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Abstract

An overview of the background of Taylor series methods and the utilization of the
differential algebraic structure is given, and various associated techniques are reviewed.
The conventional Taylor methods are extended to allow for a rigorous treatment of
bounds for the remainder of the expansion in a similarly universal way. Utilizing
differential algebraic and functional analytic arguments on the set of Taylor models,
arbitrary order integrators with rigorous remainder treatment are developed. The
integrators can meet pre-specified accuracy requirements in a mathematically strict
way, and are a stepping stone towards fully rigorous estimates of stability of repetitive
systems.

INTRODUCTION

The year 1996 marks the tenth anniversary1 of the introduction of the dif-
ferential algebraic approach23 into the study of beam dynamics. It took the
computation of Taylor maps

�zf =M(�zi) (1)

of dynamical systems from the then customary third4567 or fifth order8 all the
way to arbitrary order in a unified and straightforward way. The Taylor maps
have many applications, as many of the physical quantities that are encoun-
tered in practice are more or less directly connected to Taylor coefficients.
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Since its introduction, the method has been widely utilized in a large number
of new map codes.910111213141516171819

The basic idea behind the method is to bring the treatment of functions
to the computer in a similar way as the treatment of numbers. In a strict
sense, neither functions (for example, C∞) nor numbers (for example, the reals
R) can be treated on a computer, since neither of them can be represented with
the finite amount of information that can be stored on computers (after all, a
real number is an equivalence class of bounded Cauchy sequences of rational
numbers).
However, from the early days of computers we are used to dealing with num-

bers by extracting information deemed relevant, which in practice usually
means the approximation by floating point numbers with finitely many dig-
its. In a formal sense this is possible since for every one of the operations on real
numbers, like addition and multiplication, we can craft an adjoint operation
on the floating point numbers such that the following diagram commutes:

a, b ∈ R T
−−−−−−−−−−−−−→

ā, b̄ ∈ FP

∗

⏐⏐⏐⏐⏐⏐⏐⏐⏐y

⏐⏐⏐⏐⏐⏐⏐⏐⏐y
~

a ∗ b
−−−−−−−−−−−−−→

T ā~ b̄

(2)

Of course, much to the chagrin of those doing numerics, in reality the diagrams
commute only ”approximately”, which typically makes the errors grow over
time.
The approximate character of these arguments can be removed by represent-

ing a real not by one floating point number, but rather by an interval of floating
point numbers providing a rigorous upper and lower bound. By rounding oper-
ations down for lower bounds and up for upper bounds, rigorous bounds can be
found for sums and products, and adjoint operations can be made such that the
above diagram commutes exactly. In practice, while always maintaining rigor,
the method sometimes becomes rather pessimistic, as over time the intervals
often have a tendency to grow.
Historically, the treatment of functions in numerics has been done based

on the treatment of numbers; and as a result, virtually all classical numerical
algorithms are based on the mere evaluation of functions at specific points. As
a consequence, numerical methods for differentiation, which are so relevant for
the computation of Taylor representations of the map (1), are very cumbersome
and prone to inaccuracies because of cancellation of digits, and not useful in
practice for our purposes.
The success of the new methods is based on the observation that it is possi-
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ble to extract more information about a function than its mere values. Indeed,
considering the commuting diagram in eq. (2), one can demand the operation
T to be the extraction of the Taylor coefficients of a pre-specified order n of the
function. In mathematical terms, T is an equivalence relation, and the applica-
tion of T corresponds to the transition from the function to the equivalence
class comprising all those functions with identical Taylor expansion to order n.
Since Taylor coefficients of order n for sums and products of functions as well

as scalar products with reals can be computed from those of the summands and
factors, it is clear that the diagram can be made to commute; indeed, except for
the underlying inaccuracy of the floating point arithmetic, it will even commute
exactly. In mathematical terms, this means that the set of equivalence classes of
functions can be endowed with well-defined operations, leading to the so-called
Truncated Power Series Algebra.12

This fact was realized in the first paper on the subject,2 which led to a
method to extract maps to any desired order from a computer algorithm that
integrates orbits numerically. Similar to the need for algorithms within floating
point arithmetic, the development of algorithms for functions followed, in-
cluding methods to perform composition of functions, to invert them, to solve
nonlinear systems explicitly, and to introduce the treatment of common elemen-
tary functions.2021

However, very soon afterwards it became apparent223 that this only rep-
resents a half-way point, and one should proceed beyond mere arithmetic
operations on function spaces of addition and multiplication and consider their
analytic operations of differentiation and integration. This resulted in
the recognition of the underlying differential algebraic structure and its
practical exploitation, based on the commuting diagrams for addition, multipli-
cation, and differentiation and their inverses:

f, g T
−−−−−−−−−→

F,G

+,−

⏐⏐⏐⏐⏐y
⏐⏐⏐⏐⏐y ⊕,ª

f ± g
−−−−−−−−−→

T F ⊕ªG

f, g T
−−−−−−−−−→

F,G

·, /

⏐⏐⏐⏐⏐y
⏐⏐⏐⏐⏐y ¯,®

f ·
/g

−−−−−−−−−→
T F ¯

®G

f T
−−−−−−−−−→

F

∂, ∂−1

⏐⏐⏐⏐⏐y
⏐⏐⏐⏐⏐y ∂°, ∂−1°

∂f, ∂−1f
−−−−−−−−−→

T ∂°F, ∂−1° F

(3)
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In passing we note that in order to avoid loss of order, in practice the derivations
have the form ∂ = h · d/dxi, where h is a function with h(0) = 0. As a first
consequence, it allowed to construct integration techniques to any order that for
a given accuracy demand are substantially faster than conventional methods.21

Subsequently, it was realized that the differential algebraic operations are useful
for a whole variety of other questions connected to the analytic properties of the
transfer map.20 It was possible to determine arbitrary order generating func-
tion representations of maps2321; factorizations into Lie operators24 could be
carried out for the first time to arbitrary order21; normal form methods2526

could be performed to arbitrary order.2721 And last but not least, the compli-
cated PDEs for the fields and potentials stemming from the representation of
Maxwell’s equations in particle optical coordinates could be solved to any order
in finitely many steps.
Of course the question of what constitutes ”information deemed relevant”

for functions does not necessarily have a unique answer. Formula manipulators,
for example, attack the problem from a different perspective by attempting to
algebraically express functions in terms of certain elementary functions linked
by algebraic operations and composition. In practice the Achilles heel of this
approach is the complexity that such representations can take after only a few
operations. But compared to the mere Taylor expansion, they have the advan-
tage of rigorously representing the function under consideration. Below we will
show how such rigor can be maintained without the computational expense of
formula manipulation by a suitable augmentation of the Taylor approach.

TRUNCATED POWER SERIES, DIFFERENTIALS,
DIFFERENTIAL ALGEBRAS, AND AUTOMATIC

DIFFERENTIATION

Before proceeding further, it seems to be worthwhile to put into perspective
a variety of different concepts that were introduced to the field in connection
with the above developments. We do this for a dual purpose: on the one hand we
hope to alleviate some of the confusion in the field resulting from an overly casual
and often improper use of terminology; and on the other hand, we want to try to
provide a summary of various useful techniques outside the field. Furthermore
we lay the groundwork for the further development in the next sections, in which
differential algebraic techniques will be applied to a new set of objects.
The first and simplest structure that was introduced12 is TPSA, the trun-

cated power series algebra. This is the structure that results when the equiva-
lence classes of functions are endowed with arithmetic such that the diagrams in
eq. (2) commute for the basic operations of addition, multiplication, and scalar
multiplication. Addition and scalar multiplication lead to a vector space, and
the multiplication operation turns it into a commutative algebra. In many
respects, together with the polynomial algebras, this structure is an archetypal
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non-trivial algebra, and in fact it can be embedded into many larger and more
interesting algebras.
It is easy to see that the TPSA can be equipped with an order, and then

contains differentials, i.e. infinitely small numbers. This fact triggered the
study of such nonarchimedean structures in more detail, and led to the intro-
duction of a foundation of analysis282930 on a larger and for such purposes much
more useful structure, the Levi-Civita field. It turned out that the Levi-Civita
field is the smallest nonarchimedean extension of the real numbers that is alge-
braically and Cauchy complete, and many of the basic theorems of calculus can
be proved in a similar way as in R. Furthermore, concepts like Delta functions
and the idea of derivatives as differential quotients can be formulated rigor-
ously and integrated seamlessly into the theory. On the practical end, based
on the latter concept, there are also several improvements regarding methods of
computational differentiation.3132

As alluded to in the last section, the power of TPSA can be enhanced by
the introduction of derivations ∂ and their inverses, corresponding to the dif-
ferentiation and integration on the space of functions. It was mentioned that
the resulting structure, a Differential Algebra, allowed the direct treatment
of many questions connected with differentiation and integration of functions,
including the solution of the ODEs describing the motion and PDEs describing
the fields, as well as the determination of generating functions and Lie factor-
izations to arbitrary order.21

These applications follow in the vein of other applications of differential alge-
bras, the study of which became important connected to the question of solving
analytic problems with algebraic means. Among others, this work was ini-
tiated in a serious fashion by Liouville33 connected to the problem of integration
of functions and differential equations in finite terms. It was then significantly
enhanced by Ritt,34 who provided a rather complete algebraic theory of the
solution of differential equations that are polynomials of the functions and their
derivatives and that have meromorphic coefficients. Further development in the
field is due to Kolchin35 and, already with an eye on the algorithmic aspect, to
Risch.363738

Nowadays the methods form the basis of many algorithms in modern for-
mula manipulators, where the treatment of differential equations and quadrature
problems calls for the solution of analytic problems with algebraic means. Other
important current work relying on differential algebraic methods is the practical
study of differential equations under algebraic constraints, so-called differential
algebraic equations.39 Many of the recent developments will be covered in a
forthcoming special issue on Differential Equations and Differential Algebra of
the Journal of Symbolic Computation.
The final concept that is somewhat connected to our methods and worth to

be studied is the technique of automatic differentiation.404142 The purpose
of this discipline is the automated transformation of existing code in such a
way that derivatives of functional relationships between variables are calculated
along with the original code. Besides the significantly increased computational
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accuracy compared to numerical differentiation, a striking advantage of this
approach is the fact that in the so-called reverse mode it is actually possible
in principle to calculate gradients in v variables in a fixed amount of effort;
independent of v, in the optimal case the entire gradient can be obtained with
a cost equalling only about five times the cost of the evaluation of the original
functions, in stark contrast to numerical differentiation requiring (v + 1) times
the original cost.
In practice, automatic differentiation is almost exclusively first order, and

as such is not directly useful for our purposes. One reason for this situation
is connected to the fact that conventional numerical algorithms avoid higher
derivatives as much as possible because of the well-known difficulties when trying
to obtain them via numerical differentiation, which for a long time represented
the only available approach. On the other hand, the above mentioned savings
that are possible for linear derivatives are much harder to obtain in the same
way for higher orders.
In passing it may be worthwhile to note that contrary to what may be

expected at first sight, the automatic differentiation community is not quite
readily embracing the computational simplifications of modern object oriented
techniques. Aside from the fact that the problem usually involves the need of
making adjustments to existing code and the fact that the reverse approach re-
quires code re-structuring and not just operator overloading, it has often proven
difficult to obtain competitive computational performance.
Altogether, the challenge in automatic differentiation is more reminiscent

of sparse matrix techniques for management and manipulation of Jacobians
than of a power series technique. It is perhaps also worth mentioning that
because of the need for code re-structuring in order to obtain performance,
there is a certain reluctance in the community towards the use of the word
”automatic”. Mostly in order to avoid the impression of making false promises,
the technique recently likes to refer to itself as computational differentiation.
Only very recently are other groups in computational differentiation picking

up at least on second order,43 but so far the only software for derivatives beyond
order two listed in the automatic differentiation tool compendium44 is in fact
the package DAFOR454647 consisting of the FORTRAN precompiler DAPRE
and the arbitrary order DA package that is also used as the power series engine
in the code COSY INFINITY.
It is the author’s hope that researcher in our field will in the future more

seriously follow some of these leads into neighboring disciplines, and that he
would more frequently meet some of his colleagues at the many conferences of
these fields. On the one hand, there are a variety of interesting techniques that
may be borrowed; on the other hand, it is important to make the field of beam
dynamics and its interesting problems more known in other communities.
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THE TREATMENT OF REMAINDERS

Compared to techniques of formula manipulation and to other rigorous math-
ematical efforts on computers, the Taylor DA methods have the disadvantage
that there is no way to make any statements about the remainder of Taylor’s
formula. It is our goal to extend the theory in such a way that it is possible to
obtain rigorous bounds for the remainder terms. In this endeavour, we will have
the demand to be fully mathematically rigorous in that no approximations are
allowed. All this will be achieved by keeping the idea of providing commuting
diagrams for elementary operations; however, the objects on which these oper-
ations are to be carried out are not mere truncated Taylor series any more, but
rather new objects called Taylor models.
Furthermore, in order to keep the mathematical rigor for the solution of the

differential equations defining the maps of the systems, we will derive a new
method to perform integration. As in many other automated approaches for
integration of functions and differential equations on computers, we will utilize
differential algebraic techniques for this purpose. While in the conventional
computation of Taylor maps, in principle also conventional integrators can be
used (although the ones that come for free in the differential algebraic approach
are usually superior in speed and accuracy), this is not the case here, and one
is more or less forced to develop new techniques.
Our method will rely on an inclusion of the remainder term of a Taylor ex-

pansion in an interval. However, to quell misunderstandings from the beginning,
it is important to note that our approach is not equivalent to interval meth-
ods that have been applied extensively for many types of verified calculations.
The careful reader will realize that our method provides remainder bounds with
an accuracy that does not scale merely linear with the domain interval, but
rather as a high power of the domain interval; this feature is essential if high
accuracy is required over an extended range of arguments, as is the case with
the transfer map. Furthermore, it alleviates the so-called dependency problem,
which among other things entails that extended conventional interval computa-
tions sometimes have a danger to ”blow up” and yield rather pessimistic and
sometimes even useless bounds.

COMPUTATION OF REMAINDER BOUNDS FOR
FUNCTIONAL DEPENDENCIES

We begin our study of the rigorous computational treatment of the remainder
with the definition of a Taylor Model. Let f be C(n+1) on Df ⊂ Rv, and
�B = [a1, b1]× ...× [av, bv] ⊂ Df an interval box containing the point �x0. Let T
be the Taylor polynomial of f around the point �x0. We call the interval I an
nth order Remainder Bound of f on �B if

f(�x)− T (�x) ∈ I for all �x ∈ �B.
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In this case, we call the pair (T, I) an nth order Taylor Model of f . It is clear
that a given function f can have many different Taylor models, as with (T, I),
also (T, Ī) with Ī ⊃ I is a Taylor model. Furthermore, we see that low-order
polynomials have trivial remainder bounds; since every polynomial of order not
exceeding n agrees with its nth order Taylor polynomial, the interval [0, 0] is a
remainder bound.
For practical purposes, it is important that if the original interval box �B

decreases in size, then according to the various formulas of the Taylor remain-
der,48 the remainder bounds can decrease in size with a power of n+1 and hence
will become small quickly. In particular, this entails that the knowledge of a
good Taylor model of a function on an interval box �B allows a rather accurate
estimate of the range of the function.
Now we want to study to what extent it is possible to define arithmetic

operations ⊕, ¯, and ∂° on Taylor models. In this case, the operation ”T” that
turns a function into its Taylor polynomial has to be replaced by the inclusion
operation ⊂ . So we must craft new adjoint operations on Taylor models
that make the diagram

f, g ∈ Cn+1 ⊂
−−−−−−−−−−−−−→

(Tf , If ), (Tg, Ig)

∗

⏐⏐⏐⏐⏐⏐⏐⏐⏐y

⏐⏐⏐⏐⏐⏐⏐⏐⏐y
~

f ∗ g
−−−−−−−−−−−−−→

⊂ (Tf , If )~ (Tg, Ig)
commute in a similar way as in the case of the Differential Algebra on Truncated
Power Series in eq.(3).
Let (Tf , If ) and (Tg, Ig) be nth order Taylor models of the functions f and g

on the interval box �B. Clearly, the Taylor polynomial of (f+g) is simply Tf+Tg;
on the other hand, we know that on �B, f(�x) ∈ Tf (�x)+If and g(�x) ∈ Tg(�x)+Ig.
Then obviously,

(f + g)(�x) ∈ (Tf + Tg)(�x) + (If + Ig) for all �x ∈ �B,

and so (Tf + Tg, If + Ig) is a Taylor model for (f + g) on �B. And for practical
purposes, it is also important to note that if If , Ig are ”fine of order �Bn+1”, i.e.
their size scales with the size of �B to the (n+ 1)st power, so is If+g = If + Ig.
In the same way we see that (Tf −Tg, If − Ig) is a Taylor model for (f − g). So
by simply defining

(Tf , If )⊕ (Tg, Ig) = (Tf + Tg, If + Ig),

we are able to close the commuting diagram for addition.
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In order to study multiplication, let (Tf , If ) and (Tg, Ig) be nth order Taylor
models of the functions f and g on the interval box �B. As pointed out before,
the Taylor polynomial Tf ·g of f · g can then be obtained by multiplication of
Tf and Tg and subtraction of the polynomial T̄f ·g consisting of the terms whose
order exceeds n. For any �x ∈ �B, there are values ef ∈ If and eg ∈ Ig such that
f(�x) = Tf (�x) + ef and g(�x) = Tg(�x) + eg. So we obtain

(f · g)(�x) = (Tf (�x) + ef ) · (Tg(�x) + eg)
= Tf (�x) · Tg(�x) + Tf (�x) · eg + Tg(�x) · ef + ef · eg

= Tf ·g(�x) + {T̄f ·g(�x) + Tf (�x) · eg + Tg(�x) · ef + ef · eg}.

The first term is the Taylor polynomial of f · g. The term in curly brackets
describes the behavior of the remainder; it is a polynomial in the v + 2 vari-
ables (�x, ef , eg) ∈ �B ×If × Ig and is denoted by R(�x, ef , eg). So by bounding
R(�x, ef , eg)

4948 with an interval IR, we are able close the diagram with the
definition

(Tf , If )¯ (Tg, Ig) = (Tf·g, IR).
We note that the necessary computation of Tf ·g from Tf and Tg is of course the
standard multiplication within TPSA.
Besides providing the operations ⊕ and ¯ for Taylor models such that the

diagrams in eq. (2) commute, there are a variety of other operations that
have to be ported to the Taylor models, especially the intrinsic functions, the
composition of functions, and several operations derived from these. For reasons
of space, we have to restrict ourselves here to a referral to more detailed papers
about the matter.4948

Altogether, the operations ⊕ and ¯ enable us to determine mathematically
rigorous bounds for the remainder of any function that can be represented on a
computer, and is hence of great help for problems of optimization.52 In itself, it
also already useful for several problems in Beam Physics, in particular for the
notoriously difficult bounding of approximate invariants of nonlinear motion.50

COMPUTATION OF REMAINDER BOUNDS FOR
FLOWS OF DIFFERENTIAL EQUATIONS

Our goal is now to establish a Taylor model for the transfer mapM(�r0, t) in
eq. (1), and thus in particular a rigorous bound for the remainder term of the
flow of the differential equation describing the motion over a domain (�r01, �r02)×
(t0, t2). As pointed out before, this need precludes us from the direct use of
conventional numerical integrators, as they cannot provide rigorous bounds for
the integration error but only approximate estimates. Rather, we have to start
from scratch from the foundations of the theory of differential equations.
As a first step it is necessary to introduce the inverse derivation operation

∂−1° on Taylor models. Given an n-th order Taylor model (Pn, In) of a function
f, we can determine a Taylor model for the indefinite integral ∂−1i f =

R
f dx0i
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with respect to variable i. The Taylor polynomial part is obviously just given
by
R
Pn−1dx

0
i, and a remainder bound can be obtained as (B(Pn−Pn−1)+ In) ·

B(xi), where B(xi) is an interval bound for the variable xi obtained from the
range of definition of xi, and B (Pn − Pn−1) is a bound for the part of Pn that is
of exact order n.We thus define the operator ∂−1°,ion the space of Taylor models
as

∂−1°,i(Pn, In) =

µZ
Pn−1dx

0
i , (B(Pn − Pn−1) + In) ·B(xi)

¶
. (4)

The careful reader may perhaps wonder about the introduction of the operator
∂°,i; this is also possible, however at an additional effort, since from the knowl-
edge of a remainder bound of a function, no conclusions can be drawn regarding
a remainder bound for its derivative (for example, the function can oscillate very
quickly inside even a narrow interval). With a further extension of the concept
of Taylor models that also describes the asymptotic behavior of coefficients, this
problem can be solved, but since it is not required for our purposes, we will not
discuss the matter in detail here.

Schauder’s Fixed Point Theorem

As is common for the application of functional analysis tools to the study
of differential equations, we re-write the differential equation as an integral
equation

�r(t) = �r0 +

Z t

t0

�F (�r(t0), t0) dt0,

noting that the initial value problem has a (unique) solution if and only if the
corresponding integral equation has a (unique) solution. Now we introduce the
operator

A : �C0[t0, t1]→ �C0[t0, t1]

on the space of continuous functions from [t0, t1] to Rn via

A
³
�f
´
(t) = �r0 +

Z t

t0

�F (�f (t0) , t0) dt0; (5)

so a general function �f in �C0[t0, t1] is transformed into a new function in
�C0[t0, t1] via the insertion into �F and subsequent integration. Having introduced
the operator A, the problem of finding a solution to the differential equation is
reduced to a fixed-point problem

�r = A(�r).

It is common fare in the theory of differential equations to establish that Schauder’s
fixed point theorem asserts the existence of a solution of an ODE over the in-
terval [t0, t1] in case �F is continous on [t0, t1]×Rn and bounded there. If �F is
even Lipschitz with respect to the first argument �f, then Banach’s fixed point
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theorem even asserts a locally unique solution. However, in both cases the con-
ventional results assert merely the existence of a solution and do not provide
details about its range.
We will now apply Schauder’s fixed point theorem51 in a different way to

rigorously obtain a Taylor Model for the flow.
Theorem (Schauder): Let A be a continous operator on the Banach Space

X. Let M ⊂ X be compact and convex, and let A(M) ⊂M. Then A has a fixed
point in M, i.e. there is an �r ∈M such that A(�r) = �r.

One should be reminded that the fixed point is not necessarily unique (for
example, the identity map onM has every element ofM as fixed points); further-
more compactness and convexity ofM are essential, as simple counter-examples
show.

Strategy to Satisfy the Requirements of Schauder’s
Theorem

In our specific case, X = �C0[t0, t1], the space of continuous vector functions
on the interval, equipped with the usual maximum norm, and A is the integral
operator in eq. (5). From continuity of �F , it follows easily that A is continous
on X. The process of our application of Schauder’s theorem now has three major
steps:

1. Determine a sufficiently large family Y of subsets of X from which to
draw candidates for the set M. To satisfy the requirements of Schauder’s
theorem, the sets in Y have to be compact and convex; and to fit within
our computational framework, it should be possible to contain them in
suitable Taylor models.

2. Using the differential algebraic structure on Taylor models, construct an
initial setM0 ∈ Y that satisfies the inclusion property A(M0) ⊂M0. Once
this set has been determined, all requirements of the fixed point theorem
are satisfied, and the existence of a solution in M0 and hence within a
Taylor model has been established.

3. Finally, the setM0 is iteratively reduced in size in order to obtain a bound
that is as sharp as possible. For i = 1, 2, 3, ... we construct the sequence
Mi = A(Mi−1). We have the chain M1 ⊃ M2 ⊃..., and we continue to
iterate until no significant further reduction in size is possible.

Schauder Candidate Sets

For the first step, it is necessary to establish a family of sets Y from which
to draw candidates for M0. We define Y in the following way. Let (�P + �I) be
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a Taylor model depending on time as well as the initial condition �r0. Then we
define the associated set M�P+�I as follows:

M�P+�I ⊂ �C0[t0, t1]; and for �r ∈M�P+�I :

�r(t0) = �r0

�r(t) ∈ �P + �I ∀t ∈ [t0, t1] ∀�r0
|�r(t0)− �r(t00)| ≤ k|t0 − t00|∀t0, t00 ∈ [t0, t1] ∀�r0,

where in the last condition, k is a bound for |�F | on the bounded set M�P+�I ,

which exists because �F is continuous; obviously k depends on �P and �I. The last
condition means that all �r ∈ M�P+�I are uniformly Lipschitz with constant k.
Define the family of candidate sets Y as Y =

S
�P+�I M�P+�I

Convexity, Compactness and Invariance of Schauder
Candidate Sets

Let M ⊂ Y be a Schauder Candidate Set. Then M is convex because

�x1, �x2 ∈ M ⇒
α�x1 + (1− α)�x2 ∈ M ∀α ∈ [0, 1],

as any such linear combination of two k-Lipschitz functions is k-Lipschitz, is in
the same Taylor models as �x1 and �x2, and assumes the value �r0 at t0.
Furthermore,M is compact, i.e. any sequence inM has a clusterpoint inM.

To see this, let (�xn) be a sequence of functions inM. Then all �xn are k-Lipschitz
and hence uniformly equicontinuous; since they are in the same Taylor model,
they are uniformly bounded. Thus according to the Ascoli-Arzela Theorem, (�xn)
has a uniformly convergent subsequence. Let �x∗ be the limit of this subsequence.
Since the �xn are continous, so is �x∗, and we obviously have �x∗(t0) = �r0. Since
the elements of the subsequence converging to �x∗ are k-uniformly Lipschitz, so
is �x∗ itself, as a simple indirect proof reveals. Similarly, since the subsequence
converging to �x∗ is in �P + �I, so is �x∗.
Finally, the images under A of the functions inM�P+�I are continuous because

they are integrals. They go through �r0 at t0, and are k-Lipschitz because �F is
bounded by k. Hence all requirement of Schauder’s fixed point theorem are met
if we can find a Taylor model �P + �I such that all continuous functions in �P + �I
are mapped into �P + �I; or in other words, if

A(�P + �I) ⊂ �P + �I. (6)

Because if this condition is satisfied, then indeed we also have

A(M�P+�I) ⊂M�P+�I .
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But condition (6) can be verified computationally in a rigorous fashion using
the differential algebraic representation of the operator A on the set of Taylor
models!

Satisfying the Schauder Inclusion Requirement with
Differential Algebraic Methods

For practical purposes it is of course in addition desirable to have I small.
For this purpose it turns out to be important to determine a starting candidate
that is on the one hand sufficiently small in width, but on the other hand shaped
in such a way as to contain the true solution. This thought leads to attempt
sets M∗ of the form

M∗ =MMn(�r,t)+�I∗
, (7)

where Mn(�r, t) is n-th order Taylor expansion of the solution. If n is large
enough, we may expect that the true solution of the ODE is sufficiently close
to the n−th order expansion, and hence that it may be possible to choose I∗
rather small.
This approach requires the knowledge of the solutionMn(�r, t),and contrary

to the usual situation in which we are only interested in Mn(�r, t) at the final
value of t, here the explicit dependence on t is required. This quantity can be
obtained by iterating eq. (5) within the DA of Truncated Power Series. To this
end, one chooses an initial function

M(0)
n (�r, t) = I,

where I is the identity function, and then iteratively sets

M(k+1)
n =n A(M(k)

n ).

This process converges to the exact DA resultMn in (n+ 1) steps.

Next, we try to find �I∗ such that in fact A(Mn(�r, t) + �I∗) ⊂Mn(�r, t) + �I∗,
the inclusion property necessary for Schauder’s theorem. The suitable choice
of �I∗ requires a little experimenting, it is however greatly simplified by the
observation that it is necessary that computationally,

�I∗ ⊃ �I0 = A(Mn(�r, t) + [0, 0].

We may expect that �I0 is a good benchmark for the size of intervals that is to
be encountered; and so we iteratively try the sequence

�I(k) = 2k · �I0,

until a computational inclusion can be found, which means that we have estab-
lished

A(Mn(�r, t) + �I(k)) ⊂Mn(�r, t) + �I(k). (8)

Once this computational inclusion has been determined, a solution of the
ODE is proven to exist within the Taylor modelMn(�r, t) + �I(k), satisfying our
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demand. On the other hand, should it not be possible to find a computational
inclusion, then with the current choice of the order n, it is not possible to prove
the existence of a solution over the current size of domain intervals; in this case
it is necessary to increase the order n, or to decrease the time step.

Iterative Refinement of the Inclusion

For practical purposes it is useful to note that the sharpness of this solution
can be improved. Denoting �I1 = �I(k), we iteratively define a sequence of Taylor
models

Mn(�r, t) + �Ik = A(Mn(�r, t) + �Ik−1). (9)

We then must have �Ik ⊂ �Ik−1 for all k = 1, 2,... To see this, we observe that by
definition of �I1, this is the case for k = 1, and then we infer inductively

Mn(�r, t) + �Ik ⊂ Mn(�r, t) + �Ik−1 ⇒
A(Mn(�r, t) + �Ik) ⊂ A(Mn(�r, t) + �Ik−1)⇒
Mn(�r, t) + �Ik+1 ⊂ Mn(�r, t) + �Ik.

But furthermore, the fixed point function �r must actually be contained in each
of the elements of the sequence of Taylor models Mn(�r, t) + �Ik. In fact, again
by definition it is contained inMn(�r, t) + �I1, and by induction we see

�r ∈ Mn(�r, t) + �Ik ⇒
A(�r) ∈ A(Mn(�r, t) + �Ik)⇒

�r ∈ Mn(�r, t) + �Ik+1

So this provides a mechanism to iteratively refine the inclusion until no further
worthwhile decrease in size can be obtained.

Example

To show the use of the method in practice, we provide a first example of
the method. We analyze the motion of a charged particle in a magnet with
constant magnetic field over an extended phase space. Since the motion in the
dipole can be solved analytically based on simple geometrical arguments related
to intersections of circles and straight lines, this represents a useful check of
the practical validity of the remainder bounds. For our example, we chose a
magnet with a deflection radius R = 1m. The integration was carried out over
a deflection angle of 36 degrees with a fixed step size of 4 degrees. The initial
conditions are within the domain intervals

[−.02, .02]× [−.02, .02]× [−.02, .02]× [−.02, .02],
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and the Taylor polynomial describing the dependence of the four final coordinate
values on the four initial coordinate values was determined. The order in time
and initial conditions was chosen to be 12, and the step size was estimated so
as to ascertain an overall accuracy below 10−9; since no automatic step size
control was utilized, the estimate proved conservative and the actual resulting
remainder bounds were somewhat smaller:

[−0.4496880372277553E− 09,+0.3888593417126594E− 09]
[−0.1301070602141642E− 09,+0.1337099965985420E− 09]
[−0.3417079805637740E− 10,+0.3417079805637740E− 10]
[−0.0000000000000000E+ 00,+0.0000000000000000E+ 00].

The resulting Taylor polynomials describing the dependence of final on ini-
tial coordinates were compared with those obtained by the code COSY INFIN-
ITY11,9 and agreement was found. Furthermore, a program was written that
solves the geometry for individual rays, and its results were compared for a large
collection of rays with the results of the flow calculated by the verified integra-
tor. For all rays studied, the difference between the final coordinates determined
geometrically and those predicted by the twelfth order Taylor polynomial were
within the calculated remainder bounds.

Acknowledgments
I would like to thank Kyoko Makino for many contributions to the Taylor

model method, and in particular the implementation in COSY INFINITY and
the calculations in this paper. This work was supported in part by the US
Department of Energy and an Alfred P. Sloan Fellowship.

15



References

1M. Berz. The new method of TPSA algebra for the description of beam
dynamics to high orders. Technical Report AT-6:ATN-86-16, Los Alamos
National Laboratory, 1986.

2M. Berz. The method of power series tracking for the mathematical descrip-
tion of beam dynamics. Nuclear Instruments and Methods, A258:431—437,
1987.

3M. Berz. Differential algebraic description of beam dynamics to very high
orders. Particle Accelerators, 24:109, 1989.

4K. L. Brown. The ion optical program TRANSPORT. Technical Report 91,
SLAC, 1979.

5H. Wollnik, J. Brezina, and M. Berz. GIOS-BEAMTRACE, a computer code
for the design of ion optical systems including linear or nonlinear space
charge. Nuclear Instruments and Methods, A258:408, 1987.

6T. Matsuo and H. Matsuda. Computer program TRIO for third order calcu-
lations of ion trajectories. Mass Spectrometry, 24, 1976.

7A. J. Dragt, L. M. Healy, F. Neri, and R. Ryne. MARYLIE 3.0 - a program
for nonlinear analysis of accelerators and beamlines. IEEE Transactions on
Nuclear Science, NS-3,5:2311, 1985.

8M. Berz, H. C. Hofmann, and H. Wollnik. COSY 5.0, the fifth order code for
corpuscular optical systems. Nuclear Instruments and Methods, A258:402,
1987.

9K. Makino and M. Berz. COSY INFINITY Version 7. AIP CP, 391:253,
1996.

10M. Berz, K. Makino, K. Shamseddine, G. Hoffstätter, andW.Wan. COSY IN-
FINITY and its applications to nonlinear dynamics. In M. Berz, C. Bischof,
G. Corliss, and A. Griewank, editors, Computational Differentiation: Tech-
niques, Applications, and Tools, pages 363—365, Philadelphia, 1996. SIAM.

11M. Berz. COSY INFINITY Version 7 reference manual. Technical
Report MSUCL-977, National Superconducting Cyclotron Laboratory,
Michigan State University, East Lansing, MI 48824, 1995. see also
http://cosy.pa.msu.edu.

12M. Berz. COSY INFINITY Version 6. In M. Berz, S. Martin and K. Ziegler
(Eds.), Proc. Nonlinear Effects in Accelerators, page 125, London, 1992. IOP
Publishing.

13L. Michelotti. MXYZTPLK: A practical, user friendly c++ implementation
of differential algebra. Technical report, Fermilab, 1990.

16



14W.G. Davis, S. R. Douglas, G. D. Pusch, and G. E. Lee-Whiting. The Chalk
River differential algebra code DACYC and the role of differential and Lie
algebras in understanding the orbit dynamics in cyclotrons. In M. Berz, S.
Martin and K. Ziegler (Eds.), Proceedings Workshop on Nonlinear Effects
in Accelerators, London, 1993. IOP Publishing.

15J. van Zeijts and F. Neri. The arbitrary order design code TLIE 1.0. In M.
Berz, S. Martin and K. Ziegler (Eds.), Proceedings Workshop on Nonlinear
Effects in Accelerators, London, 1993. IOP Publishing.

16J. van Zeijts. New features in the design code TLIE. In Third Computational
Accelerator Physics Conference, volume 297, page 285. AIP Conference Pro-
ceedings, 1993.

17Y. Yan and C.-Y. Yan. ZLIB, a numerical library for differential algebra.
Technical Report 300, SSCL, 1990.

18Y. Yan. ZLIB and related programs for beam dynamics studies. In Third
Computational Accelerator Physics Conference, volume 297, page 279. AIP
Conference Proceedings, 1993.

19F. C. Iselin. The CLASSIC project. In Fourth Computational Accelerator
Physics Conference, volume 297, page 325. AIP Conference Proceedings,
1997.

20M. Berz. Differential Algebraic Techniques, Entry in ’Handbook of Accelerator
Physics and Engineering’, M. Tigner and A. Chao (Eds.). World Scientific,
New York, 1999.

21M. Berz. High-Order Computation and Normal Form Analysis of Repetitive
Systems, in: M. Month (Ed), Physics of Particle Accelerators, volume 249,
page 456. American Institute of Physics, New York, 1991.

22M. Berz. Differential algebraic description of beam dynamics to very high
orders. Technical Report SSC-152, SSC Central Design Group, Berkeley,
CA, 1988.

23M. Berz. Symplectic tracking in circular accelerators with high order maps.
In Nonlinear Problems in Future Particle Accelerators, page 288. World Sci-
entific, 1991.

24A. J. Dragt and J. M. Finn. Lie series and invariant functions for analytic
symplectic maps. Journal of Mathematical Physics, 17:2215, 1976.

25A. J. Dragt and J. M. Finn. Normal form for mirror machine Hamiltonians.
Journal of Mathematical Physics, 20(12):2649, 1979.

26A. Bazzani. Normal forms for symplectic maps on R2n. Celestial Mechanics,
42:107—128, 1988.

17



27E. Forest, M. Berz, and J. Irwin. Normal form methods for complicated
periodic systems: A complete solution using Differential algebra and Lie
operators. Particle Accelerators, 24:91, 1989.

28M. Berz. Calculus and numerics on Levi-Civita fields. In M. Berz, C. Bischof,
G. Corliss, and A. Griewank, editors, Computational Differentiation: Tech-
niques, Applications, and Tools, pages 19—35, Philadelphia, 1996. SIAM.

29M. Berz. Analysis auf einer nicht-Archimedischen Erweiterung der reellen
Zahlen. Report (in German) MSUCL-753, Department of Physics, Michigan
State University, 1990.

30M. Berz. Analysis on a non-Archimedean extension of the real numbers.
Lecture Notes, 1992 and 1995 Mathematics Summer Graduate Schools of the
German National Merit Foundation. MSUCL-933, Department of Physics,
Michigan State University, 1994.

31K. Shamseddine and M. Berz. Exception handling in derivative computation
with non-Archimedean calculus. In M. Berz, C. Bischof, G. Corliss, and
A. Griewank, editors, Computational Differentiation: Techniques, Applica-
tions, and Tools, pages 37—51, Philadelphia, 1996. SIAM.

32K. Shamseddine and M. Berz. Non-Archimedean structures as differentiation
tools. In Proceedings, Second LAAS International Conference on Computer
Simulations, pages 471—480, 1997.

33J. F. Ritt. Integration in Finite Terms - Liouville’s Theory of Elementary
Methods. Columbia University Press, New York, 1948.

34J. F. Ritt. Differential Equations from the Algebraic Viewpoint. American
Mathematical Society, Washington, D.C., 1932.

35E. R. Kolchin. Differential Algebra and Algebraic Groups. Academic Press,
New York, 1973.

36R. H. Risch. The problem of integration in finite terms. Transactions of the
American Mathematical Society, 139:167—189, 1969.

37R. H. Risch. The solution of the problem of integration in finite terms. Bul-
letin of the American Mathematical Society, 76:605—608, 1970.

38R. H. Risch. Algebraic properties of elementary functions of analysis. Amer-
ican Journal of Mathematics, 101 (4):743—759, 1979.

39W. F. Feehery and P. I. Barton. A differentiation-based approach to dynamic
simulation and optimization with high-index differential-algebraic equations.
in: Computational Differentiation: Techniques, Applications, and Tools, M.
Berz, C. Bischof, G. Corliss, A. Griewank (Eds.), SIAM, 1996.

40M. Berz, C. Bischof, A. Griewank, G. Corliss, and Eds. Computational Differ-
entiation: Techniques, Applications, and Tools. SIAM, Philadelphia, 1996.

18



41A. Griewank and G. F. Corliss, editors. Automatic Differentiation of Al-
gorithms: Theory, Implementation and Application. SIAM, Philadelphia,
1991.

42M. Berz. Computational Differentiation, Entry in ’Encyclopedia of Computer
Science and Technology’. Marcel Dekker, New York, in print.

43J. Abate, C. Bischof, L. Roh, and A. Carle. Algorithms
and design for a second-order automatic differentiation mod-
ule. In Proceedings, ISSAC 97, Maui, 1997. also available at
ftp://info.mcs.anl.gov/pub/tech_reports/reports/P636.ps.Z.

44C. Bischof and F. Dilley. A compilation of automatic differentiation tools.
http://www.mcs.anl.gov/autodiff/AD_Tools/index.html. www html page.

45M. Berz. Forward algorithms for high orders and many variables. Auto-
matic Differentiation of Algorithms: Theory, Implementation and Applica-
tion, SIAM, 1991.

46M. Berz. The Differential algebra FORTRAN precompiler DAFOR. Technical
Report AT-3:TN-87-32, Los Alamos National Laboratory, 1987.

47M. Berz. Differential algebra precompiler version 3 reference manual. Techni-
cal Report MSUCL-755, Michigan State University, East Lansing, MI 48824,
1990.

48M. Berz and G. Hoffstätter. Computation and application of Taylor poly-
nomials with interval remainder bounds. Reliable Computing, 4(1):83—97,
1998.

49K. Makino and M. Berz. Remainder differential algebras and their applica-
tions. In M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors, Compu-
tational Differentiation: Techniques, Applications, and Tools, pages 63—74,
Philadelphia, 1996. SIAM.

50M. Berz and G. Hoffstätter. Exact bounds of the long term stability of weakly
nonlinear systems applied to the design of large storage rings. Interval Com-
putations, 2:68—89, 1994.

51J. B. Conway. Functional Analysis. Springer, 1990.

52M. Berz. Higher Order Derivatives and Taylor Models, Entry in ’Encyclopedia
of Optimization’. Kluwer, Boston, in print.

19


