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ABSTRACT

APPLICATIONS OF THE DA BASED NORMAL FORM ALGORITHM ON
PARAMETER-DEPENDENT PERTURBATIONS

By

Adrian Weisskopf

Many advanced models in physics use a simpler system as the foundation upon which problem-

specific perturbation terms are added. There are many mathematical methods in perturbation the-

ory which attempt to solve or at least approximate the solution for the advanced model based on

the solution of the unperturbed system. The analytical approaches have the advantage that their ap-

proximation is an algebraic expression relating all involved quantities in the calculated solution up

to a certain order. However, the complexity of the calculation often increases drastically with the

number of iterations, variables, and parameters considered. On the other hand, the computer-based

numerical approaches are fast once implemented, but their results are only numerical approxima-

tions without a symbolic form. A numerical integrator, for example, takes the initial values and

integrates the ordinary differential equation up to the requested final state and yields the result as

specific numbers. Therefore, no algebraic expression, much less a parameter dependence within

the solution is given. The method presented in this work is based on the differential algebra (DA)

framework, which was first developed to its current extent by Martin Berz et. al [3, 4, 5]. The

used DA Normal Form Algorithm is an advancement by Martin Berz from the first arbitrary or-

der algorithm by Forest, Berz, and Irwin [13], which was based on an DA-Lie approach. Both

structures are already implemented in COSY INFINITY [18] documented in [7, 16, 17]. The re-

sult of the presented method is a numerically calculated algebraic expression of the solution up

to an arbitrary truncation order. This method combines the effectiveness and automatic calcula-

tion of a computer-based numerical approximation and the algebraic relation between the involved

quantities.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Many detailed models in physics are based on a simpler model - an ideal case - where the exact

solution to the problem is known. The mathematical methods of perturbation theory can subse-

quently be used to approximate the solution to the advanced problem from the exact solution of

the ideal case. Examples of realistic systems are the Pendulum oscillation or the energy states of

a hydrogen atom in an electric field. Both can be approximated or even solved with perturbation

theory due to the established solutions of the ideal cases, namely the simple harmonic oscillator or

the unperturbed hydrogen atom, respectively. Methods are constantly being advanced to cope with

the variety of perturbed systems that may require specific approaches and methods to be solved

effectively. Choosing an approach fundamentally determines the form of the result. An analytical

approach yields an algebraic expression, which could involve parameter dependencies, but requires

great efforts in the calculation. A computer-based numerical approach, which automatically yields

a result, lacks any possibility to relate the result algebraically to parameters or the initial condi-

tions.

This thesis, however, is concerned with a hybrid method of analytical and numerical calculations.

It uses a differential algebra (DA) based numerical approximation of solutions to perturbed peri-

odic systems. The DA framework was first developed to its current extent by Martin Berz et. al

[3, 4, 5]. It allows for the algebraic structure to be stored in so-called DA vectors which are used

as the elements of the numerical calculation. The approach consists of three main steps. First, the

ordinary differential equation (ODE) as a result of Hamilton equations is transformed to coordi-

nates which make them suitable for the third step. The ODE is then integrated, in the second step,

to create a transfer map. Due to the DA framework this map relates the final state to the initial

state and ODE inherent parameters algebraically. In the last step, the transfer map is transformed

1



to ’Normal Form’ coordinates. In Normal Form coordinates the map represents circular motion in

phase space with only amplitude dependent frequencies. These frequencies are the key quantities

to determine the behavior of periodic systems. For this step the DA Normal Form Algorithm [6]

is used, which is an advancement by Martin Berz from the first arbitrary order algorithm that was

based on an DA-Lie approach by Forest, Berz, and Irwin [13]. The whole method is implemented

in COSY INFINITY [18], which is already equipped with the DA framework and the DA Normal

Form Algorithm documented in [7, 16, 17].

The great advantage of this method is that it combines analytical and numerical calculations and is

not limited to the order to which the calculations can be done. The computer-based DA calculation

allows the manipulation of polynomial transfer maps up to the floating point accuracy of the com-

puter. Therefore it is precise and effective at the same time. To introduce the advantage of the DA

based calculation, the result of a fourth-order Runge-Kutta (RK4) shall be presented in the original

and the DA based configuration. In the classic calculation (fig. 1.1) the solution is traced from the

initial state along the vector field of the ODE.

-

6
p

q

-1

1

1-1

Figure 1.1 The plot shows the classic RK4-tracking of the Pendulum-ODE (eq. 5.4) from the
(-1,1)-initial state until t = π/4. All parameters had to be given specific values and were set to 1.

2



In the DA based version (fig. 1.2) the whole initial state set~zini in the vector field is represented

by the mapMini in the form of~zini =Mini = (q, p) and then integrated with respect to time. The

resulting transfer mapM(q, p) =~z f relates the initial state set~zini to its final state~z f including

vector field inherent parameters. The two dimensional state space in figure 1.2 representing q and

p coordinate, could even be expanded by further dimension for the involved parameters.

±3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

-3 -2 -1 0 1 2 ±3 -2 -1 0 1 2 3

p

t = 0
t = 0.5

p

q

t = 0
t = 2

t = 0
t = 1

q

t = 0
t = π

Figure 1.2 The purple area represents a section of the initial state set in phase space
(q0, p0) = ([−1.3,1.3], [−1.3,1.3]). The green area denotes the transfer mapM(q0, p0) of the
initial state set in the Pendulum vector field (eq. 5.4) at time t = 0.5,1,2 and π , respectively. The
DA based RK4 method with a step-size of h = 0.01 was used for the integration to algebraically
connect the whole initial state set up to order m with the final state. The state set is normally
extended over more dimensions which also involves the parameter-space. For the 2D-illustration
the parameters are set to 1.
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1.2 Basic concepts

The following section introduces essential concepts which are used in this thesis and are indispens-

able to understanding certain steps or arguments later on. First of all, the issues of approximating

potentially infinitely long real numbers in the floating point representation to make them suitable

for the computer-based calculations are presented. Before giving a brief introduction to the DA

framework, the approximation of analytical functions using Truncated Polynomial Series is dis-

cussed. The main process of diagonalization which is important for the decoupling of the linear

parts of the transfer maps later on is then presented. A strong focus is on the calculation of the

two dimensional case using the Twiss parameters [12]. Subsequently, the key characteristics of

Action-Angle coordinates are summarized and related to the Normal Form coordinates. Lastly, the

Flow Operator and its way of time-expanding observables are introduced.

1.2.1 Floating Point numbers

Floating point numbers (F) are used in science to approximate real numbers (R) to their significant

part up to a certain precision. A real number can potentially require an infinite amount of digits to

be represented, depending on the base of the numeral system used. The floating point representa-

tion uses the most significant1 digits and scales them by an exponent to the appropriate range. In

most cases, including the IEEE 754 standard [21] which will be discussed in more detail below, a

fixed base is used and the significand and the exponent are adjusted to approximate the number:

±signi f icand×baseexponent . (1.1)

In contrast to the fixed point number representation, the point can flow between the decimal places,

due to appropriate adjustment of the exponent. Therefore, the floating point representation has the

advantage of a range based precision. While the ’scientific notation’ of floating point numbers

uses a base10 representation, computing, in contrast to that, uses a base2 representation due to the

binary system.

1most significant: all digits allowed by the current precision of the floating point representation.

4



It might not be obvious at first glance, but there are various ways to define operations on

floating point numbers, especially concerning the rounding. Let ⊕,	,� and � be the operations

on F corresponding to +,−, · and / in R. The following example shows the evaluation of
(

1
x+2

)2

at x = 4 in R and F with 3 significant decimal digits (precision p = 3) in base10, while rounding

half up after each calculation in F:

R : 4
x0+2
−→ 6

1/x1−→ 1
6

x2
2−→ 1

36

= = ≈ ≈

F3 : 4
x0⊕2
−→ 6

1�x1−→ 0.167
x2�x2−→ 0.279×10−3

(1.2)

Note that F3

(
1
36

)
= 0.278×10−3 6= 0.279×10−3, which shows the main problem of operations

on floating point numbers. Not only does the error of the initial approximation of the real numbers

occur, but those errors also tend to grow due to operations. To keep them as small as possible and

to make results comparable between computations on different machines, the IEEE 754 standard

[21] was introduced. It defines the floating point number representation and arithmetic, which

ensures that all machines produce the same output for the same floating point operations. It also

defines another operation, which can be a source of additional errors - the base-conversion. While

the computer calculates in base2, the result is given in a base10-expression most of the time.

To state which digits of the F-calculation-result are actually significant, the study of the propa-

gation of those errors is critically important. Calculations, proofs and other important information

on floating-point arithmetic can be found in [14]. COSY INFINITY, the computation program

used in this thesis, adopts the double precision representation, which is a 64-bit (1-bit sign + 11-bit

exponent + 52-bit significand) system, yielding a precision of∼ 14 significant decimal digits. Most

results of calculations within this work, are accurate up to 10−14, depending on the complexity of

the previous calculation and the associated rounding error propagation.
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1.2.2 Truncated Polynomial Expansion

Similar to the way floating point numbers approximate a potentially infinitely long real number to

its significant digits, truncated polynomials can approximate a Taylor polynomial expansion of an

analytical function f at~a up to the significant order mmax:

~f
(
~a+~h

)
=

∞

∑
n=0

[(
~h~∇~x

)n
~f (~x)

]
~x=~a

n!
≈

mmax
∑
i=0

[(
~h~∇~x

)n
~f (~x)

]
~x=~a

n!
. (1.3)

Consider the following three analytical functions fi ∈ C∞(R):

f1(x) = exp(x) f2(x) = 2+ sin(x)− cos(x)+
x3

3
f3(x) = 1+ x+

x2

2
+

x3

6
. (1.4)

The approximation of those functions with truncated Taylor expansions around x = 0 up to 3rd

order can all be represented by the same function f3:

T f1(x) =3 T f2(x) =3 T f3(x) = 1+ x+
x2

2
+

x3

6
= f3(x). (1.5)

The following definition of the equivalence classes and its properties is according to the definition

in [6, p.91]. The notation ’=m’ indicates that the expressions on both sides are equivalent up

to order m. In general, this means that the equivalence relation f =m g between two functions

f ,g ∈ C∞(Rν), is given when f (~0) = g(~0) and ∂ k
i f (~x)

∣∣∣
~x=~0

= ∂ k
i g(~x)

∣∣∣
~x=~0

for all 0≤ i≤ ν and all

k ≤ m. This allows for the definition of an equivalence class [ f ]m that represents all elements f of

the vector space of infinitely differential functions C∞(Rν) with ν real variables that have identical

derivatives at the origin up to order m. The point zero is chosen out of convenience and without

loss of generality, meaning that any other point may be selected as well. Since T f , the truncated

Taylor expansion of f is always equivalent to f itself up to order m, this small theorem is apparent

[ f ]m = [T f ]m (1.6)

where T f is the expansion at 0. T f can be used as the equivalence class representative. Hence,

relation 1.5 can be summarized to: f1, f2 ∈ [ f3]3 =

[
1+ x+ x2

2 + x3
6

]
. All equivalence classes [ ]n

are denoted as nDν [6] where ν represents the number of variables. To make nDν a differential

algebra it requires the definition of certain operations which will be introduced in the next section.
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1.2.3 Differential Algebra

The following brief overview of the DA definitions and arithmetic largely draws from [6], where

Berz summarizes the DA framework and its techniques from his earlier work [3, 4, 5]; please refer

to those references for further information. mDν denotes the DA for ν variables and differentiation

up to mth order. To introduce the DA framework, Berz illustrates the simplest case 1D1 in [6].

Similar to complex numbers which have a real and imaginary basis with i = (0,1)C, the 1D1 can

be represented in a constant and differential basis with the differential unit d
de f
= (0,1) [6]. While

the square property of the imaginary unit is known to be i2 = (0,1)C ·(0,1)C= (−1,0)C the square

of the differential unit d has the special property of vanishing with d2 = (0,1) · (0,1) = (0,0) [6].

In the following part the 2D1 shall be discussed, where the operations that form the algebra

with the tuples (x0,x1,x2) can be defined as follows:

(x0,x1,x2)+(y0,y1,y2) = (x0 + y0,x1 + y1,x2 + y2) (1.7)

c · (x0,x1,x2) = (c · x0,c · x1,c · x3) (1.8)

(x0,x1,x2) · (y0,y1,y2) = (x0 · y0,x0 · y1 + x1 · y0,x0 · y2 + x1 · y1 + x2 · y0). (1.9)

Similar to above we can calculate d2 in 2D1:

d2 = (0,1,0) · (0,1,0) = (0,0,1). (1.10)

Therefore, any tuple can be represented by

(x0,x1,x2) = x0 + x1 ·d + x2 ·d2. (1.11)

Just like in 1D1, the operations allow the definition of a total order that is compatible with its

algebraic operations [6]. From the order, the name for d being infinitesimal or differential becomes

apparent, since it is smaller than any real number

0 = (0,0,0) = d3 < (0,0,1) = d2 < (0,1,0) = d < (x0,0) = x0. (1.12)

In fact, d it is in general so small that the (m−1)th power of d in mDν vanishes which is also called

the nilpotent element of mDν . The three operations and the tuples of real numbers form a ring

7



algebra, but not a field, since there is not a multiplicative inverse in 2D1 for every (x0,x1,x2)∈ 2D1.

As a matter of fact, only tuples (x0,x1,x2) with x0 6= 0 have a multiplicative inverse (y0,y1,y2) ∈

2D1 with

(x0,x1,x2) · (y0,y1,y2)
(1.9)
= (x0 · y0,x0 · y1 + x1 · y0,x0 · y2 + x1 · y1 + x2 · y0)

!
= (1,0,0)

⇒ y0 =
1
x0

y1 =
−x1
x2

0
y2 =

x2
1

x3
0
− x2

x2
0
. (1.13)

Introducing the endomorphism (structure-preserving map from 2D1 into itself) called derivation ∂ ,

makes (2D1,∂ ) a differential algebra.

∂ : 2D1→ 2D1 (1.14)

(x0,x1,x2) 7→ ∂ (x0,x1,x2) = (0,x1,2x2). (1.15)

The operations behave as follows under the derivation map for u1,u2 ∈ 2D1:

∂ (u1 +u2) = ∂u1 +∂u2 (1.16)

∂ (c ·u1) = c ·∂u1 (1.17)

∂ (u1 ·u2) = (∂u1) ·u2 +u1 · (∂u2). (1.18)

While equation 1.16 and 1.17 are rather trivial, equation 1.18 requires a small derivation:

(∂u1) ·u2 +u1 · (∂u2) = (0,x1,2x2) · (y0,y1,y2)+(x0,x1,x2) · (0,y1,2y2)

= (0,x1 · y0,x1 · y1 +2x2 · y0)+(0,x0 · y1,x0 ·2y2 + x1 · y1)

= (0,x0 · y1 + x1 · y0,2(x0 · y2 + x1 · y1 + x2 · y0))

= ∂ (u1 ·u2). (1.19)

According to [6] the DA arithmetic can generally be expanded to the equivalence classes [ f ]n

which are denoted by nDν , with di = [xi] ∀i≤ ν and the following operations:

[ f ]n +[g]n = [ f +g]n (1.20)

c · [ f ]n = [c · f ]n (1.21)

[ f ]n · [g]n = [ f ·g]n (1.22)
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which define the algebra on nDν and are equivalent to the operations on C∞(Rν) up to order m.

Introducing the endomorphism derivation ∂ :

∂ν [ f ]n = [xν∂ν f ]n (1.23)

makes it a differential algebra, since the following small theorem is generally also satisfied similar

to the derivation in equation 1.19

∂ν ([ f ]n · [g]n) = [ f ]n ·∂ν [g]n +[g]n ·∂ν [ f ]n. (1.24)

Operations like the division are only defined if the divisor [ f ]m has a non-zero constant part which

is due to the fact that nDν is only a ring and not a field (see above). The composition of two

functions or maps f ,g ∈n Dν

[ f ([g]n)]n = [ f (g)]n (1.25)

is only possible if g has no constant part [2].

In general [ f ]n can be defined by its truncated Taylor expansion as follows [6, 2.42+43]:

[ f ]n = ∑
∑

ν
i=1 ki≤n

ak1,...kν
·dk1

1 · .... ·d
kν
ν (1.26)

with ak1,...,kν
=

1
∏

ν
j=1 k j!

∂
∑

ν
i=1 ki f

∏
ν
j=1 ∂x

k j
j

. (1.27)

Hence, ak1,...,kν
represents the Taylor expansion coefficients of f and d

k1
1 · .... · d

kν
ν may be used

as the basis of a DA vector, which stores the coefficients accordingly. In this way it is possible

to approximate any f ∈ C∞(Rν) by a truncated polynomial series which is then represented with

its Taylor expansion coefficients ak1,...,kν
up to order m in a DA vector. The implementation and

specific operations of the DA vectors in COSY INFINITY based on the framework above are

explained in [18, 6, 5].

9



1.2.4 Diagonalization

The goal of diagonalization is to transform a matrix L̂ to its diagonal form. The diagonal form has

entries only on the diagonal and therefore requires L̂ to be a quadratic matrix. Furthermore, not

every quadratic n×n matrix can be diagonalized, but only matrices that are similar to a diagonal

matrix Λ̂.

Two matrices Â and B̂ are similar if and only if (following: iff ) there exists a similarity transfor-

mation matrix T̂ and its inverse T̂−1, such that B̂ = T̂ ÂT̂−1.

An n× n matrix T̂ has an inverse T̂−1 with T̂−1T̂ = T̂ T̂−1 = I , where I is the identity iff all

columns of T̂ are linearly independent. To find those matching linearly independent component-

vectors, the eigenvectors and eigenvalues of L̂ are relevant. The eigenvalues λi and the corre-

sponding eigenvectors~vi of a quadratic n×n matrix L̂ are determined by the eigenvalue equation:

L̂~vi = λi~vi. To solve the eigenvalue equation, only the nontrivial solutions of the eigenvalue prob-

lem
(
L̂−λiI

)
~vi =~0 are of interest. In this case, nontrivial solutions are any ~vi 6=~0. Therefore,

solving

Det
(
L̂−λI

)
= 0 (1.28)

yields the nontrivial solutions of the eigenvalue problem. The characteristic polynomial p(λ )

of an n×n matrix L̂ is introduced in this context. It is the determinant of the eigenvalue problem

matrix and is therefore related to its eigenvalues λi as follows:

pL̂(λ ) = Det
(
L̂−λI

)
=

n

∏
i=1

(λ −λi). (1.29)

The important property of the characteristic polynomial of a matrix L̂ in the context of diagonal-

ization is that it has the same roots and has therefore the same eigenvalues λi as the corresponding

eigenvectors~vi, as the characteristic polynomials of all matrices similar to L̂. This property can be

shown in this short proof:

λi

(
T̂−1~vB

i

)
= T̂−1

λi~v
B
i = T̂−1B̂~vB

i = T̂−1T̂ ÂT̂−1~vB
i = Â

(
T̂−1~vB

i

)
(1.30)

10



which shows that T̂−1~vB
i = ~vA

i with eigenvalue λi. T̂~vÂ
i = ~vB̂

i and T̂ is the transformation

matrix between the two similar matrices Â and B̂. Finally, an n× n matrix L̂ with eigenvalues λi

is diagonalizable iff all n corresponding eigenvectors ~vL̂
i are linearly independent. The following

proof of this theorem will also reveal the transformation matrix T̂ for the diagonalization:

Define T̂−1 =
(
~vL

1 ,~v
L
2 , ...,~v

L
n
)

and Λ̂ a diagonal matrix with entry Λii = λi. Now,

LT̂−1 = Â
(
~vL

1 ,~v
L
2 , ...,~v

L
n

)
=
(

L̂~vL
1 , L̂~v

L
2 , ..., L̂~v

L
n

)
=
(

λ1~v
L
1 ,λ2~v

L
2 , ...,λn~vL

n

)
= T̂−1

Λ̂ (1.31)

iff all eigenvectors ~vL
1 are linearly independent, then there is a matrix T̂ , which is inverse to

T̂−1 and thus

T̂ ÂT̂−1 = Λ̂. (1.32)

In this thesis, 2×2 matrices are a key element since matrices of higher dimensions of the form 2ν×

2ν can be simplified to a diagonal block matrix, which has 2x2-submatrices on its diagonal. For this

reason, the 2-dimensional case shall be investigated in more detail. The following diagonalizable

real 2×2 matrix L̂ is considered:

L̂=

 a b

c d

 . (1.33)

According to equation 1.29 the characteristic polynomial is given by

Det

a−λ b

c d−λ

= (a−λ )(d−λ )− cb = λ
2−Tr

(
L̂
)

λ +Det
(
L̂
)
= 0. (1.34)

The eigenvalues can be obtained by solving the quadratic equation from above:

λ
± =

Tr
(
L̂
)

2
±

√√√√√√√Tr
(
L̂
)2

4
−Det

(
L̂
)

︸ ︷︷ ︸
δ

. (1.35)
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Depending on the discriminant δ , the eigenvalues are either real, complex, or degenerate. For δ > 0

the eigenvalues are real, as well as their corresponding eigenvectors. For δ = 0 the eigenvalues

will be real and degenerate λ± =
Tr(L)

2 . The interesting case is δ < 0 where the eigenvalues and

the corresponding eigenvectors are complex conjugate pairs. It is useful to write the eigenvalues

in the re±iµ -notation, where magnitude r and phase µ can be derived from the real and imaginary

part of the eigenvalue pair as follows:

Re
(
λ
±) =

Tr
(
L̂
)

2
Im
(
λ
±)=±

√√√√
Det

(
L̂
)
−

Tr
(
L̂
)2

4
(1.36)

r =

√
Re(λ±)2 + Im(λ±)2 =

√
Det

(
L̂
)

(1.37)

µ = arccos

(
Re
(
λ±
)

r

)
= arccos

 Tr
(
L̂
)

2
√

Det
(
L̂
)
 . (1.38)

Since the arccos-function is symmetric, with arccos(x)=-arccos(x), the sign of µ must be defined.

A common definition [6] is using sign(b), which results in

µ = sign(b)arccos

 Tr
(
L̂
)

2
√

Det
(
L̂
)
 . (1.39)

Courant and Snyder introduced the Twiss parameters [12], which are a set of parameters concern-

ing 2×2 matrices with complex conjugate eigenvectors. Considering the matrix L̂ from equation

1.33, the Twiss parameters are defined as follows [12]:

α =
a−d

2r sin µ
(1.40)

β =
b

r sin µ
(1.41)

γ =
−c

r sin µ
. (1.42)

Note that the sign definition of µ using b assures that β is always positive. The Twiss parameters
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are not independent of each other, but satisfy

βγ−α
2 =

−4bc+(a−d)2

4r2 sin2 µ

=
4(ad−bc)+(a+d)2

4Im2 (λ±)

=
4Det

(
L̂
)
−Tr2

(
L̂
)

4Det
(
L̂
)
−Tr2

(
L̂
) = 1. (1.43)

Rewriting L̂ in terms of the Twiss parameters yields

L̂= r

cos µ +α sin µ β sin µ

−γ sin µ cos µ−α sin µ

 . (1.44)

The eigenvectors~v± to the eigenvalue λ± = exp(±iµ) are therefore given as follows:
cos µ +α sin µ β sin µ

−γ sin µ cos µ−α sin µ

−
e±iµ 0

0 e±iµ



x

y

 =

0

0


 x(α± i)sin µ + yβ sin µ

−xγ sin µ + y(−α± i)sin µ

=

 x(α± i)+ yβ

−xγ + y(−α± i)

 =

0

0

 (1.45)

where exp(±iµ) = cos µ± isin µ . Equation 1.45 is satisfied for x =−β and the corresponding

y = α± i, which compose the complex conjugate eigenvector pair

~v± =

 −β

α± i

 . (1.46)

In the case of b = 0 and therefore β = 0, an equivalent complex conjugated eigenvector pair can

be derived to

~v± =

−α± i

γ

 (1.47)
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using equation 1.45 with y = γ and x = −α ± i. For the trivial case where β = 0∧ γ = 0, the

original matrix is already in diagonal form and no transformation is required.

In general, the eigenvectors can be scaled by a complex number k. However, to preserve

the complex conjugate property of the eigenvector pairs, the vectors will only be scaled by real

numbers in this work. The matrix L̂ can then be diagonalized to Λ̂ with the transformation matrix

T̂−1 = k
(
~v+,~v−

)
and its inverse, which are given in detail as follows:

Λ̂ = r

eiµ 0

0 e−iµ

= T̂ L̂T̂−1 (1.48)

T̂−1 = k

 −β −β

α + i α− i

 (1.49)

T̂ =
1

Det
(
T̂−1

)
 α− i β

−α− i −β

 (1.50)

where k is an additional scaling factor which can be used to scale the matrix, such that the

magnitude of the determinate of the transformation matrix is 1. This scaling is essential for the

transformation of nonlinear terms, since it ensures a scaling-neutral transformation.

1.2.5 Action-Angle coordinates

Action-Angle variables are a special set of phase space coordinates (J,θ), which define a momen-

tum J called action that is constant and unique for each phase space curve. Each point on the phase

space curve is associated with the coordinate θ called action angle. Any Hamiltonian that can

be canonically transformed to those coordinates is called integrable. In the case of a one degree

of freedom problem, the new Hamiltonian K in the new phase space coordinate system then only
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Figure 1.3 Illustration of phase space coordinate transformation to Action-Angle coordinates.

depends upon the new momentum J (fig. 1.3). Thus, the Hamilton equations yield

J̇ = −∂K
∂θ

= 0 (1.51)

θ̇ =
∂K
∂J

= ω(J) = const. (1.52)

Having K as a function of J alone assures that the action J is constant following the Hamilton

equation 1.51 for each phase space curve. Hence, θ̇ = ω from equation 1.52 is also constant and

therefore θ(t) = θ(0)+ω(J)t. Action-angle coordinates are mainly used when the Hamiltonian

of the system is not explicitly time-dependent, which results in the conservation of H. The gen-

eralized momentum, which resembles the action for each original generalized coordinate can then

be defined as:

J(E0) =
1

2π

∮
p(E0,q)dq (1.53)

where the 2π is conventional depending on whether ω (frequency for norm period = 2π) or

ν (frequency for norm period = 1) is used. J is hence the phase space area swept out in one

period/2π .

In general, it does not follow that if H and (p,q) satisfy the Hamilton equation, the new

phase space coordinates (J,θ) and the new Hamiltonian K will too. This is only the case if the

transformation is canonical, which means there must be a generating function of the second type

F2(q,J) = S(q,J) of old coordinate q and new momentum J. This function is then a solution of the

Hamilton-Jacobi equation [1]

K(J) =
[

q,
∂S(q,J)

∂q

]
(1.54)
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which yields the following relations:

p =
∂S
∂q

and θ =
∂S
∂J

. (1.55)

The exact derivation and further information on canonical transformations can be found in [22,

1]. The concept of Action-Angle variables (J,θ) resembles the basic idea of the Normal Form

coordinates
(
t+, t−

)
in 2D which are later introduced in detail. Both systems possess a constant of

the phase space curve of the system: J ∼ r2 =
(
t+
)2

+
(
t−
)2 and the frequency is only dependent

on that constant of the curve ω(J)∼ ω(r2).

1.2.6 The Flow Operator

Since this work deals with coupled first order differential equations, it is useful to discuss possible

methods to investigate the time evolution of a certain observableO(~r, t) of a system. It is assumed

that the first time derivatives ~̇r of the system’s coordinates are given by the function ~f (~r, t). The

first time derivative of the observable O is therefore:

d
dt
O(~r, t) = ∂O

∂ t
+

d~r
dt

dO
d~r

=
(

∂t +~f ·~∇
)

O = L~fO(~r, t) (1.56)

Applying the Flow Operator L~f = ∂t +∑
n
i=1 ṙi∂i is equivalent to taking the first time derivative [6].

L~f is also referred to as the derivative operator [19] and represents the vector field of ~f .

For the time evolution, the Taylor expansion of Ot0(~r, t) at t0 = 0 is considered [2]:

O(~r, t) =
∞

∑
n=0

tn

n!

(
dn

dt
O
)
(~r,0) =

∞

∑
n=0

tn

n!

(
Ln
~f
O
)
(~r,0) = exp

(
tL~f

)
O(~r,0) (1.57)

For a one-dimensional Hamiltonian system H(q, p, t), the function ~f (~r, t) can be derived from the

Hamilton equations:

~f (~r, t) =~̇r =

q̇

ṗ

=


∂H
∂ p

−∂H
∂q

 (1.58)
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The Flow Operator can then be written as:

L~f =
(

∂t +~f ·~∇
)
=
(
∂t + q̇∂q + ṗ∂p

)
=

(
∂t +

∂H
∂ p

∂q−
∂H
∂q

∂p

)
(1.59)

This work only deals with the time evolution of the trivial observable~r = I in an autonomous and

origin preserving system, which yields the following first terms relevant for the expansion:

L0
~f
~r =~r L1

~f
~r = ~f L2

~f
~r = L1

~f
~f . (1.60)

The time expansion at t0 is therefore given as follows:

~rt0(t) = exp
(
(t− t0)L~ft0

)
I (1.61)

1.2.6.1 Example of symmetrically perturbed Hamiltonian

In the example of the symmetrically perturbed Hamiltonian, the time evolution shall be examined

using the Flow Operator. The following Hamiltonian is considered:

H =
p2

2
+

q2

2
+

α

4

(
p2 +q2

)2
(1.62)

For the time evolution of~r, the vector field consisting of the first time derivative~̇r is needed, which

can be derived from the Hamilton equations:

~̇r =

q̇

ṗ

=

 p
(

1+α

(
p2 +q2

))
−q
(

1+α

(
p2 +q2

))
= ~f (~r) (1.63)

The special time-independent property of H makes it a constant of the motion. But since H =

r2
2 + αr4

4 = const. with r2 = q2+ p2, this means that r2 is also a constant of the motion. Therefore,

~f (~r) can be rewritten to

~f (~r) =

q̇

ṗ

=
(

1+αr2
)0 −1

1 0


p

q

=

 p
(

1+αr2
)

−q
(

1+αr2
)
 (1.64)
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From equation 1.60 the first terms of the time evolution~r f (t) = exp
(

tL~f

)
I are given as follows:

L0
~f
~r =

q

p

 L1
~f
~r =

 p

−q

(1+αr2
)

(1.65)

L2
~f
~r =

(
q̇∂q + ṗ∂p

)
 p

−q

(1+αr2
)

(1.66)

=

−q

−p

(1+αr2
)2

(1.67)

L3
~f
~r =

(
q̇∂q + ṗ∂p

)
−q

−p

(1+αr2
)2

(1.68)

=

−p

q

(1+αr2
)3

(1.69)

L4
~f
~r =

(
q̇∂q + ṗ∂p

)
−p

q

(1+αr2
)3

(1.70)

=

q

p

(1+αr2
)4

= L0
~f
~r
(

1+αr2
)4

(1.71)
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Collecting the terms for the Taylor expansion according to the equation 1.57 yields the following

time evolution:

~r(t) =

L0
~f
+ tL1

~f
+

t2L2
~f

2
+

t3L3
~f

6
+

t4L4
~f

24
+ ...

~r (1.72)

=

q

p


1−

t2
(

1+αr2
)2

2
+

t4
(

1+αr2
)4

24
− ...

 (1.73)

+

 p

−q


t
(

1+αr2
)
−

t3
(

1+αr2
)3

6
+ ...

 (1.74)

=

q

p

cos
((

1+αr2
)

t
)
+

 p

−q

sin
((

1+αr2
)

t
)

(1.75)

=

 cos
((

1+αr2
)

t
)

sin
((

1+αr2
)

t
)

−sin
((

1+αr2
)

t
)

cos
((

1+αr2
)

t
)

q

p

 (1.76)

This result is very similar to the commonly known solution of the simple harmonic oscillator.

Both represent a circular motion in phase space with the only difference being that the frequency

is the radius/amplitude dependent. In beam physics, the frequency of the linearized unperturbed

system is referred to as tune which is ω and unity in this case. The tune shifts are identified as

the amplitude dependent frequency changes from the tune due to the perturbation. Solutions in

this specific set of coordinates, which, in this case, coincides with the original coordinates will

later be introduced as Normal Form coordinates, which is one reason for selecting this example

specifically.
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CHAPTER 2

INTEGRATORS

There are various ways to approximate solutions to ordinary differential equations (ODE) numer-

ically. In the following section, three different integrators shall be introduced that may be used to

track the phase space curve from the initial state to the final state. In contrast to common inte-

gration, where the integration is done along one phase-space curve, the DA framework allows the

computation of transfer maps at each step of the integration; relating an arbitrary initial state vector

~ri to the state vector at that particular time of the step algebraically ~r f =M(~ri). The first inte-

grator is based on a Taylor expansion, which uses the Flow Operator from 1.2.6. The commonly

known and used RK4 integrator, which simulates the Taylor-expansion of 4th-Order is introduced

afterwards. The last integrator uses the fixed point theorem and the contracting properties of anti-

derivation operation in the DA framework to approximate the solution. All integrators work for

time dependent as well as time-independent systems.

2.1 Flow Integrator

The Flow Integrator operates via a time-wise step by step integration. The basic principle of a

single step is a Taylor expansion in time of~rn = In = (qn, pn) at tn by using the Flow Operator

(1.2.6) and then evaluating~rn(t = tn + h) =~rn+1(tn+1) [2]. Afterwards, the coordinates of~rn+1

are rewritten in terms of the original coordinates~r0 = (q0, p0). The approach of using the Flow

Operator is known from publications such as [11], but since the multiple application of the Flow

Operator L~f can become very extensive for even slightly complex functions, it is not very practical.

However, the differential algebras nDv+1 with ν position variables and one time variable imple-

mented in COSY INFINITY, allow for the automatic differentiation which makes the calculation

very efficient. The Flow Integrator is implemented as follows:

M(n+1)(~r0, tn+1) = exp
(

hL~ftn=t0+nh

)
I
∣∣∣∣
t0=0
◦Mn(~r0) (2.1)
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whereMn is the map at time tn = nh and thereforeM0 =~r0 = I . In the case of a not explicitly

time-dependent system, where ∂t~f = 0 if follows that:

exp
(

hL~ftn=t0+nh

)
I
∣∣∣∣
t0=0

=M1 ∀n (2.2)

whereM1 is the initial flow from t = 0 to t = h, therefore equation 2.1 can be rewritten to:

M(n+1)(~r0) =M1 ◦Mn
1(~r0) =Mn+1

1 (~r0) (2.3)

The order m to which the process is done can be chosen arbitrarily. Thereore, it is apparent that

the truncation error of a step is ∼O(hm+1), while the global truncation error is ∼O(hm) [19].

To illustrate the process of a two step iteration, the following example is calculated, with

~f =

q̇

ṗ

=

p

t

 . (2.4)

The time-expansion at t0 is derived as follows:q

p

 =

q|t0

p|t0

+

q̇|t0

ṗ|t0

(t− t0)+

L~f q̇|t0

L~f ṗ|t0

 (t− t0)
2

2
+

L2
~f

q̇|t0

L2
~f

ṗ|t0

 (t− t0)
3

6
... (2.5)

=

qt0

pt0

+

pt0

t0

(t− t0)+

t0

1

 (t− t0)
2

2
+

1

0

 (t− t0)
3

6
(2.6)

Equation 2.6 shows that the expansion already terminates after the 3rd order in t. Therefore, the

entire time evolution can be represented by this finite expansion and the 2-step approach, which is

usually done for a higher precision, is not needed. However, for illustration purposes a two-step

integration with step size h = 1 is presented. The final map can be already terminated by using

equation 2.6 with t = 2 and t0 = 0, yielding the following map:

M2(q0, p0) =

q2

p2

 =

q0 +2p0 +
4
3

p0 +2

 (2.7)
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For the step by step integration, the first step is achieved by using the same equation as above (2.6)

for t0 = 0 and t = t− t0 = h = 1, yielding the following map:

M1(q0, p0) =

q1

p1

=

q0 + p0 +
1
6

p0 +
1
2

 (2.8)

The next step in the expansion is performed at t1 = t0 +h = 1 and again, t− t1 = h = 1:

M2(q1, p1) =

q2

p2

=

q1 + p1 +1+ 1
6

p1 +1+ 1
2

 (2.9)

M2(q0, p0) =


(

q0 + p0 +
1
6

)
+
(

p0 +
1
2

)
+1+ 1

6(
p0 +

1
2

)
+1+ 1

2

=

q0 +2p0 +
4
3

p0 +2

 (2.10)

The result in equation 2.10 agrees with the expected result from equation 2.7. Note that in equation

2.10M2(q1, p1) =M1→2 and thatM2(q0, p0) =M1→2 ◦M1(q0, p0) withM1→2 6=M1, due

to the explicit time dependence of ~f . Since the system is explicitly time dependent, the evaluation

of each step is needed.

M2
1(q0, p0) =


(

q0 + p0 +
1
6

)
+
(

p0 +
1
2

)
+ 1

6(
p0 +

1
2

)
+ 1

2

 6=
q0 +2p0 +

4
3

p0 +2

=M2(q0, p0) (2.11)
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2.2 Fourth-Order Runge-Kutta integrator

The fourth-order Runge-Kutta method (RK4) simulates the accuracy of the Taylor series method

of order m = 4 [19]. It is one of the most commonly used since it is stable, quite accurate, and

easy to implement. It was first developed by the German mathematicians Carl Runge and Martin

Kutta in 1901. It consists of a step-wise integration of the independent variable t. Given a set

of initial conditions~rn =~r(ti), one step of the Runge-Kutta method yields an approximation for

~rn+1 =~r(t f = ti + h), where h is the step-size of the integration. In the simplest form of the

method, the step-size will be constant throughout the integration. More advanced integrators use

an adaptive step-size [15]. A series of Runge-Kutta steps make it possible to trace the trajectory~r

from the set of initial conditions to the final state~r f (t f ) in steps of h. This work uses a 4th-Order

Runge-Kutta method (RK4) with a constant step size h, where~rn+1 at tn+1 = tn +h is calculated

as follows:

~rn+1 = ~rn +
h
6

(
~an +2~bn +2~cn + ~dn

)
(2.12)

with ~an = ~f (~rn, tn) (2.13)

~bn = ~f
(
~rn +

h
2
~an, tn +

h
2

)
(2.14)

~cn = ~f
(
~rn +

h
2
~bn, tn +

h
2

)
(2.15)

~dn = ~f (~rn +h~cn, tn +h) (2.16)

The derivation of the coefficients ~an,~bn,~cn and ~dn can be found in [8]. Due to the DA based

implementation the calculation yields a transfer map that relates the initial state to the final state.

However, the ordinary method (not DA based) can only be used for element-by-element tracking,

yielding only a numerical relation between the initial and final value.
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2.3 Fixed point Integrator

The fixed point Integrator turns an ordinary differential equation (ODE) into a fixed point problem

which it solves through iteration. Hence, the following short introduction to fixed point problems

is given.

A function F has a fixed point x0 if F(x0) = x0 is satisfied. Assuming that F(x) has a fixed point x0,

the question arises under what conditions can the fixed point be approximated through the iteration

xn+1 = F(xn). (2.17)

It is apparent that the fixed point must be attractive for the starting value of the iteration. There-

fore F(x) must be contracting. A map F : M → M on a metric space (M,d) with a metric d is

contracting, if ∀x,y ∈M

d (F(x),F(y))< k d (x,y) (2.18)

where k is a real number 0 ≤ k < 1 which is called a Lipschitz constant. M therefore defines

the space of contraction of F . Furthermore, if

k d (xn,yn)> d (F(xn),F(yn)) = d (xn+1,yn+1)
n→∞−→ d (x0,x0) = 0 (2.19)

then F is contracting on M with the fixed point x0 and the iteration process which will yield the

fixed point. Considering the example of F(x) = x2, one fixed point is trivially x0 = 0 and is

attractive for the range of |x| < 1. The other fixed point is at x1 = 1, which has a range of zero

and is therefore not attractive. On the other hand, G(x) =
√

x has a fixed point at x0 = 1, which is

attractive for all x ∈ R+, which is every value of the domain of G except for the only other fixed

point x1 = 0.

According to [2] the integrator solves the fixed point problem for the function ~R(~r(t), t) with

~R(~r(t), t) =~r(0)+
∫ t

0
~f
(
~r(t′), t

)
dt′, (2.20)

where ~f = ~̇r and ~r(0) = I . The fixed point of ~R(~r(t), t) is obviously ~r(t), which shall be

approximated by fixed point iteration (eq. 2.17). The integration, which is represented by an anti-
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differentiation operation ∂−1 in the DA framework, is contracting with respect to the depth (first

non-vanishing derivative) [6]. The fixed point problem

~r(t) = I+
∫ t

0
~f
(
~r(t′), t′

)
dt′, (2.21)

can therefore be approximated, order by order, through the iteration:

~rn+1(t) = I+
∫ t

0
~f
(
~rn(t′), t′

)
dt′, (2.22)

with~r0(t) =~0. So, with each step of the iteration the following is valid for m being at least n.

~r(t) =m~rn(t) (2.23)

As an illustrative example the same ODE introduced previously for the Flow Integrator is approx-

imated with the fixed point method:

r0(t) = I+
∫ t

0
~f
(
~0, t′

)
dt′ = r(0) =

q

p

 (2.24)

r1(t) = I+
∫ t

0
~f
(
r0, t
′)dt′ =

q

p

+

pt

t2
2

 (2.25)

r2(t) = I+
∫ t

0
~f
(
r2, t
′)dt′ =

q

p

+

pt

t2
2

+


t3
6

0

 (2.26)

and ∀n > 2 rn(t) = r2(t). In this example, the iteration terminates after the 3rd order. The

algorithm can be implemented in COSY INFINITY in a very efficient way, by constraining the

order of each step to the necessary minimum, which is the order of the iteration itself. So the

second iteration (eq. 2.25) would be restrained to 2nd order and so on; this avoids unnecessary

calculations of higher orders in each step, which become drastically even more time consuming

with each additional order.
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2.4 Error vs step-size for RK4 integrator

The following section investigates the error in the RK4 integration. In general, the errors are

distinguished in single-step and multi-step errors, each of which is determined by the difference of

the RK4-calculated result to the exact solution. For the RK4, the single-step error depends on the

step size h with O(h5) [19]. The multi-step error, which is the total error from all the single steps

combined, depends on the step-size withO(h4) [19]. This property can be shown in the following

example using the Hamilton equations resulting from the Pendulum oscillation, which is discussed

in detail in section 5.1:0 −1

1 0


p1

q1

+


aq3

1
3! −

a2q5
1

5! +
a3q7

1
7! −

a4q9
1

9! + ...

0

 (2.27)

The ODE is integrated using a single-RK4-step from t = 0 to t = h0. The resulting map yields

the starting point for the following test: To show that the multi-step error, which is also called

the global truncation error, is of order O(h4), the integration to t = 2h0 is done in multiple ways:

1,2,4, ...,32768 steps are done with the corresponding step-sizes of h0,
h0
2 ,

h0
4 , ....,

h0
32768 . The

result of the smallest step size is considered the exact result. Hence, the error is the difference of

the result from the respective step-size to the ’exact’ result. The error is plotted against the number

of steps used and shown in a log-log scaling in figure 2.1. Alternatively, the reciprocal relative

step size can be used, which is equivalent to the used steps in this example. The linear correlation

yields an h4-dependency, which confirms the expected result. Note that for very small step-sizes

the constant error that originates from the floating point number approximations (see sec. 1.2.1)

becomes the dominant part of the total error. Accordingly, the step-size can potentially be chosen

ineffectively small, where an increase in steps, and therefore computation time, does not result in

more precise results. In this example, the critical step-sizes is approximately h0/1024≈ 10−4h0.

The other test concerns a single step of the RK4 method, whereby the error equivalently defined

as above, is supposed to be of the order O(h5) [19]. Again, the map for t = h0 is used as the

starting point from which one step of the different step-sizes h0/2,h0/4,h0/8, ...,h0/256 is done.
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Figure 2.1 The graph illustrates how the total error of a DA based RK4-integration drops ∼ h4

until a certain critical step size is reached. From this step-size onwards, more steps do not result
in more precise results since the maximum precision, determined by the floating point calculation
errors, is reached. For this example, the critical step-size is approximately 2−10h0 ≈ 10−4h0. The
error is estimated by calculating the difference of the result from the step-size 2−kh0 to the result
from the step-size 2−12h0, which is considered the ’exact’ solution. The difference is then
normalized to the respective result of the 20h0-step-size-calculation. The different plots/colors
represent the coefficients of different terms of the t = 2h0 map of the Pendulum ODE (eq. 5.4)
after the integration from the t = h0 map using a different number of steps according to the
step-size.

For comparison the ’exact’ result is calculated by 256,128,64, ...,2 steps of h0/512, respectively.

The difference of one-step-result to the ’exact’ result is plotted against the number of steps. The

5th-order dependence becomes apparent in the linear correlation of the log-log scaled graph, which

is shown in figure 2.2. It should go without saying that the DA variable h0 in the integration was

only introduced for the purpose of illustrating the error behavior of the DA based RK4-integrator.

In the general application, the variable h0 is replaced by the specific step-size value. Therefore,
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Figure 2.2 The graph illustrates how the single-step error of a DA based RK4-integration step
drops ∼ h5 with h being the step-size. The error is estimated by calculating the difference of the
result from the step-size 2−kh0 to the result from the step-size 2−9h0, which is considered the
exact solution in this case. The difference is then normalized to the respective result of the
2−1h0-step-size-calculation. The different plots represent the coefficients of different terms of the
t = h0 +h map of the Pendulum ODE (eq. 5.4) after the integration from the t = h0 map using
one step of step-size h. The additional factor of 25 in the error to 1/step-size ratio originates from
normalization with respect to the 2−1h0-step-size-calculation.

the generated transfer maps do not represent the state after an arbitrary time h0, but a specific time

such as t = 1. The generalization of adding a step-size variable is not needed in most cases and

would therefore only increase the total order of the single terms. Since the calculation is order

truncated, the general result would be significantly less precise than the direct calculations with a

specific value. Considering an order truncation of 5, terms like q2α2t2 would not be represented

in the general solution, due to the total order of 6 of the term. But for a specific step-size like 1,

the term is represented together with the other q2α2-terms.

28



2.5 Integrator comparison

To investigate how the various DA based integrators compare, the integration of the Pendulum

oscillation ODE (eq. 5.26) is investigated. All integrators kept the step-size t = h a variable. The

ODE was integrated in one step from t = 0 to t. The resulting transfer maps for the q and p-

component are given in table 2.1 and 2.2, respectively. The order truncation was set to 11. Both

the fixed point Integrator as well as the Flow Integrator yield the same result up to the set order

truncation. This is not very surprising since both of them approximate the exact solution order by

order, which results in both yielding the same result, namely, the exact solution (with floating point

accuracy) up to order 11. The RK4 on the other hand simulates the Taylor expansion up to 4th-

order, therefore all terms with t of order 4 or lower coincide with the Flow/fixed point integration.

From the theory above it is known, that the error of a single RK4-step is of order O(h5). This can

be observed in the tables (2.1 and 2.2) as well. Terms of t with order 5 or higher are either zero or

different to the fixed point/Flow integration, just as expected.
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Table 2.1 The table represents the q-component of the transfer map of the initial state from t = 0
to t in the Pendulum vector field from equation 5.26 up to the 11th order. The transfer map was
calculated with one step via the three different DA base integrators. The columns with bold order
numbers indicate terms of O(t5), which are the first error affected terms of the RK4 integrator,
which supports the theory discussed in section 2.4. Furthermore, the results of fixed point
integration and Flow integration are identical, which also agrees with the theory.

Order Factor RK4(t) Fixed-P(t) Flow(t)

1 q 1,00000E+00 1,00000E+00 1,00000E+00

2 pt 1,00000E+00 1,00000E+00 1,00000E+00

3 qt2 -5,00000E-01 -5,00000E-01 -5,00000E-01

4 pt3 -1,66667E-01 -1,66667E-01 -1,66667E-01

5 qt4 4,16667E-02 4,16667E-02 4,16667E-02

6 q3t2α 8,33333E-02 8,33333E-02 8,33333E-02

6 pt5 8,33333E-03 8,33333E-03

7 q2 pt3α 8,33333E-02 8,33333E-02 8,33333E-02

7 qt6 -1,38889E-03 -1,38889E-03

8 q3t4α -2,77778E-02 -2,77778E-02 -2,77778E-02

8 qp2t4α 4,16667E-02 4,16667E-02 4,16667E-02

8 pt7 -1,98413E-04 -1,98413E-04

9 q5t2α2 -4,16667E-03 -4,16667E-03 -4,16667E-03

9 q2 pt5α -2,08333E-02 -3,33333E-02 -3,33333E-02

9 p3t5α 6,94444E-03 8,33333E-03 8,33333E-03

9 qt8 2,48016E-05 2,48016E-05

10 q4 pt3α2 -6,94444E-03 -6,94444E-03 -6,94444E-03

10 q3t6α 5,20833E-03 5,78704E-03 5,78704E-03

10 qp2t6α -5,20833E-03 -1,52778E-02 -1,52778E-02

10 pt9 2,75573E-06 2,75573E-06

11 q5t4α2 5,55556E-03 5,55556E-03 5,55556E-03

11 q3 p2t4α2 -6,94444E-03 -6,94444E-03 -6,94444E-03

11 q2 pt7α 2,60417E-03 6,84524E-03 6,84524E-03

11 p3t7α -2,18254E-03 -2,18254E-03

11 qt10 -2,75573E-07 -2,75573E-07
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Table 2.2 The table shows the p-component equivalent to Table 2.1.

Order Factor RK4(t) Fixed-P(t) Flow(t)

1 p 1,00000E+00 1,00000E+00 1,00000E+00

2 qt -1,00000E+00 -1,00000E+00 -1,00000E+00

3 pt2 -5,00000E-01 -5,00000E-01 -5,00000E-01

4 qt3 1,66667E-01 1,66667E-01 1,66667E-01

5 q3tα 1,66667E-01 1,66667E-01 1,66667E-01

5 pt4 4,16667E-02 4,16667E-02 4,16667E-02

6 q2 pt2α 2,50000E-01 2,50000E-01 2,50000E-01

6 qt5 -8,33333E-03 -8,33333E-03

7 q3t3α -1,11111E-01 -1,11111E-01 -1,11111E-01

7 qp2t3α 1,66667E-01 1,66667E-01 1,66667E-01

7 pt6 -1,38889E-03 -1,38889E-03

8 q5tα2 -8,33333E-03 -8,33333E-03 -8,33333E-03

8 q2 pt4α -1,66667E-01 -1,66667E-01 -1,66667E-01

8 p3t4α 4,16667E-02 4,16667E-02 4,16667E-02

8 qt7 1,98413E-04 1,98413E-04

9 q4 pt2α2 -2,08333E-02 -2,08333E-02 -2,08333E-02

9 q3t5α 3,12500E-02 3,47222E-02 3,47222E-02

9 qp2t5α -1,04167E-01 -9,16667E-02 -9,16667E-02

9 pt8 2,48016E-05 2,48016E-05

10 q5t3α2 2,22222E-02 2,22222E-02 2,22222E-02

10 q3 p2t3α2 -2,77778E-02 -2,77778E-02 -2,77778E-02

10 q2 pt6α 4,68750E-02 4,79167E-02 4,79167E-02

10 p3t6α -2,25694E-02 -1,52778E-02 -1,52778E-02

10 qt9 -2,75573E-06 -2,75573E-06

11 q7tα3 1,98413E-04 1,98413E-04 1,98413E-04

11 q4 pt4α2 5,55556E-02 5,55556E-02 5,55556E-02

11 q2 p3t4α2 -2,08333E-02 -2,08333E-02 -2,08333E-02

11 q3t7α -4,34028E-03 -6,87831E-03 -6,87831E-03

11 qp2t7α 2,60417E-02 2,02381E-02 2,02381E-02

11 pt10 -2,75573E-07 -2,75573E-07
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CHAPTER 3

THE NORMAL FORM ALGORITHM

In the previous chapter, the different DA based integrators were discussed, which yield a transfer

map, that algebraically connects the initial state to the state at time t: ~z f =M
(
~zi,

~δ
)

, where ~δ

represents possible parameter dependencies. Considering a repetitive Hamiltonian system, where

the components of the resulting map are in phase-space coordinates, the Normal Form Algorithm

provides a nonlinear change of variables for the given mapM, which significantly simplifies all

terms up to an arbitrary order mmax. In the transformed variables, the transfer map will represent

circular motion with only amplitude dependent frequencies [6]. Those frequencies are the key

quantity of every periodic system and in most cases make the explicit trajectory superfluous. This

simplified form of the map is called the ’Normal Form ofM’ orMNF , in the shorthand notation.

The following introduction to the DA Normal Form Algorithm largely draws from [6] and is com-

plemented with an explicit calculation for a symplectic system with ν = 1 up to 3rd order. The

specification is chosen, since only Hamiltonian systems are discussed in this thesis. Symplectic

maps are canonical [6] and therefore preserve the Hamiltonian form (see 1.2.5).

3.1 The DA Normal Form Algorithm

The DA Normal Form Algorithm uses the DA framework implemented in COSY INFINITY to

express the Normal Form of the mapM in algebraic relation to the initial state using a sequence

of order-by-order coordinate transformations Am applied to the mapM in the following way:

Am ◦M◦A−1
m (3.1)

In the general form, the mapM= C0 +L+∑mUm consists of a constant part C0, a linear part L

and the nonlinear parts Um of order m. M is 2ν-dimensional, with ν position/momentum entry
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pairsM±j . For ν = 1 the map can be explicitly written as

M(x, p) =

M
+

M−

 =

x0

p0


︸ ︷︷ ︸
C0

+

(x|x) (x|p)

(p|x) (p|p)


x

p


︸ ︷︷ ︸

L

+

U
+
2(2,0)

U−2(2,0)

x2 +

U
+
2(1,1)

U−2(1,1)

xp+

U
+
2(0,2)

U−2(0,2)

 p2

︸ ︷︷ ︸
U2

+

U
+
3(3,0)

U−3(3,0)

x3 +

U
+
3(2,1)

U−3(2,1)

x2 p+ ...

︸ ︷︷ ︸
U3

(3.2)

In the first step of the Normal Form Algorithm, the parameter-dependent fixed point
(
~zFix,

~δ
)

is

translated to the origin, soM
(
~0,~δ

)
= 0 to make the map origin preserving. This fixed point rep-

resents the reference orbit in phase space, which can often be obtained by solving the unperturbed

ODE of the problem. In most cases the constant part C0 points to the reference orbit. Therefore, it

can be removed, which yieldsM0 = L+∑mUm. Following [6], the fixed point problem

M
(
~zFix,

~δ
)
=
(
~zFix,

~δ
)

(3.3)

has to be solved for the nontrivial case, which is done by the following equation:

(
~zFix,

~δ
)
= (M−I)−1

(
~0,~δ

)
. (3.4)

From 1.2.3 it is known that polynomials with non-zero constant terms, like the identity, have an

inverse which can be calculated up to order mmax using equation 3.30.
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3.1.1 Diagonalization

The diagonalization is important for the computation, since it decouples the 2ν phase space into ν

subspaces, which can then be treated independently. The matrix L̂ is associated with the linear part

ofM. It is transformed into a diagonal-block-matrix, which has 2x2-submatrices on its diagonal:

L̂1

. . .

L̂ j

. . .

L̂ν


with L̂ j =

a j b j

c j d j

 (3.5)

Consequently, the map can now be treated in the two-component subspace. More information on

the block matrix creation can be found in [6].

3.1.1.1 Diagonalization transformation of the linear part

In the first order correction, the linear part of the map L must be diagonalized. Thus, it is assumed

that L̂ is diagonalizable and has ν distinct complex conjugate eigenvalue pairs λ
±
j . Furthermore,

it is required that no eigenvalue is unity and the product of all eigenvalues is positive, which is

generally true for a repetitive system under normal conditions [6]. The first order transformation

matrix Â−1
1 =

(
~v1,~̄v1, ...,~v j,~̄v j, ...,~vν ,~̄vν

)
consists of the ν complex conjugate eigenvector pairs(

~v j,~̄v j
)

of L̂ resulting in the diagonalized linear matrix R̂ with components:

R̂ j =A1, j ◦ L̂ j ◦A
−1
1, j =

λ
+
j 0

0 λ
−
j

=

eiµ j 0

0 e−iµ j

 (3.6)

It is essential for the transformation of the higher order terms that |Det
(
Â
)
| = 1 to keep the

transformation scaling-neutral.
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For the ν = 1 the eigenvalues can be derived from the eigenvalue equation 1.28 which yields

the following results for the eigenvalues and their phase:

λ
± =

(x|x)+(p|p)
2

±
√

((x|x)+(p|p))2

4
− (x|x)(p|p)+(p|x)(x|p) = re±iµ (3.7)

µ = sign((x|p))arccos

(
(x|x)+(p|p)

2
√
(x|x)(p|p)− (p|x)(x|p)

)
(3.8)

where (r = 1)∧ (µ ∈ R), since in the example a symplectic system is considered. The eigen-

vectors of L̂ can then be expressed in the Twiss parameters as follows:

~v± =

 β

α± i

 (3.9)

α =
(x|x)− (p|p)

2r sin µ
β =

(x|p)
r sin µ

γ =
−(p|x)
r sin µ

(3.10)

To follow the example in the case of β = 0, one can either use the eigenvectors described in

equation 1.47 , which are in terms of γ and α and follow the diagonalization steps with those or

one can transform the current map to a different form, where the new β ′ = γ , γ ′ = 1/γ and α ′ = 0.

This map can be generated by using the transformation A0 with:

Â−1
0 =

1/γ −α

0 γ

 Â0 =

γ α

0 1/γ

 (3.11)

A0 ◦L◦A−1
0 =

 cos µ γ sin µ

− sin µ

γ
cos µ

 (3.12)

The higher order terms have to be transformed accordingly (see 3.1.1.2).

Whether with the original map or the transformed map, the eigenvectors of the linear part have

a magnitude and phase-freedom to them. In this calculation the phase-freedom is used to make sure

that the transformation matrix consist of a complex conjugate eigenvector pair. This assures certain

complex conjugate properties of the transformed map. Since the transformation of nonlinear terms
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is also relevant in this process, it is necessary for the transformation matrix to satisfy |Det(A)|= 1.

The 1st-order transformation matrix Â−1
1 =

(
~v+,~v−

)
and its inverse Â1 (see 1.2.4) are given as

follows:

Â−1
1 =

(x|s+1 ) (x|s−1 )

(x|s+1 ) (p|s−1 )

=
1√
2β

 −β −β

α + i α− i

 (3.13)

Note the scaling factor of 1/|det
(
Â−1

1

)
|, that assures a scaling neutral transformation.

Â1 =
−1√

2β

1+ iα iβ

1− iα −iβ

=

(s+1 |x) (s+1 |p)

(s−1 |x) (s−1 |p)

 (3.14)

For the linear part the transformation yields:

R̂= Â1 ◦ L̂◦ Â
−1
1 =

λ+ 0

0 λ−

=

eiµ 0

0 e−iµ

 (3.15)

3.1.1.2 Diagonalization transformation of the non-linear parts

The linear transformation for the diagonalization of the linear part also transforms the nonlinear

parts Um from position/momentum basis
(

x1~ex1, p1~ep1 , ...,x j~ex j , p j~ep j , ...
)

to the complex eigen-

vector basis of L̂:
(

s+1~v1,s
−
1 ~̄v1, ...,s

+
j ~v j,s

−
j ~̄v j, ...

)
, as follows:x j

p j

=A1. j ◦

s+j

s−j

=

 (x j|s+j )s
+
j +(x j|s−j )s

−
j

(p j|s+j )s
+
j +(p j|s−j )s

−
j

 (3.16)

The map after the first order transformation into the eigenvector basis can therefore be written as

follows: M1 = R+∑mSm, where Sm are the transformed nonlinear parts, which now depend

on ~s+and ~s−, the eigenvector coefficients, instead of ~x and ~p. A more explicit form of the jth-

36



component with a similar notation as introduced in [6, 7.63] looks like this:

Sm, j = ∑
||~k++~k−||1=m

(
S±m, j|~k

+,~k−
) ν

∏
l=1

(
s+l
)k+l (s−l )k−l (3.17)

where k±j represents the positive integer exponent of s±j summarized in~k± and ||~k||1 := ∑ |kl |

is the L1-Norm (also known as Manhattan Norm), which assures that only polynomial-terms

of order m are considered.
(
S±m, j|~k

+,~k−
)

is the Taylor expansion coefficient with respect to

∏
ν
l=1
(
s+l
)k+l (s−l )k−l . So,

M
±
j
(
~s+,~s−

)
= r je

±iµ js±j +
mmax
∑

m=2
Sm, j (3.18)

= r je
±iµ js±j +

mmax
∑

m=2
∑

||~k++~k−||1=m

(
S±m, j|~k

+,~k−
) ν

∏
l=1

(
s+l
)k+l (s−l )k−l (3.19)

Also note, since s+l and s−l are complex conjugate pairs, that s+l = s−l and therefore:

M±j (~s+,~s−) = r je
∓iµ js∓j +

mmax
∑

m=2
∑

||~k++~k−||1=m

(
S±m, j|~k+,~k−

) ν

∏
l=1

(
s+l
)k+l (s−l )k−l

= M
∓
j
(
~s+,~s−

)
with

(
S±m, j|~k+,~k−

)
=
(
S∓m, j|~k

−,~k+
)

(3.20)

For ν = 1 the explicit transformation of the nonlinear parts is done as follows: The individual trans-

formation of single parts of the map is only possible in the case of a linear transformation, which

is given for the diagonalization. Therefore, the transformation of the term Um(k+,k−)x
k+ pk− with

k++ k− = m can be shown in general: First A−1
1 transforms the new complex conjugate vari-

ables (s+,s−) into the old variables (x, p) to make them suitable for Um(k+,k−)x
k+ pk− , which is

a function of x and p.

1√
2β

 −β −β

α + i α− i


s+

s−

 =

√
2
β

 Re
(
−β s+

)
Re
(
(α− i)s−

)
 (3.21)

The result in (x, p)-coordinates, which is real since (x, p) are real, can now be inserted into the

nonlinear part Um(k+,k−)x
k+ pk−:

(
Um(k+,k−)x

k+ pk−
)
◦A−1

1 =

(
2
β

)m
2
Um(k+,k−)Re

(
−β s+

)k+Re
(
(α− i)s−

)k− (3.22)
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In the last part of the transformation, the current result in (x, p)-coordinates is transformed back to(
s+,s−

)
-coordinates with A1 ◦

(
Um(k+,k−)x

k+ pk−
)
◦A−1

1

=
1
2

(
2
β

)m+1
2

Re
(
−β s+

)k+Re
(
(α− i)s−

)k−
 iα−1 −β i

−iα−1 β i

Um(k+,k−) (3.23)

=
1
2

(
2
β

)m+1
2

Re
(
−β s+

)k+Re
(
(α− i)s−

)k− (3.24)

·


 iα−1

−iα− i

U+m(k+,k−)+

−β i

β i

U−m(k+,k−)

 (3.25)

The result of the transformation is a vector with complex conjugate entries. Since all transformed

terms can just be added due to the linearity of the transformation, the resultM1 will have complex

conjugate entries

M=

M
+

M−

=

M
−

M+

 (3.26)

as already suggested in equation 3.20. After the transformation, all terms will be expanded and

summarized with respect to the new coordinates
(
s+
)k+ (s−)k− giving the new Taylor expansion

coefficient Sm(k+,k−) where m = k++ k−.

The two components (±) of the new mapM±1 look like this:

M
±
1 = e±iµs±+

mmax
∑

m=2
∑

k++k−=m

S±
m(k+,k−)(s

+)k+(s−)k− (3.27)

with S2 = S2(2,0)(s
+)2 +S2(1,1)s

+s−+S2(0,2)(s
−)2 (3.28)

=

(s+|s+s+)

(s−|s+s+)

(s+)2 +

(s+|s+s−)

(s−|s+s−)

s+s−+

(s+|s−s−)

(s−|s−s−)

(s−)2 (3.29)
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3.1.2 The non-linear transformation

The diagonalization is followed by the nonlinear transformations, which are the key transforma-

tions of the algorithm. The transformations are conducted order by order starting with the 2nd .

The process is equivalent for each order and is therefore described in general for the mth-order

transformation drawing largely from [6]. The mapMm−1, which is already simplified up to order

m−1, is transformed as follows: Am ◦Mm−1 ◦A−1
m , whereAm = I+Tm andA−1

m [6, 7.60+61]:

A−1
m = I−Tm +T 2

m −T 3
m + ... (3.30)

Since only the mth-order ofMm−1 is relevant for the determination of the mth-order transforma-

tion, all higher order terms can be ignored. The transformation yields the following terms of mth

order [6, cf 7.62]:

Am ◦Mm−1 ◦A−1
m =m (I+Tm)◦ (R+S)◦

(
I−Tm +���

��
��T 2

m −T 3
m + ...

)
(3.31)

=m (I+Tm)◦ (R◦ (I−Tm)+S ◦ (I−��Tm)) (3.32)

=m (I+Tm)◦ (R−R◦Tm +S) (3.33)

=m R−R◦Tm +S+Tm ◦ (R−((((((R◦Tm +S) (3.34)

=m R+S<m +Sm +��
�S>m +[Tm,R] (3.35)

In equation 3.31, all terms of T n
m with n > 1 are irrelevant, since they are at least of order m2.

In equation 3.32, the term S ◦ Tm was canceled for the same reason - the resulting expression

is at least of order m+ 1, just like the term Tm ◦S in equation 3.34. In that same equation, the

term Tm ◦R ◦Tm is irrelevant, because it is at least of order m2. The term S>m in equation 3.35

denotes only terms of order > m and therefore is also canceled. The goal is to find Tm, such that

the commutator Cm = [Tm,R] = −Sm, to eliminate all terms of order m. This is in general not

always possible and in the next steps, it will become more apparent which terms of Sm cannot be

eliminated. Similar to Sm, the jth-component of Tm can be written as:

Tm, j = ∑
||~k++~k−||1=m

(
T ±m, j|~k

+,~k−
) ν

∏
l=1

(
s+l
)k+l (s−l )k−l (3.36)
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Hence, the jth-component of the two parts of the commutator can be written as follows:

(Tm ◦R) j = ∑
||~k++~k−||1=m

(
T ±m, j|~k

+,~k−
) ν

∏
l=1

(
rle

+iµl s+l

)k+l
(

rle
−iµl s−l

)k−l (3.37)

= ∑
||~k++~k−||1=m

(
T ±m, j|~k

+,~k−
)

e
i~µ
(
~k+−~k−

)
ν

∏
l=1

r

(
k+l +k−l

)
l

(
s+l
)k+l (s−l )k−l (3.38)

(R◦Tm) j = r je
±iµ jTm, j (3.39)

Combining both to (Tm ◦R−R◦Tm) j =Cm, j results in [6, cf 7.64]:

Cm, j = ∑
||~k++~k−||1=m

(
C±m, j|~k

+,~k−
) ν

∏
l=1

(
s+l
)k+l (s−l )k−l (3.40)

(
C±m, j|~k

+,~k−
)

=
(
T ±m, j|~k

+,~k−
)(

e
i~µ
(
~k+−~k−

)(
ν

∏
l=1

r

(
k+l +k−l

)
l

)
− r je

±iµ j

)
(3.41)

It follows immediately, that the term associated with
(
S±m, j|~k

+,~k−
)

can only be eliminated, if the

factor
(
C±m, j|~k

+,~k−
)

is nonzero, in which case
(
T ±m, j|~k

+,~k−
)

is given by [6, cf 7.72]:

(
T ±m, j|~k

+,~k−
)
=

−
(
S±m, j|~k

+,~k−
)

(
e

i~µ
(
~k+−~k−

)(
∏

ν
l=1 r

(
k+l +k−l

)
l

)
− r je

±iµ j

) (3.42)

(
C±m, j|~k

+,~k−
)

given in equation 3.41 is zero under the following condition [6]:

e
i~µ
(
~k+−~k−

)(
ν

∏
l=1

r

(
k+l +k−l

)
l

)
= r je

±iµ j (3.43)

For non-symplectic systems, the further approach can be found in [6]. For symplectic systems,

where
(
r j = 1

)
∧
(
µ j ∈ R

)
∀ j, the condition in equation 3.43 simplifies to

e
i~µ
(
~k+−~k−

)
= e±iµ j (3.44)

and even further to [6, cf 7.65]:

µ j(k
+
j − k−j ∓1)+ ∑

l 6= j
µl

(
~k+−~k−

)
= 0(mod 2π) (3.45)

〈~µ,~k+−~k−∓~e j〉 = 0(mod 2π) (3.46)
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In the trivial case, the condition is met for:

k+j − k−j = ±1 and k+l = k−l ∀l 6= j (3.47)

which yields terms that are responsible for the amplitude-dependent tune shifts and is therefore

the heart of the Normal Form Algorithm. This condition is purely mathematical. All other non-

trivial solutions to equation 3.46 are of a physical nature, which means that, purely mathematically

it is quite impossible to find a linear combination of integer multiples of the eigenvalues µl so

that the result is exactly ±µ j(mod 2π) even for orders m� 10. From a computational/physical

point of view it is sufficient, for the linear combination to be close enough to ±µ j(mod 2π) for(
T ±m, j|~k

+,~k−
)

to ’blow up’. This case represents higher order resonances, which are of a physical

nature.

Considering the first condition it becomes apparent, that the only terms that are mathematically

impossible to remove are:

(
S+m, j|~k+~e j,~k

)
(s+j )∏

ν
l=1
(
s+l s−l

)kl

(
S−m, j|~k,~k+~e j

)
(s−j )∏

ν
l=1
(
s+l s−l

)kl

for m = ||2~k+~e j||1 (3.48)

which only occur for odd orders.

It is important to recognize that the nonlinear terms S>m with a higher order than the order of

the current coordinate transformation m are very likely to change due to the mth-order coordinate

transformation.

The following example of the non-linear 2nd order transformation for ν = 1 will illustrate how

higher orders like the 3rd order are affected. In order to eliminate all S2-terms with the 2nd order

transformation, T2 in the transformation A2 = I+T2 has to be

(T ±2 |k
+,k−) =

−(S±2 |k
+,k−)(

eiµ(k+−k−)− e±iµ
) (3.49)

according to equation 3.42. To study how the transformation affects the higher orders, the
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second order transformation is considered up to 3rd-order.

M2 =3 A2 ◦M1 ◦A−1
2 (3.50)

=3 (I+T2)◦ (R+S2 +S3)◦
(
I−T2 +��

�
��

T 2
2 − ...

)
(3.51)

=3 (I+T2)◦ (R◦ (I−T2)+S2 ◦ (I−T2)+S3) (3.52)

=3 (I+T2)◦ (R−R◦T2 +S2 +S2→3 +S3) (3.53)

=3 R−R◦T2 +S2 +S2→3 +S3 (3.54)

+T2 ◦
(
R−

((((
((((

(((
((

R◦T2 +S2 +S2→3 +S3

)
(3.55)

=3 R−R◦T2 +S2 +S2→3 +S3 +T2 ◦R (3.56)

=3 R+S2 +[T2 ◦R]︸ ︷︷ ︸
=0

+S3 +S2→3︸ ︷︷ ︸
S3,new

(3.57)

All the crossed-out terms in equation 3.51 and 3.55 represent parts that won’t contribute to the

result up to order 3, each of them is at least of order m+ 1. As a result, there is a new 3rd-order

part, which consists of the unchanged old S3 and a new S2→3-term. In the following calculation,

the new term is examined further.

S2→3 =3 S2 ◦ (I−T2)−S2

=3 S2(2,0)
(
s+−T +

2
)2

+S2(0,2)
(
s−−T −2

)2
+
(
S2(1,1)

(
s+−T +

2
)(

s−−T −2
))

3
−S2

=3 S2(2,0)
(
s+
)2

+S2(1,1)s
+s−+S2(0,2)

(
s−
)2−S2

+

((((
((((

(((
((((

(((
((((

((

S2(2,0)
(
T +

2
)2

+S2(1,1)T +
2 T

−
2 +S2(0,2)

(
T −2
)2

−2S2(2,0)T +
2 s+−S2(1,1)

(
T +

2 s−+T −2 s+
)
−2S2(0,2)T −2 s−

=3 −2S2(2,0)T +
2 s+−S2(1,1)

(
T +

2 s−+T −2 s+
)
−2S2(0,2)T −2 s− (3.58)

where the T 2
2 terms can be neglected because they are of order 4. Note that the T2-terms also

depend on S2 as equation 3.49 shows. It becomes apparent that the transformation has a significant
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effect on the higher order terms and therefore it is necessary to determine an upper bound for the

order to which the normal form is calculated beforehand.

For the next step, the 3rd-order correction, the same calculations are done. Assuming that

the truncation order mmax = 3, it will not be necessary to calculate the transformation explicitly,

because it is known from equation 3.48, which terms will cancel out and the changes to the higher

orders are irrelevant. Only the terms S+3,new(2,1) and S−3,new(1,2) cannot be canceled, due to the

condition in equation 3.47. Therefore the remaining parts of equation 3.58 are given as follows:

S+2→3(2,1) =−2S+2(2,0)T
+

2(1,1)−S
+
2(1,1)

(
T +

2(2,0)+T
−

2(1,1)

)
−2S+2(0,2)T

−
2(2,0)

=
2S+2(2,0)S

+
2(1,1)

1− eiµ +
S+2(1,1)S

+
2(2,0)

e2iµ − eiµ +
S+2(1,1)S

−
2(1,1)

1− e−iµ +
2S+2(0,2)S

−
2(2,0)

e2iµ − e−iµ (3.59)

S−2→3(1,2) =−2S−2(2,0)T
+

2(0,2)−S
−
2(1,1)

(
T +

2(1,1)+T
−

2(0,2)

)
−2S−2(0,2)T

−
2(1,1)

=
2S−2(2,0)S

+
2(0,2)

e−2iµ − eiµ +
S−2(1,1)S

+
2(1,1)

1− eiµ +
S−2(1,1)S

−
2(0,2)

e−2iµ − e−iµ +
2S−2(0,2)S

−
2(1,1)

1− e−iµ (3.60)

Note that complex conjugate relation still holds with: S+2→3(2,1) = S
−
2→3(1,2). Unfortunately, the

expression of S+2→3(2,1) in terms of U2 is already very long and therefore not given. This shows

how the computer-based calculation using the DA framework in COSY INFINITY is essential.

The original S3-term, which is the entire S3,new-term for U2 = 0, can be derived in a short formula

in terms of U3:

S+3(2,1) =
1
4

(
γ(3U−3(0,3)+U

+
3(1,2))+β (3U+3(3,0)+U

−
3(2,1))−2α(U+3(2,1)+U

−
3(1,2))

)
− 3i

4

(
U+3(0,3)γ

2−U−3(3,0)β
2 +α(γ(U−3(0,3)−U

+
3(1,2))+β (U−3(2,1)−U

+
3(3,0)))

)
− i

4
(U+3(2,1)+U

−
3(1,2))(βγ +α

2) = S−3(1,2) (3.61)

As previously noted, all terms surviving after the 3rd-order transformation are the following:

M3 =

M
+

M−

 =3

s+
(

e+iµ +S+3,new(2,1)s
+s−

)
s−
(

e−iµ +S−3,new(1,2)s
+s−

)
 (3.62)
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3.1.3 Transformation to Normal Form coordinates

In the last step, the simplified map is finally transformed into Normal Form. After the mmax-order

transformation, the jth-component ofM has the following form [6, 7.66].M
+
j

M−j

 =


s+j

(
e+iµ +∑

mmax
m=||2~k+~e j||1

(
S+m, j|~k+~e j,~k

)
∏

ν
l=1
(
s+l s−l

)kl
)

s−j

(
e−iµ +∑

mmax
m=||2~k+~e j||1

(
S−m, j|~k,~k+~e j

)
∏

ν
l=1
(
s+l s−l

)kl
)
 (3.63)

=

s+j f j
(
s+1 s−1 , ...,s+l s−l , ...,s+ν s−ν

)
s−j f̄ j

(
s+1 s−1 , ...,s+l s−l , ...,s+ν s−ν

)
 (3.64)

The simplification to f j and its complex conjugate f̄ j above is possible due to the complex conju-

gate relationship betweenM+
j andM−j shown in equation 3.20. Rewriting f j = a je

iφ jyields

M±j = s±j a je
±iφ j

(
s+1 s−1 ,...,s+l s−l ,...,s+ν s−ν

)
(3.65)

Since the original map only operates in real space, but the current basis consists of complex con-

jugate pairs, a real basis t±j from the real and imaginary part of the current complex basis s±j is

introduced as follows [6, cf 7.58]:

t+j =
(

s+j + s−j
)
/2 (3.66)

t−j =
(

s+j − s−j
)
/2i (3.67)

The associated transfer matrix to the real basis is

A j =
1√
2

 1 1

−i i

=


(

t+j |s
+
j

) (
t+j |s

−
j

)
(

t−j |s
+
j

) (
t−j |s

−
j

)
 (3.68)

and the inverse relation accordingly [6, cf 7.59]:

s±j = t+j ± i t−j (3.69)
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A−1
j =

1√
2

1 i

1 −i

=

(s+j |t
+
j ) (s+j |t

−
j )

(s−j |t
+
j ) (s−j |t

−
j )

 (3.70)

The amplitude φ j consists of s+j s−j terms, which are summarized to r2
j [6, 7.67] using equation

3.69:

s+j s−j =
(

t+j + i t−j
)(

t+j − i t−j
)
=
(

t+j
)2

+
(

t−j
)2

= r2
j (3.71)

The transformation from the simplified map to the real basis coordinates t±j in Normal Form is

conducted as follows [6, cf 7.68]:

M±j,NF = A j ◦M±j ◦A
−1
j =

1/2 1/2

1/2i −1/2i


·
(

t+j ± i t−j
)

a je
±iφ j

((
t+1

)2
+
(

t−1
)2

,...,
(

t+j

)2
+
(

t−j
)2

,...,
(

t+ν
)2

+
(

t−ν
)2
)

=
a j

2

 t+j
(

e+iφ j + e−iφ j
)
+ t−j i

(
e+iφ j − e−iφ j

)
−t+j i

(
e+iφ j − e−iφ j

)
+ t−j

(
e+iφ j + e−iφ j

)


= a j

cos
(
φ j
)
−sin

(
φ j
)

sin
(
φ j
)

cos
(
φ j
)
 ·
t+j

t−j

 (3.72)

Equation 3.72 illustrates the properties of the Normal Form best, which consists of circular curves

in phase space with only with amplitude depended tune shifts. This form was already referred to

as Normal Form in examples in section 1.2.6, where the solutions were already circles in phase

space. The constant radius of the curve can be shown by:(
M+

j

)2
+
(
M−j

)2
= a2

jr
2
j = const. (3.73)

Furthermore, the only amplitude-dependent tune shifts are constant along one curve, which makes

the Normal Form rotationally invariant:

MNF =R◦MNF ◦R−1 (3.74)
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The Normal Form output of the COSY INFINITY calculation will be in the form of a Taylor

expansion

M±j,NF = a j

t+j
(

cos µ j +N2cr2
j +N4cr4

j ...
)
− t−j

(
sin µ j +N2sr2 +N4sr4

j ...
)

t+j
(

sin µ j +N2sr2
j +N4sr4

j ...
)
+ t−j

(
cos µ j +N2cr2

J +N4cr4
J ...
)
 (3.75)

where r2 =
(

t+j
)2

+
(

t−j
)2

.

From this form the tunes and tune shifts can be calculated with

φ = arccos
(

cos µ +N2cr2 +N4cr4...
)
= arcsin

(
sin µ +N2sr2 +N4sr4...

)
(3.76)

which takes the following form in the COSY INFINITY representation:

arccos
(

cos µ + r2 f
(

r2
))

= µ−
f
(

r2
)

sin µ
r2−

cos µ f 2
(

r2
)

2sin3 µ
r4−

(
2cos2 µ +1

)
f 3
(

r2
)

6sin5 µ
r6...

(3.77)

Transforming the mapM3 to Normal Form coordinates yields:

NF3 =A◦M3 ◦A−1 (3.78)

=
1
2

 1 1

−i i



(
t++ i t−

)(
e+iµ + 1

2S
+
3,new(2,1)

((
t+
)2

+
(
t−
)2))

(
t+− i t−

)(
e−iµ + 1

2S
−
3,new(1,2)

((
t+
)2

+
(
t−
)2))

 (3.79)

=
1
2


(

e+iµ + e−iµ + 1
2

(
S+3,new(2,1)+S

−
3,new(1,2)

)
r2
)

t+

−i
(

e+iµ − e−iµ + 1
2

(
S+3,new(2,1)−S

−
3,new(1,2)

)
r2
)

t+

 (3.80)

− 1
2i


(

e+iµ − e−iµ + 1
2

(
S+3,new(2,1)−S

−
3,new(1,2)

)
r2
)

t−

−i
(

e+iµ + e−iµ + 1
2

(
S+3,new(2,1)+S

−
3,new(1,2)

)
r2
)

t−

 (3.81)

=


(

cos µ + 1
2Re

(
S+3,new(2,1)

)
r2
)

t+−
(

sin µ + 1
2Im

(
S+3,new(2,1)

)
r2
)

t−(
sin µ + 1

2Im
(
S+3,new(2,1)

)
r2
)

t++
(

cos µ + 1
2Re

(
S+3,new(2,1)

)
r2
)

t−

 (3.82)
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Comparing equation 3.82 to the Normal Form representation in equation 3.72 yields:

cosφ = cos µ +
1
2
Re
(
S+3,new(2,1)

)
r2 (3.83)

sinφ = sin µ +
1
2
Im
(
S+3,new(2,1)

)
r2 (3.84)

using the arccos or arcsin, respectively in a Taylor expansion at r = 0 up to the 3rd-order yields:

φ = µ−
Re
(
S+3,new(2,1)

)
2sin µ

r2 = µ +
Im
(
S+3,new(2,1)

)
2cos µ

r2 (3.85)

Assuming that all second order terms of the original map are zero (U2 = 0), the tunes

φ = µ− r2

8sin µ

(
γ(3U−3(0,3)+U

+
3(1,2))+β (3U+3(3,0)+U

−
3(2,1))−2α(U+3(2,1)+U

−
3(1,2))

)
(3.86)

can be simply calculated using equation 3.61.

In most applications it is useful to know r2
j in terms of the original coordinates. The trans-

formation A transforms (~q,~p)→
(
~t+ (~q,~p) ,~t− (~q,~p)

)
and consists of the composition of all the

single transformations for the Normal Form, namely:

A=Ammax ◦Ammax−1 ◦ ...◦A2 ◦A1 ◦A0 (3.87)

For the symplectic example case up to 3rd order with β 6= 0 and U2 = 0 the transformation is

already represents a very extensive formula with (t+, t−) =A3 ◦A1(q, p) =

−1√
2β

I− ∑
k++k−=3

(S±2 |k
+,k−)(

eiµ(k+−k−)− e±iµ
) (s+)k+ (s−)k−

◦
1+ iα iβ

1− iα −iβ


q

p

 (3.88)

Luckily, all these procedures can be conducted fully automatically in COSY INFINITY. The Nor-

mal Form Algorithm is a very intense analytic process that is only practically usable due to the DA

based implementation in COSY INFINITY.
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CHAPTER 4

PROTRACTING CALCULATIONS IN PERTURBATION THEORY

To show how painful an analytic approach to solving a perturbed harmonic oscillator system can be,

the following section will present such an example. In the course of the calculation the tediousness

and the increase in complexity should become apparent, even though both examples are on the

rather non-complex side of the difficulty spectrum. One main process of the approach is the method

called ’variation of parameters’, which is introduced in the following subsection.

4.1 Variation of parameters

The variation of parameters is a well-known technique to obtain solutions of an inhomogeneous

ODE given the solution to the homogeneous case. Therefore, the following inhomogeneous differ-

ential equation with a linear homogeneous part is considered:

~̇z(t) = L̂~z(t)+~f (t) (4.1)

where L̂ is the linear coupling matrix and ~f is the nonlinear inhomogeneity. The solution to the

linear homogeneous problem~̇z(t) = L̂~z(t) is assumed to be known:

~zhom(t) = Ẑ(t)~c (4.2)

where~c is just a parameter, that can potentially represent the initial conditions and Ẑ(t) is the

time dependent solution matrix. Substituting this solution back in the homogeneous ODE yields

the connection of solution matrix Ẑ and the ODE-coupling matrix L̂:

~̇zhom(t) =
˙̂Z(t)~c !

= L̂~zhom(t) = L̂Ẑ(t)~c ⇒ ˙̂Z(t) = L̂Ẑ(t) (4.3)

To solve equation 4.1, the solution in equation 4.2 is modified by the method of variation of the

parameter. In this case, the constant parameter ~c is given a variation, which means it is changed

from a constant to a time dependent variable~v(t), so that

~zpar(t) = Ẑ(t)~v(t) (4.4)
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where~zpar(t) represents a particular solution to the inhomogeneous case. Using this ansatz for

equation 4.1 yields:

~̇zpar(t) = ˙̂Z(t)~v(t)+ Ẑ(t)~̇v(t) 4.3
= L̂Ẑ(t)~v(t)+ Ẑ(t)~̇v(t) = L̂~zpar(t)+~f (t) (4.5)

Therefore,

Ẑ(t)~̇v(t) = ~f (t) ⇒ ~v(t) =
∫ t

0
Ẑ−1(t′)~f (t′)dt′+~v(0) (4.6)

Solving the integral means solving for~zpar, whereas the complexity of this integral may vary from

trivial to unsolvable, depending on the integrand Ẑ−1(t)~f (t). The solution for equation 4.1 is

hence:

~z =~zhom +~zpar = Ẑ(~c+~v(t)) (4.7)

4.2 Example of an analytical perturbation theory approach

To illustrate the method of variation of parameters, two problems shall be discussed in the fol-

lowing section. The solutions will be approximated order by order. The first problem is almost

trivial but makes the process clearer. The actual solution has a very simple form and makes the

comparison to the order by order approximation of the method possible. The second example is

only a slight variation of the first one, which removes the symmetry in the problem. This causes a

dramatic increase in the analytic complexity concerning the solving of the integral from equation

4.1.

4.2.1 Symmetric perturbed harmonic oscillator example

First, the symmetrically perturbed harmonic oscillator, that is already known from the example in

the Flow Operator section 1.2.6.1, is considered. The solution to this problem is given by
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x(t)

p(t)


︸ ︷︷ ︸

~z(t)

=

 cos((1+αr2)t) sin((1+αr2)t)

−sin((1+αr2)t) cos((1+αr2)t)


︸ ︷︷ ︸

Ẑ(t)

x0

p0


︸ ︷︷ ︸

~c0

(4.8)

where r2 = x2 + p2 = x2
0 + p2

0. Using the sum angular formula and the Taylor expansion at

αr2 = 0 the solution can be rewritten as follows:x(t)

p(t)

=

 cos(t)cos(αr2t)− sin(t)sin(αr2t) sin(t)cos(αr2t)+ cos(t)sin(αr2t)

−sin(t)cos(αr2t)− cos(t)sin(αr2t) cos(t)cos(αr2t)− sin(t)sin(αr2t)


x0

p0



=

 cos(t) sin(t)

−sin(t) cos(t)


x0 cos(αr2t)+ p0 sin(αr2t)

p0 cos(αr2t)− x0 sin(αr2t)



= Ẑ(t)

x0 + p0αr2t− x0
2 (αr2t)2− p0

6 (αr2t)3 +
x0
24(αr2t)4 +O(t5)

p0− x0αr2t− p0
2 (αr2t)2 +

x0
6 (αr2t)3 +

p0
24 (αr2t)4−O(t5)


= Ẑ(t)

(
~c0 +(αr2t)~d0− (αr2t)2~c0

2
− (αr2t)3

~d0
6
+(αr2t)4~c0

24
+O(t5)

)
(4.9)

The goal of the following calculation is, to step by step calculate the terms of the equation above

to show how the perturbation method approaches the solution. The approach starts off with the

equations of motions which are given by the Hamiltonian and its Hamilton equations: as follows:

Hα =
p2

2
+

x2

2
+

α

4

(
p2 + x2

)2
(4.10)q̇

ṗ


︸ ︷︷ ︸
~̇z(t)

=


∂Hα
∂ p

−∂Hα
∂q

=

 0 1

−1 0


︸ ︷︷ ︸

L̂

q

p


︸ ︷︷ ︸
~z(t)

+α

 p3 + x2 p

−x3− p2x

 (4.11)
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First, the solution to the homogeneous part of the differential equation~̇z(t) = L̂~z(t):xhom(t)

phom(t)


︸ ︷︷ ︸

~zhom(t)

=

 cos(t) sin(t)

−sin(t) cos(t)


︸ ︷︷ ︸

Ẑ(t)

x0

p0


︸ ︷︷ ︸

~c0

(4.12)

is required. Afterwards, the well-known ansatz

x1(t) = xhom(t)+∆x1(t) (4.13)

p1(t) = phom(t)+∆p1(t) (4.14)

is substituted in the inhomogeneous ODE from equation 4.11 which yields:

~̇zhom +∆~̇z1 =~̇z1 = L̂~z1 +α

 p3
1 + x2

1 p1

−x3
1− p2

1x1

 (4.15)

= L̂(~zhom +∆~z1)+α

 p3
hom + x2

hom phom

−x3
hom− p2

homxhom

+αO (∆x1,∆p1) (4.16)

For the first order calculation, only terms linear to ∆x1,∆p1 or α are considered, therefore:∆ẋ1(t)

∆ṗ1(t)


︸ ︷︷ ︸

∆~̇z1(t)

=

 0 1

−1 0


︸ ︷︷ ︸

L̂

∆x1(t)

∆p1(t)


︸ ︷︷ ︸

∆~z1(t)

+α

 p3
hom + x2

hom phom

−x3
hom− p2

homxhom


︸ ︷︷ ︸

~f0(t)

(4.17)

To make the integration from the variation-of-the-parameter method as easy as possible it is useful
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to simplify ~f0:

~f0(t) =

 (p0 cos t− x0 sin t)3 +(x0 cos t + p0 sin t)2 (p0 cos t− x0 sin t)

−(x0 cos t + p0 sin t)3− (p0 cos t− x0 sin t)2 (x0 cos t + p0 sin t)

 (4.18)

= α

 p0 cos t− x0 sin t

−x0 cos t− p0 sin t

((x0 cos t + p0 sin t)2 +(p0 cos t− x0 sin t)2
)

(4.19)

= αẐ(t)

 p0

−x0

(p2
0 + x2

0

)
= αr2Ẑ(t)~d0 (4.20)

From equation 4.6 it is known, that ∆~z1 can be calculated with the variation of the parameter as

follows:

∆~z1(t) = Ẑ~v(t) = Ẑ
∫ t

0
Ẑ−1~f0(t

′)dt′ = Ẑαr2~d0

∫ t

0
Ẑ−1Ẑ(t)dt′ = Ẑαr2~d0t (4.21)

Therefore, the combined solution for~z1 is:

~z1 =~z0 +∆~z1 = Ẑ
(
~c0 +αr2~d0t

)
(4.22)

which is the first part of the solution in equation 4.9 up to 1st-order in α .

For the 2nd-order perturbation an equivalent ansatz to the first one is used:

x2(t) = x1(t)+∆x2(t) (4.23)

p2(t) = p1(t)+∆p2(t) (4.24)

By substituting this ansatz in the Hamilton equations the following differential equations are ob-

tained:

52



~̇zhom +∆~̇z1 +∆~̇z2 = ~̇z2 = L̂~z2 +α

 p3
2 + x2

2 p2

−x3
2− p2

2x2

 (4.25)

∆~̇z1 +∆~̇z2 = L̂∆~z1 +~f1 +∆~̇z2 (4.26)

= L̂(∆~z1 +∆~z2)+α

 p3
1 + x2

1 p1

−x3
1− p2

1x1

+αO (∆x1,∆p1) (4.27)

which can be summarized to∆ẋ2(t)

∆ṗ2(t)


︸ ︷︷ ︸

∆~̇z2(t)

=

 0 1

−1 0


︸ ︷︷ ︸

L̂

∆x2(t)

∆p2(t)


︸ ︷︷ ︸

∆~z2(t)

+α

 p3
1 + x2

1 p1

−x3
1− p2

1x1


︸ ︷︷ ︸

~f1(t)

−α

 p3
hom + x2

hom phom

−x3
hom− p2

homxhom


︸ ︷︷ ︸

~f0(t)

(4.28)

From this, the general pattern becomes apparent:

~̇zn +∆~̇zn+1 = L̂(~zn +∆~zn+1)+~fn+1 (4.29)

∆~̇zn+1 = L̂∆~zn+1 +αO (∆xn+1,∆pn+1)+
n

∑
i=0

(−1)n+i ~fi(t) (4.30)

with ~fi = α

 p3
i + x2

i pi

−x3
i − p2

i xi

 i=0
= α

 p3
hom + x2

hom phom

−x3
hom− p2

homxhom

 (4.31)

Therefore:

∆~̇zn(t) = L̂∆~zn(t)+(−1)n
n

∑
i=1

(−1)i~fi(t) (4.32)

Once again all terms involving an α together with a ∆xn+1 or ∆pn+1 are neglected for the specific

perturbation order and marked asO(∆xn+1,∆pn+1). To finish the second order approximation, the

inhomogeneity ~f1 from equation 4.28 can be simplified by using the solution for ~f0 from equation

4.20 and replacing the components (x0, p0) in~c0 by the components (x′0, p′0) of~c′0 =~c0 +αr2~d0t

from equation 4.22:
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~f1(t) = α

 p3
1 + x2

1 p1

−x3
1− p2

1x1

= αẐ

 p′0

−x′0

(p′20 + x′20
)

(4.33)

= αẐr2(α2r4t2 +1)

 p0−αr2tx0

−(x0 +αr2t p0)

 (4.34)

= αẐr2(α2r4t2 +1)
(
~d0−αr2t~c0

)
(4.35)

the total inhomogeneous part is therefore:

~f1−~f0 = Ẑ
(

α
3r6t2

(
~d0−αr2t~c0

)
−α

2r4t~c0

)
(4.36)

Integrating according to equation 4.6 yields:

~v2(t) =−(αr2t)2~c0
2
+(αr2t)3

~d0
3
− (αr2t)4~c0

4
(4.37)

~z2(t) = Ẑ(t)(~c0 +~v1(t)+~v2(t)) (4.38)

= Ẑ(t)

(
~c0 +(αr2t)~d0− (αr2t)2~c0

2
+(αr2t)3

~d0
3
− (αr2t)4~c0

4

)
(4.39)

which agrees with the exact solution in equation 4.9 now up to 4th-order in α .

For the n2-order in α , the process is equivalent. Beginning with the ansatz

xn(t) = xn−1(t)+∆xn(t) (4.40)

pn(t) = pn−1(t)+∆pn(t) (4.41)

and solving the inhomogeneous ODE

∆~̇zn(t) = L̂∆~zn(t)+(−1)n
n

∑
i=1

(−1)i~fi(t) (4.42)

by solving the integral given in equation 4.6.
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4.2.2 Asymmetric perturbation

In this next example, the process becomes a lot more tedious, due to the symmetry break in the

Hamiltonian. The new system is given by the following Hamiltonian and its Hamilton equations:

H =
p2

2
+

x2

2
+α

x4

4
(4.43)

with

ẋ

ṗ

 =


∂Hα
∂ p

−∂Hα
∂x

=

 0 1

−1 0


︸ ︷︷ ︸

L̂

x

p


︸ ︷︷ ︸
~z(t)

−

 0

αx3

 (4.44)

using the same ansatz

x1(t) = xhom(t)+∆x1(t)

p1(t) = phom(t)+∆p1(t)

as above, the Hamilton equations in first order perturbation can be derived as follows:ẋ1

ṗ1

 =

−p1

x1

−
 0

αx3
1

=

 0 1

−1 0


x1

p1

−
 0

αx3
hom

+αO(∆x1) (4.45)

∆ẋ1

∆ ṗ1

 =

 0 1

−1 0


∆x1

∆p1

−
 0

αx3
hom

 (4.46)

Following the method of variation of the parameter, the following integral of the inhomogeneity

has to be solved:

~v1(t) = −α

∫ t

0
Ẑ−1(t)~ep (x0 cos t + p0 sin t)3 dt (4.47)

= −α

∫ t

0

 sint

cos t

(x0 cos t + p0 sin t)3 dt (4.48)
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Even though the calculation by hand is possible, a computer algebra program as it is implemented

in WolframAlpha R©, was used to calculate the following solution:

~v1(t) =
α

32

p0

(
12r2t +(p2

0−3x2
0)sin4t−8p2

0sin2t
)

x0(12r2t +(x2
0−3p2

0)sin4t +8x2
0 sin2t)

 (4.49)

− α

32

4x0(3p2
0 + x2

0)cos2t− x0(x2
0−3p2

0)cos4t

4p0(p2
0 +3x2

0)cos2t + p0(p2
0−3x2

0)cos4t

 (4.50)

The first order solution is then~z1 = Ẑ(~c0 +~v1(t)). This method produces already quite extensive

calculations in the first step. For every following step even more extensive integrals of the form

~vn(t) = α

∫ t

0

 sint

cos t

n−1

∑
i=0

(−1)n+ix3
i dt

where xi = xhom for i = 0, have to be solved. Considering that the problems are still rather basic,

but the calculations are already very extensive, the need for a different approach becomes apparent.

The following chapter, therefore, introduces a computer-based approach that is generally applica-

ble for time independent perturbation to the harmonic oscillator. The DA framework, which is

implemented in the COSY INFINITY program used for the calculation makes an automatic calcu-

lation of the solution up to arbitrary order possible.
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CHAPTER 5

PERTURBED HARMONIC OSCILLATOR

The Harmonic Oscillator is one of the basic models that is used in many fields of physics and

therefore is of great importance. In most cases, the periodic model considers a Harmonic oscillator

with parameter-dependent perturbations. A perturbed harmonic oscillator can be represented by

the sum of the Hamiltonian of the unperturbed case H0 and the perturbation term: H = H0+Hper.

The perturbation term can generally consist of multiple parameter-dependent terms.

5.1 The Pendulum

In this section, the Pendulum oscillation is considered as a perturbation to the small angle approx-

imation, which represents the unperturbed classic harmonic oscillator. The example shall illustrate

how the DA framework in COSY INFINITY together with implemented the Normal Form Algo-

rithm can be used to approximate the amplitude and possibly parameter-dependent tune shifts of a

perturbed Hamiltonian, numerically as an algebraic expression the in form of a polynomial.

5.1.1 Introduction to the Problem

Considering a mathematical Pendulum of with point mass m at a length l from the pivot point in

a constant gravitational field with gravitation constant g. The Pendulum encloses an angle θ with

the vertical axis as illustrated in figure 5.1. Therefore, the Lagrangian in the given coordinates is:

L =
ml2

2
θ̇

2−ml2
ω

2
0 (1− cos(θ)) (5.1)

where ω2
0 = g

l . The Hamiltonian can be derived as follows in the generalized canonical coordinate

and momentum (q, p):

H = θ̇ pθ −L = θ̇

(
∂L
∂ θ̇

)
−L =

ml2

2
θ̇

2 +ml2
ω

2
0 (1− cos(θ)) (5.2)

H =
p2

θ

2ml2 +ml2
ω

2
0 (1− cos(q)) (5.3)
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Figure 5.1 Illustration shows mathematical Pendulum of length l with point mass m in a
gravitational field of strength g [10].

Using the Hamilton equations, the first order ODE can be derived:q̇

ṗ

=


∂H
∂ p

−∂H
∂q

 =

 0 1
ml2

−ml2ω2
0 0


sin(q)

p

 (5.4)

=

 0 1
ml2

−ml2ω2
0 0


q

p

−ml2
ω

2
0

 0

−q3
3! +

q5
5! −

q7
7! + ...

 (5.5)

The DA Normal Form Algorithm requires a non-zero constant linear term of the map to be able to

generate certain inverse functions within the process. As already mentioned in section 1.2.3, the

DA framework only works within a ring, since the inverse element is only defined for elements

with a non-zero constant part. Hence, a transformation to coordinates in which the system has a

linear part that is not purely parameter-dependent. For the investigation of this transformation it is
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helpful to consider the unperturbed harmonic oscillator, where no nonlinear terms appear and the

solution is known.

5.1.2 Unperturbed case

To solve the problem or approximate a solution, it is often helpful to consider the unperturbed

case first. For the Pendulum, this case is known as the small angle approximation, where either

the 1− cosθ ≈ θ 2/2 expression in the Hamiltonian or sinθ ≈ θ in the Hamilton equations are

substituted. With respect to further references the following general unperturbed classic harmonic

oscillator with its Hamiltonian and its Hamilton equations are defined:

H =
p2

2m
+mω

2
0

q2

2
(5.6)q̇

ṗ

=


∂H
∂ p

−∂H
∂q

 =

 0 1
m

−mω2
0 0


q

p

 (5.7)

A suitable transformation of the (q, p)-coordinates to make the linear part of the ODE parameter

independent consists of the real and imaginary part of the two complex conjugate eigenvectors of

the coupling matrix:

~v± =


∓i

mω0

1

 (5.8)

The transformation T̂ and its inverse are scaled as already discussed in the diagonalization section

1.2.4, so that the determinate of the transformation is of magnitude 1.

T̂−1 =
√

mω0

0 −1
mω0

1 0

 T̂ =
1

√
mω0

 0 1

−mω0 0

 (5.9)
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The transformation is applied to the ODE in equation5.7:

T̂

q̇

ṗ

 = T̂

 0 1
m

−mω2
0 0

 T̂−1T̂

q

p

 (5.10)


ṗ√mω0

−√mω0q̇

 =

 0 ω0

−ω0 0




p√mω0

−√mω0q

 (5.11)


ṗ√mω0

√
mω0q̇

 =

 0 −ω0

ω0 0




p√mω0

√
mω0q

 (5.12)

ṗ1

q̇1

 = ω0

0 −1

1 0


p1

q1

 (5.13)

where the transformed variables are (q1, p1) =
(√

mω0q, p√mω0

)
. This transformation pre-

serves the symplectic structure of the Hamiltonian since the new coordinates also satisfy the Pois-

son bracket condition:

{q1, p1}= 1 (5.14)

Hence, the transformation is a canonical transformation which preserving the form of the Hamilton

equations. This is especially essential for the transformation of the perturbed Hamiltonians later

on. In addition to the coordinate transformation, a scaling of the time t to t′ = ω0t is necessary

to accomplish a parameter independent linear part. Therefore, dt′ =
1

ω0
dt and the transformed

Hamilton equations yield:

 ṗ1

q̇1

=

0 −1

1 0


p1

q1

 (5.15)
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This form of the ODE is suitable for the DA based Normal Form Algorithm implemented in

COSY INFINITY. The solution to this ODE is already known from various textbooks:p1

q1

 =

cos(t′) −sin(t′)

sin(t′) cos(t′)


p̄1

q̄1

 (5.16)

where (q̄1, p̄1) =
(√

mω0q̄, p̄√mω0

)
is the initial state at t′ = 0. The example in section 1.2.6

also solves the ODE 1.64, which is equivalent to equation 5.15 for
(

1+αr2
)
= 1 using the Flow

Operator. Note that equation 5.16 is already in Normal Form coordinates and therefore does not

require any further DA manipulation. After transforming back to the (q, p)-system and rescaling

the time t′ = ω0t, the result is given in its well-known form:

T̂−1

p1

q1

 = T̂−1

cos(t′) −sin(t′)

sin(t′) cos(t′)

 T̂ T̂−1

p̄1

q̄1

 (5.17)

q

p

 =

 cos(ω0t) sin(ω0t)
mω0

−mω0 sin(ω0t) cos(ω0t)


q̄

p̄

 (5.18)

The tune (unperturbed frequency of oscillation) in this example is simply ω0. Note that

E0 =
p2

2m
+mω

2
0

q2

2
=

p̄2

2m
+mω

2
0

q̄2

2
= const. (5.19)

is also satisfied for p̄ =−r sin(ϕ0), q̄ = r
mω0

cos(ϕ0) with r =
√

2E0m. Therefore the solution in
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equation 5.18 can be rewritten to:q

p

 =

 q̄cos(ω0t)+ p̄ sin(ω0t)
mω0

−q̄mω0 sin(ω0t)+ p̄cos(ω0t)

 (5.20)

=


r

mω0
cos(ω0t)cos(ϕ)− r

sin(ω0t)
mω0

sin(ϕ)

−mω
r

mω0
sin(ω0t)cos(ϕ)− r cos(ω0t)sin(ϕ)

 (5.21)

=


r

mω0
cos(ω0t +ϕ)

−r sin(ω0t +ϕ)

 (5.22)

This derivation will be helpful later on in section 5.3. After this extensive revisit of the unperturbed

classic harmonic oscillator, a collection of various forms of the unperturbed solutions and the

canonical transformation needed to make the linear part of the Pendulum equation 5.4 parameter-

independent have been derived.

5.1.3 Pendulum transformation

From the unperturbed case above, the transformation T̂ and its inverse are known and given in

equation 5.9. The same transformation can be applied to the Pendulum equation 5.4 with m′=ml2,

which yields the following differential equation:
ṗ√

ml2ω0

−
√

ml2ω0q̇

 =


−

ml2ω2
0√

ml2ω0
sin(q)

−
√

ml2ω0
p

ml2

=


−

ml2ω2
0√

ml2ω0
sin

(
q1√

ml2ω0

)

−ω0 p1

 (5.23)

ṗ1

q̇1

 = ω0


−q1−

√
ml2ω0

(
sin

(
q1√

ml2ω0

)
− q1√

ml2ω0

)

p1

 (5.24)
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with the transformation (q, p) =

(
q1√

ml2ω0
,
√

ml2ω0 p1

)
and the appropriate scaling of the time

to t′ = ω0t, the following form with linear parameter-independence is given: ṗ1

q̇1

 =

0 −1

1 0


p1

q1

+


q3
1

3!ml2ω0
−

q5
1

5!
(

ml2ω0
)2 +

q7
1

7!
(

ml2ω0
)3 − ...

0

 (5.25)

=

0 −1

1 0


p1

q1

+


aq3

1
3! −

a2q5
1

5! +
a3q7

1
7! −

a4q9
1

9! + ...

0

 (5.26)

for the implantation in COSY INFINITY the parameter a = 1/ml2ω0 is introduced. The first

step of the in COSY INFINITY implemented procedure is the calculation of a transfer map M

from t′ = 0 to t′ = 1 regarding the Pendulum ODE 5.26, with one of the DA based integrators

mentioned above. An illustration of the transfer map using RK4 with h = 0.001 is in figure 5.2.

Figure 5.2 The figure shows the phase space curves of the Pendulum oscillation according to the
transfer map at t′ = 1, which was generated by integrating equation 5.4 with the DA based RK4 in
1000 steps of step-size h = 0.001. For the illustration, all parameters were set to 1. The transfer
map was tracked for 1000 iterations. The different curves represent the following initial
conditions, listed from inner to outer curve: q = .3, .6, .9,1.2, ...,3.0; p = 0. Details regarding the
seemingly closed and fragmented curves can be found in section 5.2.
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In the next step of the procedure, the transfer map is transformed by A into the Normal Form

coordinates (t+, t−) using the DA Normal Form Algorithm introduced in the chapter above.MNF .

MNF =A◦M◦A−1 (5.27)

The transfer map in Normal Form coordinates is illustrated in figure5.3. The Normal Form coor-

Figure 5.3 The figure shows the phase space curves of the Pendulum oscillation according to the
transfer map at t = 1, which was generated by integrating equation 5.4 with the DA based RK4 in
1000 steps of step-size h = 0.001 with order truncation 20. For the illustration, all parameters are
set to 1. The transfer map at t = 1 was transformed to Normal form coordinates and tracked for
1000 iterations. The different curves represent the following initial conditions, listed from inner
to outer curve: q = .3, .6, .9,1.2, ...,3.0; p = 0. The curves show circular motion and the
separation in the fragmented curves has a constant distance in contrast to figure 5.2. Details
regarding this are in section 5.2.

dinates reveal the desired tune shifts using equation 3.76. Scaled to the original time t = ω0t′ the

tune shifts are given as follows:

ω = ω0

(
1− ar2

16
− 3a2r4

1024
− 5a3r6

16384
− 165a4r8

222 − 189a5r10

225 −O
(

a6r12
))

(5.28)
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Note that the actual COSY INFINITY coefficients are given in the scaled time of t′, which means

without the ω0. Additionally, the coefficients are given in floating point number representation

in base10 as shown in table 5.1. The fractions in equation 5.28 were only used for illustrative

purposes, but agree with the COSY result with an error < 10−14, which is the magnitude of floating

point accuracy.

Table 5.1 Coefficients of the COSY result up to order 10 in r for the Pendulum tunes ωt′(r)
shown in equation 5.28 with corresponding fraction representation and maximal error in the
representation.

Factor Coefficient Fraction Difference in representation

1 0.9999999999999908 1 < 9.2 ·10−15

ar2 -.6249999999999629E-01 −1
16 =−2−4 < 3.8 ·10−15

a2r4 -.2929687500000584E-02 −3
1024 =−3 ·2−10 < 5.9 ·10−16

a3r6 -.3051757812506449E-03 −5
16384 =−5 ·2−14 < 6.5 ·10−16

a4r8 -.3933906555075291E-04 −165
4194304 =−165 ·2−22 < 1.1 ·10−15

a5r10 -.5632638932827286E-05 −189
33554432 =−189 ·2−25 < 1.6 ·10−15

For applications the quantity ω in terms of r2 is not very useful as presented in equation 5.28.

The given Normal Form transformation: A : (q1, p1)→
(
t+, t−

)
from equation 5.27 and equation

3.71, make it possible to represent r2 in terms of the known quantities (q1, p1). The corresponding

COSY INFINITY terms and coefficients for r2(q1, p1) can be found in APPENDIX table A.1 as

well as ωt′ (q1, p1), which is in table A.2. In general, ωt′ (q1, p1) is the final COSY INFINITY

approximation to the problem, but in this special case the transformation (q1, p1) back into the

(q, p)-system can be easily preformed by COSY INFINITY. The difficulty lies within the relation

(q1, p1) =
(√

mω0q, p√mω0

)
=
(

q√
a ,
√

ap
)

, where neither 1/x nor
√

x are possible operations in

the DA arithmetic. Hence, a second variable b = 1/a with the property that ab = 1 is introduced.

The square-root issue is in this specific case not relevant, since q1 and p1 only occur with even

exponents and therefore:

q2
1 = bq2 p2

1 = ap2 with b =
1
a
= ml2

ω0 (5.29)
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Note that the order is raised due to the substitution in equation 5.29. For each two orders of q1

or p1 respectively, come two orders of q or p and one order of a or b, respectively, which will

automatically result in order loss for higher orders due to the order truncation of the process. The

following substitution solves this problem, by simply introducing q′ = q2 and p′ = p2 to keep

the order of the respective terms constant. Possible additional procedures, that have not yet been

implemented, could cancel all terms with

ambn −→ am−min(m,n)bn−min(m,n) (5.30)

resulting in at least one of the exponents of a or b to be zero for each term. A table with the COSY

INFINITY output, for ωt′ (q, p) in the t′ time frame, can be found in table A.3 in the appendix and

the first terms in the fractional approximation are

ωt′(q, p) =

(
1− q2 +a2 p2

16
+

q4

3072
− 5p4

1024
− 5a2 p2

512
+ ...

)
(5.31)

The period T can be calculated by taking the inverse of the equation above according to equation

3.30. The Inversion is possible in the DA framework, due to the nonzero constant part of ωt′ =

1+ f (q, p). Hence, T is

T =
2π

ω
=

2π

ω0

1
ωt′

=
2π

ω0

1
1+ f (q, p)

(5.32)

The result for T disregarding the prefactor of 2π
ω

is given in table 5.2. The first terms in the fraction

representation are written in equation 5.33.

T =
2π

ω0

(
1+

q2 +a2 p2

24 +
11q4

3 ·210 +
9q2a2 p2

29 +
9a4 p4

210 + ...

)
(5.33)

Since the pair (q, p) represents any point on the phase space curve of the motion, a specific set of

initial conditions (q0, p0) = (θ0,0) can be chosen to simplify the equation for T . The amplitude

θ0 of the oscillation can be derived from any set of initial conditions as follows:

θ0 = arccos

(
cos(q0)−

p2
0

2m2l4ω2
0

)
(5.34)

For (q, p) = (θ0,0), T yields the following result:

T =10
2π

ω0

(
1+

θ 2
0

16
+

11θ 4
0

3072
+

173θ 6
0

737280
+

22931θ 8
0

1321205760
+

1319183θ 10
0

951268147200

)
(5.35)
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Table 5.2 Coefficients of the COSY result for the Pendulum Period Tt′(q, p) shown in equation
5.33 with corresponding fraction representation and maximal error in the representation.

Factor Coefficient Fraction Difference in representation

1 0.9999999999999996 1 < 4.0 ·10−16

q2 0.6250000000000076E-01 1
24 < 7.6 ·10−16

a2 p2 0.6250000000000079E-01 1
24 < 7.9 ·10−16

q4 0.3580729166662193E-02 11
2103

< 4.5 ·10−15

q2a2 p2 0.1757812499999105E-01 33

29 < 9.0 ·10−15

a4 p4 0.8789062499995597E-02 33

210 < 4.5 ·10−15

q6 0.2346462673688346E-03 173
214·325

< 7.8 ·10−15

q4a2 p2 0.3112792968767812E-02 3·17
214 < 1.8 ·10−14

q2a4 p4 0.4577636718776126E-02 3·52

214 < 2.7 ·10−14

a6 p6 0.1525878906257389E-02 52

214 < 7.4 ·10−15

q8 0.1735611567867274E-04 23·997
222325·7

< 4.5 ·10−15

q6a2 p2 0.4541397095222981E-03 2381
220·5

< 5.0 ·10−14

q4a4 p4 0.1370906829873207E-02 53·23
221 < 4.0 ·10−14

q2a6 p6 0.1168251037599050E-02 5272

220 < 1.4 ·10−15

a8 p8 0.2920627594054748E-03 5272

222 < 6.1 ·10−15

q10 0.1386762528983589E-05 17·73·1063
22634527

< 2.3 ·10−14

q8a2 p2 0.5999931270428728E-04 53·2659
2265·7

< 3.1 ·10−14

q6a4 p4 0.3120799860718536E-03 5·61·103
2253

< 1.4 ·10−13

q4a6 p6 0.4940728349303492E-03 5·7329
2253

< 2.8 ·10−13

q2a8 p8 0.2957135440714151E-03 34725
226 < 1.8 ·10−13

a10 p10 0.5914270880263635E-04 3472

226 < 2.3 ·10−14

Note that the exact same coefficients from table 5.2 were used for (q, p) = (θ0,0). This result

coincides with the general analytic formula for the Pendulum:

∆T
T0

=
∞

∑
n=1

(
(2n)!

22n (n!)2

)2

sin2n

(
θ 2

0
2

)
=

θ 2
0

16
+

11θ 4
0

3072
+

173θ 6
0

737280
+ ... (5.36)

which is given in equation (8) of [20], with T0 = 2π
ω0

and ∆T = T −T0. The COSY results were
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therefore accurate up to the tiny floating point errors < 2.3 ·10−14. The approximation to fraction

seems reasonable for those small errors.

Considering grandpas Pendulum clock, which oscillates with a certain period T1 and amplitude

θ0, how does the period change, with small variations to the amplitude? The relative error in the

period is defined as follows:
∆T
T1

=
T (θ0 +∆θ)−T (θ0)

T (θ0)
(5.37)

Figure 5.4 illustrates the dependence of the relative error in the period on θ0 and ∆θ . Assuming

that the Pendulum is supposed to oscillate with an amplitude of θ0 = π

6 = 30deg and is offset by

σθ = π

36 = 5deg, the relative error is approximately 0.63%, which is already 9 min/day. Even

worse is to calculate the period T0 = 2π

√
l
g of the Pendulum from the small angle approximation,

compared to the actual period at an amplitude of θ0 = π

6 = 30deg, which yields a relative error of

1.74%, which is approximately 25 min/day.
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Figure 5.4 The graph illustrates the amplitude θ0 dependence of the relative period-error for
different amplitude shifts ∆θ .
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5.2 Normal Form Uniqueness

The following section largely draws from [2]. Looking at the illustrations of the transfer map in the

Pendulum calculation (figure 5.2 and 5.3), it becomes apparent that both show ’fragmented’ and

seemingly continuous curves. The reason for this bares some unique properties. With every itera-

tion of the transfer mapMt0 , the state is mapped one time step of t0 further. Since it is a periodic

system, the number of iterations it takes for the iteration to reach the original starting point can be

calculated. If the period of the curve T (r) divided by the time step-size of the transfer map t0 can

be expressed as a fraction of integer values (a rational number), then the numerator determines the

required number of iterations and the denominator determines the number of revolutions required

before ending up at the starting point again.

T (r)
t0

=
Iterations

Revolutions
=

n
k

(5.38)

In this case, the iteration resonates, which means that only certain points on the curve are reached

and form a closed system. These points are period n fixed points, which can be related to the

associated amplitude dependent frequency, which is specific for the particular curve. If the ratio

of the amplitude dependent Period and step-size is not a rational number, the iterations will never

resonate with earlier iterations and therefore not create any fixed points, which generates the seem-

ingly continuous curves. The period n fixed points do not change under bijective transformations.

Also, they form a fixed point structure, which is a dense subset of the completeness of all curves

just like the rational numbers form a dense subset of the real numbers. The invariance of the fixed

points conserves the associated resonances and makes them an invariant as well. The Normal

Form coordinates are special coordinates, in which the frequency along the phase space curve is

constant and therefore rotationally invariant. This makes these coordinates uniquely ’natural’ for

the resonance extraction. Figure 5.6 illustrates this by presenting some ’low’ period fixed points,

which have the same distance between each fixed point of the curve. The original representation

in 5.5 does not have that property, which can be seen especially further away from the origin. This

special property makes the Normal Form unique.
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Figure 5.5 The phase space curves originate from the same map used in figure 5.2. The different
curves consist of ’low’ period fixed points, which represent the specific resonances of the curve.
The distance between the single resonance points illustrates how the frequency changes along the
curve.

Figure 5.6 The phase space curves originate from the same map used in figure 5.3. The different
curves consist of ’low’ period fixed points, which represent the specific resonances of the curve.
In the Normal Form, the distance between the single resonance points is constant along one curve,
which means that the frequency does not change along the curve. The Normal Form coordinates
are unique in this property.
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5.3 Comparison to Lie Transform perturbation Theory

John Cary discussed Lie Transform perturbation Theory for Hamiltonian systems [9] on an exam-

ple of an anharmonic oscillator. The Hamiltonian of this example system is given in [9, 4.18] as

follows:

H(p,q) =
p2

2
+

ω2
0 q2

2
+

εω2
0 q4

4
+

ε2aω3
0 q6

8
(5.39)

In this section, the results of the paper [9] and the DA Normal Form Algorithm approach shall

be compared. The COSY INFINITY solution of ω is given in terms of (q, p), while the paper uses

Action-Angle coordinates of the perturbed Hamiltonian (J,φ). To make the results comparable,

the steps in the paper [9] shall be followed to the minimum extent required to understand the

transformation from the Action-Angle variables back to (q, p) .

In the paper, the Hamiltonian is first rewritten in terms of the Action-Angle variables of the

unperturbed case (ε = 0). The unperturbed Hamiltonian shall be called H0 and is equal to E0 the

energy, as a constant of the system. From equation 5.22 the solution of the unperturbed harmonic

oscillator with m = 1 is known to be the following:

p = −r sin(ω0t +ϕ0) q =
r

ω0
cos(ω0t +ϕ0) (5.40)

r =
√

p2 +ω2
0 q2 =

√
2E0 (5.41)

The section on Action-Angle variables and equation 1.53 show how the action j of the (ε = 0)-

case can be derived as follows:

j =
1

2π

∮
p(E0,q)dq =

1
2π

∮ √
2E0−ω2

0 q2 dq (5.42)

=

√
2E0
2π

∮ √
1−

ω2
0 q2

2E0
dq =

√
2E0
2π

∮ √
1− sin2 Q dq (5.43)

where sinQ =
ω0q√

2E0
and cosQ dQ

dq =
ω0√
2E0

. Therefore, dq =

√
2E0

ω0
cosQ and it follows for j :

j =

√
2E0
2π

∮
cosQ

√
2E0 cosQ

ω0
dQ (5.44)

=
2E0

2πω0

∮
cos2 QdQ =

E0
ω0

(5.45)
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comparing the result for j in terms of E0 with the relation in equation 5.41 yields:

j =
E0
ω0

=
r2

2ω0
(5.46)

with this result the Action-Angle ϕ can be derived from equation 1.52:

H0 = E0 = ω0 j
∂H0
∂ j

= ω0 = ϕ̇ (5.47)

ϕ(t) = ω0t +ϕ0 (5.48)

Therefore, the original Hamiltonian can be rewritten in terms of the unperturbed Action-Angle

variables with p =−
√

2 jω0 sinϕ q =
√

2 j
ω0

cosϕ is given as [9, 4.19]

h( j,ϕ) = ω0 j+ ε j2 cos4
ϕ + ε

2a j3 cos6
ϕ. (5.49)

The following derivation leading to equation 5.53 is shown using [9, 4.30-31+35-37]. The unper-

turbed Action-Angle variables are then transformed into the new Action-Angle variables to first

order of the perturbed system. The relationship between old ( j,ϕ) and new variables (J,φ) is

given as follows: ϕ

j

 =

φ

J

+
εJ
ω0


1

16 sin(4φ)+ 1
2 sin(2φ)

−J
8 cos(4φ)− J

2 cos(2φ)

 (5.50)

The solution for ω up to 2nd order in J is then given with

ω(J) =2 ω0 +
3
4

εJ+ ε
2
(

15a
16
− 51

64ω0

)
J2 (5.51)

Using the energy of the system in the transformed variables

K =3 ω0J+
3
8

εJ2 + ε
2J3
(

5a
16
− 17

64ω0

)
(5.52)

the solution for ω is given up to 2nd order in E:

ω(E) =2 ω0 +
3
4

ε
E
ω0

+ ε
2
(

E
ω0

)2(15a
16
− 51

64ω0

)
(5.53)
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The result from equation 5.53 is written in terms of (q, p) up to 4th order to make it comparable to

the result from the COSY based method later on:

ω =4 ω0

1+
3ε

8

(
q2 +

p2

ω2
0

)
+ ε

2

(
q2 +

p2

ω2
0

)2(
15aω0

64
− 21

256

)
−ω0

3ε2

8ω2
0

(
ω2

0 p4

2
+ p2q2

)
(5.54)

The goal of this section is to show, that the result from equation 5.54 can be reproduced with

a much simpler approach using COSY, which would even include the correct terms for p4 and

furthermore, allow a calculation of terms up to arbitrary order.

From the Hamiltonian in equation 5.39 the Hamilton equations are given as follows:

~f =

q̇

ṗ

=

 p

−ω2
0 q− εω2

0 q3− 3
4ε2aω3

0 q5

 (5.55)

From the section above it is known that implementing this formula in COSY would result in an

error in the DA Normal Form Algorithm, since the linear part is only parameter-dependent. There-

fore, the ODE has to be transformed. From the Pendulum section (5.1) it is known that the form of

the Hamiltonian and its Hamilton equations is only conserved for canonical transformations like

in equation 5.9. Thus, the ODE can be transformed to:

~f =

 ṗ1

q̇1

=

−ω0q1− εq3
1−

3
4ε2aq5

1

ω0 p1

 (5.56)

with the known time scaling of t′ = ω0t the ODE can be written as:ṗ1

q̇1

 =

−q1− ε
ω0

q3
1−

3
4

ε2a
ω0

q5
1

p1

 (5.57)

=

−q1−a1q3
1−

3
4a2q5

1

p1

 (5.58)
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where a1 = ε
ω0

and a2 = ε2a
ω0

resulting in the following tunes in the fraction representation:

ωt′ =4 1+
3a1

(
q2

1 + p2
1

)
8

+
15a2

(
q2

1 + p2
1

)2

64
−a2

1

(
21q4

1 +138q2
1 p2

1 +69p4
1

256

)

=4 1+
3ε

8ω0

(
q2

1 + p2
1

)
+

ε2

ω2
0

(
q2

1 + p2
1

)2
(

15aω0
64

− 21
256

)
− 3ε2

8ω2
0

(
q2

1 p2
1 +

p4
1

2

)

=4 1+
3ε

8

(
q2 +

p2

ω2
0

)
+ ε

2

(
q2 +

p2

ω2
0

)2(
15aω0

64
− 21

256

)

− 3ε2

8ω2
0

(
ω2

0 p4

2
+ p2q2

)
(5.59)

the COSY coefficients are listed in table 5.3 with the difference of the results to the fraction repre-

sentations. Again, the accuracy is in the margin of the floating point calculation error.

Table 5.3 Coefficients of the COSY result for the tunes ωt′(q1, p1) shown in equation 5.59 with
corresponding fraction representation and maximal error in the representation. A table with
coefficients to equation 5.59 up to order 10 in (q1, p1) are listed in the appendix in table 5.4.

Factor Coefficient Fraction Difference in representation

1 0.9999999999999908 1 < 9.2 ·10−15

a1q2
1 0.3749999999999779 3

8 < 2.3 ·10−14

a1 p2
1 0.3749999999999780 3

8 < 2.2 ·10−14

a2q4
1 0.2343749999999911 15

64 < 9 ·10−15

a2q2
1 p2

1 0.4687499999999823 15
32 < 1.8 ·10−14

a2 p4
1 0.2343749999999913 15

64 < 9 ·10−15

a2
1q4

1 -.8203125000003507E-01 −21
256 < 3.5 ·10−14

a2
1q2

1 p2
1 -.5390625000000708 −69

128 < 7.1 ·10−14

a2
1 p4

1 -.2695312500000204 −69
256 < 2.1 ·10−14

The COSY result from equation 5.59 agrees with the transformed solution from the paper [9]

in equation 5.54, up to 4th order in (q, p) and floating point accuracy. While the Cary approach

requires a great investment in calculation which becomes more and more complex with higher or-

ders, COSY offers the result with floating point accuracy up to arbitrary order as table 5.4 illustrates

with minimal trade-offs in computation time.
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Table 5.4 COSY coefficients of ωt′ (q1, p1) up to order 14 for the calculation in equation 5.59.

Order Factor Coefficient Order Factor Coefficient

0 1 0.999999999999990 12 q8
1a4

1 -0.024982452392576

3 q2
1a1 0.374999999999977 12 q6

1 p2
1a4

1 -0.757644653320320

3 p2
1a1 0.374999999999978 12 q4

1 p4
1a4

1 -2.063713073730610

5 q4
1a2 0.234374999999991 12 q2

1 p6
1a4

1 -1.684890747070440

5 q2
1 p2

1a2 0.468749999999982 12 p8
1a4

1 -0.421222686767588

5 p4
1a2 0.234374999999991 13 q10

1 a1a2
2 0.061683654785137

6 q4
1a2

1 -0.082031250000035 13 q8
1 p2

1a1a2
2 1.630439758300960

6 q2
1 p2

1a2
1 -0.539062500000070 13 q7

1 p3
1a1a2

2 0.000000000000006

6 p4
1a2

1 -0.269531250000020 13 q6
1 p4

1a1a2
2 5.188980102540040

8 q6
1a1a2 -0.111328125000058 13 q5

1 p5
1a1a2

2 0.000000000000022

8 q4
1 p2

1a1a2 -1.083984375000230 13 q4
1 p6

1a1a2
2 6.144790649415080

8 q2
1 p4

1a1a2 -1.318359375000150 13 q3
1 p7

1a1a2
2 0.000000000000006

8 p6
1a1a2 -0.439453125000043 13 q2

1 p8
1a1a2

2 3.228950500488710

9 q6
1a3

1 0.039550781249991 13 p10
1 a1a2

2 0.645790100097742

9 q4
1 p2

1a3
1 0.657714843750032 14 q10

1 a3
1a2 -0.072978973388661

9 q2
1 p4

1a3
1 0.927246093750080 14 q9

1 p1a3
1a2 0.000000000000015

9 p6
1a3

1 0.309082031250014 14 q8
1 p2

1a3
1a2 -2.684474945068560

10 q8
1a2

2 -0.039367675781281 14 q7
1 p3

1a3
1a2 -0.000000000000034

10 q6
1 p2

1a2
2 -0.509033203125187 14 q6

1 p4
1a3

1a2 -10.324333190919100

10 q4
1 p4

1a2
2 -0.939331054687730 14 q5

1 p5
1a3

1a2 -0.000000000000081

10 q2
1 p6

1a2
2 -0.626220703125106 14 q4

1 p6
1a3

1a2 -13.835563659669400

10 p8
1a2

2 -0.156555175781281 14 q3
1 p7

1a3
1a2 -0.000000000000035

11 q8
1a2

1a2 0.084503173828104 14 q2
1 p8

1a3
1a2 -7.737636566162740

11 q6
1 p2

1a2
1a2 1.826293945312620 14 q1 p9

1a3
1a2 0.000000000000015

11 q4
1 p4

1a2
1a2 4.259948730469280 14 p10

1 a3
1a2 -1.547527313232520

The COSY result shall be compared to the earlier result from the Pendulum by inserting ε =

−1/6 and a = 2/5ω0. This substitution converts the Hamiltonian from equation 5.39 into the
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Pendulum Hamiltonian from the section before (5.1) up to 6th order:

H =
p2

2
+ω

2
0

(
q2

2
− q4

24
+

q6

720

)
=6

p2

2
+ω

2
0 (1− cos(q)) (5.60)

substituting the given values for ε and a in equation 5.59 yields:

ωt′ = 1− q2 +a2 p2

16
+

q4

3072
− 5p4

1024
− 5a2 p2

512
+ ... (5.61)

This equation coincides in all terms of order m ≤ 6 with the Pendulum solution in equation 5.31,

which supports the consistency within the COSY calculations.

To investigate the COSY result a bit further, the transfer map is tracked for the following

parameters (ω0,ε,a)= (1,2,2/9) which correspond to a potential V in the Hamiltonian of the form

shown in figure 5.7. The potential has three stable stationary points and two unstable stationary

points in between. The tracking of the transfer map of the system from t = 0 to t = 0.1 with the

Figure 5.7 The graph shows the potential V = q2
2 −

q4
2 + q6

9 of the Hamiltonian in equation 5.39
for the parameters (ω0,ε,a) = (1,2,2/9). There are three stable stationary points at the origin

and q =±
√

3
2 +

√
3

2 . The two unstable stationary points are at q =±
√

3
2 −

√
3

2 . The potential
allows oscillation in each of the three valleys as well as a global oscillation over large p.

parameters mentioned above is shown in figure 5.8. It shows phase space curves around the the

fixed points (stable stationary points of the potential) as well as a global curve for larger p. The

considered perturbation in the calculation above was with respect to the origin. Perturbation theory

in general is only able to solve for the direct surrounding of the considered fixed point, which is the

unperturbed harmonic oscillator around the origin in this case. Therefore, neither the solution of
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Figure 5.8 The transfer map of the ODE in equation 5.57 was calculated using the RK4 with 100
steps of step-size h = 0.001 until t = 0.1. The illustration shows the phase space tracking of 1000
iterations using the parameters (ω0,ε,a) = (1,2,2/9). The curves around the origin are similar to
the one in the Pendulum example in figure 5.2. For larger |q| and small p the phase space curve
oscillates around a different fixed point at approximately (±1.5,0). For large q and p the phase
space curve oscillates around all three fixed points. Figure 5.7 makes this behavior apparent.

the Lie Perturbation approach nor the COSY result, yield the frequencies for any other oscillations

that around the origin fixed point. The tracking of the Normal Form of the transfer map illustrates

this property in figure 5.9.

In contrast to the Lie Perturbation theory, the tracking pictures identified the surrounding fixed

points. The COSY approach can easily be varied in its initial conditions to consider a perturbation

around the fixed point at (q0, p0) =

(√
3
2 +

√
3

2 ,0
)

. The tracking picture of the shifted system

with the same parameters is shown in figure 5.10.

It is apparent, that the fixed point at (q0, p0) =

(
−
√

3
2 +

√
3

2 ,0
)

is not depicted. It seems like

the transfer map can only determine fixed points in the direct surrounding of the considered fixed

point. The Normal Form to this fixed point perturbation reveals the tune shifts with respect to the

unperturbed case. Table 5.5 lists the coefficients for the tunes ωt′(q
′, p).

Directly at the fixed point, the frequency of the oscillation is at least double the frequency of the
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Figure 5.9 Tracking of 1000 iterations using the parameters (ω0,ε,a) = (1,2,2/9) of the transfer
map used in figure 5.8 in Normal Form. In comparison to figure 5.8 only the curves around the
origin are preserved, which illustrates how perturbation theory only works in the direct
surrounding of the considered fixed point.

Figure 5.10 Tracking picture of the same transfer map used in figure 5.8 only with a shifted
reference point for the perturbation.

unperturbed case at the origin, which can be determined by the constant term of the frequencies.

Already small variations to q′ make the frequency drop a lot faster than in the origin-related case,

which can be determined by the large negative coefficients for terms in q′. In general, the example

shows how adaptable and effective the COSY approach is.
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Table 5.5 The table reveals the terms and related coefficients of ωt′(q
′, p) for the oscillation

around the fixed point (q′0, p0) =

(√
3
2 +

√
3

2 ,0
)

of the Hamiltonian in equation 5.39 with the

parameters (ω0,ε,a) = (1,2,2/9) and q′ = q−q0.

Coefficients Order Factor Coefficients Order Factor

2.33754178896010E+00 0 1 1.21382387121546E-12 6 q′5 p

-5.16315324537914E+00 2 q′2 -5.45104992215302E+01 6 q′4 p2

-9.44922625720420E-01 2 p2 -1.45822595527180E-13 6 q′3 p3

-9.47032596684882E+00 3 q′3 -8.60580684709545E+00 6 q′2 p4

3.23158337141804E-12 3 q′p2 -1.90397253907876E-14 6 q′p5

-2.27378667458620E+01 4 q′4 -5.24990654350866E-01 6 p6

-5.94074588085554E+00 4 q′2 p2 -5.58506174494210E+02 7 q′7

-5.43615977456575E-01 4 p4 4.99636191467564E-12 7 q′6 p

-6.14780725235178E+01 5 q′5 -1.74730289073416E+02 7 q′5 p2

3.15815384599474E-13 5 q′4 p 1.69335451054548E-12 7 q′4 p3

-1.08965969639085E+01 5 q′3 p2 -1.57848880666779E+01 7 q′3 p4

7.53952744185456E-14 5 q′2 p3 -1.20261466986781E-13 7 q′2 p5

3.69557903192260E-12 5 q′p4 5.32068881682924E-12 7 q′p6

-1.81373221158553E+02 6 q′6

5.4 Solving perturbed Harmonic oscillator with perharmosc.fox

After those two specific examples of using the DA Framework in COSY INFINITY, the general

algorithm in perharmosc.fox for an arbitrary time-independent perturbed Harmonic oscillator of

the following form shall be explained:

H = a0
q2

2
+akqk +b0

p2

2
+bl pl + ciq

j pn (5.62)

where the terms of akqk, bl pl and ciq j pn can occur for various k’s, l’s and combinations of ( j,n)

as long as k > 2, l > 2 and j+n > 2 for all terms. To use the already established framework, the

following variables are defined: a0 = mω2
0 and b0 = 1

m . Rewriting the equations yields: m = 1
b0
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and ω2
0 = a0b0. Hence, mω0 =

√a0
b0

. The Hamilton equations are therefore given as follows:

q̇

ṗ

 =


∂H
∂ p

−∂H
∂q

=

 b0 p+ lbl pl−1 +nciq j pn−1

−a0q− kakqk−1 + jciq j−1 pn

 (5.63)

=

 0 1
m

−mω2
0 0


q

p

+

 lbl pl−1 +nciq j pn−1

−kakqk−1 + jciq j−1 pn

 (5.64)

The known transformation T̂ from equation 5.9 and the time scaling to t′ = ω0t, to unparame-

terise the linear part of the differential equation then yield:


ṗ√mω0

−√mω0q̇

 =

 −a0q+kakqk−1+ jciq
j−1pn

√mω0

−√mω0

(
b0 p+ lbl pl−1 +nciq j pn−1

)
 (5.65)

 ṗ1

−q̇1

 =


−a0q1

mω0
−

kakqk−1
1

(mω0)
k
2
− j (mω0)

n− j
2 ciq j−1 pn

−mω0b0 p1− (mω0)
l
2 lbl pl−1

1 +n(mω0)
n− j

2 ciq j pn−1

 (5.66)

ṗ1

q̇1

 = ω0


0 −1

1 0


p1

q1

+


−

kakqk−1
1

ω0(mω0)
k
2
− jciq

j−1pn

ω0(mω0)
j−n
2

(mω0)
l
2 lbl pl−1

1
ω0

+
nciq

j pn−1

ω0(mω0)
j−n
2



 (5.67)

ṗ1

q̇1

 =

0 −1

1 0


p1

q1

+

−kdkqk−1
1 − jgiq j−1 pn

lel pl−1
1 +ngiq j pn−1

 (5.68)

The final ODE in equation 5.68 is integrated into COSY and the resulting transfer map from

the initial state at t′ = 0 to t′ = 1 is transformed to Normal Form coordinates, yielding the tunes

in the following form ωt′ (q1, p1,dk,el ,gi) and the period Tt′ (q1, p1,dk,el ,gi). With the following
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substitutions, the result can be rewritten in terms of the original coordinates. One step is to bring

the respective quantity to the original time scaling:

T (q1, p1,dk,el ,gi) =
2π

ω0
Tt′ (q1, p1,dk,el ,gi) (5.69)

ω (q1, p1,dk,el ,gi) = ω0ωt′ (q1, p1,dk,el ,gi) (5.70)

The coordinates (q1, p1) can be transformed back to the original coordinates q, p, with

(q1, p1) =

(
√

mω0q,
p

√
mω0

)
=

(
4
√

a0
b0

q, 4

√
b0
a0

p

)
(5.71)

Finally, the parameters used in the Algorithm can be scaled back to the original:

dk =
ak
ω0

(mω0)
− k

4 el =
bl
ω0

(mω0)
l
4 gi =

ci
ω0

(mω0)
n− j

4 (5.72)

dk =
ak√
a0b0

(
b0
a0

) k
4

el =
bl√
a0b0

(
a0
b0

) l
4

gi =
ci√
a0b0

(
b0
a0

) j−n
4

(5.73)

The COSY result will be given in (q1, p1,dk,el ,gi) and appears as it is illustrated in table 5.6.

This method of substituting the original parameters and variables at the end makes the algo-

rithm most efficient, because it operates with the minimal amount of orders and therefore yields

maximum precision. There are ways to implement problematic parameters, like
√

a or 1/
√

a, by

introducing additional variables c =
√

a and d = 1/
√

a, but that reduces the precision. Addition-

ally, procedures would have to be implemented that assure, that parameters are canceled according

to cd = 1, c2 = a and d2 = b. Those procedures would only simplify the result at the cost of a

lower precision and and increase in computing time.
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Table 5.6 The table illustrates an example output of COSY for the period T in the
(q1, p1)-coordinates up to 5th order in (q1, p1). The column ’I’ denotes the row-counter. The
columns under ’EXPONENTS’ each represent one variable. The first two are the
(q1, p1)-coordinates. Each additional column denotes a parameter dk,el or gi starting with the
parameter associated with the first perturbation term entered to the program. The number in the
respective column denotes the exponent of the variable/parameter. The column ’ORDER’ sums
up all the exponents and presents the total order of the term. The second column
’COEFFICIENT’ yields the COSY Taylor expansion coefficient regarding the associated term.

I COEFFICIENT ORDER EXPONENTS

1 -0.84147098 1 1 0 0 0

2 0.54030231 1 0 1 0 0

3 -0.50509902 4 3 0 1 0

4 -0.74594703 4 2 1 1 0

5 -0.55736289 4 1 2 1 0

6 -0.17208648 4 0 3 1 0

7 -0.30059578 6 5 0 0 1

8 -0.61324672 6 4 1 0 1

9 -0.78228485 6 3 2 0 1

10 -0.63837415 6 2 3 0 1

11 -0.30556118 6 1 4 0 1

12 -6.52E-02 6 0 5 0 1
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CHAPTER 6

CONCLUSION

This thesis introduced a very efficient approach to solving periodic, time independent, Hamilto-

nian systems with parameter-dependent perturbations up to arbitrary order. The foundation of the

method proved to be the DA framework implemented within COSY INFINITY, which allows for

the computer-based numerical calculation of algebraic structures. Well known methods like the

fourth-order Runge-Kutta can be realized in the DA framework in an equivalent way to the classic

implementation. Furthermore, integrators which are based on differentiation and integration such

as the Flow or fixed point Integrator, respectively, can be implemented very efficiently in the DA

framework, which is due to its automatic differentiation and anti-differentiation operations. As a

result, the DA based integrators yield a transfer map, which is an algebraic expression that yields

the final state in terms of the initial state. Those maps can also be parameter-dependent, in contrast

to regular numerical integrators that do not provide any algebraic expressions.

Furthermore, the DA structure was useful in the implemented DA Normal Form Algorithm,

which transformed the transfer map into Normal Form coordinates to calculate the tunes. The

tunes are the invariant quantities of the system and do not change along the phase space curve in

Normal Form coordinates, which makes these coordinates uniquely ’natural’ for the extraction of

the tunes. The Normal Form Algorithm uses various transformations within the process, which

always occurs together with their inverses. In this context, the property of the DA structure of

only yielding an inverse for terms which contained a non-zero constant part became an issue for

parameter-dependent maps. The original differential equation had to be transformed canonically

to coordinates in which the linear part had a non-zero constant term. In the last step, the composi-

tion of the single transformations in the Normal Form Algorithm where used to express the tunes

and their tune shifts in the original coordinates, to make the solution suitable for arbitrary initial

conditions in the original coordinates.

In the comparison to the Lie Transform perturbation theory, the advantage of easily expressing

83



the solution in the original coordinates became apparent. Additionally, the tracking pictures illus-

trated the limitations of perturbation theory in general to the chosen reference system. Even though

the COSY tracking could reveal the adjacent fixed points, the Normal Form Algorithm was only

able to transform the phase space curves around the origin into circular motions with amplitude-

dependent tune shifts. In contrast to the Lie Transform ansatz, a simple coordinate transformation

to another fixed point allowed to use the Normal Form method equivalently to determine the tune

shifts of oscillations around the new reference point.

As a result of the overall investigation, the program perhamosc.fox was written to generally

solve parameter-dependent perturbed harmonic oscillators, with the ability to change the reference

point of the perturbation. For this thesis all procedures used were either already implemented in

COSY INFINITY or were programmed on the USER level since computing time was no relevant

factor. An implementation of certain procedures in the underlying FORTRAN code as internal

procedures would make those drastically more efficient.
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APPENDIX

COSY COEFFICIENTS

Table A.1 COSY coefficients of r2 (q1, p1) up to order 10 in (q1, p1) for the Pendulum
calculation.

Order Factor Coefficient Order Factor Coefficient

2 q2
1 1.00000000000000E+00 11 q2

1 p6
1a3 1.52587890584416E-03

2 p2
1 1.00000000000000E+00 11 q1 p7

1a3 -6.23130019805629E-14

5 q4
1a -5.20833333333330E-02 11 p8

1a3 3.81469726555902E-04

5 q2
1 p2

1a 6.24999999999983E-02 14 q10
1 a4 -3.11449487795811E-07

5 p4
1a 3.12500000000003E-02 14 q9

1 p1a4 2.60559018750832E-13

8 q6
1a2 4.99131944441055E-04 14 q8

1 p2
1a4 1.73561143225385E-05

8 q4
1 p2

1a2 3.58072916659495E-03 14 q7
1 p3

1a4 -9.96226834659921E-13

8 q2
1 p4

1a2 8.78906250007309E-03 14 q6
1 p4

1a4 2.27069853202729E-04

8 p6
1a2 2.92968750000307E-03 14 q5

1 p5
1a4 -2.30420448719341E-12

11 q8
1a3 -9.93032304185488E-06 14 q4

1 p6
1a4 4.56968944165443E-04

11 q7
1 p1a3 2.15106795223296E-14 14 q3

1 p7
1a4 -5.42693199542332E-13

11 q6
1 p2

1a3 2.34646267818247E-04 14 q2
1 p8

1a4 2.92062760508722E-04

11 q5
1 p3

1a3 2.67750123288113E-13 14 q1 p9
1a4 5.23138307236752E-13

11 q4
1 p4

1a3 1.55639648441389E-03 14 p10
1 a4 5.84125518994400E-05

11 q3
1 p5

1a3 1.33353180928330E-13
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Table A.2 COSY coefficients of ωt′ (q1, p1) up to order 10 in (q1, p1) for the Pendulum
calculation.

Order Factor Coefficient Order Factor Coefficient

0 1 9,99999999999990E-01 12 q4
1 p4

1a4 -5,03063201898618E-04

3 q2
1a -6,24999999999962E-02 12 q2

1 p6
1a4 -4,47273254388907E-04

3 p2
1a -6,24999999999963E-02 12 p8

1a4 -1,11818313597672E-04

6 q4
1a2 3,25520833332584E-04 15 q10

1 a5 -1,47522023408260E-07

6 q2
1 p2

1a2 -9,76562500000149E-03 15 q8
1 p2

1a5 -1,56177887847264E-05

6 p4
1a2 -4,88281250000031E-03 15 q7

1 p3
1a5 5,01368288248799E-15

9 q6
1a3 -3,11957465283522E-05 15 q6

1 p4
1a5 -9,92635885946822E-05

9 q4
1 p2

1a3 -1,20035807291816E-03 15 q5
1 p5

1a5 6,26444222558972E-15

9 q2
1 p4

1a3 -2,01416015625245E-03 15 q4
1 p6

1a5 -1,68214241683875E-04

9 p6
1a3 -6,71386718750670E-04 15 q3

1 p7
1a5 2,25888609846247E-15

12 q8
1a4 -1,90659174731445E-06 15 q2

1 p8
1a5 -1,02743506444934E-04

12 q6
1 p2

1a4 -1,38706631128647E-04 15 p10
1 a5 -2,05487012877491E-05

Table A.3 COSY coefficients of ωt′ (q, p) up to order 10 in (q, p) for the Pendulum calculation.

Order Factor Coefficient Order Factor Coefficient

0 1 9,99999999999990E-01 12 q6 p2a2 -1,38706631128647E-04

3 q2 -6,24999999999962E-02 12 q4 p4a4 -5,03063201898618E-04

3 p2a2 -6,24999999999963E-02 12 q2 p6a6 -4,47273254388907E-04

6 q4 3,25520833332584E-04 12 p8a8 -1,11818313597672E-04

6 q2 p2a2 -9,76562500000149E-03 15 q10 -1,47522023408260E-07

6 p4a4 -4,88281250000031E-03 15 q8 p2a2 -1,56177887847264E-05

9 q6 -3,11957465283522E-05 15 q6 p4a4 -9,92635885946822E-05

9 q4 p2a2 -1,20035807291816E-03 15 q4 p6a6 -1,68214241683875E-04

9 q2 p4a4 -2,01416015625245E-03 15 q2 p8a8 -1,02743506444934E-04

9 p6a6 -6,71386718750670E-04 15 p10a10 -2,05487012877491E-05

12 q8 -1,90659174731445E-06
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