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An analytical theory of arbitrary-order achromats for optical systems with midplane symmetry is presented.
It is based on the repeated use of identical cells; but besides mere repetition of cells, mirror symmetry is used
to eliminate aberrations. Using mirror imaging of a cell around thex-y andx-z planes, we obtain four kinds
of cells: the forward cell (F), the reversed cell (R), the cell in which the direction of bend is switched (S), and
the cell where reversion and switching is combined (C). Representing the linear part of the map by a matrix,
and the nonlinear part by a single Lie exponent, the symplectic symmetry is accounted for and transfer maps
are easily manipulated. It is shown that independent of the choice and arrangement of such cells, for any given
order, there is a certain minimum number of constraint conditions that has to be satisfied. It is shown that the
minimum number of cells necessary to reach this optimum level is four, and out of the sixty-four possible
four-cell symmetry arrangements, four combinations yield such optimal systems. As a proof of principle, the
design of a fifth-order achromat is presented.@S1063-651X~96!07709-4#

PACS number~s!: 29.27.2a, 41.85.Gy, 41.85.Ja

I. INTRODUCTION

The search for achromats, by which we mean optical sys-
tems whose transfer maps are free of any nonlinearities of
transverse motion up to a certain order, has generated sub-
stantial interest for the past two decades. The ability to trans-
port particles while preserving their phase-space distribution
through a certain order has many attractive consequences,
and this is why first- and second-order achromats have been
widely used in accelerators, storage rings, and beam trans-
port lines. Last but not least, this is also an interesting and
challenging problem from a purely theoretical point of view.

Since midplane symmetry has been employed in most of
the beam optical systems, canceling half of the transverse
aberrations, all achromat theories consider only systems with
midplane symmetry. But even under this symmetry, as Table
I shows, the number of aberrations that have to be canceled
to generate achromats increases drastically with order, even
if only the aberrations that are independent due to the sym-
plectic symmetry are considered. In particular, it becomes
apparent why even up to second order it is considered unre-
alistic to attempt to control each aberration with a separate
constraint condition. Therefore, the challenge is to achieve
achromaticity with as few knobs as possible.

Although the concept of first-order achromats had been
widely used in various beam optical systems and accelerators
for a long time, it was only until the 1970s that a theory
developed by K. Brown enabled the design of realistic
second-order achromats in a systematic and elegant way@1#.

The theory is based on the following observations. First,
any system ofn identical cells~n.1! with the overall first-
order matrix equaling to unity (I ) in both transverse planes
gives a first-order achromat. Whenn is not equal to three, it

also cancels all second-order geometric aberrations. Second,
of all second-order chromatic aberrations, only two are inde-
pendent. Therefore, they can be corrected by two families of
purely second-order elements~in practice usually sextu-
poles!, each responsible for one of them in each transverse
plane. These findings make it possible to design a four-cell,
second-order achromat with only one dipole, two quadru-
poles and two sextupoles per cell.

Because of its simplicity, the second-order achromat con-
cept has been applied to the design of various beam optical
systems such as the time-of-flight mass spectrometers both
single-pass~TOFI! @2,3# and multipass~ESR! @4,5#, the arcs
of the Stanford linear collider~SLC!, the new facility at
SLAC, the final focus test beam@6–9#, and the MIT South
Hall ring ~SHR! @10,11#.

Since it is hard to generalize this second-order achromat
theory to higher orders, the first third-order achromat theory
was developed by Dragt based on normal form theory and
Lie algebra@13#. According to the theory, a system ofn
identical cells is a third-order achromat if the following con-
ditions are met:~1! The tunes of a cellmx andmy are not full,
half, third, or quarter integer resonant, butnmx andnmy are
integers.~2! The two chromaticities and five independent
third-order aberrations are zero.

Two examples of third-order achromats have been de-
signed. The first design was done by Dragt himself, contain-
ing thirty cells ~mx51/5 andmy51/6!. Each contains ten
bends, two quads, two sextupoles, and five octupoles. The
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TABLE I. The number of aberrations of orders 2 to 5 for a
system with midplane symmetry. The interdependency of aberra-
tions is due to the symplectic symmetry inherent in Hamiltonian
dynamics.

Order 2 3 4 5

Aberrations 30 70 140 252
Independent aberrations 18 37 65 110
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whole system is a 180° bending arc. The second design was
done by Neri@14,15#. It is a seven-cell system with only one
bend per cell, while the total bend is also 180°. The tunes of
a cell aremx51/7 andmy52/7, which seems to violate the
theory because of the third-order resonance 2Tx2Ty50.
However, achromaticity can still be achieved because the
driving terms are canceled by midplane symmetry@14,15#,
which greatly reduces the number of cells.

Similar to Brown’s theory, the Dragt theory cannot be
immediately used to find arbitrary-order achromats in a way
that the number of cells is independent of the order. The
main reason is that for any given order, the tunes of a cell
have to be specially chosen such that most, if not all, of the
resonances up to one order higher are avoided. Thus the
number of cells has to be the smallest possible that makes
both tunes of the whole system integers, which depends on
the order and usually increases quickly. A second reason is
that as the order increases, the difficulty of obtaining analyti-
cal formulas increases rapidly because of the inherent com-
plexity of the Baker-Campbell-Hausdorff~BCH! formula.

Our approach for a general achromat theory does not use
the normal form method and avoids the resonance concern
by introducing mirror symmetry to cancel more aberrations.
With these considerations, we are able to study systems with
arbitrary numbers of cells and obtain solutions that are inde-
pendent of the arrangements inside a cell. Because of their
simplicity, Lie transformations are used to represent sym-
plectic maps, but instead of an order-by-order factorization,
we use a factorization formed by a linear matrix and a single
Lie operator, describing the linear and nonlinear parts, re-
spectively. The introduction of mirror symmetry makes it
possible for us to obtain four total kinds of cells: the for-
ward cell (F), the reversed cell (R), the switched cell in
which the direction of bend is switched (S), and the cell in
which reversion and switching is combined (C), as shown
schematically in Fig. 1.

In Sec. II, we derive the maps of the cellsR, S, andC
from the map of the forward cell and then the maps of a
four-cell system. Section III contains a classification of the
systems with optimal solutions. First it is shown that it is
necessary to have at least four cells in a system to achieve an
arbitrary-order achromat with a minimum number of con-
straints, which is followed by the proof of the existence of an
optimal solution. It is further shown that four out of the 64
four-cell systems yield the optimal solution while requiring
the minimum number of linear constraints~Sec. III D!. In
Sec. IV, we study the four best systems in detail to find
solutions for achromaticity in an order-by-order fashion.
First a general solution for arbitrary-order achromats is ob-
tained, although it will be shown that more efficient solutions
can be found. Then the optimal solution for achromats up to

sixth order is determined. In Sec. V, as a direct application of
the theory developed in this paper, the design of a four-cell
fifth-order achromat is presented.

II. MAP REPRESENTATIONS

Let us consider a phase space consisting of 2m variables
(q1 ,...,qm ,p1 ,...,pm). Since we do not take into account
synchrotron radiation and acceleration, the transverse motion
of a beam optical system is described by a symplectic map,
which satisfies

J~MW !• Ĵ•J~MW ! t5 Ĵ,

whereJ(MW ) is the Jacobian matrix ofMW and Ĵ is an anti-
symmetric 2m32m matrix

Ĵ5S 0

2 Î
Î
0D . ~1!

Under the symplectic symmetry, the transfer mapMW of
ordern can be represented by a matrixL and a polynomialH
of orders three up ton11 through a Lie factorization as

MW 5n~LIW!+@exp~ :H: !IW#, ~2!

where5n denotes equality up to ordern andIW is the identity
map. Up to ordern, the inverse ofM is

MW 215n@exp~2:H: !IW#+~L21IW!. ~3!

For the convenience of further discussion, it is advanta-
geous to define what we want to call a ‘‘standard’’ and a
‘‘substandard’’ form of the maps:
Definition II.1.For a symplectic mapMW S , the standard form
is defined as

MW S5exp~ :H: !~MLIW!, ~4!

whereML is the linear matrix andH is a polynomial of order
three and up. A representation of the form

MW S5F)
i

exp~ :Hi : !G~MLIW! ~5!

is called a substandard form.
H is sometimes called the pseudo-Hamiltonian of the map,
which is extracted from the map~@12#!. Note the difference
between Eqs.~2! and ~4!, where, in the former equation,
exp(:H:) acts onIW and the resulting map is then composed
with the linear map, and, in the latter equation, exp(:H:) acts
on the linear map directly. Apparently, use of the Baker-
Campbell-Hausdorff formula in principle allows the transfor-
mation of a substandard form into a standard form.

Due to the frequent usage in the sections that follow, two
closely related theorems are introduced without proofs.

Theorem II.1.If f is a polynomial of order three or higher
on R2m, andg is an arbitrary polynomial, then we have

exp~ : f : !g5ng@exp~ : f : !IW#, ~6!

where

FIG. 1. The geometric relationship among cellsF, R, S, andC
illustrated by asymmetric boxes.
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exp~ : f : !IW5n@exp~ : f : !q1 ,...,exp~ : f : !qn ,

3exp~ : f : !q1 ,...,exp~ : f : !qn#. ~7!

Theorem II.1 is ready to be generalized to the case
whereg is a polynomial of a mapMW . Thus, we have the
following theorem:

Theorem II.2.If MW is a map andg is an arbitrary polyno-
mial onR2m, then we have

exp~ : f : !g~MW !5ng@exp~ : f : !MW #. ~8!

Theorem II.2 is probably even more important than Theo-
rem II.1 because, in most cases, the linear map of a system is
not unity. Therefore, it is the one which is used directly and
very frequently.

From Theorem II.1, we can infer thatMW can be written in
the standard form

MW 5exp~ :H: !~LIW!. ~9!

Next let us make some observations about the composition
of exp(:f :)g(IW) and the transfer mapMW .

Theorem II.3.If a mapMW onR2m is symplectic, we have

@exp~ : f : !g#+~MW !5n exp@ : f ~MW !:#g~MW !. ~10!

If a map MW on R2m is antisymplectic, i.e.,
J(MW )• Ĵ•J(MW ) t52 Ĵ, we have

@exp~ : f : !g#+~MW !5n exp@2: f ~MW !:#g~MW !. ~11!

Proof: First assume thatMW is a symplectic map, which
implies that a Poisson bracket is an invariant under the trans-
formationMW , i.e.,

@ f ~MW !,g~MW !#5~@ f ,g# !~MW !.

The rest of the proof is straightforward

exp@ : f ~MW !:#g~MW !5ng~MW !1@ f ~MW !,g~MW !#

1 1
2 †f ~MW !,@ f ~MW !,g~MW !#‡1•••

5ng~MW !1~@ f ,g# !~MW !

1 1
2 @ f ~MW !,~@ f ,g# !~MW !#1•••

5ng~MW !1~@ f ,g# !~MW !1 1
2 ~@ f ,@ f ,g## !

3~MW !1•••

5n@exp~ : f : !g#+~MW !.

In the case ofMW being antisymplectic, the proof is basi-
cally the same except that the Poisson bracket changes sign
under the transformation, i.e.,

@ f ~MW !,g~MW !#52~@ f ,g# !~MW !. ~12!

Therefore we obtain

exp@2: f ~MW !:#g~MW !5ng~MW !2@ f ~MW !,g~MW !#

1 1
2 †f ~MW !,@ f ~MW !,g~MW !#‡1•••

5ng~MW !1~@ f ,g# !~MW !1 1
2 @ f ~MW !,

2~@ f ,g# !~MW !#1•••

5ng~MW !1~@ f ,g# !~MW !

1 1
2 ~†f ,@ f ,g#‡!~MW !1•••

5n@exp~ : f : !g#+~MW !,

which concludes the proof.
Let nowMW F denote the map of the forward cell, where

the superscript denotes that it is transversed in the forward
direction. In order to obtain the mapsMW R, MW S, MW C of theR,
S, andC cells, respectively, Theorem II.3 has to be used
repeatedly.

The reversed cell (R) is the one in which the order of the
elements is reversed from that of the forward cell. This
means that if a particle enters the forward cell at an initial
point (xi ,ai ,yi ,bi ,d i) and exits it at a final point
(xf ,af ,yf ,bf ,d f), a particle which enters the reversed cell at
(xf ,2af ,yf ,2bf ,d f) will exit at (xi ,2ai ,yi ,2bi ,d i).
This entails that the map of the reversed cell is

MW R5~RIW!+MW 21+~R21IW!, ~13!

where

RIW5S 1000
0

0
21
0
0
0

0
0
1
0
0

0
0
0

21
0

0
0
0
0
1

D S xayb
d

D . ~14!

Taking into account the fact thatR is apparently antisym-
plectic, we can obtain the standard form ofMW R

MW R5~RIW!+MW 21+~R21IW!

5~RIW!+@exp~ :2H: !IW#+~L21IW!+~R21IW!

5~RIW!+@exp~ :2H: !IW#+~L21R21IW!

5~RIW!+$exp@ :H~L21R21IW!:#

3~L21R21IW!% ~Theorem II.3!

5exp@ :H~L21R21IW!:#@~RIW!+~L21R21IW!#

~Theorem II.2!

5exp@ :H~L21R21IW!:#~RL21R21IW!. ~15!

The switched cell (S) is the mirror image of the forward
cell about they2z plane, i.e.,

MW S5~SIW!+MW +~S21IW!, ~16!

where
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SIW5S 21
0
0
0
0

0
21
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
0
0
1

D S xayb
d

D . ~17!

Since the matrixS is apparently symplectic, we have

MW S5~SIW!+MW +~S21IW!

5~SIW!+~LIW!+@exp~ :H: !IW#+~S21IW!

5~SLIW!+$exp@ :H~S21IW!:#~S21IW!%

5exp@ :H~S21IW!:#~SLS21IW!. ~18!

The combined cell (C) is switched and reversed cell,
whose map is

MW C5~SIW!+~RIW!+MW 21+~R21IW!+~S21IW!. ~19!

Due to the fact that matrixSR is antisymplectic, similar to
the reversed cell,MW C can be brought into the standard form

MW C5exp@ :H~L21R21S21IW!:#~SRL21R21S21IW!.
~20!

In summary, we have the maps of all four-cell types listed
below

MW F5exp~ :H: !~LIW!, ~21!

MW R5exp@ :H~L21R21IW!:#~RL21R21IW!, ~22!

MW S5exp@ :H~S21IW!:#~SLS21IW!, ~23!

MW C5exp@ :H~L21R21S21IW!:#~SRL21R21S21IW!.
~24!

Now that the maps of the different kinds of symmetry
manipulations of the standard cell are known, the map of any
given multicell system can be constructed. In particular, it is
always possible to determine the substandard form of the
map, which can then be turned into the standard form of the
map with the BCH formula.

For the purpose of clear nomenclature, letCi be thei th
cell in ak-cell system, i.e.,Ci can beF, R, S, orC. Then the
map of the total system is denoted byMW C1C2 ...Ck. For ex-
ample,MW FRSC represents the map of a four-cell system con-
sisting of the forward cell, followed by the reversed cell, then
by the switched cell and ending with the combined cell.

We will illustrate the process of obtaining the substandard
forms for the later particularly important four-cell system
FRSC, and list the results for some other four-cell systems.
In the manipulations, we repeatedly make use of Theorem
~II.2!, Theorem~II.3!, and the associativity of ‘‘+’’.

From the definition of systemFRSC, we can obtain its
transfer map from the maps of single cells as

MW FRSC5MW C+MW S+MW R+MW F. ~25!

Note that the order of the maps of the single cells is the
reverse of that of the cells, because the initial coordinates of
the present cell are the final coordinates of the previous one.
Then we bringMW FRSC into the substandard form via the
following steps of iterative character

MW FRSC5$exp@ :H~L21R21S21IW!:#~SRL21R21S21IW!%+$exp@ :H~S2IW!:#~SLS21IW!%+$exp@ :H~L21R21IW!:#

3~RL21R21IW!%+$exp@ :H~ IW!:#~LIW!%

5exp@ :H~ IW!:#$@exp„:H~L21R21S21IW!:…~SRL21R21S21IW!#+@exp„:H~S21IW!:…~SLS21IW!#+@exp„:H~L21R21IW!:…

3~RL21R21IW!#+~LIW!% ~Theorem II.2!

5exp@ :H~ IW!:#$@exp„:H~L21R21S21IW!:…~SRL21R21S21IW!#+@exp„:H~S21IW!:…

3~SLS21IW!#+@exp„:H~L21R21
•LIW!:…~RL21R21

•LIW!#% ~Theorem II.3!•••

5exp@ :H~ IW!:#exp@ :H~L21R21
•LIW!:#exp@ :H~S21

•RL21R21
•LIW!:#exp@ :H~L21R21

•LS21
•RL21R21

•LIW!:#

3~SRL21R21
•LS21

•RL21R21
•LIW!.

In a very similar way, the substandard forms of the maps of the systemsMW FRFR, MW FCSR, andMW FCFC are obtained, and
altogether we have

MW FRSC5exp@ :H~ IW!:#exp@ :H~L21R21
•LIW!:#exp@ :H~S21

•RL21R21
•LIW!:#exp@ :H~L21R21

•LS21
•RL21R21

•LIW!:#

3~SRL21R21
•LS21

•RL21R21
•LIW!, ~26!

MW FRFR5exp@ :H~ IW!:#exp@ :H~L21R21
•LIW!:#exp@ :H~RL21R21

•LIW!:#exp@ :H~L21R21
•L•RL21R21

•LIW!:#

3~RL21R21
•L•RL21R21

•LIW!, ~27!
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MW FCSR5exp@ :H~ IW!:#exp@ :H~L21R21S21
•LIW!:#exp@ :H~RL21R21S21

•LIW!:#exp@ :H~L21R21
•SL•RL21R21S21

•LIW!:#

3~RL21R21
•SL•RL21R21S21

•LIW!, ~28!

MW FCFC5exp@ :H~ IW!:#exp@ :H~L21R21S21
•LIW!:#exp@ :H~SRL21R21S21

•LIW!:#

3exp@ :H~L21R21S21
•L•SRL21R21S21

•LIW!:#~SRL21R21S21
•L•SRL21R21S21

•LIW!. ~29!

As shown in the next section, only the four systems listed
here are needed when the solutions of arbitrary-order achro-
mats are determined, because other systems are not as effi-
cient. What will also be shown here is the importance of the
substandard form where the optimal four-cell systems are
decided. Finally, when solutions of achromats are searched
for among the four systems, the standard form of their maps
will be obtained from the substandard form using the BCH
formula.

III. OPTIMAL FOUR-CELL SYSTEMS

We will now proceed to the analysis of the influence of
symmetric arrangements to the cancellation of aberrations in
general multicell systems, and then later study the systems
found optimal. We begin with a few definitions.

Like in previous achromat theories, we consider only
those systems with midplane symmetry. Therefore, the trans-
fer map of the forward cell can be represented in the form of
Eq. ~9! with its pseudo-Hamiltonian given by

H5 (
i xi ai yi bi d

Cixi ai yi bi d
xi xai ayi ybi bd i d, ~30!

wherei x1 i a1 i y1 i b1 i d>3, andi y1 i b is even.
Definition III.1. Let H be the pseudo-Hamiltonian of the

system, then we set

A~H !5 (
i xi ai yi bi d

Cixi ai yi bi d
xi xai ayi ybi bd i d

~ i x1 i a is odd, i a1 i b is even!, ~31!

B~H !5 (
i xi ai yi bi gd

Cixi ai yi bi d
xi xai ayi ybi bd i d

~ i x1 i a is odd, i a1 i b is odd!, ~32!

C~H !5 (
i xi ai yi bi d

Cixi ai yi bi d
xi xai ayi ybi bd i d

~ i x1 i a is even, i a1 i b is odd!, ~33!

D~H !5 (
i xi ai yi bi d

Cixi ai yi bi d
xi xai ayi ybi bd i d

~ i x1 i a is even, i a1 i b is even!. ~34!

Definition III.2. Define

HF5H~ IW!5H~x,a,y,b!, ~35!

HR5H~RIW!5H~x,2a,y,2b!, ~36!

HS5H~SIW!5H~2x,2a,y,b!, ~37!

HC5H~RSIW!5H~2x,a,y,2b!. ~38!

It is easy to show that in decomposed form one can write

HF5A~H !1B~H !1C~H !1D~H !, ~39!

HR5A~H !2B~H !2C~H !1D~H !, ~40!

HS52A~H !2B~H !1C~H !1D~H !, ~41!

HC52A~H !1B~H !2C~H !1D~H !. ~42!

A. General properties of k-cell systems

Consider a general system ofk cells arranged using the
above symmetry operations. Using Theorems~II.2! and II.3
repeatedly, its map can be brought to the substandard form in
a similar way as in Eq.~26!. The result has the form

MW 5exp@ :H~ IW!:#exp@ :H~M ~1!IW!:#•••exp@ :H~M ~k21!IW!:#

3~MTIW!, ~43!

whereMT is the linear matrix of the system and

M ~ i !5S m11
~ i !

m11
~ i !

0
0
0

m12
~ i !

m12
~ i !

0
0
0

0
0
m33

~ i !

m43
~ i !

0

0
0
m34

~ i !

m44
~ i !

0

m15
~ i !

m15
~ i !

0
0
1

D ,
~ i51,2,...,k21! ~44!

is a midplane symmetrical matrix obtained from combina-
tions of the linear matrices of the previous cells and matrices
R,R21, S,S21, andC,C21 depending on the specific choices
of the system. As a result, we have det(M ( i ))51.
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Using the BCH formula,MW can be transformed to a single
Lie operator acting on a linear map, which is

MW 5n exp@ :H~ IW!1H~M ~1!IW!1•••1H~M ~k21!IW!

1commutators:#~MTIW!. ~45!

In order to achieve achromaticity, it is necessary for the
expression between the colons to vanish. Since all commu-
tators are of order four and higher, this entails, in particular,
that it is necessary for all the third-order terms in the sum of
pseudo-Hamiltonians(H(M ( i )IW) to vanish outright; for
higher orders, the terms stemming from the commutators
have to balance those from the sum. In the remainder, we
shall study several approaches to achieve this.

Next let us show that there is no system that can cancels
D„H(IW)…1D„H(M (1)IW)…1•••1D„H(M (k21)IW)… merely by
symmetry without making specific choices for the nonlinear
settings. First,D„H(IW)… is split into two parts:

Definition III.3. D1
„H(IW)… is defined as the terms in

D„H(IW)… with all exponents onx,a,y,b even, which has the
form

(
nx ,na ,ny ,nb ,i d

C2nx,2na,2ny,2nb ,i d
x2nxa2nay2nyb2nbd i d.

D2
„H(IW)… is defined as the terms inD„H(IW)… with all expo-

nents onx,a,y,b odd, which has the form

(
nx ,na ,ny ,nb ,i d

C2nx11,2na11,2ny11,2nb11,i d

3x2nx11a2na11y2ny11b2nb11d i d.

Note thatD5D11D2 because of Eq.~34!. We then ob-
serve

Theorem III.1.For a generalk-cell system, it is impos-
sible to cancel any term from D1

„H(IW)…
1D1

„H(M (1)IW)…1••• 1D1
„H(M (k21)IW)… solely by the sym-

metrical arrangements of the cells and the choices of special
linear matrices without imposing specific relations among
the Lie coefficientsCixi ai yi bi d

.
Proof: From Eqs.~43! and ~44!, the sum ofH(M ( i )IW) is

H~ IW!1H~M ~1!IW!1•••1H~M ~k21!IW!

5 (
i x ,i a ,i y ,i b ,i d

Cixi ai yi bi d
@xi xai ayi ybi bd i d1~m11

~1!x1m12
~1!a

1m15
~1!d! i x~m21

~1!x1m22
~1!a1m25

~1!d! i a~m33
~1!y

1m34
~1!b! i y~m43

~1!y1m44
~1!b! i yd i d1•••1~m11

~k21!x

1m12
~k21!a1m15

~k21!d! i x~m21
~k21!x1m22

~k21!a

1m25
~k21!d! i a~m33

~k21!y1m34
~k21!b! i y~m43

~k21!y

1m44
~k21!b! i yd i d#,

which entails that the sum ofD1 is

D1
„H~ IW!…1D1

„H~M ~1!IW!…1•••1D1
„H~M ~k21!IW!…

5 (
nx ,na ,ny ,nb ,i d

C2nx,2na,2ny,2nb ,i d
@x2nxa2nay2nyb2nbd i d

1~m11
~1!x1m12

~1!a1m15
~1!d!2nx~m21

~1!x1m22
~1!a

1m25
~1!d!2na~m33

~1!y1m34
~1!b!2ny~m43

~1!y1m44
~1!b!2nbd i d

1•••1~m11
~k21!x1m12

~k21!a1m15
~k21!d!2nx~m21

~k21!x

1m22
~k21!a1m25

~k21!d!2na~m33
~k21!y

1m34
~k21!b!2ny~m43

~k21!y1m44
~k21!b!2nbd i d#.

Since by requirement, no specific relationships among the
C2nx,2na,2ny,2nb ,i d

are allowed to be imposed, the vanishing of

a polynomial associated withC2nx,2na,2ny,2nb ,i d
requires that

x2nxa2nay2nyb2nb1 (
i51

k21

~m11
~ i !x1m12

~ i !a1m15
~ i !d!2nx~m21

~ i !x

1m22
~ i !a1m25

~ i !d!2na~m33
~ i !y1m34

~ i !b!2ny~m43
~ i !y1m44

~ i !b!2nb

50,

which, because of the even exponents, is impossible to
achieve for all points in phase space, regardless of the choice
of theM ( i ).

B. Two- and three-cell systems

The next theorem shows that two- or three-cell systems
cannot give optimal solutions for achromats.

Theorem III.2.Two- or three-cell systems cannot cancel
A3„H(I

W)…1A3„H(M
(1)IW)…1•••1A3„H(M

(k21)IW)…, B3„H(I
W)…

1B3„H(M
(1)IW)…1•••1B3„H(M

(k21)IW)… and C3„H(I
W)…

1C3„H(M
(1)IW)…1•••1C3„H(M

(k21)IW)…, and hence they can-
not give optimal systems of achromats.

Proof: Let us first consider two-cell systems. The sum
of H(M ( i )IW) is

H~ IW!1H~M ~1!IW!5 (
i x ,i a ,i y ,i b ,i d

Cixi ai yi bi d
@xi xai ayi ybi bd i d

1~m11
~1!x1m12

~1!a1m15
~1!d! i x~m21

~1!x

1m22
~1!a1m25

~1!d! i a~m33
~1!y

1m34
~1!b! i y~m43

~1!y1m44
~1!b! i yd i d#.

Cancellation of the terms associated withC1,0,0,0,2 from
A3„H(I

W)…1A3„H(M
(1)IW)… entails that

C1,0,0,0,2@xd21~m11
~1!x1m12

~1!a1m15
~1!d!d2#50.

Since all coefficients are independent of each other, each
term in the above equation has to vanish separately, which
gives the solution
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m11
~1!521,

m12
~1!50,

m15
~1!50;

and canceling the terms associated withC0,1,0,0,2 from
B3„H(I

W)…1B3„H(M
(1)IW)… entails that

C0,1,0,0,2@ad21~m21
~1!x1m22

~1!a1m25
~1!d!d2#50,

which has the solution

m22
~1!521,

m21
~1!50,

m25
~1!50.

Considering the terms associated withC1,1,0,0,1 from
C3„H(I

W)…1C3„H(M
(1)IW)…, we have

C1,1,0,0,1~xad1m11
~1!m22

~1!xad!52C1,1,0,0,1xad,

which shows thatC3„H(I
W)…1C3„H(M

(1)IW)… cannot be can-
celed. The same conclusion can be reached for three-cell
systems in a conceptually similar way that is, however, tech-
nically too involved to be exhibited here; for details, we refer
to @20#.

C. Four-cell systems

In this section we will show that certain four-cell systems
can achieve what two- and three-cell systems could not, i.e.,
they can be brought in symmetrical arrangements to cancel
A, B, andC simultaneously.

Theorem III.3. Given a four-cell system, the terms
( i50
3 An„H(M

( i )IW)…, ( i50
3 Bn„H(M

( i )IW)…, and
( i50
3 Cn„H(M

( i )IW)… (M (0)5 Î ) are canceled for all choices of
n, if and only ifH(M (1)IW), H(M (2)IW), andH(M (3)IW) equal a
permutation ofHR, HS, andHC.

Proof: The sufficiency is obvious from Eqs.~39!–~42!.
While the detailed proof of the necessity is beyond the scope
of this paper and the reader is referred to@20#, the basic idea
behind it is quite simple and shall be illustrated here. The
cancellation of the terms has to be achieved through proper
choices of the linear matrix as well as the symmetric arrange-
ments. By studying the coefficients of( i50

3 A3„H(M
( i )IW)…,

( i50
3 B3„H(M

( i )IW)…, and ( i50
3 C3„H(M

( i )IW)… term by term,
one obtains a set of equations for the coefficients of the lin-
ear matrix, which, because of the presence of midplane sym-
metry, however, decouples into a variety of subblocks. Solv-
ing the resulting set of equations, which is a very tedious yet
rather mechanical process, then shows that there is one and
only one solution: theM ( i ) ~i52,3,4! must be a permuta-
tion of R, S, andC.

Since it is shown earlier that it is not possible to cancel
terms inD1, the ability to cancel theA, B, andC terms is
essentially the optimum of what can be achieved, except for
the question of whether or not theD2 terms can also be
canceled automatically. However, in practice this is of sec-
ondary importance since the number of terms inD2 is much

smaller than that inD1: there is only one term in
D 3

2
„H(IW)… and D 4

2
„H(IW)… as opposed to 15 terms in

D3„H(I
W)… and D4„H(I

W)…; there are only five terms in
D 5

2
„H(IW)… and D 6

2
„H(IW)…, as opposed to 39 terms in

D5„H(I
W)… andD6„H(I

W)….

D. The optimal four-cell systems

The previous discussion revealed that the only way to
achieve maximum cancellation from symmetry is that the
M ( i ) for i52,3,4 form a permutation ofR, S, andC. Since,
however, theM ( i ) contain both contributions from the linear
maps as well as from the symmetry operations, it requires
some study to determine the systems that satisfy the require-
ment. The following theorem answers these questions.

Theorem III.4.Among all~64! four-cell systems, there are
only four which reach the optimum asserted by Theorem
III.3 while imposing the minimum number of constraints on
the linear map. They areFRFR, FRSC, FCFC, andFCSR.

Proof: While being rather straightforward and mechani-
cal, the entire proof is rather tedious, and so we restrict our-
selves here to the first part which leads to the first possible
solution of the formFRFR.

Suppose the forward cell has a linear matrixL. For the
time being, let us restrict ourselves to thex-a-d block of L,
which has the form

L15S ac
0

b
d
0

h
h8
1
D ,

L1
215S d

2c
0

2b
a
0

2dh1bh8
ch2ah8

1
D . ~46!

~1! Choices on the second cell.
Case 1a FF
Recall that the standard form of a forward cell@Eq. ~9!# is

MW F5exp~ :H: !~LIW!.

Therefore, the map of the systemFF is

MW FF5MW F+MW F

5$exp@ :H~ IW!:#~LIW!%+$exp@ :H~ IW!:#~LIW!%

5exp@ :H~ IW!:#„$exp@ :H~ IW!:#~LIW!%+~LIW!…

5exp@ :H~ IW!:#exp@ :H~LIW!:#~L•LIW!.

To reach the optimum,L has to beR, S, or C. SinceL is
symplectic, it can only beS. Hence, the linear matrix is

L15S 21
0
0

0
21
0

0
0
1
D ,

which entails that the conditions of reaching the optimum are

h50,

h850,

2876 54WEISHI WAN AND MARTIN BERZ



c50,

b50,

a521.

Therefore, five conditions have to be met to reach the
optimum.

Case 1b FR: From Eq.~15!, we have

MW FR5MW R+MW F

5$exp@ :H~L21R21IW!:#

3~RL21R21IW!%+$exp@ :H~ IW!:#~LIW!%

5exp@ :H~ IW!:#exp@ :H~L21R21
•LIW!:#

3~RL21R21
•LIW!.

Specifically, L 1
21R1

21
•L1 can be obtained from Eq.~46!,

which yields

L1
21R1

21
•L15S d

2c
0

2b
a
0

2dh1bh8
ch2ah8

1
D S 10

0

0
21
0

0
0
1
D

3S ac
0

b
d
0

h
h8
1
D

5S ad1bc
22ac
0

2bd
2~ad1bc!

0

2bh8
22ah8

1
D . ~47!

SinceL21R21
•L is antisymplectic, it can only beR or C,

which leads to the following conditions:

bd50

ac50

bh850

ah850,

which are equivalent to

b50 a50

c50 or d50

h850 h850. ~48!

Hence, we obtained two solutions with three conditions,
which in turn eliminate the five-condition solution above.
For further reference, they are listed below

Solution A: Solution B:

L15S a0
0

0
d
0

h
0
1
D and L15S 0c

0

b
0
0

h
0
1
D . ~49!

~2! Choices for the third cell of the systemFR33
From Case 1b, we have

MW FR5exp@ :H~ IW!:#exp@ :H~L21R21LIW!:#~RL21R21LIW!.

Let MW x5$exp[:H(M (3)IW]: %[L(3)IW] be the map of the
third cell, which can beF, R, C, orD. Thus, the total map of
the three-cell system is

MW FR35MW 3+MW FR

5„exp$:H@M ~3 !IW#:%@L~3 !IW#…+$exp@ :H~ IW!:#

3exp@ :H~L21R21LIW!:#~RL21R21LIW!%

5exp@ :H~ IW!:#exp@ :H~L21R21LIW!:#

3†„exp$:H@M ~3 !IW#:%

3@L~3 !IW#…+~RL21R21LIW!‡

5exp@ :H~ IW!:#exp@ :H~L21R21LIW!:#

3exp$:H@M ~3 !RL21R21LIW#:%

3@L~3 !RL21R21LIW#.

For our convenience, let us defineM ~2!~3! as the linear ma-
trix in the pseudo-Hamiltonian for the third cell. For systems
FR3, we have

M ~2!~3 !5M ~3 !RL21R21L5M ~3 !LFR,

whereLFR5RL21R21L.
Case 2a FRF: Since M (F)5 Î , we have M (2)(F)

5RL21R21L. For the two solutions, thex-a-d block
M (2)(F) are listed below. In the case of Solution A, we have

M1
~2!~F !5S 10

0

0
21
0

0
0
1
D S 10

0

0
21
0

0
0
1
D 5S 10

0

0
1
0

0
0
1
D ,

which does not reach the optimum because it does not satisfy
Theorem III.3. In the case of Solution B, we have

M1
~2!~F !5S 10

0

0
21
0

0
0
1
D S 21

0
0

0
1
0

0
0
1
D

5S 21
0
0

0
21
0

0
0
1
D ,

which is a possible solution, because it satisfies Theorem
III.3 and does not need any more conditions.

~3! Choices for the fourth cells of the systemsFRF3
DefineLFRF5LRL21R21L. Similar to case~2!, we have

M ~3!5M ~3 !LFRF.

Since solution B is the possible solution for this case, the
linear matrix of the forward cell is

L15S 0c
0

b
0
0

h
0
1
D .

Case 3aFRFF: FromM (F)5 Î , we have
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M1
~3!5LRL21R21L.

Since

R1L1
21R1

21L15S 21
0
0

0
21
0

0
0
1
D ,

we haveM 1
(3)5M 1

(3). Therefore this system is not a solu-
tion.

Case 3bFRFR: FromM (R)5L21R21, we have

M ~3!5L21R21LRL21R21L.

Therefore, thex-a-d block is

M1
~3!~C!5S 21

0
0

0
1
0

0
0
1
D S 21

0
0

0
21
0

0
0
1
D

5S 10
0

0
21
0

0
0
1
D ,

which shows that this system is a solution, because it satis-
fies Theorem III.3.

In total, this concludes the analysis of the path leading to
the solutionFRFR, and we have shown that as needed, it
has the form

MW FRFR5exp~ :HF: !exp~ :HC: !exp~ :HS: !exp~ :HR: !IW.
~50!

The next theorem, given without proof, specifies the linear
conditions of they-b block for the optimal systems.

Theorem III.5.For the four systems obtained from the last
theorem, the constraints on they-b block of the linear map
are the vanishing of either the diagonal elements or the off-
diagonal elements.

To summarize the results of this section, the four optimal
systems as well as the linear conditions necessary to satisfy
them are listed in Table II.

IV. ORDER-BY-ORDER SOLUTIONS

As the next step, it is necessary to analyze the commuta-
tors of lower order terms, in particular, study their interplay
with direct sum terms that can never be removed from sym-
metry alone. The study is simplified by two observations.
First of all, the four different maps yielding optimal symme-
try cancellation only produce two different substandard
forms, namely,

MW FRSC5MW FCFC

5exp~ :HF: !exp~ :HR: !exp~ :HS: !exp~ :HC: !IW

~51!

and

MW FCSR5MW FRFR

5exp~ :HF: !exp~ :HC: !exp~ :HS: !exp~ :HR: !IW.

~52!

Furthermore, one of these two substandard forms can be
obtained from the other through a simple transformation.
Thus, it is only necessary to study one particular map to
determine the conditions for achromaticity.

Lemma IV.1. By switchingA andB, the mapsMW FCSRand
MW FCFC are transformed toMW FRSCandMW FRFR, respectively.
Proof: Under the transformation, we have

HF5A1B1C1D→B1A1C1D5HF,

HR5A2B2C1D→B2A2C1D5HC,

HS52A2B1C1D→2B2A1C1D5HS,

HC52A1B2C1D→2B1A2C1D5HR,

which entails that the transformation of the maps is

MW FRSC,FCFC→MW FCSR,FRFR,

which concludes the proof.
We are now ready for a discussion of various strategies to

design achromats. The first method is described by the fol-
lowing theorem, which allows the design of achromats of an
arbitrary order, although not in the most economical way.

Theorem IV.1. For a given ordern, the optimal systems
FRFR, FRSC, FCSR, andFCFC are achromats ifA5n0
or B5n0, andD5n110.

So in this case, there are no constraints at all onC terms,
and no constraints onA and B terms of the highest order
either.
Proof: Let us first consider systemsFRSCandFCFC. From
the proof of Theorem~III.4!, they have the same maps,
which are

MW 5exp~ :HF: !exp~ :HR: !exp~ :HS: !exp~ :HC: !IW.

DefineHn5( i53
n f i and f i5Ai1Bi1Ci1Di , wheref i is

the sum of thei th order terms inH.
From now we proceed by induction over the order, begin-

ning with the second order. Using the BCH formula,MW can
be transformed to the ‘‘standard’’ form, which is

MW 52 exp~ :H3
F : !exp~ :H3

R : !exp~ :H3
S : !exp~ :H3

C : !IW

52 exp~ : f 3
F : !exp~ : f 3

R : !exp~ : f 3
S : !exp~ : f 3

C : !IW

52 exp~ : f 3
F1 f 3

R1 f 3
S1 f 3

C : !IW

52 exp~ :4D3 : !IW.

TABLE II. Optimal four-cell systems and the first-order require-
ments to achieve their optimum.

Systems Linear Conditions

FRSC ~aud!50, (xua)5(aux)50
FRFR ~aud!50, (xux)5(aua)50
FCSR ~xud!50, (xua)5(aux)50
FCFC ~xud!50, (xux)5(aua)50

2878 54WEISHI WAN AND MARTIN BERZ



Therefore the second-order solution isD530, as advertised.
To perform the induction step to show the condition to

nth order, let us assume thatA5n210 or B5n210, and
D5n0 are solutions for an~n21!st-order achromat. Since
the proof of caseB5n210 is the same as that ofA5n210,
only the first case is shown.

In this case, we have

Hn21
F 5 (

i53

n21

~Bi1Ci !,

Hn21
R 5 (

i53

n21

~2Bi2Ci !,

Hn21
S 5 (

i53

n21

~2Bi1Ci !,

Hn21
C 5 (

i53

n21

~Bi2Ci !,

which entails that

Hn21
F 1Hn21

R 5Hn21
S 1Hn21

C 50

and

@Hn21
F ,Hn21

R #5@Hn21
S ,Hn21

C #50.

ThereforeMW can be transformed to

MW 5n exp~ :Hn11
F : !exp~ :Hn11

R : !exp~ :Hn11
S : !exp~ :Hn11

C : !IW5n exp~ :Hn21
F 1 f n

F1 f n11
F : !exp~ :Hn21

R 1 f n
R

1 f n11
R : !exp~ :Hn21

S 1 f n
S1 f n11

S : !exp~ :Hn21
C 1 f n

C1 f n11
C : !IW5n exp$: f n

F1 f n11
F 1 f n

R1 f n11
R 1 1

2 ~@Hn21
F , f n

R#

1@ f n
F ,Hn21

R # !:%exp$: f n
S1 f n11

S 1 f n
C1 f n11

C 1 1
2 ~@Hn21

S , f n
C#1@ f n

S ,Hn21
C # !:%IW5n exp$: f n

F1 f n11
F 1 f n

R1 f n11
R

1 1
2 ~@ f 3

F , f n
R#1@ f n

F , f 3
R# !:%exp$: f n

S1 f n11
S 1 f n

C1 f n11
C 1 1

2 ~@ f 3
S , f n

C#1@ f n
S , f 3

C# !:%IW5n exp$:4Dn111
1
2 ~@ f 3

F , f n
R#1@ f n

F , f 3
R#

1@ f 3
S , f n

C#1@ f n
S , f 3

C# !:%IW5n exp$:4Dn111
1
2 ~2@ f 3

R , f n
R#1@ f n

F , f 3
R#2@ f 3

C , f n
C#1@ f n

S , f 3
C# !:%IW5n exp$:4Dn111

1
2 ~@ f n

R

1 f n
F , f 3

R#1@ f n
C1 f n

S , f 3
C# !:%IW5n exp~ :4Dn111@An ,2B32C3#1@2An ,B32C3#: !IW5n exp~ :4Dn1112@B3 ,An#: !IW,

which shows thatAn50 andDn1150 are a solution for the
nth order achromaticity. According to Lemma IV.1, the sys-
temsFRFRandFCSRhave the same solutions, which con-
cludes the proof. Note that these two solutions are equivalent
in terms of the number of conditions, because the number of
monomials inA is the same as that inB for a given ordern
~@20#!.

In order to study other strategies to obtain achromats, we
remind ourselves that sinceD cannot be canceled by sym-
metry, the number of nonlinear conditions cannot be smaller
than the number of terms inD. So the best solution under
this theory will be that the number of nonlinear conditions
equals that of the terms inD.

The next theorem shows that such best solutions exist for
up to the fourth order. Furthermore, computational results
strongly suggest that indeed the method is also applicable for
fifth- and sixth-order achromats, although the tediousness of
the algebra has so far prevented us from performing a de-
tailed proof.

Before studying the theorem itself, a few observations are
necessary. Considering the commutator of two general terms
from the Hamiltonian, we have

@Cixi ai yi bi d
xi xai ayi ybi bd i d,Ci

x8 i a8 i y8 i b8 i d8
xi x8aia8yi y8bib8d i d8#

5Cixi ai yi bi d
Ci

x8 i a8 i y8 i b8 i d8
@~ i xi a8

2 i ai x8!xi x1 i x821aia1 i a821yi y1 i y8bib1 i b8d i d1 i d8

1~ i yi b82 i bi y8!xi x1 i x8aia1 i a8yi y1 i y821bib1 i b821d i d1 i d8#.

If the two terms are from the same part of the Hamiltonian,
we have

~ i x1 i x821!1~ i a1 i a821!5~ i x1 i a!1~ i x81 i a8!225even,

~ i a1 i a821!1~ i b1 i b8!5~ i a1 i b!1~ i a81 i b8!215odd,

which entails that the commutator gives terms inC.
Similarly, it can be shown that a commutator between

terms from any part and those fromC gives terms fromC;
and partsA, B, andD are cyclically connected in that [A,B]
gives terms fromD, [A,D] gives terms fromB and [B,D]
gives terms fromA.

Theorem IV.2.For the optimal four-cell systems, achro-
mats up to the fourth order can be obtained by cancelingD
in the total map.

Proof: ~1! The second order: From the proof of Theorem
IV.1, the map ofFRSC is

MW 52 exp~ :H3
F : !exp~ :H3

R ; !exp~ :H3
S : !exp~ :H3

C : !IW

52 exp~ :4D3 : !IW,

which shows that the second-order solution isD350.
~2! The third order:
Also from the proof of Theorem IV.1, the map is

MW 53 exp~ :H4
F : !exp~ :H4

R : !exp~ :H4
S : !exp~ :H4

C : !IW

53 exp~ :4D412@B3 ,A3#: !IW.
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Since [B3 ,A3] belongs toD4, a third-order achromat can
be achieved by zeroing 4D412[B3 ,A3] instead of canceling
D4 andA4 ~or B4! separately. Therefore, the best third-order
solution is

D452 1
2 @B3 ,A3#. ~53!

~3! The fourth order:
Using the BCH formula,MW can be transformed to

MW 54 exp~ :H5
F : !exp~ :H5

R : !exp~ :H5
S : !exp~ :H5

C : !IW

54 exp~ : f 3
F1 f 4

F1 f 5
F : !exp~ : f 3

R1 f 4
R1 f 5

R : !exp~ : f 3
S1 f 4

S1 f 5
S : !exp~ : f 3

C1 f 4
C1 f 5

C : !IW

54 exp~ :4D5 : !exp~ : f 3
F1 f 4

F : !exp~ : f 3
R1 f 4

R : !exp~ : f 3
S1 f 4

S : !exp~ : f 3
C1 f 4

C : !IW

54 exp~ :4D5 : !exp„: f 3
F1 f 4

F1 f 3
R1 f 4

R1 1
2 ~@ f 3

F , f 3
R#1@ f 3

F , f 4
R#1@ f 4

F , f 3
R# !1 1

12$~ f 3
F ,@ f 3

F , f 3
R# !1~ f 3

R ,@ f 3
R , f 3

F# !%:…

3exp„: f 3
S1 f 4

S1 f 3
C1 f 4

C1 1
2 ~@ f 3

S , f 3
C#1@ f 3

S , f 4
C#1@ f 4

S , f 3
C# !1 1

12$~ f 3
S ,@ f 3

S , f 3
C# !1~ f 3

C ,@ f 3
C , f 3

S# !%:…IW

54 exp~ :4D5 : !exp„: f 4
F1 f 4

R1 f 4
S1 f 4

C1 1
2 ~@ f 3

F , f 3
R#1@ f 3

F , f 4
R#1@ f 4

F , f 3
R#1@ f 3

S , f 3
C#1@ f 3

S , f 4
C#1@ f 4

S , f 3
C# !

1 1
12$~ f 3

F ,@ f 3
F , f 3

R# !1~ f 3
R ,@ f 3

R , f 3
F# !1~ f 3

S ,@ f 3
S , f 3

C# !1~ f 3
C ,@ f 3

C , f 3
S# !%1 1

2 $ f 3
F1 f 4

F1 f 3
R1 f 4

R1 1
2 ~@ f 3

F , f 3
R#1@ f 3

F , f 4
R#

1@ f 4
F , f 3

R# !, f 3
S1 f 4

S1 f 3
C1 f 4

C1 1
2 ~@ f 3

S , f 3
C#1@ f 3

S , f 4
C#1@ f 4

S , f 3
C# !%

1 1
12$~ f 3

F1 f 3
R ,@ f 3

F1 f 3
R , f 3

S1 f 3
C# !1~ f 3

S1 f 3
C ,@ f 3

S1 f 3
C , f 3

F1 f 3
R# !%:…IW

54 exp~ :4D5 : !exp„:4D412@B3 ,A3#1 1
2 ~@ f 3

F , f 4
R#1@ f 4

F , f 3
R#1@ f 3

S , f 4
C#1@ f 4

S , f 3
C#1@ f 3

F1 f 3
R , f 4

S1 f 4
C#

1@ f 4
F1 f 4

R , f 3
S1 f 3

C# !1 1
4 $~ f 3

F1 f 3
R ,@ f 3

F , f 3
R# !1~@ f 3

F , f 3
R#, f 3

F1 f 3
R!%1 1

12$~ f 3
F ,@ f 3

F , f 3
R# !1~ f 3

R ,@ f 3
R , f 3

F# !1~ f 3
S ,@ f 3

S , f 3
C# !

1~ f 3
C ,@ f 3

C , f 3
S# !1~ f 3

F1 f 3
R ,@ f 3

F1 f 3
R , f 3

S1 f 3
C# !1~ f 3

S1 f 3
C ,@ f 3

S1 f 3
C , f 3

F1 f 3
R# !%:…IW

54 exp~ :4D5 : !exp~ :Ĥ: !IW,

where

Ĥ5 1
2 ~@ f 3

F , f 4
R#1@ f 3

S , f 4
C#1@ f 3

F1 f 3
R , f 4

S1 f 4
C#1@ f 4

F , f 3
R#1@ f 4

S , f 3
C#1@ f 4

F1 f 4
R , f 3

S1 f 3
C# ! 14 $~ f 3

F1 f 3
R ,@ f 3

F , f 3
R# !

1~@ f 3
F , f 3

R#, f 3
F1 f 3

R!%1 1
12$~ f 3

F ,@ f 3
F , f 3

R# !1~ f 3
R ,@ f 3

R , f 3
F# !1~ f 3

S ,@ f 3
S , f 3

C# !1~ f 3
C ,@ f 3

C , f 3
S# !

1~ f 3
F1 f 3

R ,@ f 3
F1 f 3

R , f 3
S1 f 3

C# !1~ f 3
S1 f 3

C ,@ f 3
S1 f 3

C , f 3
F1 f 3

R# !%

5 1
2 ~@A31B31C3 ,A42B42C41D4#1@2A32B31C3 ,2A41B42C41D4#14@A3 ,2A41D4#1@A41B41C4

1D4 ,A32B32C3#1@2A42B41C41D4 ,2A31B32C3#14@A41D4 ,2A3# ! 14 $~2A3 ,@2A32B31C3 ,2A31B3

2C3# !1~2A3 ,@A31B31C3 ,A32B32C3# !%1 1
12$~ f 3

F2 f 3
R ,@ f 3

F , f 3
R# !1~ f 3

S2 f 3
C ,@ f 3

S , f 3
C# !%

52@A3 ,B41C4#1@B31C3 ,A41D4#1@A3 ,2B41C4#1@2B31C3 ,2A41D4#

14@A3 ,D4#1 1
4 $~2A3 ,@2A32B31C3 ,2A31B32C3# !1~2A3 ,@A31B31C3 ,A32B32C3# !%

1 1
12$~2@B31C3#,@A31B31C3 ,A32B32C3# !1~2@2B31C3#,@2A32B31C3 ,2A31B32C3# !%

52@B4 ,A3#12@B3 ,A4#12@C3 ,D4#14@A3 ,D4#1~A3 ,@2A3 ,B32C3# !2~A3 ,@A3 ,B31C3# !

1 1
3 $2~B31C3 ,@A3 ,B31C3# !1~2B31C3 ,@2A3 ,B32C3# !%

52@B4 ,A3#12@B3 ,A4#22~C3 ,2
1
2 @B3 ,A3# !14~A3 ,2

1
2 @B3 ,A3# !22~A3 ,@A3 ,B3# !2 2

3 $~C3 ,@A3 ,B3# !1~B3 ,@A3 ,C3# !%

52@B4 ,A3#12@B3 ,A4#1 1
3 ~C3 ,@A3 ,B3# !1 2

3 ~B3 ,@C3 ,A3# !.
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Altogether, the map is

MW 54 exp~ :4D5 : !exp~ :Ĥ: !IW54 exp$:4D512@B4 ,A3#

12@B3 ,A4#1 1
3 ~C3 ,@A3 ,B3# !1 2

3 ~B3 ,@C3 ,A3# !:%IW.

Since 2[B4 ,A3]12[B3 ,A4]11/3(C3 ,[A3 ,B3])
12/3(B3 ,[C3 ,A3]) belongs toD5, the best solution for the
fourth order is

D552$2@B4 ,A3#12@B3 ,A4#1 1
3 ~C3 ,@A3 ,B3# !

1 2
3 ~B3 ,@C3 ,A3# !%. ~54!

Currently it does not appear possible to streamline the
treatment of the commutators arising from the BCH formula
enough to allow an arbitrary-order analysis of the above phe-
nomenon. But as indicated before, computational results con-
firm that the method also works for orders five and six. We
conclude the analysis at this point, but make the

Conjecture IV.1.For the optimal systems, achromats up to
an arbitrary order can be obtained by cancelingD in the total
map.

When a nth-order achromat is reached, the pseudo-
HamiltonianH becomes

H5 (
i51

n11

C0000id
i . ~55!

Therefore the transfer map contains only time-of-flight terms
which depend solely ond. This is also true for the first order
due to symplecticity. As a result, to obtain an achromat with
no time-of-flight aberrations requires only one more con-
straint for each order, i.e., the cancellation of (tud i). A third-
order system of this kind has been designed~@16–18#!.

V. APPLICATION: A FIFTH-ORDER ACHROMAT

In this section, we present a proof-of-principle design of a
fifth-order achromat. While the feasibility of this design can-
not formally confirm the, at times, very tedious algebra, for
some of which we had to refer to external references because
of space limitations, it appears comforting to see that in prac-
tice everything comes together as expected.

For the actual design of the device, differential algebraic
~DA! techniques were used because of the ease of obtaining
the required Lie factorizations to an arbitrary order. Since the
Lie factorizations are always obtained from the map, explicit
use of the BCH formula is not necessary, which greatly re-

duces the complexity of the process.
Throughout the design processes, the codeCOSY INFINITY

~@19#! is used, which contains all the tools important to beam
optical design, including map computation, extraction of Lie
coefficients, fitting, tracking, and resolution calculation.
First, the DA map of the desired order is computed. Second,
relevant Lie coefficients are extracted from the Lie exponent
obtained from the map. Third, fitting routines are used to
cancel the Lie coefficients which cannot be canceled by sym-
metry. In our case, we are greatly benefitted from using the
packageLMDIF by Jorge More from Argonne National Labo-
ratory. The first-order layout of the achromat should avoid
large fluctuations in theb functions in order to limit nonlin-
ear aberrations; furthermore, there should be enough room
for the insertion of correction multipoles. Another consider-
ation is that, if possible, the number of first-order conditions
should be further reduced through symmetry arrangements
inside a cell.

The result of these considerations is a ring shown in Fig.
2, which consists of sixteenFODO cells plus two dispersion
correction sections, each of which includes two quadrupoles.
The left half is the forward cell (F) and the right half is the
reversed cell (R). Achromaticity is achieved after two turns.
The forward cell itself consists of two parts, one of which is
the reverse of the other. This guarantees that (xux)5(aua)
and (yuy)5(bub). All four FODO cells within one part of a

TABLE III. The FRFR fifth-order achromat: The field strengths of the quads and the sextupoles. Only
half of them are shown due to mirror symmetry. Numbers in brackets represent powers of 10.

Strengths of the Multipoles~Aperture 10 cm!
Quadrupoles Sextupoles

Gradient~kG/cm! Field ~kG! Gradient~kG/cm2! Field ~kG!

20.162 869 20.814 344 20.718 659@203# 20.179 665@201#
0.134 119 0.670 597 0.364 420@203# 0.911 050@202#

20.131 803 20.659 013

FIG. 2. The FRFR fifth-order achromat: The layout, beam en-
velope and dispersive ray. The phase advances per cell are
mx5my5p/2. The circumference is 266.64 m; the emittance is 30p
mm mrad; and the dispersion is 0.3%.
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cell are identical except that the last one has an extra quad-
rupole for dispersion correction. Hence, there are three knobs
for the first-order design which can zero out (xux), (aua),
(yuy), (bub), ~xud!, and ~aud! at the same time. Figure 2
shows that the beam travels around the ring in a very uni-
form manner, avoiding large ray excursions andb functions.
As described in@20# ~Sec. 5.2!, second-order achromaticity

is achieved by symmetrically placing and exciting two pairs
of sextupoles in each half.

After the investment in a careful first- and second-order
layout, the necessary third- , fourth- , and fifth-order correc-
tions actually turn out to be conceptually straightforward,
even though they are computationally more demanding. In
the whole process of nonlinear optimization, only two as-

TABLE IV. The FRFR fifth-order achromat: The field strengths of the octupoles and the decapoles. Note
that the multipoles are extremely weak as a result of good linear behavior. Numbers in brackets represent
powers of 10.

Strengths of the Multipoles~Aperture 10 cm!
Octupoles Decapoles

Gradient~kG/cm3! Field ~kG! Gradient~kG/cm4! Field ~kG!

20.996 975@206# 20.124 622@203# 20.391 808@206# 20.244 880@203#
20.246 999@205# 20.308 749@203# 0.239 260@206# 0.149 538@203#
0.204 723@205# 0.255 903@203# 20.346 336@207# 20.216 460@204#

20.135 901@205# 20.169 876@203# 20.413 315@207# 20.258 322@204#
0.951 498@206# 0.118 937@203# 0.100 518@206# 0.628 240@204#

20.228 548@204# 20.285 685@202# 20.501 265@207# 20.313 291@204#
0.177 119@204# 0.221 399@202# 20.953 086@207# 20.595 678@204#

20.158 309@204# 20.197 886@202# 0.511 256@206# 0.319 535@203#
0.420 261@205# 0.525 326@203# 20.305 803@207# 20.191 127@204#
0.871 498@207# 0.108 937@204# 20.775 351@207# 20.484 594@204#
0.377 365@206# 0.471 706@204# 0.506 782@208# 0.316 738@205#
0.533 332@205# 0.666 665@203# 0.153 783@207# 0.961 144@205#
0.321 821@205# 0.402 276@203# 20.152 854@207# 20.955 335@205#
0.191 867@205# 0.239 833@203# 0.159 598@206# 0.997 489@204#

20.130 343@205# 20.162 929@203# 20.317 045@206# 20.198 153@203#

TABLE V. The FRFR fifth-order achromat: The field strengths of the duodecapoles. Note that the
multipoles are extremely weak as a result of good linear behavior. Numbers in brackets represent powers of
10.

Strengths of the Duodecapoles~Aperture 10 cm!
Gradient~kG/cm5! Field ~kG! Gradient~kG/cm5! Field ~kG!

0.260 526@206# 0.162 829@203# 0.143 366@206# 0.896 036@204#
20.141 949@206# 20.887 180@204# 0.111 585@206# 0.697 405@204#
20.602 391@207# 20.376 494@204# 20.392 296@206# 20.245 185@203#
0.115 200@206# 0.720 003@204# 0.426 602@206# 0.266 626@203#

20.129 574@206# 20.809 839@204# 20.251 765@206# 20.157 353@203#
0.167 172@206# 0.104 483@203# 0.101 758@206# 0.635 989@204#

20.146 698@206# 20.916 861@204# 20.812 971@207# 20.508 107@204#
0.109 038@207# 0.681 489@205# 0.113 277@206# 0.707 979@204#

20.897 166@207# 20.560 728@204# 20.423 092@207# 20.264 433@204#
0.905 100@207# 0.565 687@204# 20.733 480@207# 20.458 425@204#
0.422 171@207# 0.263 857@204# 0.173 217@207# 0.108 261@204#

20.119 032@206# 20.743 948@204# 0.970 192@207# 0.606 370@204#
0.812 032@207# 0.507 520@204# 0.745 327@207# 0.465 829@204#

20.859 254@207# 20.537 034@204# 20.158 631@206# 20.991 446@204#
0.143 652@206# 0.897 825@204# 0.230 450@206# 0.144 031@203#

20.192 421@206# 20.120 263@203# 20.172 798@206# 20.107 999@203#
0.231 122@206# 0.144 451@203# 0.923 330@207# 0.577 081@204#

20.729 862@207# 20.456 164@204# 0.126 337@206# 0.789 607@204#
20.102 382@206# 20.639 889@204# 20.256 941@206# 20.160 588@203#
20.913 997@207# 20.571 248@204#
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pects seemed to be worth considering. First, the required
multipole strengths strongly depend on the average distance
between multiples of the same order. In order to keep their
strength limited, it is important to have the dimension of the
total size of the ring and the dispersive region sufficiently
large, and distribute roughly uniformly multipoles of the
same order. Second, all the decapoles have to be placed in
regions with sufficient dispersion, because all the fourth-
order aberrations that remain after third-order corrections are
chromatic aberrations. The combination of these consider-
ations results in assuringly weak multipole strengths for
third-, fourth-, and fifth-order corrections.~Tables III–V!.

VI. CONCLUSION

An analytical theory of arbitrary-order achromats based
on mirror symmetries is presented. It is shown that two- and
three-cell systems are not optimal to form achromats, they
require more conditions than some of the four-cell systems.
On the other hand, systems with five or more cells cannot

give solutions that are distinctively better than those of four-
cell systems. Therefore, four-cell systems seem to be the best
choices for arbitrary-order achromats. Four four-cell systems
are found optimal for solutions because they require the
smallest number of linear conditions.

A general solution for four-cell arbitrary-order achromats
based on the optimal systems is presented. Furthermore, a
particularly efficient specific solution, which is close to the
best solution that can be obtained by the mere use of sym-
metry, is proved analytically up to the fourth order, and com-
putational results suggest that it is valid up to the sixth order.
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