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An analytical theory of arbitrary-order achromats for optical systems with midplane symmetry is presented.
It is based on the repeated use of identical cells; but besides mere repetition of cells, mirror symmetry is used
to eliminate aberrations. Using mirror imaging of a cell aroundxheandx-z planes, we obtain four kinds
of cells: the forward cellE), the reversed cellR), the cell in which the direction of bend is switche8) ( and
the cell where reversion and switching is combin&).(Representing the linear part of the map by a matrix,
and the nonlinear part by a single Lie exponent, the symplectic symmetry is accounted for and transfer maps
are easily manipulated. It is shown that independent of the choice and arrangement of such cells, for any given
order, there is a certain minimum number of constraint conditions that has to be satisfied. It is shown that the
minimum number of cells necessary to reach this optimum level is four, and out of the sixty-four possible
four-cell symmetry arrangements, four combinations yield such optimal systems. As a proof of principle, the
design of a fifth-order achromat is presentgsil063-651X96)07709-4

PACS numbdis): 29.27-a, 41.85.Gy, 41.85.Ja

[. INTRODUCTION also cancels all second-order geometric aberrations. Second,
of all second-order chromatic aberrations, only two are inde-

The search for achromats, by which we mean optical syspendent. Therefore, they can be corrected by two families of
tems whose transfer maps are free of any nonlinearities durely second-order element&n practice usually sextu-
transverse motion up to a certain order, has generated suBoles, each responsible for one of them in each transverse
stantial interest for the past two decades. The ability to transPlane. These findings make it possible to design a four-cell,
port particles while preserving their phase-space distributiogecond-order achromat with only one dipole, two quadru-
through a certain order has many attractive consequence9les and two sextupoles per cell.
and this is why first- and second-order achromats have been Because of its simplicity, the second-order achromat con-
widely used in accelerators, storage rings, and beam tran§€pt has been applied to the design of various beam optical
port lines. Last but not least, this is also an interesting an@ystems such as the time-of-flight mass spectrometers both
challenging problem from a purely theoretical point of view. Single-pasgTOFI) [2,3] and multipassESR [4,5], the arcs

Since midp]ane symmetry has been emp|0yed in most (ﬁ)f the Stanford linear collidefSLC), the new faC|I|ty at
the beam optical systems, canceling half of the transvers8LAC, the final focus test beaf-9], and the MIT South
aberrations, all achromat theories consider only systems withiall ring (SHR) [10,11].
midplane symmetry. But even under this symmetry, as Table Since it is hard to generalize this second-order achromat
| shows, the number of aberrations that have to be canceldfieory to higher orders, the first third-order achromat theory
to generate achromats increases drastically with order, evaias developed by Dragt based on normal form theory and
if only the aberrations that are independent due to the symk-ie algebra[13]. According to the theory, a system of
plectic symmetry are considered. In particular, it becomeddentical cells is a third-order achromat if the following con-
apparent why even up to second order it is considered unrdlitions are met(1) The tunes of a celk, andw, are not full,
alistic to attempt to control each aberration with a separat@alf, third, or quarter integer resonant, i, andnu, are
constraint condition. Therefore, the challenge is to achievéntegers.(2) The two chromaticities and five independent
achromaticity with as few knobs as possible. third-order aberrations are zero.

Although the concept of first-order achromats had been Two examples of third-order achromats have been de-
widely used in various beam optical systems and acceleratofdgned. The first design was done by Dragt himself, contain-
for a long time, it was only until the 1970s that a theorying thirty cells (u,=1/5 and u,=1/6). Each contains ten
developed by K. Brown enabled the design of realisticbends, two quads, two sextupoles, and five octupoles. The
second-order achromats in a systematic and eleganf ijay

The theory is based on the following observations. First, TABLE I. The number of aberrations of orders 2 to 5 for a
any system of identical cells(n>1) with the overall first-  System with midplane symmetry. The interdependency of aberra-
order matrix equaling to unityl] in both transverse planes tions is due to the symplectic symmetry inherent in Hamiltonian

gives a first-order achromat. Wheris not equal to three, it dYnamics.
Order 2 3 4 5
*Present address: Department of Astrophysical, Planetary and Aiberrations 30 70 140 252
mospheric Sciences, University of Colorado at Boulder, Boulderindependent aberrations 18 37 65 110
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sixth order is determined. In Sec. V, as a direct application of
the theory developed in this paper, the design of a four-cell
fifth-order achromat is presented.

II. MAP REPRESENTATIONS

Let us consider a phase space consistingrofariables
(d1+---Qm+P1,---,Pm)- Since we do not take into account
FIG. 1. The geometric relationship among céllsR, S, andC  synchrotron radiation and acceleration, the transverse motion
illustrated by asymmetric boxes. of a beam optical system is described by a symplectic map,

which satisfies
whole system is a 180° bending arc. The second design was

done by Neri14,15. It is a seven-cell system with only one j(|\7| ) -3-j(|\7| )t:j,

bend per cell, while the total bend is also 180°. The tunes of

a cell areu,=1/7 andu,=2/7, which seems to violate the where 7(M) is the Jacobian matrix o1 andJ is an anti-
theory because of the third-order resonancg2T,=0.  symmetric Znx 2m matrix

However, achromaticity can still be achieved because the

driving terms are canceled by midplane symmdtty,15, R 0 |
which greatly reduces the number of cells. JZ( N O)' (1)
Similar to Brown’s theory, the Dragt theory cannot be

immediately used to find arbitrary-order achromats in a way ynder the symplectic symmetry, the transfer mapof

main reason is that for any given order, the tunes of a celpf orders three up ta+1 through a Lie factorization as
have to be specially chosen such that most, if not all, of the

resonances up to one order higher are avoided. Thus the h7|=n(Lr)o[exp(:H:)r], 2)
number of cells has to be the smallest possible that makes R

both tunes of the whole system integers, which depends ofhere=, denotes equality up to orderand| is the identity
the order and usually increases quickly. A second reason i;iap. Up to orden, the inverse oM is

that as the order increases, the difficulty of obtaining analyti-

cal formulas increases rapidly because of the inherent com- M *1=n[exp(—:H:)r]o(L*1r). 3)
plexity of the Baker-Campbell-HausdoilBCH) formula.

Our approach for a general achromat theory does not use For the convenience of further discussion, it is advanta-
the normal form method and avoids the resonance concemgeous to define what we want to call a “standard” and a
by introducing mirror symmetry to cancel more aberrations.‘substandard” form of the maps: _

With these considerations, we are able to study systems witDefinition II.1. For a symplectic maM g, the standard form
arbitrary numbers of cells and obtain solutions that are indeis defined as

pendent of the arrangements inside a cell. Because of their . R

simplicity, Lie transformations are used to represent sym- Mg=exp(:H:)(M_1), (4)
plectic maps, but instead of an order-by-order factorization,

we use a factorization formed by a linear matrix and a singlevhereM, is the linear matrix anéf is a polynomial of order
Lie operator, describing the linear and nonlinear parts, rethree and up. A representation of the form

spectively. The introduction of mirror symmetry makes it
possible for us to obtain four total kinds of cells: the for-
ward cell (F), the reversed cellR), the switched cell in
which the direction of bend is switche®), and the cell in
which reversion and switching is combine@)(, as shown s called a substandard form.

schematically in Fig. 1. H is sometimes called the pseudo-Hamiltonian of the map,

In Sec. I, we derive the maps of the ceRs S, andC  which is extracted from the ma12]). Note the difference
from the map of the forward cell and then the maps of abetween Eqs(2) and (4), where, in the former equation,
four-cell system. Section Il contains a classification of theexp(:H:) acts onl and the resulting map is then composed
systems with optimal solutions. First it is shown that it is with the linear map, and, in the latter equation, ex(: acts
necessary to have at least four cells in a system to achieve @m the linear map directly. Apparently, use of the Baker-
arbitrary-order achromat with a minimum number of con-Campbell-Hausdorff formula in principle allows the transfor-
straints, which is followed by the proof of the existence of anmation of a substandard form into a standard form.
optimal solution. It is further shown that four out of the 64  Due to the frequent usage in the sections that follow, two
four-cell systems yield the optimal solution while requiring closely related theorems are introduced without proofs.
the minimum number of linear constraintSec. Il D). In Theorem II.1If f is a polynomial of order three or higher
Sec. IV, we study the four best systems in detail to findon R?™, andg is an arbitrary polynomial, then we have
solutions for achromaticity in an order-by-order fashion. R
First a general solution for arbitrary-order achromats is ob- exp(:f:)g=,glexp(:f:)I], (6)
tained, although it will be shown that more efficient solutions
can be found. Then the optimal solution for achromats up tavhere

Mf[l] exp(zHu)}(MJ) (5)
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exp(: )l = o[ eXp(: 1) d1,.... exit: ), expl —:f(M):]g(M)=,g(M) = [f(M),g(M)]
Xexp(:f)qq,....,exg:f)q,]. (7 + 3[F(M),[F(M),g(M)]]+---
Theorem 1.1 is ready to be generalized to the case = g(M)+([f,g])(M)+3[f(M),
xﬂg\rf;gglihzoeglmy??mlal of a magM. Thus, we have the —([f,g])(l\7|)]+---
Theorem 11.21f M is a map andy is an arbitrary polyno- =ng(l\7l)+([f,g])(l\7l)

mial on R2™, then we have
+3([f.[f,9]D(M)+---

=nlexp(:f:)gle(M),
Theorem I1.2 is probably even more important than Theo- | . h ludes th f
rem 1.1 because, in most cases, the linear map of a system {1ich concludes the proof.

F
not unity. Therefore, it is the one which is used directly and Let now M denote the map of the forward_ cell, where
very frequently. the superscript denotes that it is transversed in the forward

From Theorem 1.1, we can infer thit can be written in direction. In order to obt.aln the maps™, M* M° of theR,
the standard form S, and C cells, respectively, Theorem 1.3 has to be used
repeatedly.

The reversed cellR) is the one in which the order of the
elements is reversed from that of the forward cell. This
i . means that if a particle enters the forward cell at an initial
Next let us make some observations about the composmoBOmt (;,a;,y;,b;,8) and exits it at a final point

of exp(:f:)g(l) and the transfer map. _ (X¢,a¢,Ys by, 85), @ particle which enters the reversed cell at
Theorem 11.3If a mapM on R=" is symplectic, we have (X¢,—as,yi,—bg,5;) will exit at (x,—a;,y;,—b;,5)
L] L] ] ] 1 EPAR] 1Y/

This entails that the map of the reversed cell is

exp(:f:)g(l\7|)=ng[exp(:f:)l\7l]. (8)

M =exp(:H:)(LI). (9)

[exp:f)gle(M)=, exg:f(M):]g(M).  (10)

] MR=(R1)eM ~1o(R" 1), (13
If a _map, M on R?™ is antisymplectic, i.e.,
JM)-J-J(M)'=—1], we have where
[exp(:f:)gle(M) =y exif —:F(M):1g(M).  (11) 1 0 0 0 0/x
R 0 -1 0 0 O0}|fa
Proof. First assume thaM is a symplectic map, which RI=|0 0 1 0 0|y (14)
implies that a Poisson bracket is an invariant under the trans- 0O 0 O -1 0 b
formationM, i.e., 0 0 o o0 1/\s
[f(M),g(M)]=([f,g])(M). Taking into account the fact th® is apparently antisym-
plectic, we can obtain the standard formMf
The rest of the proof is straightforward . .. .
. R ) R ) MR=(RI)eM ~1o(R71I)
: : = + - - - -
eXF{ f(M) ]g(M) ng(M) _)[f(M)_:g(M)_)] =(RI)0[eX|1—H)I]O(L_ll)O(R_ll)
+1 4+ ... N N N
HLEM.LEM). g (M)T) — (RTye[exp(: — HOTJo(L~2R-1)
= —+ > >
ng(M) —)([fvg])(M)—) Z(Rl)o{quH(L_lR_ll)]
+1 + .. N
z[j(M),([f,g])EM)] X(L™IR™M)} (Theorem 11.3
=,g(M)+([f M)+ 3([f,[f - - -
ng(_’) (Lf.ahM)+3([F,[f,9]1D —exgH(L R ):J[(RI)e(L- R
X(M)+--
- (Theorem 11.2
=nlexp(:f:)gle(M).
=exd:H(L R ):J(RL™IR ). (15)

In the case oM being antisymplectic, the proof is basi-

cally the same except that the Poisson bracket changes sign The switched cell ) is the mirror image of the forward
under the transformation, i.e., cell about they—z plane, i.e.,

[f(M),g(M)]=—([f,g])(M). (12) MS=(Sh)eMe(S™1), (16)

Therefore we obtain where
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-1 0 0 0 0| /x MS=exg:H(S ):](SLS 1), (23)
0 -1 00 0|a A ) )

si=|l 0 o 1 0 ofly 17) MC=exd:H(L R 1S 1):](SRL IR 1S 1)),
0 0 0 1 0f|b (24)
0 0 00 1/1\¢ Now that the maps of the different kinds of symmetry

. o _ manipulations of the standard cell are known, the map of any
Since the matrixS is apparently symplectic, we have given multicell system can be constructed. In particular, it is
MS=(SheMe(S 1) always possible to determine the substandard form of the

map, which can then be turned into the standard form of the

=(ST)e(L1e[exp(:H:)ITe(S™ 1) map with the BCH formula. _

. . . For the purpose of clear nomenclature, Gtbe theith
=(SL)e{exd :H(S ): (S~} cell in ak-cell system, i.e.C; can beF, R, S, or C. Then the
e = map of the total system is denoted B1C2-Ck, For ex-
=exp:H(S "):](SLS ). (18 ample,MFRSCrepresents the map of a four-cell system con-

sisting of the forward cell, followed by the reversed cell, then
by the switched cell and ending with the combined cell.
We will illustrate the process of obtaining the substandard
MCZ(ST)O(RT)OM710(R—1r)0(371|*)_ (19) forms for the later particularly important four-cell system
FRSC and list the results for some other four-cell systems.
Due to the fact that matriSR is antisymplectic, similar to In the manipulations, we repeatedly make use of Theorem

the reversed cellM© can be brought into the standard form (11.2), Theorem(Il.3), and the associativity of ",
From the definition of systetRRSC we can obtain its

The combined cell €) is switched and reversed cell,
whose map is

MC=exg :H(L RIS 1):](SRL RIS 1)), transfer map from the maps of single cells as
20 N o e e s
( ) MFRSC:MCOMsoMROMF. (25)
In summary, we have the maps of all four-cell types listed
below Note that the order of the maps of the single cells is the
. . reverse of that of the cells, because the initial coordinates of
MF=exp(:H:)(LI), (21)  the present cell are the final coordinates of the previous one.
R R R Then we bringM RS€ into the substandard form via the
MR=exd:H(L R ):J(RL™IR™ 1), (22)  following steps of iterative character

MFRSC—fex :H(L 1R 1S 1):J(SRL IR 1S M) Jofex:H(S 1):](SLS ) }e{exd :H(L 1R 11):]
X (RL™IR™ ) efexp :H(): (LD}
—exf :H(): {[expGH(L 1R 1S H):)(SRL RIS 1) Jo[exp:H(S 1):)(SLS ) Je[exp:H(L "R 1))
X(RL™IR™)Jo(L)} (Theorem I1.2
—exf :H(): J{[expGH(L RS ):)(SRL RIS 1) Jo[exp:H(S 1I):)
X (SLS )Je[expCH(L R L1):)(RL™IR™L-LD]} (Theorem I11.3---
—exd:H(D:Jexd:H(L!R™L-L1):Jexg:H(S - RL™IRL-LI):Jexg :H(L R 1.LS L.RL"IR1.LI):]
X(SRLUIRL.LS L.RLIRL.LI).

In a very similar way, the substandard forms of the maps of the syssR%ER MFCSR and MFCFC are obtained, and
altogether we have

MFRSC=exel :H(I): Jexp:H(L IR~ LI):Jexd :H(S™L- RL™*R 1. LI): Jexpf :H(L'R™1.LS™ 1. RLTIR L. LI):]
X(SRLIRL.LSL.RLIRL.LI), (26)

MFRFR= exf :H():]ex:H(L "R~ L-LI):Jexd:H(RL™IR™L-L1):Jexg :H(L 'R~ L-RL!R™L-LI):]
X(RL™!R™.L-RL"IRL.LI), (27)
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MFCSReex :H(1): Jexg :H(L RIS~ L. L1): Jexd :H(RL™IR™S L. L1): Jexg :H(L 'R 1. SL.RLIR™ISL.L1):]

X(RL™IR™1.SL-RL™IRISL.LI), (28
MFCFC—exf:H(1):Jex :H(L " R"1S 1. LI):Jexd :H(SRL IR 1S71.LI):]
Xexg:H(L RIS L.L.SRL RIS L.LI):](SRLIRISL.L.-.SRL IR IS L.LI). (29)
|
As shown in the next section, only the four systems listed (iy+iy is even,iy+i, is even. (34)
here are needed when the solutions of arbitrary-order achro-
mats are determined, because other systems are not as effi-Definition II.2. Define
cient. What will also be shown here is the importance of the
substandard form where the optimal four-cell systems are Fe (i) —
decided. Finally, when solutions of achromats are searched HP=H({)=H(x.a,y.b) (35)
for among the four systems, the standard form of their maps R
will be obtained from the substandard form using the BCH HR=H(RI)=H(x,—a,y,—b), (36)
formula.
S_ NeH(—y —
IIl. OPTIMAL FOUR-CELL SYSTEMS H*=H(S)=H(=x,~a.y.b), (37
We will no oceed to the analysis of the influence of -
WIT now pr ysis Ty HC=H(RS)=H(-x,a,y,—b). (39)

symmetric arrangements to the cancellation of aberrations in
general multicell systems, and then later study the syste
found optimal. We begin with a few definitions.

Like in previous achromat theories, we consider only

MY is easy to show that in decomposed form one can write

those systems with midplane symmetry. Therefore, the trans- HF=A(H)+B(H)+C(H)+D(H), (39
fer map of the forward cell can be represented in the form of
Eq. (9) with its pseudo-Hamiltonian given by HR=A(H)—B(H)—C(H)+D(H), (40)
He 30 Gy Xiaiaysbing's (30) HS=—A(H)—~B(H)+C(H)+D(H), (4D
ixialyipis
wherei,+i,+iy+i,+i5=3, andi,+ij, is even. H®=—A(H)+B(H)—C(H)+D(H). (42)

Definition 11I.1. Let H be the pseudo-Hamiltonian of the

system, then we set A. General properties of k-cell systems

Consider a general system kfcells arranged using the

N xala iy Si
A(H)_ixiaiyibi5 Ixlaly'o! s xxalayhblod repeatedly, its map can be brought to the substandard form in
a similar way as in Eq(26). The result has the form
(iy+i, is odd, i +i, is even, (31 M=exd :H(D:Jexd:HM®D):]---exg :HM&D1):]
X(M4l), (43
— xala ipSi
B(H)_ix'a%i:bigd C'x'a'y'b 5X alayb'vsls whereM+ is the linear matrix of the system and
mi mi 00 mig
(iy+iy is odd, i +i, is odd, (32 | m(1|l> m(llz) 0. o. mls)
MO=[ o 0o my my o |,
o o0 m@y mi o
xa'la i i
C(H)_.xlazylbl Cisialyni X2y ¥b'8'7 o o o0 o0 1
S o (i=1,2,...k—1) (44
(iy+iy is even,iz+i, is odd, (33
is a midplane symmetrical matrix obtained from combina-
tions of the Ilnear matrlces of the previous cells and matrices
D(H)= 2 Ci i Xxalaylyhing's R,R, 5,571 andC,C ! depending on the specific choices

iy 1Y of the system As a result, we have déf()=

above symmetry operations. Using Theoreith®) and 1.3

1.
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Using the BCH formula[\7l can be transformed to a single
Lie operator acting on a linear map, which is

M=, exd :H(I)+H(M®D)+ - +HM& D)

+commutatorsf(M+l). (45)

In order to achieve achromaticity, it is necessary for the
expression between the colons to vanish. Since all commu-
tators are of order four and higher, this entalils, in particular,
that it is necessary for all the third-order terms in the sum of
pseudo- HamlltonlanSEH(M(')l) to vanish outright; for
higher orders, the terms stemming from the commutators
have to balance those from the sum. In the remainder, we

DFY(H(1))+ D (H(MDD))+

2875

<+ DHHM®EDD))

C - [x2"xg2Na 2”yb2”b5i5
ny ’na% Mg 2nx,2na,2ny,2nb ,|5[ y

(1 1
+(mPx+mYa+my 8)2(mx+miYa
+miy 8)2"a(miyy +mbyb) y(miEy + mib) 2o s's
et (i U mis il 5) U
k—1)

+mb Va+mis Y 5)2na(mis Yy

+mk l)b)Zny(mk l)y+m(k l)b)anai(g].

shall study several approaches to achieve this.

Next let us show that there is no system that can cance

DH(1)+DHMDN))+--+DHME D)) merely by

symmetry without making specific choices for the nonlineara polynomlal associated Witlion 2n, 20,20, i 5

settings. FirstD(H(l)) is split into two parts:

Definition 111.3. D*(H(1)) is defined as the terms in
D(H(1)) with all exponents oix,a,y,b even, which has the

form

2Ny~ 2N4, 2Ny k2N Si
2 ) Cznx,Zna,Zny,znb ’i(sx xa“ay yb4"™b§'s.
Ny Ny ,ny Npils

D’(H(r)) is defined as the terms ID(H(r)) with all expo-
nents onx,a,y,b odd, which has the form

> Conr 1, + 10+ 10y +1i
Ny NNy N i

X X2nx+ 1a2na+ 1y2ny+ lb2nb+ 15i s,

Note thatD=D"+ D~ because of Eq(34). We then ob-
serve

Theorem Ill.1.For a generak-cell system, it is impos-
sible  to _cancel any term  from D(H(l))
+DFHMDN))+--- +D (H(ME D)) solely by the sym-

metrical arrangements of the cells and the choices of speC|aI
linear matrices without imposing specific relations among

the Lie coefficientsC; ; alyibis

Proof From Egs. (43) and (44), the sum ofH(M®1) is

H(D+HMOD) 4 -+ HM®& D)
= > Ciiaiyipis [x'xa'aylybib s+ (miPx+miYa
ixsdasysip.is

(F ) x(mbYx+ m&Ya+mi 8)'a(miyy
+miyb)v(m@y+miyb)vsie+ -+ (m¥ Vx
+ms Ya+mis Ve)x(myy Ux+mbs Va
+mbs Vé)ia(mis Vy+miy Vb)v(mis Yy

+mi& Yb)iys's],

which entails that the sum @ * is

jgince by requirement, no specific relationships among the
2n2n,2n,,2n, i 5 A€ allowed to be imposed, the vanishing of

requires that

k-1
2”xa2”ay2”yb2”b+2 (mx+miYa+mil8)2™(mi)x

+mb)a+myd 8)2"a(mily + m§)b)2y(miy + mi)b)2m

=0,

which, because of the even exponents, is impossible to
achieve for all points in phase space, regardless of the choice
of theM®,

B. Two- and three-cell systems

The next theorem shows that two- or three-cell systems
cannot give optimal solutions for achromats.

Theorem 111.2.Two- or three-cell systems cannot cancel
Ag(H(I)>+A (HMON)+-+AgHME D)), By(H(D))
+B3(HM®OD)+--+Bg(HME D)) and  C4(H(I))
+CaHMD1))+-- +C3(H(M(k 1Y), and hence they can-
not give optimal systems of achromats.

Proof: Let us first consider two-cell systems. The sum
fHMOI) is

HI+HMBD) = 3 G [xxalayhbiog's

oiaiyolb s

- (m(lll)x+ m{Ya+m{Y 8)x(mix
miya+mby 8)'a(miyy
+miyb)y(miYy+mib)vs's].

Cancellation of the terms associated wi@y g0, from
As(H(1))+Ag(H(M@I)) entails that

C10004Xx8%+ (M3 x+mFa+miy 8)62]=0.

Since all coefficients are independent of each other, each
term in the above equation has to vanish separately, which
gives the solution
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miy=—1, smaller_ than that inD™: there is only one term in
Dg(H(J)) and D,(H(l)) as opposed to 15 terms in
miY=0, Ds(H(1)) and D4H(l)); there are only five terms in
o Ds(H(l)) and Dg(H(l)), as opposed to 39 terms in
my5 =0; Ds(H(1)) andDg(H(1)).
and canceling the terms associated willy;q0, from _
B3(H(I))+B3(H(M(1)I)) entails that D. The optimal four-cell systems
) " " D) o <2 The previous discussion revealed that the only way to
Co1,004a0°+ (M X+ M5z a+myg6)6°]=0, achieve maximum cancellation from symmetry is that the

M for i=2,3,4 form a permutation d®, S, andC. Since,

which has the solution however, theM ) contain both contributions from the linear

mb=_1 maps as well as from the symmetry operations, it requires
22 ' some study to determine the systems that satisfy the require-
mb=o ment. The following theorem answers these questions.
21 Theorem I1l.4 Among all(64) four-cell systems, there are
mY=o only four which reach the optimum asserted by Theorem
S 111.3 while imposing the minimum number of constraints on
Considering the terms associated Wi;,00, from the linear map. They aftRFR, FRSG FCFC, andFCSR
C3(H(I))+C3(H(M(1)I)), we have Proof: Whlle bel_ng rather strglghtforward and mec_:hanl—
cal, the entire proof is rather tedious, and so we restrict our-
Ci100{Xxad+ m(lll)m(zlz)xa5):201,1,0,0,2@5: selves here to the first part which leads to the first possible
_ . solution of the formFRFR.
which shows thaCs(H(1))+Cs(H(M®1)) cannot be can- Suppose the forward cell has a linear matrixFor the

celed. The same conclusion can be reached for three-cdime being, let us restrict ourselves to tkea- 6 block of L,
systems in a conceptually similar way that is, however, techwhich has the form
nically too involved to be exhibited here; for details, we refer

to [20]. a b 7z
L,={c d 7|,
C. Four-cell systems 0 0 1
In this section we will show that certain four-cell systems d —b —dy+by
can achieve what two- and three-cell systems could not, i.e., 1| _ At
. . L= c a cy—an' |. (46)
they can be brought in symmetrical arrangements to cancel 0 0 1

A, B, andC simultaneously.
Theorem !IL3. Given a four-cell system, the terms (1) Choices on the second cell.

=2 pAnH(MDIY), 33 Ba(H(MODY), and  Ccase la FF

E?ZOCH(H(M(')I)) (M(szl) are canceled for all choices of Recall that the standard form of a forward déh. (9)] is

n, if and only if HM®1), H(M@1), andH(M®)1) equal a R R

permutation oHR, HS, andHC. MF=exp(:H:)(LI).
Proof: The sufficiency is obvious from Eq$39)—(42). .

While the detailed proof of the necessity is beyond the scopd herefore, the map of the systefft- is

of this paper and the reader is referred26], the basic idea

MFF=MFoMF
behind it is quite simple and shall be illustrated here. The
cancellation of the terms has to be achieved through proper —fexp:H(D: (LD }e{exd :H(): (L)}
choices of the linear matrix as well as the symmetric arrange- N R R R
ments. By studying the coefficients é]:?ZOAS(H(M(i)I)), =exg:H(:1{exd :H(1):1(LD)}e(LI))

33 Bs(HMDN), and =2 CoHMDD)) term by term, I e -
one obtains a set of equations for the coefficients of the lin- =ex:H(D:Jex HLD:(L- L.

ear matrix, which, because of the presence of midplane symrq reach the optimuml,. has to beR, S, or C. Sincel is
metry, however, decouples into a variety of subblocks. S°|V'symp|ectic, it can only b&. Hence, the linear matrix is
ing the resulting set of equations, which is a very tedious yet

rather mechanical process, then shows that there is one and -1 00
only one solution: theM® (i=2,3,4 must be a permuta- L-| 0o -1 o0
tion of R, S, andC. ' 0 0 1

Since it is shown earlier that it is not possible to cancel
terms inD ", the ability to cancel thé, B, andC terms is  which entails that the conditions of reaching the optimum are
essentially the optimum of what can be achieved, except for
the question of whether or not tH@~ terms can also be n=0,
canceled automatically. However, in practice this is of sec-
ondary importance since the number of term®inis much n'=0,
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c=0, MFR=exd :H(D):Jexd:H(L"IRILI):J(RL-IRLLI).
b=0, Let M*={exp[:H(M(x)I]:}[L(X)I] be the map of the
third cell, which can bé&, R, C, or D. Thus, the total map of
a=-—1. the three-cell system is

Therefore, five conditions have to be met to reach the MFRX=M*XoMFR
optimum.

Case 1b FRFrom Eq.(15), we have — (expl: HIM ()T LX) ])e{exd :H(1):]
MFR= MR M F xexg:H(L 'R LI):](RLIRILI}
—fex:H(L R 11):] —exf:H(1):Jex:H(L " *R™ILI):]
X (RL™IR™1)}efexg :H(1): (L)} X [(exp: H[M(>)17:}
=exf:H():Jexd:H(L 'R LI):] X[L(X)I)e(RL™IR™ILI)]
X (RL™IR™L.LI). —exg:H(1):Jexd :H(L R1LI):]
Specifically, L1 *R7*-L; can be obtained from Eq46), X exp{:H[M(x)RL™ IR LIT:}
which yields

X[L(X)RL™IRILIT.

L-lR-1 =] —c¢ a  cr—an 0 -1 0 For our convenience, let us defilk'“(X) as the linear ma-
1 nan trix in the pseudo-Hamiltonian for the third cell. For systems
0 0 : 0 01 FRX, we have
(a ° 77,) M®@(X)=M(X)RL™ IR IL=M(x)LFR,
x|lc d »
0 0 1 whereL"R=RL™IR7IL.

, Case 2a FRE Since M(F)=I, we have M@(F)
(ad+bc 2bd 2by ) =RL'R7IL. For the two solutions, thex-a-8 block
. (47

—2ac —(ad+bc) —2an’ M®@)(F) are listed below. In the case of Solution A, we have
0 0 1

1 0 0 1 0 O 1 0 O
SinceL " !R7.L is antisymplectic, it can only b& or C, MP(F)=[0 -1 oflo -1 o|=(0 1 o],

which leads to the following conditions: 0 0o 1/\o 0 1 0 0 1
bd=0 which does not reach the optimum because it does not satisfy
0 Theorem I11.3. In the case of Solution B, we have
ac=
1 0 0\/-1 0 O
bn'=0 MP(F)=l0 -1 0 010
, 0 0 1 0 0 1
an'=0,
_ ) -1 00
which are equivalent to -l 0o =1 o
b=0 a=0 0 0 1
c=0 or d=0 which is a possible solution, because it satisfies Theorem
7' =0 »' =0. (48) 111.3 and does not need any more conditions.

(3) Choices for the fourth cells of the systefA& FX
Hence, we obtained two solutions with three conditions, DefineL™R"=LRL™*R™'L. Similar to cas€2), we have
which in turn eliminate the five-condition solution above.
: M@ =M(x)LFRF,
For further reference, they are listed below

Since solution B is the possible solution for this case, the

Solution A: Solution B: - . X
linear matrix of the forward cell is
a 0 g 0 b 7
L,={0 d 0] and L,={c O 0]. (49 0 b 7
0 0 1 0 0 1 L,=lc 0 0],
0 0 1

(2) Choices for the third cell of the systeRRX X R
From Case 1b, we have Case 3aFRFF. FromM(F)=I, we have
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TABLE Il. Optimal four-cell systems and the first-order require- |\7| FRSC_ |\7| FCFC
ments to achieve their optimum.

—exp(:Hexp(: HRYexp(:HS: exp(:HE:) T

Systems Linear Conditions
(51
FRSC (al6)=0, (x|]a)=(a|x)=0
FRFR (al9)=0, (x|x)=(ala)=0 and
FCSR (x|9)=0, (x|a)=(a]x)=0 VIFCSR_ 17 FRFR
FCFC (x|9)=0, (x|x)=(ala)=0
—exp(:H:)exp(: HC: exp(: HS: Jexp(:HR:)I.
MP=LRLRIL. (52)

Since Furthermore, one of these two substandard forms can be

obtained from the other through a simple transformation.

-1 00 Thus, it is only necessary to study one particular map to
RiL;*'R;L,=[ 0 -1 0], determine the conditions for achromaticity. _
0o o0 1 Lemma IV.1By switchingA andB, the mapaviF¢SRand
MFCFC are transformed td1"RSCand MFRFR respectively.

we haveM =M {3). Therefore this system is not a solu- Proof: Under the transformation, we have
tion.

Case 3bFRFR FromM(R)=L 'R!, we have HF=A+B+C+D—B+A+C+D=HF,
M® =L RILRLRIL. HR=A-B-C+D—B-A-C+D=HC,
Therefore, thex-a- 4 block is HS= —A—B+C+D——-B—-A+C+D=HS
100y /=1 00 HC=—A+B—C+D——B+A—C+D=HR,
MP@C)=[ 0 1 0 0 -1 0
0 0 1 0 0 1 which entails that the transformation of the maps is
1 0 O M FRSCGFCFC_, \jFCSRFRFR
-0 -1 o, ’
0 0 1 which concludes the proof.

We are now ready for a discussion of various strategies to
which shows that this system is a solution, because it satisfesign achromats. The first method is described by the fol-
fies Theorem I11.3. lowing theorem, which allows the design of achromats of an

In total, this concludes the analysis of the path leading taarbitrary order, although not in the most economical way.
the solutionFRFR, and we have shown that as needed, it Theorem IV.1For a given orden, the optimal systems

has the form FRFR FRSG FCSR andFCFC are achromats iA=,0
- - or B=,0, andD= 0.
MFRFR=exp(:H":)exp(:H®: ) exp(:HS: ) exp:HR)I. So in this case, there are no constraints at alColerms,
(500 and no constraints oA and B terms of the highest order
either.

The next theorem, given without proof, specifies the linea
conditions of they-b block for the optimal systems.

Theorem IIl.5.For the four systems obtained from the last
theorem, the constraints on tlgeb block of the linear map
are the vanishing of either the diagonal elements or the off- M =exp('HF')exp('HR')exp('HS')exq'HC')r
diagonal elements. T T T T

To summarize the results of this section, the four optimal  pafineq =3 n__f, andf,=A+B;+C,+D,, wheref, is
systems as well as the linear conditions necessary to satisffa sum of théth order terms irH. !
them are listed in Table II.

'Proof: Let us first consider systerRRSCandFCFC. From
the proof of Theorem(lll.4), they have the same maps,
which are

From now we proceed by induction over the order, begin-
ning with the second order. Using the BCH formul&,can
IV. ORDER-BY-ORDER SOLUTIONS be transformed to the “standard” form, which is

As the next step, it is necessary to analyze the commuta-

1 F. 4R .4S- uCar
tors of lower order terms, in particular, study their interplay M= exp(:Hg:)exp(:Hg)exp:Hz)exp(:Hg:)l

with direct sum terms that can never be removed from sym- — exn fF Yexn fR ) exn £S5 Yexn £S )
metry alone. The study is simplified by two observations. 2 Xpfs )exa T3 [ia. 31)expts)
First of all, the four different maps yielding optimal symme- =, exq;f§+ f§+ f§+fg DI

try cancellation only produce two different substandard .
forms, namely, =, exp(:4Dj3:)l.
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Therefore the second-order solutionDis=50, as advertised. n-1

To perform the induction step to show the condition to Hﬁ,lz E (=B;+C)),
nth order, let us assume th#=,_ ,0 or B=,_,0, and =3
D=,0 are solutions for arfn—1)st-order achromat. Since n—1
the proof of casd8=,_,0 is the same as that &=,_,0, HC .= (B,—C)
only the first case is shown. B = T

In this case, we have which entails that

n—1
F R _4S c _
H,_,+Hy_1=H;_;+H;_,=0

HL:ES (Bi+Cy),

and
n—1 . o s .
[Hn-1,Haoq1=[Hg5_1,Hy_41=0.
HE*]-:Z (_Bi_ci)a R n—-1 n—-1 n—-1 n-1
= ThereforeM can be transformed to

M=, exp(:HE,  expHR, | DexpHS,  DexpHS, )l =, expHE + P+ 55, DexpHR |+ R
+f§+1:)exq:H§,1+f§+fﬁﬂ:)exr(:Hﬁ,ﬁ—fﬁ-i—fﬁH:)r:n exp(:fr+ L+ i+ R+ 3 ((HR 1 fR
FLER R Db exp f S+ 18, 1S5, + B(IHS o FSTHIER HE 1) = explh+ 11, + 1R+ R,
+ 35 R+ LER S exp f 5 £5,  + 1S+ 15, + B[S 151+ 5,151 =, exp:4D s g+ 3((F5 R+ 15 15]
+[F5. 65145 65D = exp(:4D 1+ H(—[f5 R+ [ 15— 1S 151+ [ 15,651} =, exp(:4D .1+ 3 ([ 1]

+E R[S+ £3,6S]): =, exp(:4D s 1+ [An, —Ba— Cal+[— Ay ,B3—Cal:) =, exp(:4D s 1+ 2[ B3, Anl0)I,

which shows tha#A,=0 andD,,, ;=0 are a solution for the If the two terms are from the same part of the Hamiltonian,
nth order achromaticity. According to Lemma V.1, the sys-we have
temsFRFR andFCSRhave the same solutions, which con-
cludes the proof. Note that these two solutions are equivalent(i +i/— 1)+ (i,+i.,—1)=(i,+iy) + (i, +i}) —2=even,
in terms of the number of conditions, because the number of
monomials inA is the same as that i for a given orden
([20)).

In order to study other strategies to obtain achromats, we . . . )
remind ourselves that sind® cannot be canceled by sym- Which entails that the commutator gives termsan

metry, the number of nonlinear conditions cannot be smaller Similarly, it can be shown that a commutator between
than the number of terms iD. So the best solution under (€"MS from any part and those frofh gives terms fromC;

this theory will be that the number of nonlinear conditions@nd PartsA, B, andD are cyclically connected in that, B]
equals that of the terms iD. gives terms fronD, [A,D] gives terms fromB and [B,D]

The next theorem shows that such best solutions exist fd?!V€S terms fromA. .
up to the fourth order. Furthermore, computational results | 1€orem IV.2For the optimal four-cell systems, achro-
strongly suggest that indeed the method is also applicable fdPats up to the fourth order can be obtained by canceling

fifth- and sixth-order achromats, although the tediousness dft the total map. _
the algebra has so far prevented us from performing a de- Proof (1) The second order: From the proof of Theorem

tailed proof. IV.1, the map ofFRSCis

Before studying the theorem itself, a few observations are . . R S .
necessary. Considering the commutator of two general terms M=, exp(:Hz :)exp(:Hz;)exp(:H3:)exp(:Hz 1)l
from the Hamiltonian, we have

(iptii—1)+(ipt+ipg)=C(igtip)+(ij+i,)—1=o0dd,

=, exq:4D3:)r,
[Cixiaiyibi6X'Xa'aY'yb'b5'57Ci;i;i;igi;X'xa'ay'Vb'b‘S'5] which shows that the second-order solutiomig=0.
o (2) The third order:
=Ci i Ciizisiis (ixda Also from the proof of Theorem IV.1, the map is
—il )X b alatla T lylyyble b glatls M= exp(:HE exp:HR ) exp:HS exp:HS )1

+(iyip—ipiy)xxtixala*aylytly~1plotTo=15ia+15], =, exp(:4D 4+ 2[ B3, Ag]:)l .
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Since B3,A;] belongs toD,, a third-order achromat can D,=—3%[B3,A;z]. (53
be achieved by zeroingl, + 2[B3,A3] instead of canceling
D, andA, (or B,) separately. Therefore, the best third-order(3) The fourth order:
solution is Using the BCH formulaM can be transformed to

M=, exp(:HE D)exp:HE exp(:HE:exp:HE I

= expFE 15+ 1E ) expl R+ 1R+ FR ) exp( S+ F5+ F3 ) exp f S+ 1S+ £S )1

=, exp: 4D )exp: f5+ 15 exp fR+ R exp( 5+ 5 exp: fS+ 1501

=, exp(:4Ds1)expl: f5+ fo+ f5+ f5+ 2([f5 , F5]+ [ 5, F51+[f5 5D + H{(f5 .5, F5) + (f3,[f3,f3D})
Xexp(:f5+ 5+ 15+ 15+ 3 (5. 151415, 11+ 15151+ H{(FS.F5. 15D + (5.5 F5Dr

= 4 exp(:4Dg:)exp(: £ + f5+ £5+ 15+ 3([f5 151+ 5 £ 51+ 5 151+ 15, F51+[ 15,651+ 15,15
+1{(F3, 05, F5D) + (F5, 015,151+ (F3,[f3, 65D + (15[ 5 F3D )+ {f5 + 5+ F5+ 5+ 3 ([f5,F3]+[f5,f5]
+6G T5D I3+ 15+ 15+ 1+ 3([F5, 151+ 15,151+ 13,15}
+ S{(F5+ 15 [F5+ 15, F5+ £S5 + (1515, [F5+ 15 5+ 15D}l

=, exp(:4D5:)exp(:4D 4+ 2[ B Agl+ 3 ([f5 fR1+ [,  F 81+ [f3,FS1+[ 3. f51+[f5+ 15, f3+f5]
G+ IR SIS+ F{(F5+ 5[5 15D + ([F5, 151, 15+ £} + SH{(F5 [ £5, 15D + (F5.[f5, 151+ (f5.[5.15])
+ (15,015, 15D + (15 + 15 [15+ 15,15+ 15D + (15465 [15+ 15 t5+ 15D })0

=4 exq:4D5:)exp(:I:|:)r,

where

H=3([F5 F51+ 015, G115+ 15, 5+ 1§14 15, 151+ 113 151+ L1+ 15 15+ 1§D H{(F5+ 15[ 15, £5))
+(LF5. 15165+ )1+ SH{(F5. 15, 15D + (5[ 15, £51) + (5,115, 15D + (FS.[£5.£3])
+(f5+ 5. [F5+ 15, F5+ 5]+ (F5+ 5. [13+15, 15+ 5D}
=2([A3+B3+C3,A4—B,—Cy+Dy]+[—A3—B3+Cs,—Ay;+B,—Cy+Dy]+4[As,—Ay+Dy]+[A;+B,+Cy
+D4,A3—B3—C3]+[—A;—B4+Cy+Dy,— Azt B3—C3]+4[A4+D4,—A3])%{(2A3,[—A3—B3+C3,—A3+ B,
= Cal)+(2Ag,[Ag+Ba+ Cg,Ag—By— Cal)} + 35{(f5 — 15[ 15, £5]) + (5 5. [13.5])}
=—[Ag,B4+Cy]+[B3+C3,A4+Dy]+[Az, —Bs+Cy]+[ —B3+C3z,—As+ Dy
+4[A3,D4]+ 1{(2A3,[ —A3— B3+ C3,— Ag+B3—C3]) +(2A3,[Ag+ B3+ C3,A3—B3—C3])}
+13{(2[B3+C3],[A3+ B3+ C3,A3—B3—C3]) +(2[ — B3+ C3],[ — A3~ B3+ C3,— A3+ B3—Cs])}
=2[B4,A3]+2[B3,As]+2[C3,D4]+4[A3,D4]+ (Az,[ —A3,B3—C3]) —(A3,[A3,B3+C3])
+3{—(B3+C3,[A3,B3+ C3]) +(—B3+C3,[—A3,B3— C3])}
=2[B,,A3]+2[B3,As]—2(C3,— 3[B3,A3]) +4(A3, — 3[B3,As]) — 2(A3,[A3,B3]) — 5{(C3,[A3,B3]) +(B3,[A3,C3])}
=2[By4,As]+2[B3,As]+3(C3,[Ag,B3]) + 5(B3,[C3,As)).
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Altogether, the map is

M =4 exp(:4D&-,:)exp(:I:|:)Iﬁz4 exp:4Ds+2[B,,Az]
+2[B3,Aq]+3(C3,[A3,B3])+ %(83,[C3,A3]):}r.

Since 2B,4,As]l +2[B3, A4 +1/3(C5,[A5,B3)])
+2/3(B3,[C3,A3]) belongs toDg, the best solution for the
fourth order is

Ds=—{2[B4,As]+2[B3,As]+35(C3.[A3,B3])
+2(B3.[C3,A3])}. (54

Currently it does not appear possible to streamline the
treatment of the commutators arising from the BCH formula
enough to allow an arbitrary-order analysis of the above phe-
nomenon. But as indicated before, computational results con-
firm that the method also works for orders five and six. We
conclude the analysis at this point, but make the FIG. 2. The FRFR fifth-order achromat: The layout, beam en-

Conjecture IV.1For the optimal systems, achromats up tovelope and dispersive ray. The phase advances per cell are
an arbitrary order can be obtained by cancelni the total ~ u,= u,= /2. The circumference is 266.64 m; the emittance is 30

map. mm mrad; and the dispersion is 0.3%.
When a nth-order achromat is reached, the pseudo-d h lexitv of th
HamiltonianH becomes uces the compiexity o € process.

Throughout the design processes, the codsy INFINITY
([19)) is used, which contains all the tools important to beam
optical design, including map computation, extraction of Lie
coefficients, fitting, tracking, and resolution calculation.
First, the DA map of the desired order is computed. Second,
Therefore the transfer map contains only time-of-flight termgelevant Lie coefficients are extracted from the Lie exponent
which depend solely o@. This is also true for the first order obtained from the map. Third, fitting routines are used to
due to symplecticity. As a result, to obtain an achromat withcancel the Lie coefficients which cannot be canceled by sym-
no time-of-flight aberrations requires only one more con-metry. In our case, we are greatly benefitted from using the
straint for each order, i.e., the cancellation (). A third- ~ packagemMpIF by Jorge More from Argonne National Labo-

n+1

H= Zl Cooog 9 (55)
<

order system of this kind has been desigdd—18). ratory. The first-order layout of the achromat should avoid
large fluctuations in thgs functions in order to limit nonlin-
V. APPLICATION: A FIETH-ORDER ACHROMAT ear aberrations; furthermore, there should be enough room

for the insertion of correction multipoles. Another consider-
In this section, we present a proof-of-principle design of aation is that, if possible, the number of first-order conditions
fifth-order achromat. While the feasibility of this design can-should be further reduced through symmetry arrangements
not formally confirm the, at times, very tedious algebra, forinside a cell.
some of which we had to refer to external references because The result of these considerations is a ring shown in Fig.
of space limitations, it appears comforting to see that in prac2, which consists of sixteeRODO cells plus two dispersion
tice everything comes together as expected. correction sections, each of which includes two quadrupoles.
For the actual design of the device, differential algebraicThe left half is the forward cellF) and the right half is the
(DA) techniques were used because of the ease of obtainingversed cell R). Achromaticity is achieved after two turns.
the required Lie factorizations to an arbitrary order. Since thélrhe forward cell itself consists of two parts, one of which is
Lie factorizations are always obtained from the map, explicithe reverse of the other. This guarantees théx)E= (ala)
use of the BCH formula is not necessary, which greatly re-and (y|y)=(b|b). All four FODO cells within one part of a

TABLE Ill. The FRFR fifth-order achromat: The field strengths of the quads and the sextupoles. Only
half of them are shown due to mirror symmetry. Numbers in brackets represent powers of 10.

Strengths of the Multipole§Aperture 10 cm

Quadrupoles Sextupoles
Gradient(kG/cm) Field (kG) Gradient(kG/cnt) Field (kG)
—0.162 869 —0.814 344 —0.718 659—-03] —0.179 665—01]
0.134 119 0.670 597 0.364 42003] 0.911 050-02]

—0.131 803 —0.659 013
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TABLE IV. The FRFR fifth-order achromat: The field strengths of the octupoles and the decapoles. Note
that the multipoles are extremely weak as a result of good linear behavior. Numbers in brackets represent
powers of 10.

Strengths of the Multipole$Aperture 10 cm

Octupoles Decapoles

Gradient(kG/cnt)

Field (kG)

Gradient(kG/cnf)

Field (kG)

—0.996 975—06]
—0.246 999—05]
0.204 728—05]
—0.135 90{—05]
0.951 498—06]
—0.228 548—04]
0.177 11¢-04]
—0.158 309—04]
0.420 261—05]
0.871 498—07]
0.377 365—06]
0.533 33p—05]
0.321 82{—05]
0.191 867—05]
—0.130 348-05]

—0.124 62203
—0.308 749—03]
0.255 903—03]
—0.169 876—03]
0.118 937—03]
—0.285 685—02]
0.221 399—02]
—0.197 886—02]
0.525 326—03]
0.108 937—04]
0.471 706—04]
0.666 665—03]
0.402 27¢—03]
0.239 838—03]
~0.162 929—03]

—0.391 80§—06]
0.239 260—06]
—0.346 336—07]
—0.413 315—07]
0.100 518—06]
—0.501 265—07]
—0.953 086—07]
0.511 256—06]
—0.305 803—07]
—0.775 351—07]
0.506 782—08]
0.153 788—07]
—0.152 854—07]
0.159 598—06]
—0.317 045—06]

—0.244 880—03]
0.149 538—03]
—0.216 460—04]
—0.258 329—04]
0.628 240—04]
—0.313 291-04]
—0.595 678—04]
0.319 536—03]
—0.191 127—04]
—0.484 594—04]
0.316 738—05]
0.961 144—05]
—0.955 335—05]
0.997 489—04]
—0.198 158—03]

cell are identical except that the last one has an extra quads achieved by symmetrically placing and exciting two pairs
rupole for dispersion correction. Hence, there are three knobsf sextupoles in each half.

for the first-order design which can zero owX), (ala), After the investment in a careful first- and second-order
(vly), (blb), (x|6), and (a|d) at the same time. Figure 2 layout, the necessary third- , fourth- , and fifth-order correc-
shows that the beam travels around the ring in a very unitions actually turn out to be conceptually straightforward,
form manner, avoiding large ray excursions ghfiinctions.  even though they are computationally more demanding. In
As described if20] (Sec. 5.2, second-order achromaticity the whole process of nonlinear optimization, only two as-

TABLE V. The FRFR fifth-order achromat: The field strengths of the duodecapoles. Note that the
multipoles are extremely weak as a result of good linear behavior. Numbers in brackets represent powers of
10.

Strengths of the Duodecapol&sperture 10 cm

Gradient(kG/cn)

Field (kG)

Gradient(kG/cn?)

Field (kG)

0.260 526—06]
—0.141 949—06]
—0.602 391-07]

0.115 200—06]
—0.129 574—06]

0.167 17p—06]
—0.146 698—06]

0.109 03§—07]
—0.897 166—07]

0.905 100—07]

0.422 17{-07]
—0.119 032-06]

0.812 032—07]
—0.859 254—07]

0.143 652—06]
—0.192 42{—086]

0.231 12§—06]
—0.729 862—07)
—0.102 389—06]
—0.913 997-07]

0.162 829—03]
—0.887 180—04]
—0.376 494—04]

0.720 008—04]
—0.809 839—04]

0.104 483—03]
—0.916 861—04]

0.681 489—05]
—0.560 728—04]

0.565 687—04]

0.263 857—04]
—0.743 948—04]

0.507 520—04]
—0.537 034—04]

0.897 825—04]
—0.120 263—03]

0.144 45{—03]
—0.456 164—04]
—0.639 889—04]
—0.571 248—04]

0.143 366—06]
0.111 585—06]
—0.392 296—06]
0.426 602—06]
—0.251 765—06]
0.101 758—06]
—0.812 97{-07]
0.113 277-06]
—0.423 092—07]
—0.733 480-07]
0.173 217-07]
0.970 198—07]
0.745 327-07]
—0.158 631—06]
0.230 450—06]
—0.172 798—06]
0.923 330-07]
0.126 337—06]
—0.256 941—06]

0.896 036—04]
0.697 405—04]
—0.245 185-03]
0.266 626—03]
—0.157 358—03]
0.635 989—04]
—0.508 107—04]
0.707 979—04]
—0.264 438—04]
—0.458 425—04]
0.108 261—04]
0.606 370—04]
0.465 829—04]
—0.991 446—04]
0.144 03{—03]
—0.107 999—03]
0.577 08{—04]
0.789 607—04]
—0.160 588—03]
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pects seemed to be worth considering. First, the requiredive solutions that are distinctively better than those of four-
multipole strengths strongly depend on the average distanaeell systems. Therefore, four-cell systems seem to be the best
between multiples of the same order. In order to keep theichoices for arbitrary-order achromats. Four four-cell systems
strength limited, it is important to have the dimension of theare found optimal for solutions because they require the
total size of the ring and the dispersive region sufficientlysmallest number of linear conditions.

large, and distribute roughly uniformly multipoles of the A general solution for four-cell arbitrary-order achromats
same order. Second, all the decapoles have to be placed limsed on the optimal systems is presented. Furthermore, a
regions with sufficient dispersion, because all the fourth-particularly efficient specific solution, which is close to the
order aberrations that remain after third-order corrections arbest solution that can be obtained by the mere use of sym-
chromatic aberrations. The combination of these considemetry, is proved analytically up to the fourth order, and com-
ations results in assuringly weak multipole strengths forputational results suggest that it is valid up to the sixth order.
third-, fourth-, and fifth-order correction§Tables 111-\).
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