361

19 5 0.99718124
051

19 6 0.99718030
7957

19 7 0.99717996
23

19 8 0.99717982
09

19 9 0.99717977
04

20 1 0.99862954
873

20 2 0.99729049
8969

20 3 0.99719791
11

20 4 0.99718438
358

20 5 0.99718128
048

20 6 0.99718033
7953

20 7 0.99717999
19

20 8 0.99717984
05

20 9 0.99717978
899

20 10 0.99717993
881
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Table 6.6: Verified global optimization results for symmetric configurations of 𝑘 particles in 1D for 𝑘 = 21 to 𝑘 = 26. 𝑣★
𝑥,𝑖

is the optimal
distance between two adjacent particles 𝑝𝑖 and 𝑝𝑖+1, and 𝑝𝑘−𝑖−1 and 𝑝𝑘−𝑖. The results for 𝑘 = 3 to 𝑘 = 20 are listed in Tab. 6.5.

𝑘 𝑖 𝑣★
𝑥,𝑖

21 1 0.99862958
869

21 2 0.99729053
8965

21 3 0.99719795
07

21 4 0.99718441
354

21 5 0.99718131
044

21 6 0.99718037
7949

21 7 0.99718002
7915

21 8 0.99717988
00

21 9 0.99717981
894

21 10 0.99717979
891

22 1 0.99862963
864

22 2 0.99729058
8960

22 3 0.997197100
02

22 4 0.99718446
349

22 5 0.99718136
038

22 6 0.99718042
7944

22 7 0.99718007
7909

22 8 0.99717992
894

22 9 0.99717986
888

22 10 0.99717983
885

𝑘 𝑖 𝑣★
𝑥,𝑖

22 11 0.99718002
7864

23 1 0.99862968
859

23 2 0.99729062
8955

23 3 0.99719805
698

23 4 0.99718451
344

23 5 0.99718141
034

23 6 0.99718046
7939

23 7 0.99718011
7904

23 8 0.99717997
890

23 9 0.99717990
883

23 10 0.99717987
880

23 11 0.99717985
878

24 1 0.99862973
854

24 2 0.99729067
8951

24 3 0.99719810
693

24 4 0.99718456
339

24 5 0.99718146
029

24 6 0.99718051
7934

24 7 0.99718016
7899

24 8 0.99718001
7884

𝑘 𝑖 𝑣★
𝑥,𝑖

24 9 0.99717994
878

24 10 0.99717991
874

24 11 0.99717990
873

24 12 0.99718013
7849

25 1 0.99862977
850

25 2 0.99729072
8946

25 3 0.99719814
688

25 4 0.99718460
335

25 5 0.99718150
024

25 6 0.99718056
7930

25 7 0.99718021
7895

25 8 0.99718006
7880

25 9 0.99717999
873

25 10 0.99717995
869

25 11 0.99717994
868

25 12 0.99717993
867

26 1 0.99862982
845

26 2 0.99729077
8941

26 3 0.99719819
683

26 4 0.99718465
330

𝑘 𝑖 𝑣★
𝑥,𝑖

26 5 0.99718155
019

26 6 0.99718060
7925

26 7 0.99718025
7890

26 8 0.99718011
7875

26 9 0.99718004
7868

26 10 0.99718000
7864

26 11 0.99717998
863

26 12 0.99717997
862

26 13 0.99718025
7833
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In Fig. 6.12, the results for the distances 𝑣𝑥,𝑖 are shown. For 𝑘 > 19, the final boxes are

summarized, which explains the larger ranges in the right plot. The results for symmetric 1D

configurations agree with the previous results presented in Sec. 6.2.2.6, where this symmetry was

not assumed.

Tab. 6.7 lists the performance of COSY-GO for different Taylor Model orders, where the orders

from two to five are denoted by ‘O’. As expected and seen already seen in Tab. 6.3, the number

of required steps tends to reduce with higher order Taylor Models due to the tighter bounding

capabilities. At the same time, the higher order calculations require more computation time per step,

which can increase the overall computation time.

For 𝑘 < 23, the calculations of order three (O3) are the most time efficient just like for the results

in Sec. 6.2.2.6. Only for very large 𝑘 , the verified optimization starts to struggle with the floating
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Figure 6.12: The plots show the values for the optimized variables 𝑣★
𝑥,𝑖

of the symmetric minimum
energy configuration of 𝑘 particles that resulted from the verified global optimization. Again,
the middlemost distances asymptotically approach 𝑟★ ≈ 0.998724135, the solution of the infinite
equidistant configuration from Eq. (6.41). The right plot shows the logarithm of the difference
between the calculated distances from the verified optimization and 𝑟★. The ranges reflect the
side-length of the remaining box.
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Table 6.7: Performance of verified global optimization using COSY-GO with QFB/LDB enabled
for the minimum energy search of a 1D symmetric configuration of 𝑘 particles. The Taylor Model
orders are denoted by ‘O’. Note that we use 𝑛var as a shorthand notation for 𝑛1D,sym,var in the table.

Computation time [s] Steps
𝑘 𝑛var 𝑛pairs O2 O3 O4 O5 O2 O3 O4 O5
3 1 3 0.010 0.010 0.016 0.011 8 7 7 5
4 2 6 0.012 0.011 0.016 0.013 17 11 10 10
5 2 10 0.013 0.011 0.016 0.013 18 12 12 10
6 3 15 0.042 0.021 0.031 0.036 28 20 19 16
7 3 21 0.032 0.029 0.016 0.025 28 20 20 18
8 4 28 0.048 0.027 0.047 0.053 40 25 25 24
9 4 36 0.045 0.025 0.047 0.065 42 25 25 24
10 5 45 0.075 0.042 0.078 0.100 59 31 29 29
11 5 55 0.099 0.058 0.094 0.365 62 33 30 29
12 6 66 0.137 0.084 0.140 0.318 95 43 35 34
13 6 78 0.277 0.088 0.187 0.474 101 46 37 34
14 7 91 0.653 0.159 0.343 0.794 171 66 45 38
15 7 105 0.473 0.173 0.406 0.906 188 66 49 39
16 8 120 1.355 0.478 0.843 1.468 313 89 70 43
17 8 136 2.043 1.163 0.641 1.746 317 94 72 45
18 9 153 3.514 1.605 1.893 2.587 573 130 104 53
19 9 171 3.515 1.983 1.991 2.433 571 130 113 59
20 10 190 8.748 3.593 4.860 4.665 1113 164 157 74
21 10 210 8.285 2.517 4.485 6.630 1101 186 170 82
22 11 231 15.47 2.635 8.952 18.40 1959 234 230 118
23 11 253 56.17 68.51 170.2 418.5 6208 4360 4340 4227
24 12 276 118.3 155.1 419.9 1255 12247 8518 8494 8399
25 12 300 130.2 175.5 467.7 1361 12503 8551 8539 8429
26 13 325 276.3 401.5 1215 3601 24527 16832 16839 15332

point accuracy and the associated increase in final boxes.

The reduction of the optimization variables by assuming symmetric configurations, in comparison

to the calculations in Sec. 6.2.2.6, significantly reduces the computation time and the number of

steps.

In Fig. 6.13, the time efficiency and the number of steps required for the optimization are shown

together with the results from the previous section (Sec. 6.2.2.6).
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Figure 6.13: Performance of the minimum energy search for configurations of 𝑘 particles in 1D
using COSY-GO with different Taylor Model orders with QFB/LDB enabled. The order of the
Taylor Models is denoted by ‘O’. The results from both Sec. 6.2.2.6 and Sec. 6.2.2.7 (’sym’) are
shown.

6.2.2.8 Redundancies and Penalty Functions

Note that there are two versions for every nonsymmetric configuration in 1D that are mirror

images of each other with regard to the midpoint of the configuration, i.e., for every configuration

(𝑣𝑥,1, 𝑣𝑥,2, ..., 𝑣𝑥,𝑘−1), there is a mirror configuration (𝑣𝑥,𝑘−1, 𝑣𝑥,𝑘−2, ..., 𝑣𝑥,1). Both configurations

are equivalent for the optimization problem, but are distinct domains in the search space of the

optimizer.

Because the solutions of the 1D studies are symmetric, this redundancy of mirror images of

the same configuration did not appear in the results. As a preparation for the multidimensional

studies below, where the solutions are not always this symmetric, we discuss a method to suppress

redundant mirror images of configurations.

A redundancy can be suppressed by finding criteria that distinguish those equivalent configura-

tions and using a penalty function to artificially increases the objective function for the redundant
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version(s). For mirror symmetries along the 𝑥 axis, one distinction is the center of mass

𝑥CM =
1
𝑘

𝑘∑︁
𝑖=1

𝑥𝑖, (6.53)

where 𝑥𝑖 ≥ 0 and 𝑥1 = 0.

Without loss of generality, one can require that the optimal configuration satisfies

Δ𝑥CM = 𝑥CM − 𝑥𝑘

2
≤ 0, (6.54)

and enforce it by letting the penalty function 𝑏𝑥CM scale with the difference Δ𝑥CM if it is positive

and be zero otherwise:

𝑏𝑥CM =


𝜆 · Δ𝑥CM for Δ𝑥CM > 0

0 otherwise
, (6.55)

where 𝜆 is a large positive number like 1010.

6.2.3 Minimum Energy Lennard-Jones Configurations in 2D and 3D

To find minimum energy configurations of 𝑘 particles in 2D and 3D using verified global optimization,

we are going to build on the methods from the 1D studies. First, we describe the solution space

of all possible minimum energy configurations in terms of a set of optimization variables (see

Sec. 6.2.3.1). Then, we determine how the bounds on the minimum energy and the inter-particle

distances have to be adjusted for configurations in 2D and 3D. Based on those bounds we define the

initial search domain for the optimization variables and make sure that the objective function can be

evaluated for every point in the initial search domain. Lastly, we present the results of the verified

optimization.

6.2.3.1 Coordinate System, Numbering Scheme, and Variable Definition

We use a Cartesian coordinate system (𝑥, 𝑦, 𝑧) to describe all possible minimum energy configurations

of 𝑘 particles in 2D and 3D. For configurations in 2D, all 𝑧 coordinates and variables are to be

ignored.
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The first step is placing the configuration such that the largest distance of the configuration lies

on the 𝑥 axis. The implications for configurations with multiple largest 𝑟𝑖 𝑗 are discussed below. We

call the largest inter-particle distance the major axis of the configuration, denoted by 𝑟1𝑘 , because

the particles that span the major axis are denoted by 𝑝1 and 𝑝𝑘 . The configuration is placed such

that

®𝑝1 = (0, 0, 0) and ®𝑝𝑘 = (𝑥𝑘 = 𝑟1𝑘 ≥ 0, 0, 0), (6.56)

where ®𝑝𝑖 is the position vector of particle 𝑝𝑖. This fixes 𝑝1 to the origin and 𝑝𝑘 to the 𝑥 axis.

To avoid ambiguity regarding which of the two particles of the major axis is 𝑝1, we require that

the center of mass of the configuration

®𝑝CM = (𝑥CM, 𝑦CM, 𝑧CM) = 1
𝑘

𝑘∑︁
𝑖=1

®𝑝𝑖 (6.57)

satisfies Eq. (6.54) for the 𝑥 coordinate, i.e., 𝑥CM − 𝑥𝑘/2 ≤ 0.

Just like in 1D, we use the 𝑥 positions of the particles to number them from 1 to 𝑘 such that

𝑥𝑖 ≤ 𝑥 𝑗 for 𝑖 < 𝑗 with 𝑥1 = 0. (6.58)

For configurations in 3D, we require that particle 𝑝2 is in the 𝑥𝑦 plane, i.e.

𝑧2 = 0 (6.59)

without loss of generality.

To determine the orientation of the 𝑦 (and 𝑧) axis we require without loss of generality, that

𝑦2 ≤ 0 and 𝑧3 ≤ 0. (6.60)

The optimization variables 𝑣𝑥,𝑖 represent the distance in the 𝑥 coordinates between the particles

𝑝𝑖+1 and 𝑝𝑖 with

𝑣𝑥,𝑖 = 𝑥𝑖+1 − 𝑥𝑖 ≥ 0 for 𝑖 ∈ {1, 2, ..., 𝑘 − 1}. (6.61)

The optimization variables 𝑣𝑦,𝑖 are the 𝑦 positions of the particles with

𝑣𝑦,𝑖 = 𝑦𝑖 for 𝑖 ∈ {2, 3, ..., 𝑘 − 1}. (6.62)
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For configurations in 3D, we additionally define the optimization variables 𝑣𝑧,𝑖 as the 𝑧 positions

of the particles with

𝑣𝑧,𝑖 = 𝑧𝑖 for 𝑖 ∈ {3, 4, ..., 𝑘 − 1}. (6.63)

In total, this yields

𝑛2D,var = 2𝑘 − 3 (6.64)

optimization variables for configurations of 𝑘 particles in 2D and

𝑛3D,var = 3𝑘 − 6 (6.65)

optimization variables for configurations of 𝑘 particles in 3D.

Note that there is no variable for 𝑧2 because 𝑧2 = 0 by definition of the 𝑦 axis.

The squared distance 𝑟2
𝑖 𝑗

between any two particles 𝑝𝑖 and 𝑝 𝑗 with 𝑖 < 𝑗 can be expressed in

terms of 𝑣𝑥,𝑖, 𝑣𝑦,𝑖, and 𝑣𝑧,𝑖 using Eq. (6.18) by

𝑟2
𝑖 𝑗 =

(
𝑥 𝑗 − 𝑥𝑖

)2 + (
𝑦 𝑗 − 𝑦𝑖

)2 + (
𝑧 𝑗 − 𝑧𝑖

)2
=

©­«
𝑗−1∑︁
𝑛=𝑖

𝑣𝑥,𝑛
ª®¬
2

+
(
𝑣𝑦, 𝑗 − 𝑣𝑦,𝑖

)2 + (
𝑣𝑧, 𝑗 − 𝑣𝑧,𝑖

)2
. (6.66)

The center of mass requirement in the 𝑥 coordinate Δ𝑥CM = 𝑥CM − 𝑥𝑘
2 ≤ 0 (from Eq. (6.54)) is

enforced using the penalty function from Eq. (6.55):

𝑏𝑥CM =


𝜆 · Δ𝑥CM for Δ𝑥CM > 0

0 otherwise
(6.67)

For the largest distance requirement

Δ𝑟2
𝑖 𝑗 = 𝑟2

𝑖 𝑗 − 𝑟2
1𝑘 ≤ 0 ∀𝑖 𝑗 , (6.68)

is handled using the sum of individual penalty functions for each inter-particle distance of the

configuration, namely,

𝑏
𝑟2 =

𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

𝑏
𝑟2
𝑖 𝑗

where 𝑏
𝑟2
𝑖 𝑗

=


𝜆 · Δ𝑟2

𝑖 𝑗
for Δ𝑟2

𝑖 𝑗
> 0

0 otherwise
. (6.69)
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The largest distance requirement reduces the rotational ambiguity in the placement of the

coordinate system. Configurations with multiple largest distances often have symmetry properties

that relate those largest distances to each other. If this is the case, the representations of the

configuration using the coordinate system along the largest distances are identical.

6.2.3.2 Upper Bounds 𝑟𝑘,UB and 𝑣𝑥,UB on Inter-Particle Distances of Minimum Energy
Configurations in 2D and 3D

The argument regarding the upper bound on the distance of two adjacent particles from Sec. 6.2.2.2

can be generalized to multidimensional cases. Using the variable and coordinate definition from

above, changing a variable 𝑣𝑥,𝑙 moves the right-side subconfiguration composed of the particles

𝑝 𝑗 with 𝑗 > 𝑙 along the 𝑥 axis, leaving the left-side subconfiguration of particles 𝑝𝑖 with 𝑖 ≤ 𝑙

unchanged. Following the argumentation in Sec. 6.2.2.2, any configuration with any 𝑣𝑥,𝑙 > 1 is not

optimal, thus making

𝑣𝑥,UB = 1 (6.70)

an upper bound for all 𝑣𝑥,𝑖 in the minimum energy configuration. This shows that the result from

Eq. (6.20) could be generalized to the multidimensional case.

Fig. 6.14 shows this multidimensional generalization for 2D.

Because the sum of all 𝑣𝑥,𝑖 yields the length of the major axis, which is the longest distance of

the configuration by definition, the upper bound

𝑟𝑘,UB = 𝑘 − 1 (6.71)

on any 𝑟𝑖 𝑗 of the minimum energy configurations is also valid for the multidimensional cases.

However, for the multidimensional cases, this upper bound is not as tight as for configurations in 1D.

Further advances of the method may yield tighter upper bounds on the minimum for configurations

in 2D and 3D, e.g., one may be able to show that the maximum 𝑟𝑖 𝑗 of S★
𝑘

in 2D can serve as 𝑟UB of

S★
𝑘

in 3D.
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𝑥 𝑥
𝑣𝑥,𝑙>1 𝑣𝑥,𝑙=1

... ...
𝑝1

𝑝2

𝑝𝑙

𝑝𝑙+1

𝑝𝑘 𝑝1

𝑝2

𝑝𝑙

𝑝𝑙+1

𝑝𝑘

Figure 6.14: The particles 𝑝𝑖 are numbered according to their 𝑥 position. The variable 𝑣𝑥,𝑙 denotes
the 𝑥 distance between particle 𝑝𝑙 and 𝑝𝑙+1. A configuration with any 𝑣𝑥,𝑙 > 1 (left picture) is never
optimal, because the overall potential can always be lowered by setting 𝑣𝑥,𝑙 = 1 (right picture).

6.2.3.3 The Upper Bound 𝑈𝑘,UB on the Minimum Energy

As previously discussed in Sec. 6.2.2.3, any configuration S𝑘,𝑛dim can serve as an upper bound

configuration S𝑘,𝑛dim,UB providing an upper bound 𝑈𝑘,𝑛dim,UB on the minimum energy 𝑈★
𝑘,𝑛dim

.

For configurations in 2D and 3D, a good upper bound configuration can be obtained by using

S★
𝑘−1,𝑛dim

. We add a 𝑘th particle in a small and simple verified global optimization on its own,

where only the coordinates of the 𝑘th particle are the optimization variables. From Sec. 6.2.3.2,

we know that when we place an axis in any orientation in the minimum energy configuration, the

distances between adjacent projections onto that axis are bound by 1, i.e., 𝑣𝑥,𝑖 ≤ 1. Thus, the initial

search domain for the ‘upper bound’ optimization of the position of the 𝑘th particle is determined

by the maximum and minimum coordinates of S★
𝑘−1,𝑛dim

along each orthogonal axis of the 𝑛dim

space, plus a band of width 1 around it (see Fig. 6.15 for a 2D example of 𝑘 = 6). The resulting

upper bound on the overall potential of this optimized upper bound configuration S𝑘,𝑛dim,UB is then

used is then used as 𝑈𝑘,𝑛dim,UB.

180



Figure 6.15: The optimal 2D configuration of five particles is denoted by five dots. Enclose all the
five particles by a 2D rectangle using the minimum and maximum coordinates in 𝑥 and 𝑦, shown by
a solid line rectangle. Surround the resulting rectangle with a band of width 1, and we have a initial
search domain for the sixth particle (shaded area).

6.2.3.4 Setup of Initial Search Domain of the Optimization Variables in 2D and 3D

In contrast to the 1D cases, the bounds on the 𝑟𝑖 𝑗 do not directly translate to bounds of Cartesian

search domains for configurations in 2D and 3D. As a consequence, the initial search domain covers

a larger area to rigorously include all possible minimum energy configurations.

The variables 𝑣𝑥,𝑖 are bound from the top by 𝑣𝑥,UB = 1 (Eq. (6.70)). As for the lower bound, the

same argument of the 1D case is not applicable since the particle configuration is not confined on

a line anymore, and we are left only with the variable definition itself, i.e., 𝑣𝑥,𝑖 ≥ 0 (Eq. (6.61)).

Thus, the initial search domain is given by

𝑣𝑥,𝑖 ∈
[
0, 𝑣𝑥,UB

]
= [0, 1] for 𝑖 ∈ {1, 2, ..., 𝑘 − 1}. (6.72)

We bound the variables 𝑣𝑦,𝑖 (and 𝑣𝑧,𝑖) using the requirement that any inter-particle distance 𝑟𝑖 𝑗

is less than or equal to the major axis 𝑟1𝑘 and the upper bound 𝑟UB = 𝑘 − 1 (Eq. (6.71)) on any 𝑟𝑖 𝑗 .

Consider any particle 𝑝𝑖 of the configuration with 𝑖 ∉ 1, 𝑘 . The distances 𝑟1𝑖 and 𝑟𝑖𝑘 must be at

most 𝑟1𝑘 . Fig. 6.16 illustrates this requirement with circles of radius 𝑟1𝑘 around 𝑝1 and 𝑝𝑘 .
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Figure 6.16: Schematic illustration of the upper bound on distance perpendicular to the 𝑥 axis (major
axis) due to the requirement of having the longest distance between 𝑝1 and 𝑝𝑘 . 𝑝1 at 𝑥1 = 0 and 𝑝𝑘
at 𝑥𝑘 , where the major axis length 𝑟1𝑘 = 𝑥𝑘 .

All 𝑝𝑖 must be within the overlap of the two circles, which yields an upper bound on the

perpendicular distance of 𝑝𝑖 to the major axis depending on 𝑟𝑖𝑘 . The upper bound corresponds to

the height of an equilateral triangle of side-length 𝑟1𝑘 , which is largest for 𝑟1𝑘 = 𝑟UB. Thus, the

variables are bound by

𝑣𝑦,2 ∈ [−1, 0]
√

3
2
𝑟𝑘,UB and 𝑣𝑦,𝑖 ∈ [−1, 1]

√
3

2
𝑟𝑘,UB for 𝑖 ∈ {3, 4, ..., 𝑘 − 1} (6.73)

𝑣𝑧,3 ∈ [−1, 0]
√

3
2
𝑟𝑘,UB and 𝑣𝑧,𝑖 ∈ [−1, 1]

√
3

2
𝑟𝑘,UB for 𝑖 ∈ {4, 5, ..., 𝑘 − 1}, (6.74)

where 𝑟UB = 𝑘 − 1 (Eq. (6.71)).

Note that the initial search domains for 𝑣𝑦,2 and 𝑣𝑧3 have an upper bound of zero, because of the

definition in Eq. (6.60).

In Fig. 6.17, the 𝑛2D,var-dimensional initial search domain box is shown by illustrating the initial

search domain of the individual variables and how those variables relate to the position of the

particles in the configuration.

Note that the initial search domain does not exclude configurations with inter-particle distances

𝑟𝑖 𝑗 < 𝑟𝑘,LB, where 𝑟LB is given by Eq. (6.25). In particular, it currently includes configurations
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Figure 6.17: Initial search domain for a configuration of 𝑘 particles in 2D. Note that the initial
domain width in 𝑥 direction is always 1 (see Eq. (6.72)) and that the 𝑥 position of particle 𝑝𝑖
determines the starting position in 𝑥 of the domain of particle 𝑝𝑖+1. Particle 𝑝1 is fixed to the origin,
particle 𝑝2 is bound by 𝑦2 ≤ 0, and particle 𝑝𝑘 has a fixed 𝑦 value of zero.

with 𝑟𝑖 𝑗 = 0, for which the Lennard-Jones potential is not defined. To address this, we define a

modified Lennard-Jones potential below without changing the optimization problem.

6.2.3.5 The Evaluation of the Objective Function

We first take a closer look at how to efficiently evaluate the objective function from Eq. (6.10), which

is composed of 𝑛pairs individual Lennard-Jones interactions

𝑈LJ
(
𝑟𝑖 𝑗

)
= 1 + 𝑟−12

𝑖 𝑗 − 2𝑟−6
𝑖 𝑗 (6.75)

as previously introduced in Eq. (6.8).

Eq. (6.66) yields the squared distances 𝑟2
𝑖 𝑗

. To avoid unnecessarily taking the square-root to

compute 𝑟𝑖 𝑗 , we implement a Lennard-Jones potential that takes the squared distance 𝑟sqr = 𝑟2
𝑖 𝑗

as

its argument with

𝑈LJ,sqr
(
𝑟sqr

)
= 1 + 𝑟−3

sqr
(
𝑟−3
sqr − 2

)
. (6.76)

where the squared distance 𝑟2
𝑖 𝑗

is evaluated from the optimization variables using Eq. (6.66).
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To deal with configurations with at least one 𝑟𝑖 𝑗 = 0, we remind ourselves that Sec. 6.2.2.4 showed

that all configurations with a single 𝑟𝑖 𝑗 below 𝑟𝑘,LB cannot be a minimum energy configuration.

This also means that any configuration with at least one 𝑈LJ(𝑟𝑖 𝑗 ) larger than 𝑈LJ(𝑟𝑘,LB) is not a

minimum energy configuration.

This leads to the idea [13] of modifying the objective function for 𝑟𝑖 𝑗 smaller than 𝑟𝑘,LB such

that it can be evaluated for 𝑟𝑖 𝑗 = 0 without changing the optimization problem. The only requirement

is that the modified Lennard-Jones potential 𝑈̃LJ,sqr satisfies

𝑈̃LJ,sqr
(
𝑟sqr

)
≥ 𝑈LJ,sqr

(
𝑟2
LB

)
∀𝑟sqr < 𝑟2

LB. (6.77)

Hence, we define the modified Lennard-Jones potential and compose it of the regular Lennard-

Jones potential for 𝑟sqr ≥ 𝑟2
LB and the tangential extension at 𝑟2

LB for 𝑟sqr ≤ 𝑟2
LB. The modified

Lennard-Jones potential [13] is then given by

𝑈̃LJ,sqr
(
𝑟sqr, 𝑟LB

)
=


𝑈LJ,sqr

(
𝑟sqr

)
𝑈′

LJ,sqr

(
𝑟2
LB

)
·
(
𝑟sqr − 𝑟2

LB

)
+𝑈LJ,sqr

(
𝑟2
LB

) for 𝑟sqr ≥ 𝑟2
LB

for 𝑟sqr ≤ 𝑟2
LB

(6.78)

where 𝑈′
LJ,sqr is the first derivative of 𝑈LJ,sqr with

𝑈′
LJ,sqr

(
𝑟sqr

)
= 6𝑟−4

sqr
(
1 − 𝑟−3

sqr
)
. (6.79)

The modified Lennard-Jones potential is shown in Fig. 6.18.

Next we address how to handle such a piecewise function when using Taylor Models.

6.2.3.6 Taylor Model Evaluation of Piecewise Defined Functions

Consider a continuous piecewise defined function

𝑓 (𝑥) =


𝑓L (𝑥) for 𝑥 ≤ 𝑥0,

𝑓R (𝑥) for 𝑥 ≥ 𝑥0,
(6.80)

with

𝑓L (𝑥0) = 𝑓R (𝑥0) , (6.81)
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Figure 6.18: Piecewise defined modified Lennard-Jones potential 𝑈̃LJ,sqr shown by the black curve.
The red curves shows the Lennard-Jones potential and the green line shows the tangent of this
Lennard-Jones potential of 𝑟sqr. The plot shown here is an example case with 𝑟2

LB = 0.92.

where 𝑓L (𝑥) and 𝑓R (𝑥) are 𝑚 + 1 times differentiable.

We want to find a Taylor Model

𝑓TM =

(
P 𝑓 , 𝜖 𝑓

)
(6.82)

that tightly captures 𝑓 (𝑥) over the domain D = [𝑎, 𝑏] where 𝑥0 ∈ D, and the subdomains of the

function pieces are DL = [𝑎, 𝑥0] and DR = [𝑥0, 𝑏].

In the first step, we prepare two Taylor Models, 𝑓L,TM and 𝑓R,TM, for the function pieces over

the respective subdomains DL and DR. Our goal is to find 𝑓TM =

(
P 𝑓 , 𝜖 𝑓

)
such that

𝑓TM ⊇


𝑓L,TM over DL,

𝑓R,TM over DR,
(6.83)

which is illustrated in Fig. 6.19.

We start by trying to find a good polynomial P 𝑓 that models 𝑓 (𝑥) over the domain D well.

Suppose we have polynomials that closely represent 𝑓L over DL and 𝑓R over DR. We denote those

polynomials by PL and PR, respectively. The following weighted average of PL and PR can be a
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𝑓TM

Figure 6.19: Taylor Model description of piecewise defined function. Each Taylor Model is
represented by three lines as previously done in Fig. 2.2. The central curve denotes the polynomial
part of the Taylor Model, while the curves above and below it indicate the bounds.

good choice for P 𝑓 , with

P 𝑓 =
𝑤LPL + 𝑤RPR

𝑤L + 𝑤R
, (6.84)

where the widths of the subdomains 𝑤L = width (DL) and 𝑤R = width (DR) are used as weights.

To perform the linear combination in Eq. (6.84), it is essential that the two polynomials, PL and

PR, are based on the same expansion point and scaling, which are carried to the resulting polynomial

P 𝑓 . A natural choice is to take the midpoint 𝑚 and the half width ℎ = 𝑤/2 of the domain D as the

polynomial expansion point and scaling for both polynomials. We note that the polynomial parts

in 𝑓L,TM and 𝑓R,TM in Eq. (6.83) do not necessarily have the same expansion point and scaling

discussed here.

Once P 𝑓 is found, a remainder bound 𝜖 𝑓 can be estimated as follows such that the requirement
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of Eq. (6.83) is satisfied.

𝜖 𝑓 = max
(��P 𝑓 − 𝑓L,TM

��
DL

,
��P 𝑓 − 𝑓R,TM

��
DR

)
, (6.85)

where the notation |·|D indicates a bound over D. As for P 𝑓 − 𝑓L,TM, the expansion point and

scaling of P 𝑓 and the polynomial part of 𝑓L,TM have to match, and the same applies to R. Typically,

either P 𝑓 or the polynomial part of 𝑓𝐿,TM has to be adjusted to have the same expansion point and

scaling. Since the latter case requires Taylor Model arithmetic for the adjustment, it would be more

economical to make the necessary adjustments to P 𝑓 .

6.2.3.7 The Verified Global Optimization Results for Configurations of 𝑘 Particles in 2D

The coordinate system is defined for the configuration of 𝑘 particles in 2D according to the

description in Sec. 6.2.3.1. The 𝑥 axis along the major axis (the largest inter-particle distance) of the

configuration is used to number the particles from 1 to 𝑘 according to their 𝑥 position such that

𝑥𝑖 ≤ 𝑥 𝑗 for 𝑖 < 𝑗 . (6.86)

The particle 𝑝1 is fixed to the origin with

®𝑝1 = (0, 0) (6.87)

and particle 𝑝𝑘 is fixed to the positive 𝑥 axis with

®𝑝𝑘 = (𝑥𝑘 ≥ 0, 0). (6.88)

The 𝑦 axis is orientated such that

𝑦2 ≤ 0. (6.89)

We describe a configuration of 𝑘 particles in 2D using the variables

𝑣𝑥,𝑖 = 𝑥𝑖+1 − 𝑥𝑖 ≥ 0 for 𝑖 ∈ {1, 2, ..., 𝑘 − 1} and (6.90)

𝑣𝑦,𝑖 = 𝑦𝑖 for 𝑖 ∈ {2, 3, ..., 𝑘 − 1}, (6.91)
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as previously defined in Sec. 6.2.3.1 in Eq. (6.61) and Eq. (6.62), respectively.

This yields a total number of

𝑛2D,var = 2𝑘 − 3 (6.92)

optimization variables as mentioned in Eq. (6.64).

The variable domains were determined in Eq. (6.72) and Eq. (6.73) in Sec. 6.2.3.4, with

𝑣𝑥,𝑖 ∈ [0, 1] for 𝑖 ∈ {1, 2, ..., 𝑘 − 1}, (6.93)

𝑣𝑦,2 ∈ [−1, 0]
√

3
2
𝑟𝑘,UB, and (6.94)

𝑣𝑦,𝑖 ∈ [−1, 1]
√

3
2
𝑟𝑘,UB for 𝑖 ∈ {3, 4, ..., 𝑘 − 1}, with 𝑟𝑘,UB = 𝑘 − 1, (6.95)

where 𝑟𝑘,UB is known from Eq. (6.71) in Sec. 6.2.3.2.

As discussed in Sec. 6.2.3.5, we use the modified Lennard-Jones potential from Eq. (6.78)

as the objective function without changing the optimization problem. The lower bound 𝑟𝑘,LB is

determined according to Sec. 6.2.2.4. The squared inter-particle distances – the argument of this

objective function – are calculated from 𝑣𝑥,𝑖 and 𝑣𝑦,𝑖 according to Eq. (6.66) with 𝑣𝑧,𝑖 = 0.

Following the center of mass requirement in the 𝑥 direction and the major axis requirement from

Sec. 6.2.3.1, we use the penalty functions from Eq. (6.55) and Eq. (6.69).

The verified global optimization is performed with the Taylor Model based verified optimizer

COSY-GO [63, 64] in its most advanced setting with QFB/LDB enabled (see Sec. 2.6). Unless

stated otherwise the optimization is performed with Taylor Models of order three. The threshold

length as a stopping condition is 𝑠min = 10−6 as mentioned earlier in Sec. 6.2.2.6.

We start from 𝑘 = 3. From Sec. 6.2.1.3, we know that the solution S★
3,2D as this trivial case is an

equilateral triangle, which can be represented by the particle positions

®𝑝1 = (0, 0) , ®𝑝2 =

(
1
2
,−

√
3

2

)
, ®𝑝3 = (1, 0) (6.96)

with

𝑈★
3,2𝐷 = 0. (6.97)
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We follow the procedure in Sec. 6.2.3.3 to determine 𝑈4,2D,UB. For this, we optimize the

position (𝑥4, 𝑦4) of a fourth particle 𝑝4 relative to S★
3,2D. The initial search domain for the fourth

particle according to Sec. 6.2.3.3 and Fig. 6.15 is

(𝑥4, 𝑦4) ∈ [−1, 2] ×
[
−
√

3
2

− 1, 1

]
. (6.98)

The optimization yields an upper bound

𝑈4,2D,UB ≤ 0.9270161931701777. (6.99)

Using this upper bound in Eq. (6.25) together with the equation for 𝑟min in Eq. (6.23) according

to the method in Sec. 6.2.2.4, we have

𝑟4,2D,LB = 𝑟min
(
𝑈4,2D,UB

)
≥ 0.8936896031162850. (6.100)

Starting with 𝑘 = 4, we iteratively perform the optimization for the 𝑘 particle case and use the

result to calculate 𝑈𝑘+1,2D,UB and 𝑟𝑘+1,2D,LB for the 𝑘 + 1 particle case.

The minimum energy configurations for four particles in 2D is shown in Fig. 6.20. The overall

potential of the minimum energy configurations is bound by

𝑈★
4,2D = 0.92657914153722

07. (6.101)

The illustration of S★
4,2D in Fig. 6.20 appears to be two connected equilateral triangles that

are very slightly squisched in the horizontal direction. Tab. 6.8 lists the values for the optimal

configuration S4,2D, i.e., the optimal distances between the individual particles, denoted by 𝑟★
𝑖 𝑗

,

which makes the differences between S★
2,4D and the structure of two connected equilateral triangles

apparent. Tab. 6.8 also lists the results for the optimization variables. We can observe that S★
4,2D

has two symmetry axis.

Compared to two equilateral triangles, S★
4,2D brings the outermost particles closer together. At

the same time the two particles in the middle (𝑝2 and 𝑝3) are slightly further apart vertically. This

horizontal ‘squishing’ of an equidistance structure to yield S★
4,2D could already be observed for

minimum energy configurations in 1D in Sec. 6.2.2.
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Figure 6.20: Minimum energy configurations of four particles in 2D, S★
4,2D. Interestingly, the

minimum energy configuration is not a square, an obvious symmetric object with fourfold symmetry,
but a rhombus with two almost equilateral triangles very slightly squished in the horizontal direction.

Table 6.8: Verified global optimization results for the minimum energy configurations of four
particles in 2D, S★

4,2D. The 𝑟★
𝑖 𝑗

yield the optimal distances between particles 𝑝𝑖 and 𝑝 𝑗 . 𝑣★𝑥,𝑖 is the
optimal 𝑥 distance between particles 𝑝𝑖 and 𝑝𝑖+1, and 𝑣★

𝑦,𝑖
is the optimal 𝑦 position of particle 𝑝𝑖.

𝑘 𝑖 𝑗 𝑟★
𝑖 𝑗

4 1 2 0.998012409
230

4 1 3 0.998012470
230

4 1 4 1.726251672
347

4 2 3 1.002083071
2798

4 2 4 0.998012470
230

4 3 4 0.998012409
230

𝑘 † 𝑖 𝑣★†,𝑖
4 x 1 0.86312581

67
4 x 2 0.0000000+7

−1
4 x 3 0.86312581

67
4 y 2 −0.50104139

54
4 y 3 0.50104154

39

The structure of the two equilateral triangles consists of five distances of 1 and one distance of
√

3. Thus, its potential energy is 𝑈LJ(
√︁
(3)) ≈ 0.930041152. Relative to this, all distances in S★

4,2D

are slightly smaller except for 𝑟23.

Even though a square is intuitively more symmetric than S★
4,2D, it has 𝑟14 and 𝑟23 which are

significantly larger than 1 compared to just the large distances 𝑟14 as the structure of two equilateral

triangles forming a rhombus.

As a preparation for the optimization of 𝑘 = 5 particles in 2D, we use the optimal configuration
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S★
4,2D from above and the method from Sec. 6.2.3.3 to determine

𝑈5,2D,UB ≤ 2.822464081988782 (6.102)

by optimizing the position (𝑥5, 𝑦5) of the fifth particle relative to S★
4,2D.

Using this result in Eq. (6.25) together with the equation for 𝑟min in Eq. (6.23), we have

𝑟5,2D,LB = 𝑟min
(
𝑈5,2D,UB

)
≥ 0.8484840561227015. (6.103)

As a result of the verified optimization, the overall potential was bound by

𝑈★
5,2D = 2.82197624549224

03. (6.104)

The illustration of S★
5,2D in Fig. 6.21 is indistinguishable from the formation of three equilateral

triangles. Only the distances between the individual particles and the values of the optimized

variables provided by Tab. 6.9 can quantify the difference to a structure of equilateral triangles.

Note that the values from Tab. 6.9 confirm the existence of the vertical symmetry axis through 𝑝3.

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

Figure 6.21: Minimum energy configuration of five particles in 2D, S★
5,2D.

The distance between the major axis particles 𝑝1 and 𝑝5, 𝑟15, is slightly below two. Particles 𝑝2

and 𝑝4 are pulled upwards, reducing their distance to each other and their distance to particles 𝑝1

and 𝑝5. Particle 𝑝3 is slightly above the major axis, almost preserving the ideal distance of 1 to the

particles 𝑝2 and 𝑝4.

To check that Taylor Models of order three are also the most time efficient calculation order for

this Lennard-Jones optimization problem, we compare the performance of COSY-GO for different

Taylor Model order for configuration of 𝑘 = 4 and 𝑘 = 5 particles in 2D in Tab. 6.10.
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Table 6.9: Verified global optimization results for the minimum energy configurations of five
particles in 2D, S★

5,2D. The 𝑟★
𝑖 𝑗

yield the optimal distance between particles 𝑝𝑖 and 𝑝 𝑗 . 𝑣★𝑥,𝑖 is the
optimal 𝑥 distance between particles 𝑝𝑖 and 𝑝𝑖+1 and 𝑣★

𝑦,𝑖
is the optimal 𝑦 position of particle 𝑝𝑖.

𝑘 𝑖 𝑗 𝑟★
𝑖 𝑗

5 1 2 0.998007235
6984

5 1 3 0.996784603
219

5 1 4 1.726795219
4649

5 1 5 1.993561899
133

5 2 3 1.000010593
180

5 2 4 0.996108166
7812

5 2 5 1.726795219
4649

5 3 4 1.000010593
180

5 3 5 0.996784603
219

5 4 5 0.998007235
6984

𝑘 † 𝑖 𝑣★†,𝑖
5 x 1 0.49872687

66
5 x 2 0.49805409

390
5 x 3 0.49805409

390
5 x 4 0.49872687

66
5 y 2 −0.86445917

35
5 y 3 0.00269885

63
5 y 4 −0.86445917

35

Table 6.10: Performance of verified global optimization using COSY-GO with QFB/LDB enabled
on minimum energy search of a 2D configuration of 𝑘 particles. The Taylor Model orders are
denoted by ‘O’.

Computation time [s] Steps
𝑘 𝑛2D,var O2 O3 O4 O5 O2 O3 O4 O5
4 5 1.344 0.924 1.327 1.512 5031 3197 2935 2809
5 7 167.9 91.19 108.2 150.4 463758 295767 276720 266745

As observed in the 1D examples in Sec. 6.2.2.6 and Sec. 6.2.2.7, order three turns out to be the

most time efficient calculation order. While the number of required steps is slightly improved with

higher order calculations, the overall computation time is larger.

For configurations of 𝑘 = 6 particles, the computation times on a single machine are very long.

Because COSY-GO is implemented in a way that easily allows for parallel computations using MPI,

we used parallel computations for the computationally time intensive cases. A critical aspect of the

parallel COSY-GO is the time between processor communication and the associated load balancing.

During the communication phase, the processors exchange information like redistributing their

remaining domain boxes, as well as sharing their most recent cutoff values. If the time between

communication is chosen to be too long, some processors will run idle without work while others
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still have a lot of boxes to evaluate. If the time is chosen too short, too much time is wasted on

communication.

The timing for communication depends on multiple factors. Assume each processor runs the

same repetitive code with different content and at some point, in the repetitive process, the code

checks if it is time to communicate. If this is the case, the processor gathers all the information it

wants to communicate and waits for all the other processors. The exchange of information happens

for all involved processors. The more processors there are, the larger the communication time

overhead.

To evaluate a good 𝑡com for order three calculations, we investigate the optimization for six

particles in 2D to determine S★
6,2D for various 𝑡com with 64 cores (2 Nodes) and 1024 cores (32

Nodes) on Cori at NERSC [72], and the performance results are shown in Tab. 6.11.

Table 6.11: Performance of verified global optimization using parallel COSY-GO with QFB/LDB
enabled for minimum energy search of a 2D configuration of six particles, S★

6,2D. The parallel
computations are run on Cori at NERSC using different communication timing 𝑡com.

64 cores (2 Nodes) 1024 cores (32 Nodes)
𝑡com [s] wall clock time [s] steps wall clock time [s] steps

1 805.17 107070040 242.49 107504313
2 754.04 107074758 215.63 107302518
4 890.24 106822057 250.40 107350076

Even though the computation power, i.e., the number of cores and nodes, was increased by a

factor of 16, the computation speed increased only by a factor of 3.5. While our studies on the

parallel computation performance of parallel COSY-GO are still limited, this comparison illustrates

some problems associated with communication. A good scheme of load balancing is important and

parallel COSY-GO takes this into account.

According to our analysis, 𝑡com = 2 s seems efficient, so we will use it for all following parallel

computations.

For 𝑘 = 6 particles in 2D, we use S★
5,2D from above and the method from Sec. 6.2.3.3 to

determine

𝑈6,2D,UB ≤ 5.643647992876073 (6.105)
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by optimizing the position (𝑥6, 𝑦6) of the sixth particle relative to S★
5,2D.

Using this result in Eq. (6.25) together with the equation for 𝑟min in Eq. (6.23), we have

𝑟6,2D,LB = 𝑟min
(
𝑈6,2D,UB

)
≥ 0.8164709262289850. (6.106)

As a result of the verified optimization, the overall potential was bound by

𝑈★
6,2D = 5.64172565099496

65. (6.107)

In Fig. 6.22, S★
6,2D is illustrated and Tab. 6.12 lists the distances between the particles and the

associated results for the optimized variables. Note that the values from Tab. 6.12 confirm the

symmetry axis through 𝑝2 and 𝑝4.

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

Figure 6.22: Minimum energy configuration of six particles in 2D, S★
6,2D.

The configuration shown in Fig. 6.22 is composed of four almost equilateral triangles. The

connecting lines between the particle positions in Fig. 6.22 show the shape look like an envelope

(upside down). In the configuration, there are nine distances close to 1, four distances close to
√

3

from the height of two stacked triangles, and two distances with a length of slightly less than 2. As
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Table 6.12: Verified global optimization results for the minimum energy configurations of six
particles in 2D, S★

6,2D. The 𝑟★
𝑖 𝑗

yield the optimal distance between particles 𝑝𝑖 and 𝑝 𝑗 . 𝑣★𝑥,𝑖 is the
optimal 𝑥 distance between particles 𝑝𝑖 and 𝑝𝑖+1 and 𝑣★

𝑦,𝑖
is the optimal 𝑦 position of particle 𝑝𝑖.

𝑘 𝑖 𝑗 𝑟★
𝑖 𝑗

𝑘 𝑖 𝑗 𝑟★
𝑖 𝑗

6 1 2 0.998217170
6865 6 2 6 1.726601007

599809
6 1 3 1.000179841

324 6 3 4 0.992883479
2910

6 1 4 0.996597164
6109 6 3 5 1.989450769

132
6 1 5 1.728422004

0806 6 3 6 1.711130509
29697

6 1 6 1.989451206
49694 6 4 5 0.996596889

384
6 2 3 1.726600611

205 6 4 6 0.992883425
2964

6 2 4 0.995908556
7753 6 5 6 1.000179734

430
6 2 5 0.998217526

6508

𝑘 † 𝑖 𝑣★†,𝑖
6 x 1 0.49591631

05
6 x 2 0.01435211

166
6 x 3 0.48631410

372
6 x 4 0.49754795

73
6 x 5 0.49532077

51
6 y 2 −0.86631644

65
6 y 3 0.86022432

11
6 y 4 −0.00540596

622
6 y 5 −0.86891684

706

we already saw previously, distances larger than 1 are shorter in S★
6,2D compared to a structure of

actual equilateral triangles at the cost of the unit distances deviating from 1 to either smaller or

larger values. The symmetry of the configuration shown in Fig. 6.22 is also captured by the values

in Tab. 6.12.

For the computation of S★
7,2D, we use S★

6,2D from above and the method from Sec. 6.2.3.3 to

determine

𝑈7,2D,UB ≤ 8.471671506833459 (6.108)

by optimizing the position (𝑥7, 𝑦7) of the seventh particle relative to S★
6,2D.

Using this result in Eq. (6.25) together with the equation for 𝑟min in Eq. (6.23), we have

𝑟7,2D,LB = 𝑟min
(
𝑈7,2D,UB

)
≥ 0.7966957780184697. (6.109)

As a result of the verified optimization, the overall potential was bound by

𝑈★
7,2D = 8.46513348231309

263. (6.110)

The optimization was computed in parallel on 256 cores (8 Nodes) on Cori at NERSC in 2043

seconds (wall clock time) and 852446890 steps.
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As Fig. 6.23 illustrates, the resulting minimum energy configuration S★
7,2D is highly symmetric.

It is an equilateral hexagon with a side-length of about 0.996434 and an additional particle at its

center.

(𝜅, 𝜈) ∈ {(5, 6), (6, 5)}

𝑝1

𝑝2

𝑝3

𝑝4

𝑝𝜅

𝑝𝜈

𝑝7

Figure 6.23: Minimum energy configuration of seven particles in 2D, S★
7,2D. The configuration is

represented by two equivalent numbering schemes.

This symmetry is further supported by the values for 𝑟★
𝑖 𝑗

in Tab. 6.13. The table also shows the

results for the optimized variables.

Due to the symmetry of the configuration with regard to the 𝑥 axis, the optimizer finds a

configuration for each of the two ambiguous numbering schemes. Specifically, particles 𝑝2 and

𝑝3 have the same 𝑥 position, just like particles 𝑝5 and 𝑝6. However, because 𝑦2 ≤ 0, there is only

an ambiguity in numbering the particles 𝑝𝜅 and 𝑝𝜈 from Fig. 6.23 either with (𝜅, 𝜈) = (5, 6) or

(𝜅, 𝜈) = (6, 5). The optimizer yields a result for each of those two numbering schemes. Since both

representations are equivalent, Tab. 6.13 lists the distances and variables for (𝜅, 𝜈) = (5, 6).
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Table 6.13: Verified global optimization results for the minimum energy configurations of seven
particles in 2D, S★

7,2D. The 𝑟★
𝑖 𝑗

yield the optimal distance between particles 𝑝𝑖 and 𝑝 𝑗 . 𝑣★𝑥,𝑖 is the
optimal 𝑥 distance between particles 𝑝𝑖 and 𝑝𝑖+1 and 𝑣★

𝑦,𝑖
is the optimal 𝑦 position of particle 𝑝𝑖.

The values below are for the configuration (𝜅, 𝜈) = (5, 6) from Fig. 6.23.

𝑘 𝑖 𝑗 𝑟★
𝑖 𝑗

𝑘 𝑖 𝑗 𝑟★
𝑖 𝑗

7 1 2 0.996434801
474 7 3 4 0.996434879

482
7 1 3 0.996434887

474 7 3 5 0.996434891
384

7 1 4 0.996435078
4369 7 3 6 1.992869671

8964
7 1 5 1.725875962

023 7 3 7 1.725875962
023

7 1 6 1.725876111
5023 7 4 5 0.996434879

482
7 1 7 1.992870155

68738 7 4 6 0.996434879
396

7 2 3 1.725875631
205 7 4 7 0.996435078

4369
7 2 4 0.996434879

396 7 5 6 1.725875631
205

7 2 5 1.992869671
8964 7 5 7 0.996434887

474
7 2 6 0.996435235

4384 7 6 7 0.996434801
474

7 2 7 1.725876111
5023

𝑘 † 𝑖 𝑣★†,𝑖
7 x 1 0.49821747

17
7 x 2 0.000000+18

−01
7 x 3 0.49821745

19
7 x 4 0.49821745

19
7 x 5 0.000000+18

−01
7 x 6 0.49821747

17
7 y 2 −0.86293760

82
7 y 3 0.86293782

60
7 y 4 0.000000+1

−1
7 y 5 0.86293782

60
7 y 6 −0.86293760

82

6.2.3.8 The Verified Global Optimization Results for Configurations of 𝑘 Particles in 3D

The setup for the optimization of configurations of 𝑘 particles in 3D requires only minor additional

definitions to the setup in 2D. However, to be able to read this study without having read the previous

studies, we quickly summarize the process.

As discussed in Sec. 6.2.3.1, we use the center of mass of the configuration and its major axis to

define the placement in the coordinate system. The 𝑥 axis along the major axis is used to number

the particles from 1 to 𝑘 according to their 𝑥 position such that

𝑥𝑖 ≤ 𝑥 𝑗 for 𝑖 < 𝑗 . (6.111)

The particle 𝑝1 is fixed to the origin with

®𝑝1 = (0, 0, 0) (6.112)

and particle 𝑝𝑘 is fixed to the positive 𝑥 axis with

®𝑝𝑘 = (𝑥𝑘 ≥ 0, 0, 0). (6.113)
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The 𝑦 axis and the 𝑧 axis are orientated such that

®𝑝2 = (𝑥2 ≥ 0, 𝑦2 ≤ 0, 𝑧2 = 0) and (6.114)

®𝑝3 = (𝑥3 ≥ 0, 𝑦3, 𝑧3 ≤ 0). (6.115)

We describe a configuration of 𝑘 particles in 3D by the variables 𝑣𝑥,𝑖, 𝑣𝑦,𝑖, and 𝑣𝑧,𝑖, with

𝑣𝑥,𝑖 = 𝑥𝑖+1 − 𝑥𝑖 ≥ 0 for 𝑖 ∈ {1, 2, ..., 𝑘 − 1}, (6.116)

𝑣𝑦,𝑖 = 𝑦𝑖 for 𝑖 ∈ {2, 3, ..., 𝑘 − 1}, and (6.117)

𝑣𝑧,𝑖 = 𝑧𝑖 for 𝑖 ∈ {3, 4, ..., 𝑘 − 1}, (6.118)

as previously defined in Sec. 6.2.3.1 in Eq. (6.61), Eq. (6.62), and Eq. (6.63).

This yields a total number of

𝑛3D,var = 3𝑘 − 6 (6.119)

optimization variables as mentioned in Eq. (6.65).

The variable domains were determined in Eq. (6.72), Eq. (6.73), and Eq. (6.74) in Sec. 6.2.3.4,

with

𝑣𝑥,𝑖 ∈ [0, 1] for 𝑖 ∈ {1, 2, ..., 𝑘 − 1}, (6.120)

𝑣𝑦,2, 𝑣𝑧,3 ∈ [−1, 0]
√

3
2
𝑟𝑘,UB, (6.121)

𝑣𝑦,𝑖 ∈ [−1, 1]
√

3
2
𝑟UB for 𝑖 ∈ {3, ..., 𝑘 − 1}, and (6.122)

𝑣𝑧,𝑖 ∈ [−1, 1]
√

3
2
𝑟UB for 𝑖 ∈ {4, ..., 𝑘 − 1} with 𝑟UB = 𝑘 − 1, (6.123)

where 𝑟UB is known from Eq. (6.71) in Sec. 6.2.3.2.

As discussed in Sec. 6.2.3.5, we use the modified Lennard-Jones potential from Eq. (6.78)

as the objective function without changing the optimization problem. The lower bound 𝑟𝑘,LB is

determined according to Sec. 6.2.2.4. The squared inter-particle distances – the argument of this

objective function – are calculated from 𝑣𝑥,𝑖, 𝑣𝑦,𝑖, and 𝑣𝑧,𝑖 according to Eq. (6.66).

Following the center of mass requirement in the 𝑥 direction and the major axis requirement from

Sec. 6.2.3.1, we use the penalty functions from Eq. (6.55) and Eq. (6.69).
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The verified global optimization is performed with the Taylor Model based verified optimizer

COSY-GO [63, 64] in its most advanced setting with QFB/LDB enabled (see Sec. 2.6). Unless

stated otherwise the optimization is performed with Taylor Models of order three. The threshold

length as a stopping condition is 𝑠min = 10−6 as mentioned earlier in Sec. 6.2.2.6.

We start from 𝑘 = 4. From Sec. 6.2.1.3, we know that the solution S★
4,3D as this trivial case is a

regular tetrahedron. We note that in literature, the optimization of four particles in 3D is often used

as a toy problem, which we discuss in the appendix A.1.

For the computation of 𝑈5,3D,UB, we follow the procedure in Sec. 6.2.3.3 and represent S★
4,3D

by the particle positions

®𝑝1 = (0, 0, 0) , ®𝑝2 =

(
1
2
,−

√
3

2
, 0

)
, ®𝑝3 =

(
1
2
,−

√
3

6
,−

√︂
2
3

)
, and ®𝑝4 = (1, 0, 0) (6.124)

with

𝑈★
4,3D = 0. (6.125)

Then, we optimize the position (𝑥5, 𝑦5) of a fifth particle 𝑝5 relative to S★
4,3D. The initial search

domain for 𝑝5 according to Sec. 6.2.3.3 and Fig. 6.15 is

®𝑝5 = (𝑥5, 𝑦5, 𝑧5) ∈ [−1, 2] ×
[
−1 −

√
3

2
, 1

]
×

[
−1 −

√︂
2
3
, 1

]
. (6.126)

The optimization yields an upper bound

𝑈5,3D,UB ≤ 0.8968457347060826 (6.127)

Using this upper bound in Eq. (6.25) together with the equation for 𝑟min in Eq. (6.23) according

to the method in Sec. 6.2.2.4, we have

𝑟5,3D,LB = 𝑟min
(
𝑈5,3D,UB

)
≥ 0.8948940496635427. (6.128)

As a result of the verified optimization, the overall potential was bound by

𝑈★
5,3D = 0.89614758429245

18. (6.129)
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The optimization was computed in parallel on 64 cores (2 Nodes) on Cori at NERSC in 74.28

seconds (wall clock time) and 2466118 steps.

As Fig. 6.24 illustrates, S★
5,3D is very similar to a regular double-tetrahedron. This is further

supported by the values of the optimization variables and 𝑟★
𝑖 𝑗

in Tab. 6.14.

xy xz yz

𝑝1

𝑝2

𝑝3/𝑝4

𝑝5 𝑝1 𝑝2

𝑝3

𝑝4

𝑝5 𝑝2

𝑝3

𝑝4

𝑝1/𝑝5

Figure 6.24: Minimum energy configuration of five particles in 3D, S★
5,3D. The configuration is

shown in 2D projections, the 𝑥𝑦 plane projection (left), the 𝑥𝑧 plane projection (middle), and the
𝑦𝑧 plane projection (right). The solution consists of a central equilateral triangle spanned by the
particles 𝑝2, 𝑝3, and 𝑝4 in the 𝑦𝑧 plane, and one particle each centered above and below that triangle.
In other words, it is similar to a double tetrahedron, which is slightly squished along the major axis
(the 𝑥 axis) increasing the side-length of the equilateral triangle in the middle to values slightly
larger than one. The inter-particle distances are shown in Tab. 6.14.

Table 6.14: Verified global optimization results for the minimum energy configurations of five
particles in 3D, S★

5,3D. The 𝑟★
𝑖 𝑗

yield the optimal distance between particles 𝑝𝑖 and 𝑝 𝑗 . 𝑣★𝑥,𝑖 is the
optimal 𝑥 distance between particles 𝑝𝑖 and 𝑝𝑖+1. 𝑣★

𝑦,𝑖
and 𝑣★

𝑧,𝑖
are the optimal 𝑦 and 𝑧 positions of

particle 𝑝𝑖.

𝑘 𝑖 𝑗 𝑟★
𝑖 𝑗

5 1 2 0.997907007
6764

5 1 3 0.997907159
6694

5 1 4 0.997907242
6694

5 1 5 1.626671944
396

5 2 3 1.001453817
231

5 2 4 1.001453817
231

5 2 5 0.997907172
6764

5 3 4 1.001453816
232

5 3 5 0.997907159
6694

5 4 5 0.997907077
6694

𝑘 † 𝑖 𝑣★†,𝑖
5 x 1 0.81333587

69
5 x 2 0.000000+11

−01
5 x 3 0.000000+11

−01
5 x 4 0.81333587

69
5 y 2 −0.57818937

55
5 y 3 0.28909490

56
5 y 4 0.28909490

56
5 z 3 −0.50072661

91
5 z 4 0.50072691

61
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Even though particles 𝑝2, 𝑝3 and 𝑝4 all seem to have the same 𝑥 coordinate, there is no

ambiguous numbering scheme due to the definition of the coordinate system with 𝑦2 ≤ 0, 𝑧2 = 0

and 𝑧3 ≤ 0.

The regular double tetrahedron consists of nine unit distances and the major axis of length

2
√︁

2/3. S★
5,3D is a slightly ‘squished’ version of the regular double tetrahedron along the major

axis. The major axis and the distances in the direction of the major axis are shortened. Only the

three inter-particle distances between 𝑝2, 𝑝3, and 𝑝4 are slightly longer than unit length and form

an equilateral triangle.

6.2.4 Summary

This section illustrated the many critical aspects of verified global optimization and the capabilities

of COSY-GO in its most advanced setting QFB/LDB. Despite the high dimensionality, the strong

interdependence, and nonlinearity of the optimization problem, COSY-GO was able to rigorously

determine the minimum energy configurations.

In Tab. 6.15, we summarize the results for the global minimum of Lennard-Jones configurations

in 2D and 3D and also provide the corresponding values for 𝑈
𝑘,lit,𝑛★dim

using Eq. (6.12) for easier

comparison with literature.

Table 6.15: Summary of verified global optimization results on the minimum energy of configurations
in 2D and 3D.

𝑛dim 𝑘 𝑛pairs 𝑈★
𝑘,𝑛dim

𝑈★
𝑘,lit,𝑛dim

= 𝑈★
𝑘,𝑛dim

− 𝑛pairs

2 4 6 0.92657914153722
07 −5.07342085846278

93
2 5 10 2.82197624549224

03 −7.17802375450776
97

2 6 15 5.64172565099496
65 −9.35827434900504

35
2 7 21 8.46513348231309

263 −12.53486651768691
737

3 5 10 0.89614758429245
18 −9.10385241570755

82
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6.3 Verified Stability Analysis of Dynamical Systems

Verified calculations are particularly important for the stability analysis of dynamical systems.

With a verified upper bound on the rate of divergence, a system’s long term stability can be rigorously

estimated. Both of the previously discussed applications in Chapter 4 and Chapter 5 will benefit to

different degrees from such verified stability estimates.

6.3.1 The Potential Implications for the Bounded Motion Problem

For the bounded motion orbits under zonal perturbation in the Earth’s gravitational field (see

Chapter 4), a stability estimate is the maximum rate at which two bounded orbits drift apart. Below

we want to list aspects to consider for the calculation of such a verified upper bound on the rate of

divergence.

The bounded motion conditions from Sec. 4.2.5 require that the average nodal period 𝑇𝑑 and the

average drift of the ascending node ΔΩ of two bounded orbits are the same. In other words, two

orbits drift apart if those two averaged quantities are not the same for the two orbits. Additionally,

each of the orbits might be diverging on its own by slowly increasing or decreasing its distance from

the Earth. A verified upper bound on each of those diverging factors must be determined to combine

them to an overall verified upper bound on the rate at which the two bounded orbits drift apart.

An upper bound on the radial drift rate of the bounded orbits moving apart is determined by

the maximum difference between the individual radial drifts of each of the bounded orbits. The

normal form defect of the radial phase space can be used as a measure for this radial drift. However,

both the maximum and the minimum normal form defect of each orbit are relevant to determine the

worst-case scenario of one of the orbits decreasing its amplitude and one of the orbits increasing its

amplitude.

The longitudinal drift rate of the bounded orbits moving apart is determined by the difference in

the average revolution frequency of the orbital planes around the symmetry axis. The revolution

frequency is proportional to the drift of the ascending node ΔΩ per nodal period 𝑇𝑑 . Since both of
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these quantities are oscillating at the same rate, the average revolution frequency can be calculated

as the ratio of the average drift of the ascending node ΔΩ and the average nodal period 𝑇𝑑 .

Even if the orbital planes of the two bounded orbits are not radially or longitudinally drifting

apart, the satellites on those orbits might still be drifting apart due to different average nodal periods,

which constitutes the third drift factor.

These three factors have to be taken into account and rigorously estimated to calculate an overall

maximum drift rate. The combination of the individual factors is not trivial since they are not

independent of each other, e.g., the individual radial drifts of the orbits have nonlinear influences

on the bounded motion quantities ΔΩ and 𝑇𝑑 . Verified global optimization of the overall drift

rate is required to determine the maximum rate of divergence for any possible combination of the

individual radial drift rates.

Given that the overall maximum drift rate is formally defined, we need to determine verified

versions of the involved quantities. Accordingly, the starting point of the rigorous calculation of the

maximum drift rate is a rigorous map of the system.

The map is based on the equations of motion of the system, which include the zonal coefficients

of the Earth’s gravitational potential based on measurements. To be rigorous it has to be decided if

these coefficients are assumed to be exact or if the uncertainty about these coefficients is considered

in the calculation. Given that the approach from Chapter 4 considers the zonal problem, ignoring

sectional and tesseral terms, it seems reasonable to consider an idealized system where these

coefficients are assumed to be exact.

In the next step, the verified integration of the equations of motion is required to calculate a

verified map representation of the system [22, 28]. In our approach (see Chapter 4), we express

the vertical momentum component 𝑣𝑧 in terms of the other variables and system parameters. This

operation includes the calculation of an inverse, which requires special methods to be performed

rigorously [41, 20]. For the projection of the transfer map onto the Poincaré surface representing a

generalized ascending node state, another rigorous computation of an inverse is required [41, 20].

Additionally, every step of the normal form based averaging procedure from Sec. 4.3.4 for the
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determination of the averaged quantities ΔΩ and 𝑇𝑑 has to be performed rigorously. The approach

then calls for another inversion to calculate the constants of motion H𝑧 and 𝐸 as a function of the

phase space variables such that the averaged bounded motion quantities match between any two

orbits in the phase space.

If all those procedures are performed rigorously, one can calculate rigorous bounds on the

normal form defect of the system, which can then be used together with the rigorous estimations of

the averaged quantities ΔΩ and 𝑇𝑑 to calculate the rigorous overall rate of divergences.

In summary, much effort is required to establish a verified upper bound on the maximum rate at

which bounded orbits of the zonal problem drift apart. However, the practical implications of such

an estimate are limited since the approach does not consider the fully perturbed system. Accordingly,

we want to focus our attention on the application of a rigorous stability analysis for the system

discussed in Chapter 5.

6.3.2 The Implications for the Stability Analysis of the Muon 𝑔-2 Storage Ring

A verified stability estimate of the Muon 𝑔-2 Storage Ring can be obtained from the verified

maximum rate at which particles escape the storage region of the storage ring. A measure of this

rate of divergence is the normal form defect.

In Chapter 5, we saw that the size of the normal form defect that a particle encounters correlates

with its likelihood of getting lost. As mentioned before and discussed in [85], the number of

lost particles is very important for this high precision experiment, because the losses introduce a

systematic bias for the average polarization of the remaining particles, which influences the overall

result of the measurement. Below we want to analyze the aspects to consider for the calculation of

such a verified upper bound on the rate of divergence in form of the normal form defect using Taylor

Model based verified global optimization.

For the fully verified normal form defect analysis, we require a verified phase space map of the

storage ring. As already mentioned before, there are many intricacies to consider for a fully rigorous

map calculation. A major challenge regarding the verified calculation of the storage ring map is
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the verified representation of every storage ring component, including all its perturbations, e.g.,

perturbations from ESQ fringe fields and imperfection in the magnetic field. Because further work

is required to generate such a fully verified map of the Muon 𝑔-2 Storage Ring, we will proceed

with the nonverified tenth order map from Chapter 5 with an ESQ voltage of 18.3 kV. Assuming

this map captures all of the relevant dynamics, the difference between using a verified map and a

nonverified map is very small. To assess whether our computation order is high enough to capture

the relevant dynamics, we estimate inaccuracies in the map by computing maps of various orders

and showing that these inaccuracies – the main numerical error which is not based on measurement

errors – are sufficiently small and will not affect the analysis result in a meaningful way when using

the storage ring map of order ten.

For comparison, we will additionally analyze a storage ring map that considers an ESQ voltage

of 17.5 kV instead of 18.3 kV. The tunes of particles under the influence of an ESQ voltage of

17.5 kV are further away from the vertical 1/3 resonance tune. Accordingly, we expect no period-3

fixed point structures with their unstable fixed points and therefore less diverging behavior for this

map compared to the 18.3 kV map.

The goal is to rigorously analyze the stability of the entire five dimensional storage phase

space (𝑥, 𝑎, 𝑦, 𝑏, 𝛿𝑝) of the storage ring maps using verified global optimization of the normal form

defect. In Sec. 6.3.3, we specify the normal form defect function as the objective function of the

optimization problem. To be able to distinguish the diverging behavior in different areas of the

storage region, we divide the five dimensional space into partitions. Each of those partitions is

then used as the search domain for the verified global optimizer to find the maximum normal form

defect in it. In Sec. 6.3.4, we present the onion layer approach [29, 13], which divides the storage

region according to the dynamics in the phase space. Next, we illustrate the complexity and strong

nonlinearity of the normal form defect in multiple such onion layers and how it changes for different

phase space regions and ESQ voltages (see Sec. 6.3.5). In Sec. 6.3.6, the results of the verified

global optimization for the two maps with the different voltages are presented and compared to each

other and the results of a nonverified analysis.
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6.3.3 The Normal Form Defect as the Objective Function for the Optimization

In Sec. 2.4, the normal form defect for the propagation of a state ®𝑧 with a map M was introduced

as the difference between the normal form radius of the mapped state M(®𝑧) and the normal form

radius of the original state ®𝑧. If the motion occurs in multiple phase space dimensions, there is some

ambiguity to the term ‘normal form radius’ and the associated normal form defect.

From the definition and algorithms of normal form transformations discussed in Sec. 2.3 and

Sec. 2.4, it follows that there is a normal form radius for each normal form phase space. Each of

these radii, yields the radius of the circular motion in this particular normal form phase space with

𝑟NF,𝑖 (®𝑧0) =
√︃(

𝑞NF,i (®𝑧0)
)2 + (

𝑝NF,i (®𝑧0)
)2
. (6.130)

Accordingly, as defined in Sec. 2.4, there is a normal form defect defined for each of those

normal form radii, with

𝑑NF,𝑖 (®𝑧0) = 𝑟NF,𝑖 (M (®𝑧0)) − 𝑟NF,𝑖 (®𝑧0) . (6.131)

Additionally, we define the (overall) normal form radius of the motion as the Euclidean distance

𝑟NF (®𝑧0) =
√︄∑︁

𝑖

𝑟2
NF,𝑖 (®𝑧0). (6.132)

This definition of the (overall) normal form radius corresponds to the following definition for the

(overall) normal form defect

𝑑NF (®𝑧0) = 𝑟NF (M (®𝑧0)) − 𝑟NF (®𝑧0) . (6.133)

Unless stated otherwise, we will be using and referring to the (overall) normal form radius and

the (overall) normal form defect.

6.3.4 The Search Domain in the Form of Onion Layers

The onion layer approach describes a way to partition the phase space regions and determine the

associated variables for the verified global optimization. For the partitioning, it is important to
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consider the dynamics of the system. In Chapter 5, we saw that the main characteristics of the

phase space motion in the storage ring are the oscillation amplitudes and the momentum offset 𝛿𝑝.

Accordingly, we want to calculate the verified stability estimates on the rate of divergence based on

partitions categorized by those criteria.

While the partitioning according to the momentum offset 𝛿𝑝 is straightforward, defining the

partitions of different phase space amplitudes is not, because the phase space curve of a particle

with a certain amplitude forms a nonlinearly distorted elliptical shape in the original phase space.

The onion layer approach (see Fig. 6.25) partitions the phase space along those nonlinearly distorted

elliptical phase space curves using the normal form transformation.
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Figure 6.25: The left and the middle plot show the representation of an onion layer (black region) in
regular phase space coordinates. The thickness of the onion layer is determined by the range in
𝑟NF,1 and 𝑟NF,2 as well as the range in 𝛿𝑝. For this particular example, we set 𝛿𝑝 to a fixed value of
𝛿𝑝 = 0% instead of a range. The range in the normal form radii is given by 𝑟NF,1 ∈ [0.15, 0.25] and
𝑟NF,2 ∈ [0.7, 0.75]. Note that the thickness in 𝑟NF,1 is twice the thickness in 𝑟NF,2. Accordingly,
the projection of the onion layer into the radial phase space (𝑥, 𝑎) appears roughly twice as thick as
the projection into the vertical phase space (𝑦, 𝑏).

As illustrated in Fig. 6.25, the normal form coordinates allow us to partition by amplitude. They

are our best approximation of mapping the orbital phase space behavior onto circles. Accordingly, we

can use the normal form description of the motion to define the onion layers for the global optimization.

Specifically, we chose the normal form radii 𝑟NF,1 and 𝑟NF,2 as well as the corresponding normal

form phase space angles 𝜙NF,1 and 𝜙NF,2 as the optimization variables. Additionally, the momentum

offset 𝛿𝑝 is also considered an optimization variable.

The normal form phase space variables (𝑞NF,1, 𝑝NF,1) and (𝑞NF,2, 𝑝NF,2) are expressed in
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terms of the polar optimization variables with

©­­«
𝑞NF,1

𝑝NF,1

ª®®¬ = 𝑟NF,1
©­­«
cos

(
𝜙NF,1

)
sin

(
𝜙NF,1

) ª®®¬ and
©­­«
𝑞NF,2

𝑝NF,2

ª®®¬ = 𝑟NF,2
©­­«
cos

(
𝜙NF,2

)
sin

(
𝜙NF,2

) ª®®¬ . (6.134)

The inverse normal form transformation A−1 is then used as a vehicle to express the relevant

phase space regions in original phase space (𝑥, 𝑎, 𝑦, 𝑏) in terms of the optimization variables

(𝑟NF,1, 𝜙NF,1, 𝑟NF,2, 𝜙NF,2, 𝛿𝑝).

Moving along the angles 𝜙NF,1 and 𝜙NF,2 will approximately move along the phase space curve

in the original coordinates. Accordingly, the search domain in those optimization variables is always

[−𝜋, 𝜋]. The domain on the normal form radii and the momentum offset determines the thickness

of the onion layer, as illustrated in Fig. 6.25, and is set to 0.04 for normal form radii and to 0.04% in

the momentum offset space.

6.3.5 The Complexity and Nonlinearity of the Normal Form Defect Function

In Chapter 5, we analyzed the normal form defect that individual particles encounter during

stroboscopic tracking. In other words, we only probed individual phase space points of a particle’s

orbit for its normal form defect. We found that muons that encounter phase space regions with

larger normal form defects are more likely to get lost (see Fig. 5.12). However, the probing only

yields an incomplete picture of the normal form defect that a particle can potentially encounter.

Fig. 6.26 illustrates how much the normal form defect can vary for fixed normal form amplitudes

that approximately represent the normal form defect landscape along the phase space curve of a

single particle.

Fig. 6.26 illustrates the normal form defect 𝑑NF,1 of an onion layer of zero thickness, which is

given by a single point in the 3D onion layer thickness space of 𝑟NF,1, 𝑟NF,2, and 𝛿𝑝. The landscape

is characterized by highly nonlinear behavior with many local minima and maxima, which are

extreme points of very steep valleys and hills. Accordingly, the stroboscopic normal form defect

probing while tracking can significantly underestimate the maximum normal form defect of an orbit
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Figure 6.26: Normal form defect landscape of the radial phase space in 𝜙NF,1 and 𝜙NF,2 for fixed
normal form amplitudes of 𝑟NF,1 = 0.4 and 𝑟NF,2 = 0.4, and with 𝛿𝑝 = 0%. The underlying map
considers an ESQ voltage of 18.3 kV.

in a certain phase space region, which motivates a rigorous analysis of the normal form defect for

those phase space regions.

In Fig. 6.27 and Fig. 6.28, the normal form defect landscapes in the vertical and radial direction

are shown for maps considering an ESQ voltage of 18.3 kV and 17.5 kV, respectively. The different

normal form defect landscapes emphasize how much the landscapes change in shape and magnitude

for different normal form phase space points.
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Figure 6.27: The normal form defect landscape of the radial (left side) and vertical (right side) phase
space for multiple onion layers of zero thickness, which are characterized by (𝑟NF,1, 𝑟NF,2, 𝛿𝑝). The
top row corresponds to (0.1, 0.2, 0.24%), the middle row corresponds to (0.2, 0.05, 0.24%), and the
bottom row corresponds to (0.56, 0.72, 0.04%). The underlying map considers an ESQ voltage of
18.3 kV.
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Figure 6.28: The normal form defect landscape of the radial (left side) and vertical (right side) phase
space for multiple onion layers of zero thickness, which are characterized by (𝑟NF,1, 𝑟NF,2, 𝛿𝑝). The
top row corresponds to (0.1, 0.2, 0.24%), the middle row corresponds to (0.2, 0.05, 0.24%), and the
bottom row corresponds to (0.56, 0.72, 0.04%). The underlying map considers an ESQ voltage of
17.5 kV.
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Comparing the normal form defect of the radial and vertical phase space clearly shows the

different orders of magnitude at play for those particular onion layers of zero thickness. The normal

form defect of the vertical phase space is about 1.5 orders of magnitude larger than the normal form

defect of the radial phase space.

The comparison between Fig. 6.27 and Fig. 6.28 shows something rather fascinating. Even

though the normal form defect landscapes change so drastically for different phase space positions,

they are very similar for the two maps at the same normal form positions. The magnitude of the

normal form defect is usually higher for the 18.3 kV, but the example in the bottom row shows that

there are also normal form phase space regions where it is the other way around.

The top row and middle row of Fig. 6.27 and Fig. 6.28 show phase space points with the same

momentum offset and roughly the same overall normal form radius. While the magnitude of the

normal form defects in the radial and vertical direction is roughly the same, the shape of the normal

form defect landscape differs tremendously. For the global optimization, this means that the objective

function looks vastly different for each of the onion layer search domains.

6.3.6 The Results of the Verified Global Optimization of the Normal Form Defect

As mentioned in Sec. 6.3.4, we partition the search space into onion layers of the size 0.04 × 2𝜋 ×

0.04× 2𝜋 × 0.04% in (𝑟NF,1, 𝜙NF,1, 𝑟NF,2, 𝜙NF,2, 𝛿𝑝). Based on the 𝛿𝑝 rage of the realistic particle

distribution in Chapter 5, we investigate the 𝛿𝑝 space from −0.22% to +0.42% in 16 partitions of

size 0.04%.

For each of those 16 pieces, we additionally partition the (𝑟NF,1, 𝑟NF,2) space into boxes of size

0.04×0.04. To determine which of those boxes represent phase space behavior within the collimator

region, we probe the bottom left corner of each box, namely, the point with the lowest normal

form amplitudes (𝑟NF,1,min, 𝑟NF,2,min) and check if those lowest amplitudes are already outside the

collimator region in the original phase space coordinates. For the probing, we take 30 × 30 × 2

testing points in 𝜙NF,1, 𝜙NF,2, 𝛿𝑝 and map them back into the original phase space (𝑥, 𝑎, 𝑦, 𝑏) using

the inverse normal form transformation A−1. The two values for 𝛿𝑝 are the maximum and minimum
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momentum offset of the onion layer. A box is only analyzed if all of the 1800 probing points satisfy√︁
𝑥2 + 𝑦2 < 0.045 mm.

To benchmark the verified analysis, we also present a nonverified normal form defect analysis

of the same onion layers. The nonverified analysis is based on probes of the top right corner of

each box, namely, the point with the largest normal form amplitudes (𝑟NF,1,max, 𝑟NF,2,max). The

30 × 30 × 2 probing points in 𝜙NF,1, 𝜙NF,2, 𝛿𝑝 are chosen the same way as above. This probing

approach is used in the verified analysis as a method to obtain a good initial cutoff value for the

verified global optimizer. Accordingly, the nonverified analysis provides a lower bound on the

maximum normal form defect, while the verified analysis constitutes an upper bound.

The results on the following pages (see Fig. 6.29 to Fig. 6.32) are ordered such that the nonverified

probing analysis can be compared to the verified global optimization by switching back and forth

between pages. Fig. 6.29 and Fig. 6.30 respectively show the nonverified and verified analysis for

the map with an ESQ voltage of 17.5 kV, while Fig. 6.31 and Fig. 6.32 respectively show the verified

and the nonverified analysis for the map with an ESQ voltage of 18.3 kV. Additionally, the two

verified normal form defect analyses in Fig. 6.30 and Fig. 6.31 for the map with an ESQ voltage of

17.5 kV and 18.3 kV, respectively, can be compared the same way.

The color scheme in Fig. 6.29 to Fig. 6.32 indicates the maximum normal form defect in each of

the onion layers. Given the 0.04 × 0.04 box size of the onion layers in normal form space and the

maximum normal form defect in the onion layer 𝑑NF,max, we can calculate the minimum number of

turns 𝑁 required to cross through each onion layer as a Nekhoroshev-type stability estimate with

𝑁 =
0.04

𝑑NF,max
. (6.135)

The inner white onion layers have a maximum normal form defect below 10−5. Accordingly,

even in the worst case, it takes at least 4000 turns to cross the respective onion layer. It takes at least

400 turns to cross a yellow onion layer by the same measure and at least 40 turns to cross an orange

onion layer. Red onion layers take at least 12 turns to cross, and black onion layers can, in the worst

case, be crossed in fewer turns.
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Figure 6.29: Nonverified normal form defect for the phase space storage regions of the Muon
𝑔-2 Storage Ring simulation with an ESQ voltage of 17.5 kV. The individual plots show different
momentum ranges, clarified by the label at the top of each graph. The color scheme corresponds to
the normal form defect of the specific onion layer. The white boxes for lower normal form radii
indicate a normal form defect below 10−5. The yellow boxes denote normal form defects up to 10−4.
The orange boxes correspond to normal form defects up to 10−3. The red boxes denote normal form
defects up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion
layer corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.30: Verified normal form defect for the phase space storage regions of the Muon 𝑔-2
Storage Ring simulation with an ESQ voltage of 17.5 kV. The individual plots show different
momentum ranges, clarified by the label at the top of each graph. The color scheme corresponds to
the normal form defect of the specific onion layer. The white boxes for lower normal form radii
indicate a normal form defect below 10−5. The yellow boxes denote normal form defects up to 10−4.
The orange boxes correspond to normal form defects up to 10−3. The red boxes denote normal form
defects up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion
layer corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.31: Verified normal form defect for the phase space storage regions of the Muon 𝑔-2
Storage ring simulation with an ESQ voltage of 18.3 kV. The individual plots show different
momentum ranges, clarified by the label at the top of each graph. The color scheme corresponds to
the normal form defect of the specific onion layer. The white boxes for lower normal form radii
indicate a normal form defect below 10−5. The yellow boxes denote normal form defects up to 10−4.
The orange boxes correspond to normal form defects up to 10−3. The red boxes denote normal form
defects up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion
layer corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.32: Nonverified normal form defect for the phase space storage regions of the Muon
𝑔-2 Storage Ring simulation with an ESQ voltage of 18.3 kV. The individual plots show different
momentum ranges which are clarified by the label at the top of each graph. The color scheme
corresponds to the normal form defect of the specific onion layer. The white boxes for lower normal
form radii indicate a normal form defect below 10−5. The yellow boxes denote normal form defects
up to 10−4. The orange boxes correspond to normal form defects up to 10−3. The red boxes denote
normal form defects up to 10−2.5, and the black boxes indicate normal form defects larger than that.
Each onion layer corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04%
in 𝛿𝑝.
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6.3.7 Comparison of Verified Nekhoroshev-type Stability Estimates to Actual Rates of
Divergence in Example Island Structure

The minimum turn numbers of the verified Nekhoroshev-type stability estimates are a verified

underestimation of the minimum number of turns it takes particles to cross a respective onion layer.

The estimation assumes that the maximum normal form defect of the onion layer is encountered in

every turn.

To put this underestimation in perspective we take a look at the island patterns from Fig. 5.30 in

the storage ring configuration with an ESQ voltage of 18.3 kV. The particles tracked in Fig. 5.30 all

have a momentum offset of 𝛿𝑝 = 0.126% and only differ in their vertical amplitude – the radial

amplitude is constant with 𝑟NF,1 ≈ 0. We number the five islands from smallest (1) to largest (5).

In Tab. 6.16, the minimal and maximal normal form radii of each island are listed together with

the number of turns it takes the islands to get from their lowest normal form amplitude to the largest.

The number of turns is directly related to the period at which the vertical amplitude of the particles

is modulated due to the island structure. The normal form radius range divided by the number of

turns yields the average normal form defect of the particle.

Table 6.16: Analysis of the normal form radius range of the five island particles in Fig. 5.30 and the
number of turns it requires to get from the lower end of the range to the upper end. The islands are
numbered from smallest (1) to largest (5).

island 𝑟NF,2,min 𝑟NF,2,max turns avg. 𝑑NF
(1) 0.925 0.932 244 2.8E-5
(2) 0.872 0.983 254 4.4E-4
(3) 0.820 1.028 293 7.1E-4
(4) 0.793 1.051 347 7.4E-4
(5) 0.773 1.066 666 4.4E-4

For the small islands close to the period-3 fixed points, the number of turns required to get from

the lowest to the highest normal form amplitude increases only slightly with the size of the island.

As a consequence, the average normal form defect increases. For the very large islands, the relation

is quite the opposite. The range gets only slightly larger, but the period of modulation increases

rapidly such that the average normal form defect even decreases again.
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Tab. 6.17 lists the number of turns it takes the various island particles to cross the onion layers

[0.84, 0.88], [0.88, 0.92], [0.92, 0.96], and [0.96, 1] in 𝑟NF,2 together with the predicted minimum

number of turns required to cross the onion layer provided by the verified analysis.

Table 6.17: Number of turns required by the islands from Fig. 5.30 to cross the given onion layers
in 𝑟NF,2 direction. The islands are numbered from smallest (1) to largest (5). Additionally, the
minimum number of turns required to cross the onion layer determined by the verified analysis is
shown.

[0.84, 0.88] [0.88, 0.92] [0.92, 0.96] [0.96, 1.00]
island (1) - - - -
island (2) - 81 58 -
island (3) 65 40 32 30
island (4) 59 36 27 23
island (5) 104 36 25 21

Verified Analysis >15.7 >8.3 >4.5 >2.5

The dynamics in a single onion layer like [0, 0.04] × [0.92, 0.96] × [0.10%, 0.14%] can vary

significantly. Some orbits remain in an onion layer indefinitely, like the smallest island (1). In

contrast, others are transported through it with sometimes less than a factor ten between the worst

case divergence predicted by the verified normal form defect analysis and the actual rate of divergence.

The analysis of the largest island (5) is particularly interesting, because the average rate of divergence

varies quite significantly over the normal form radius range.

In short, it is possible to relate the quantitative aspects of the normal form defect analysis to the

actual dynamics within the onion layer, and in particular, the potentially worst case dynamics.

6.3.8 Relevance of the ESQ Voltage on the Stability

The global normal form defect analysis is also very powerful for the qualitative stability analysis

of different storage ring configurations. A comparison of Fig. 6.30 and Fig. 6.31 yields obvious

differences between the verified normal form defect of the map with an ESQ voltage of 17.5 kV

and the map with an ESQ voltage of 18.3 kV. There are clearly more diverging regions with a

larger maximum normal form defect for 18.3 kV in Fig. 6.31 than there are for the 17.5 kV map in

Fig. 6.30.
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Note that the individual onion layers of the 18.3 kV map in Fig. 6.31 and the 17.5 kV map in

Fig. 6.30 do not necessarily correspond to the same phase space regions in the (𝑥, 𝑎, 𝑦, 𝑏) phase

space. The normal form transformation of each map is slightly different such that the representation

of the relevant (𝑥, 𝑎, 𝑦, 𝑏) phase space in normal form space can be different for the two maps.

However, each of the 16 plots show the exact same viable (𝑥, 𝑎, 𝑦, 𝑏) phase space in the normal

form coordinates just with a slightly different scaling in 𝑟NF,1 and 𝑟NF,2. Accordingly, comparing

the color distributions for each of the 16 plots between the two maps is a valid measure to compare

the stability of the two storage ring configurations.

As previously mentioned, this more diverging behavior of the map with an ESQ voltage of

18.3kV compared to the map with an ESQ voltage of 17.5kV seen in Fig. 6.31 compared to Fig. 6.30,

respectively, is very likely linked to the closeness of low-order resonances and their associated fixed

point structures and the resulting amplitude modulations. Specifically, we saw in Chapter 5 that

the vertical 1/3-resonance tune and its associated period-3 fixed point structures for the simulation

using an ESQ voltage of 18.3 kV were a major loss and instability factor.

To illustrate the difference in the closeness to low-order resonances, Fig. 6.33 to Fig. 6.35 show

the tune shifts of the 17.5 kV map. The tune shifts are of similar magnitude and complexity as the

tune shifts of the 18.3 kV map previously shown in Chapter 5 in Fig. 5.7 to Fig. 5.9. However, the

absolute values of the tunes for 17.5 kV are in lower vertical tune ranges and therefore further away

from the vertical low-order 1/3 resonance tune.

Even under the combined influence of both the radial and vertical amplitude, as well as the

momentum offset, none of the tunes of the 17.5 kV map cross the vertical 1/3 resonance tune. In

contrast, almost for every momentum offset there is a combination of radial and vertical amplitudes

that crosses the vertical 1/3 resonance tune for the 18.3 kV map. This suggests that there are no

period-3 fixed point structures within the storage region, which would explain the less diverging

onion layer picture in Fig. 6.30 compared to Fig. 6.31.

In summary, both the tune analysis as well as the normal form defect analysis could show that

the map with an ESQ voltage of 18.3 kV yields more potential diverging behavior and instability.
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Figure 6.33: Behavior of combined amplitude dependent tune shifts at multiple momentum offsets
for an ESQ voltage of 17.5 kV.

221



0.935

0.94

0.945

0.95

0.955

0.96

0.305
0.31

0.315
0.32

0.325
0.33

0.335

0.935

0.94

0.945

0.95

0.955

0.96

0.305
0.31

0.315
0.32

0.325
0.33

0.335

0.935

0.94

0.945

0.95

0.955

0.96

0.305
0.31

0.315
0.32

0.325
0.33

0.335

0.935

0.94

0.945

0.95

0.955

0.96

0 5 10 15 20 25 30 35 40 45
0.305
0.31

0.315
0.32

0.325
0.33

0.335

0 5 10 15 20 25 30 35 40 45

𝜈
𝑥

𝛿𝑝 = 0.40%

0

5

10

15

20

25

30

35

40

45

𝑥amp

𝜈
𝑦

𝛿𝑝 = 0.40%

𝜈
𝑥

𝛿𝑝 = 0.32%

𝜈
𝑦

𝛿𝑝 = 0.32%

𝜈
𝑥

𝛿𝑝 = 0.26%

𝜈
𝑦

𝛿𝑝 = 0.26%

𝜈
𝑥

𝑦amp [mm]

𝛿𝑝 = 0.14%

𝜈
𝑦

𝑦amp [mm]

𝛿𝑝 = 0.14%

Figure 6.34: Behavior of combined amplitude dependent tune shifts at multiple momentum offsets
for an ESQ voltage of 17.5 kV.
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Figure 6.35: Behavior of combined amplitude dependent tune shifts at multiple momentum offsets
for an ESQ voltage of 17.5 kV.
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6.3.9 Comparison of Nonverified and Verified Normal Form Defect Analysis

The differences between the nonverified and verified computations in Fig. 6.29 and Fig. 6.30 for an

ESQ voltage of 17.5 kV, and Fig. 6.31 and Fig. 6.32 for an ESQ voltage of 18.3 kV are small but

visible if one switches back and forth between the pages. To emphasize the differences between the

verifed and nonverified computations onion layer by onion layer, Fig. 6.36 and Fig. 6.37 illustrate

those differences for 17.5 kV and 18.3 kV, respectively. The differences show the importance of a

verified method to capture each onion layer’s maximum normal form defect, especially for the more

diverging regions.

To show that this difference is not an artifact of the bounding range of the global optimizer,

Fig. 6.38 and Fig. 6.39 illustrate the difference between the optimized upper and the lower bound on

the maximum normal form defect for the 17.5 kV map and 18.3 kV map, respectively. Because both

figures only consist of white boxes, those differences are all smaller than 1E-5 and therefore do not

alter the calculation of the differences between the nonverified and verified evaluation in Fig. 6.36

and Fig. 6.37
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Figure 6.36: Difference between verified normal form defect analysis and nonverified normal form
defect analysis for the phase space storage regions of the Muon 𝑔-2 Storage Ring simulation with an
ESQ voltage of 17.5 kV. The individual plots show different momentum ranges which are clarified
by the label at the top of each graph. The color scheme corresponds to the difference of the evaluated
normal form defects of the specific onion layer. The white boxes for lower normal form radii
indicate differences below 10−5. The yellow boxes denote differences up to 10−4, the orange boxes
correspond to differences up to 10−3, the red boxes denote differences up to 10−2.5 and the black
boxes indicate differences larger than that. Each onion layer corresponds to a 0.04 × 0.04 box in
normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.37: Difference between verified normal form defect analysis and nonverified normal form
defect analysis for the phase space storage regions of the Muon 𝑔-2 Storage Ring simulation with an
ESQ voltage of 18.3 kV. The individual plots show different momentum ranges, clarified by the
label at the top of each graph. The color scheme corresponds to the difference of the evaluated
normal form defects of the specific onion layer. The white boxes for lower normal form radii
indicate a difference below 10−5. The yellow boxes denote differences up to 10−4. The orange
boxes correspond to differences up to 10−3. The red boxes denote differences up to 10−2.5, and the
black boxes indicate differences larger than that. Each onion layer corresponds to a 0.04 × 0.04 box
in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.38: Difference between the rigorously guaranteed upper bound and the lower bound of the
maximum normal form defect using Taylor Model based verified global optimization. The analysis
is for the phase space storage regions of the Muon 𝑔-2 Storage Ring simulation with an ESQ voltage
of 17.5 kV. The individual plots show different momentum ranges which are clarified by the label at
the top of each graph. The color scheme corresponds to the difference between the upper bound and
the lower bound of the maximum normal form defect of the specific onion layer. All boxes are white
because the difference is below 10−5. Each onion layer corresponds to a 0.04 × 0.04 box in normal
form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.39: Difference between the rigorously guaranteed upper bound and the lower bound of the
maximum normal form defect using Taylor Model based verified global optimization. The analysis
is for the phase space storage regions of the Muon 𝑔-2 Storage Ring simulation with an ESQ voltage
of 18.3 kV. The individual plots show different momentum ranges which are clarified by the label at
the top of each graph. The color scheme corresponds to the difference between the upper bound and
the lower bound of the maximum normal form defect of the specific onion layer. All boxes are white
because the difference is below 10−5. Each onion layer corresponds to a 0.04 × 0.04 box in normal
form space with a thickness of 0.04% in 𝛿𝑝.
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6.3.10 The Analysis of the Effect of Normal Form Transformations of Different Order on the
Normal Form Defect

We use the normal form transformation as a function that provides pseudo-invariants of the motion,

i.e., the normal form radii. By using the normal form transformation up to different orders, we can

analyze the influence of the respective map orders on the dynamics of the system. In Fig. 6.40 to

Fig. 6.49, the nonverified normal form defect analysis is performed for the tenth order map with a

ESQ voltage of 18.3 kV using normal form transformations from order one to order ten.

The normal form defect pictures for a normal form transformation of order five, six, and seven

look identical even when carefully switching between pages. The largest improvement occurs with

the ninth order normal form transformation because it captures large parts of the strong ninth order

nonlinearities of the map caused by the 20th-pole of the ESQ potential.

To further analyze if the tenth order map does indeed capture most of the relevant dynamics, we

produce an eleventh order map and calculate its normal form defect using the tenth order normal

form transformation (see Fig. 6.50). This kind of order increasing analysis is known from nonverified

integrators with step size control. Compared to the tenth order map evaluation with the tenth order

normal form transformation in Fig. 6.49, the eleventh order of the map leads to no visible difference,

which is a good sign and suggests that a tenth order map is sufficient to capture the critical dynamics.

However, this heuristic approach cannot guarantee that even higher order maps would also not yield

a significant change. To capture this uncertainty of unknown higher order terms a verified map is

required that includes all higher order errors in its Taylor Model remainder bound.
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Figure 6.40: Nonverified normal form defect for the phase space storage regions of the Muon 𝑔-2
Storage Ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up
to order 1 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects
up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.41: Nonverified normal form defect for the phase space storage regions of the Muon 𝑔-2
Storage Ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up
to order 2 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects
up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.42: Nonverified normal form defect for the phase space storage regions of the Muon 𝑔-2
Storage Ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up
to order 3 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects
up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.43: Nonverified normal form defect for the phase space storage regions of the Muon 𝑔-2
Storage Ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up
to order 4 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects
up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.44: Nonverified normal form defect for the phase space storage regions of the Muon 𝑔-2
Storage Ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up
to order 5 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects
up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.45: Nonverified normal form defect for the phase space storage regions of the Muon 𝑔-2
Storage Ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up
to order 6 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects
up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.46: Nonverified normal form defect for the phase space storage regions of the Muon 𝑔-2
Storage Ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up
to order 7 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects
up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.47: Nonverified normal form defect for the phase space storage regions of the Muon 𝑔-2
Storage Ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up
to order 8 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects
up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.48: Nonverified normal form defect for the phase space storage regions of the Muon 𝑔-2
Storage Ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up
to order 9 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects
up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.49: Nonverified normal form defect for the phase space storage regions of the Muon 𝑔-2
Storage Ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up
to the full tenth order. The individual plots show different momentum ranges, clarified by the label
at the top of each graph. The color scheme corresponds to the normal form defect of the specific
onion layer. The white boxes for lower normal form radii indicate a normal form defect below 10−5.
The yellow boxes denote normal form defects up to 10−4. The orange boxes correspond to normal
form defects up to 10−3. The red boxes denote normal form defects up to 10−2.5, and the black
boxes indicate normal form defects larger than that. Each onion layer corresponds to a 0.04 × 0.04
box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.50: Nonverified normal form defect for the phase space storage regions of the Muon 𝑔-2
Storage Ring simulation with an ESQ voltage of 18.3 kV using an eleventh order map and its
normal form transformation up to tenth order. The individual plots show different momentum
ranges, clarified by the label at the top of each graph. The color scheme corresponds to the normal
form defect of the specific onion layer. The white boxes for lower normal form radii indicate a
normal form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The
orange boxes correspond to normal form defects up to 10−3. The red boxes denote normal form
defects up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion
layer corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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CHAPTER 7

CONCLUSION

We investigated a diverse set of nonlinear systems using normal forms and rigorous differential

algebra methods. The differential algebra framework implemented in COSY INFINITY served as

the backbone of all the methods and techniques in this thesis. It allowed us to establish algorithms

and solutions up to arbitrary order and with floating point accuracy.

The basis of our analysis constituted map representations of the various systems based on the

underlying equations of motion. These stroboscopic descriptions of the dynamics were expanded

around a fixed point corresponding to an equilibrium state of the motion. Using Poincaré projections,

the dimensionality of the system was reduced to the essential components of the system’s dynamics.

For the bounded motion problem in the zonal gravitational field of the Earth in Chapter 4, the

motion was considered within a four dimensional Poincaré surface capturing all ascending node

states. In Chapter 5, the dynamics within the Muon 𝑔-2 Storage Ring were analyzed in transverse

cross sections of the storage ring at multiple azimuthal locations.

The origin preserving maps were then analyzed using high order normal forms to calculate a

description of the phase space dynamics that is rotationally invariant up to calculation order. In

Chapter 3, the normal form algorithm was discussed in full detail using the illustrative example

of the centrifugal governor. In this particular case, the normal form radii, which constitute the

(pseudo-)invariants of the motion up to calculation order produced by the normal form algorithm,

were directly related to the energy of the system up to calculation order. Additionally, the normal

form produced high order functional descriptions of the period of oscillation of the centrifugal

governor arms around their equilibrium angle depending on the amplitude of oscillation and changes

in the rotation frequency of the governor.

For the bounded motion problem, this rotational invariant representation of the phase space

motion provided by the normal form was used to transform the system into action-angle like

coordinates. This allowed us to average the bounded motion quantities while maintaining their
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functional dependence on the constants of motion. DA inversion methods were then used to enforce

the bounded motion conditions and produce parameterized descriptions of the constants of motion,

which yielded entire continuous sets of bounded motion orbits. We illustrated that the resulting

sets of orbits remained bounded for decades and far beyond the practically relevant distances of

formation flying missions.

Our approach can possibly be advanced to the fully gravitationally perturbed case. However, the

associated break of the rotational symmetry makes this already complex system even more complex.

The introduced longitudinal dependence and the loss of the angular momentum component as a

constant of motion increase the dimensionality of the problem by two. Accordingly, pseudo-circular

orbits of the full state are required to expand the fixed point map around. Only further research can

answer if and how the approach can be adjusted to compensate for the loss of a known constant of

motion and the increase in dimensionality.

In our analysis of the dynamics in the Muon 𝑔-2 Storage Ring in Chapter 5, we studied the

oscillation frequencies of particles in the radial and vertical transverse direction also known as the

betatron tunes. The normal form transformation allowed us to calculate the functional dependence

of the tunes on the momentum offset of the particles and their amplitude of oscillation. A major

insight of this investigation was that particles over the entire momentum offset range could cross the

vertical 1/3-resonance frequency for certain vertical and radial amplitude combinations.

This closeness to the low order resonance triggered intensive lost muon tracking studies, which

revealed period-3 fixed point structures in the vertical phase space. Particles caught around those

period-3 fixed points experienced significant vertical amplitude modulations, which drastically

increased their risk of hitting a collimator and getting lost in the process.

Throughout the analysis, the strong ninth order nonlinearities of the map caused by the 20th-pole

of the ESQ potential were prominent. They could be found as eighth order dependencies in the

amplitude and momentum dependent tune shifts and be visualized by the drastic change in the tune

footprint when comparing eighth order to tenth order results.

To further assess the stability of the Muon 𝑔-2 Storage Ring rigorously, we utilized Taylor
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Model based verified global optimization in Chapter 6. The abilities of Taylor Model based

global optimization was presented using the objective functions of different example problems.

The generalized Rosenbrock function served as an example to illustrate different effects that can

sometimes influence the optimization including the dependency problem and the cluster effect. We

illustrated that Taylor Models and their associated advanced bounding techniques could drastically

suppress those effects compared to other commonly used approaches.

The Lennard-Jones problem was used to illustrate the many intricacies that have to be solved

for rigorous global optimization of some complex systems. While the Lennard-Jones problem is

easily formulated, its formal description with optimization variables and bounding to a rigorous

initial search domain are far from trivial. Our discussion of the problem also illustrated the struggle

associated with not being able to exclude manifolds from the search domain for which the objective

function is not defined.

For the rigorous stability analysis of the Muon 𝑔-2 Storage Ring, we calculated verified upper

bounds on the rate at which particles can escape the storage region. To get a detailed understanding

of the stability properties of the storage ring, we partitioned the five dimensional storage region

into more than 8000 sections using the onion layer approach. We used Taylor Model based verified

global optimization to calculate the maximum rate of divergence in the form of the normal form

defect for each one of those partitions. The verified normal form defect results from the map

with the closeness to the vertical 1/3-resonance from Chapter 5 were compared to the results of a

map with a different ESQ voltage, which yielded tunes further away from this vertical low order

resonance. The comparison illustrated significant differences in the stability of phase space regions

close to the collimators, confirming that the low order resonance noticeably impairs the system’s

long-term stability. The normal form defect analysis was also able to identify the strong ninth order

nonlinearities of the map caused by the 20th-pole of the ESQ potential.
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APPENDIX
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A.1 Toy Example for Verified Optimization of Four Particles in 3D

In literature, the trivial case of four particles in 3D is often discussed as a toy problem, which

we run below to provide our results for comparison. In [59], the variable definitions were chosen

similarly to our choice in Sec. 6.2.3.8. The only relevant difference is that [59] used the 𝑥 positions

as variables with

𝑣′𝑥,𝑖 = 𝑥𝑖+1 (1)

instead of 𝑣𝑥,𝑖 = 𝑥𝑖+1 − 𝑥𝑖 as defined in Eq. (6.116). Note that the first particle is fixed at the origin

(𝑥1 = 0) also in [59].

We run the global optimization with Taylor Models of order 5, without providing an initial

cutoff value and with a threshold for the smallest boxes of 𝑠min = 10−6, just like in [59]. The initial

variable search domains of [59] and initial variable search domains of our optimization are listed in

Tab. A.1. Tab. A.1 also shows our results for the optimized variables. Note that we used the same

size for the initial search volume as in [59], which is 2.88 × 10−4. COSY-GO reduced the search

domain to 7 remaining boxes with a total volume of 7.5 × 10−41 in 2.102 seconds and 2794 steps.

The minimum was bound by

[−3.115103401910087E-307, 8.060219158778647E-14] . (2)

Table A.1: The left columns list the variables of [59], denoted by 𝑣′·,𝑖, and their respective initial
search domains. The middle columns list the variables of our optimization and their respective
initial search domains. The right columns show the optimized variables of our optimization.

Initial domain Initial domain Optimized result

𝑣′
𝑥,1 [0.4, 0.6] 𝑣𝑥,1 [0.4, 0.6] 𝑣★

𝑥,1 [0.499999879, 0.500000183]
𝑣′
𝑥,2 [0.4, 0.6] 𝑣𝑥,2 [0, 0.2] 𝑣★

𝑥,2 [−0.445014773E-307, 0.229985454E-6]
𝑣′
𝑥,3 [0.8, 1.2] 𝑣𝑥,3 [0.4, 0.8] 𝑣★

𝑥,3 [0.499999879, 0.500000183]
𝑣′
𝑦,2 [0.7, 1.0] 𝑣𝑦,2 [0.7, 1.0] 𝑣★

𝑦,2 [0.866025282, 0.866025501]
𝑣′
𝑦,3 [0.2, 0.4] 𝑣𝑦,3 [0.2, 0.4] 𝑣★

𝑦,3 [0.288675006, 0.288675372]
𝑣′
𝑧,3 [0.7, 1.0] 𝑣𝑧,3 [0.7, 1.0] 𝑣★

𝑧,3 [0.816496487, 0.816496660]
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