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ABSTRACT

BEAM DYNAMICS CHARACTERIZATION AND UNCERTAINTIES IN THE MUON
g-2 EXPERIMENT AT FERMILAB

By

David Alberto Tarazona

The first measurement of the positive muon magnetic anomaly, aµ ≡ (gµ − 2)/2, from

the Fermi National Accelerator Laboratory (Fermilab) Muon g-2 Experiment (E989) yielded

an experimental relative uncertainty of 0.46 ppm, which combined with the previous mea-

surement from the Brookhaven National Laboratory (BNL) Muon g-2 Experiment (E821)

differs from the current Standard Model (SM) prediction by 4.2 standard deviations. In

contrast to E821, the goal of the experiment at Fermilab is to deliver a measurement of

the anomaly to a precision of 0.14 ppm or less in order to reach more than 5σ discrepancy

with the SM and, therefore, strongly establish evidence for new physics. In view of this

stringent determination, a thorough description of the delivery, storage, and dynamics of

the detected muon beam sets the stage for constraining beam-dynamics driven effects to the

muon magnetic anomaly at the ppb level. To that extent, this dissertation introduces the

background, principles, and beam requirements of E989; elaborates data-driven numerical

models of the Beam Delivery System and Muon g-2 Storage Ring at Fermilab; characterizes

the linear and nonlinear dynamics of the muon beam in the storage ring; and describes the

contributions to the quantification of the largest beam-dynamics systematic corrections and

their uncertainties in the experiment derived from this work.
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Chapter 1

Introduction

Our current understanding of elementary particles from which the physical Universe is made,

and the interactions among them, has led to the Standard Model of particle physics (SM).

Nearly all the constituent parts of this theory and its implications have been validated ex-

perimentally over the last five decades, being the observation of the Higgs boson at CERN’s

Large Hadron Collider (LHC) a contemporaneous example. Despite its remarkable success,

the evidence of physics beyond the frontiers of the Standard Model (e.g., the hierarchy prob-

lem and dark matter) demands high-precision completeness tests. In particular, the muon’s

g-factor, or equivalently the anomalous magnetic moment a ≡ (g − 2)/2, has served as a

sensitive physical quantity for this purpose. A known discrepancy between experimental

measurements and the Standard Model prediction of the muon’s anomalous magnetic mo-

ment “aµ” would serve as unambiguous evidence of as yet undiscovered particles beyond the

Standard Model and perhaps validate or disprove other theoretical models beyond the SM.

The Muon g-2 Experiment at Fermilab (E989) aims at measuring the anomalous mag-

netic moment of muons with total statistical and systematic fractional errors of 140 ppb or

less. This experiment is the consummation of a series of experiments initiated in 1957 [1],

in which longitudinally polarized muons from the π → µ → e weak-decay channel offer

a path to determine the anomalous magnetic moment. Over this period of time, several

machines—i.e., cyclotrons [2,3], a synchrocyclotron [4,5], and storage rings [6–8]—have been
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employed for this purpose. The objects of study of this dissertation are the beam dynamics

at the Muon g-2 Storage Ring and, additionally, the Beam Delivery System (BDS) that

produces the highly polarized muon beam at Fermilab. Specifically, the combination of

high-fidelity numerical models, mathematical methods, measurements, and data analysis

detailed throughout Chaps. 2-4 allowed for a detailed beam performance analysis during

the commissioning stages of the BDS and beam measurements understanding, operational

characterization of the g-2 storage ring, and quantifications of systematic corrections.

The following sections of this chapter introduce the main concepts concerning the muon’s

anomalous magnetic moment, as well as the experimental technique implemented at Fermi-

lab’s g-2 experiment for the determination of aµ; at the end, the beam dynamics requirements

to achieve the goals of the muon g-2 experiment are discussed.

1.1 The Anomalous Magnetic Moment

In classical electrodynamics [9], the magnetic field associated to localized and steady current

distributions j at an observation point r far outside from the source can be expressed as a

Taylor expansion, where the non-zero leading term yields1

B(r) = ∇×
(
µ0

4π

m× r

r3

)
. (1.1)

The term µ0 corresponds to the magnetic permeability, whereas the vector m is the magnetic

dipole moment (or magnetic moment within this context)

m =
1

2

∫
d3r r × j(r). (1.2)

1SI units are used throughout this document, unless otherwise specified.
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A particle with charge q, mass m, and located at r′ has an associated current density of

j(r) = qvδ(r − r′). (1.3)

Thus, its orbital magnetic moment in terms of the orbital angular momentum L′ = mr′×v

can be defined as

mL =
q

2m
L′. (1.4)

This proportionality between the dipole moment and angular momentum remains in the

domain of quantum mechanics. From the union between special relativity and quantum

mechanics, Dirac’s equation of a “S” spin-1/2 elementary particle (e.g., electrons, muons,

and taus) under the influence of an external electromagnetic field [10] predicts a spin magnetic

moment equal to

mS = g
q

2m
S. (1.5)

Within the realm of Dirac’s equation, the g-factor in Eq. (1.5) is exactly equal to 2. This

theoretical achievement successfully explained early spin measurements such as the Stern-

Gerlach experiments [11] from which, in spin terms proposed for the first time by Compton

[12] and Uhlenbeck-Goudsmit [13], the g-factor of the electron was found to be g ≈ 2 [14].

However, as the precision g-factor measurements increased over the years, deviations of

fractions of a percent away from Dirac’s prediction g = 2 were clearly observed in hyperfine-

structure and subsequent experiments [15, 16]. Table 1.1 shows recent experimental g-2

values of charged leptons.

With g-factors being initially contrasted with Dirac’s equation, it became customary since

then to refer to the relative deviation from the g = 2 expectation back then as the anomalous
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Table 1.1: Recent g-2 values of charged leptons, taken from [17] and [18]. Tensions between
g-2 values from experiments and theory have been the main motivation of g-2 experiments.

g-2 Relative uncertainty

e 0.002 319 304 361 82(52) 2.6× 10−13

µ 0.002 331 841 8(13) 6.3× 10−10

τ -0.036(34) 1.8× 10−2

magnetic moment, namely:

a ≡ g − 2

2
. (1.6)

Nowadays, the origins of the “anomalous” magnetic moment are explained to a more

detailed extent by accounting for radiative corrections within the Standard Model of par-

ticle physics framework, as presented next. In particular, the SM prediction of the muon’s

anomalous magnetic moment relevant for the goals of the muon g-2 experiment at Fermilab

is summarized.

1.1.1 Muon g-2 from the Standard Model

In essence, the Standard Model encompasses all known contributions to aµ from quantum

fluctuations in the form of intermediate elementary particles, i.e., radiative corrections. As

the muon’s spin-1/2 field interconnects with the external electromagnetic field as theorized

by quantum electrodynamics (QED), perturbation theory allows for a serial loop-by-loop

description of the corresponding muon-photon interaction in the SM. Each of these loops can

be represented via Feynman diagrams as shown in Fig. 1.1, where intermediate (or virtual)

particles contribute to the muon-photon interaction,2 also known as the QED vertex.

The anomalous magnetic moment is calculated from the Standard Model from the ma-

2It is customary to dub anti-muons (µ+) as “muons” in the Muon g-2 Collaboration. The same convention
is adopted throughout this document.
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Figure 1.1: QED vertex perturbative loops represented with Feynman diagrams. The inter-
action described by Dirac’s equation is represented in the 0th-order loop diagram shown in
(a). In (b), the first-order loop contributes α/2π to aµ [15]. The diagram in (c) represents all
the other higher order contributions to aµ of virtual particles coupling to leptons or photons.

trix element describing the physical process within the loop. In general, it contains two

independent form factors that specify the parameters of the interaction (see Fig. 1.1(c)).

Specifically, for higher order loops, the SM predicts that in the limit of the photon’s momen-

tum being zero in the QED vertex, one of these form factors directly defines the anomalous

magnetic moment. Thus, by renormalizing the QED vertex with the perturbative higher

order terms, a precise calculation of aµ is established from the theory side. It is worth

mentioning that the higher order loops contribute to aµ in proportion to the virtual particle

and muon masses, mV and mµ respectively, as (mµ/mV )2. Even though electrons are more

accessible in the laboratory than muons, the latter are preferred since—given the muon-to-

electron ratio (mµ/me)
2 ≈ 4.3 × 104—they are four orders of magnitude more sensitive to

interactions with heavier virtual particles.

The theoretical contributions to aµ from the Standard Model are typically characterized

as follows:

aSMµ = a
QED
µ + aEWµ + aHV Pµ + aHLbLµ , (1.7)
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where a
QED
µ and aEWµ result from quantum electrodynamics and electroweak interactions,

respectively. The other two terms, aHV Pµ and aHLbLµ , are the hadronic vacuum polarization

and hadronic light-by-light contributions which make up the contribution from hadronic

interactions. Next, each of these components is discussed.

The QED contribution: a
QED
µ

Quantum electrodynamics encapsulates about 99.994 % of the aSMµ prediction and results

from lepton and photon interactions. Schwinger calculated the first-order loop [15] (see

Fig. 1.1(b)) contribution a
QED,1
µ in terms of the fine structure constant α = e2/4π (in

natural units where ε0 = c = ~ = 1):

a
QED,1
µ =

α

2π
≈ 0.00116. (1.8)

The other non-dominant higher order terms are further calculated with higher powers of α,

comprising contributions from more involved loops where numerous virtual lepton-photon

interactions take place. Expressed as a perturbation expansion,

a
QED
µ = a

QED,1
µ +

∞∑
n=2

a
(2n)
µ

(α
π

)n
. (1.9)

Since |α| � 1, the contribution to a
QED
µ becomes negligible for higher n orders.

Kinoshita et al. undertook the exceptional effort of computing up to tenth-order QED

contributions [19], where over 12,000 Feynman diagrams containing up to 5 loops were in-

volved:

a
QED
µ = 116584718.931(104)× 10−11. (1.10)
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The result in Eq. (1.10)—limited by the measurement of α—has been verified independently

and is well established, contributing to the associated δaSMµ error the smallest amount.

The contribution from electroweak interactions: aEWµ

Contributions to aSMµ from electroweak interactions account for the smallest value among

the other forces. Being mediated by the exchange of charged W , Z, and H neutral bosons

as shown in Fig. 1.2, the relatively large masses lead to terms suppression (i.e., 0.0001 %

of a
QED
µ ). In Fig. 1.2, leading order (LO) EW processes are shown; Feynman’s diagram

𝜇 𝜇

𝛾

𝜇 𝜇

𝛾

𝑍! , 𝐻!

(b)(a)

𝜈"

𝑊# 𝑊#

Figure 1.2: Lowest order (a) and (b) largest EW contributions to aSMµ .

(a) illustrates the exchange of a virtual Z0 or H0 boson, closely resembling the LO QED

interaction. On the other hand, the interaction depicted in Fig. 1.2(b) corresponds to the

emission and recapture of a positively charged W boson and a muon neutrino, being the

largest contribution to aEWµ . The LO contributions from W and Z bosons result to be:

a
EW (LO)
µ ≈

GFm
2
µ

8
√

2π2

1

3

[
2 +

(
mW

mZ

)2
]
, (1.11)

where GF is Fermi coupling constant. Processes with Higgs-boson exchange are negligible

due to its relatively large mass. Second-order EW processes make up a small component
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part of aEWµ , of about −40× 10−11 [20]. In total [21],

aEWµ = 153.6(1.0)× 10−11. (1.12)

The contribution from hadronic interactions: aHV Pµ + aHLbLµ

In QED, the Standard Model is compelling in calculating processes to energy scales of inter-

est, and the perturbation expansions largely converge. Nevertheless, when the contribution

involves quantum chromodynamics (QCD) interactions via quarks, a power expansion in

terms of the strong coupling constant αs alone does not lead to convergence at low energies.

Consequently, hadronic contributions to aSMµ dominate its uncertainty. Hadronic processes

relevant in this context are typically broken into two components, namely, the hadronic vac-

uum polarization (HVP) and light-by-light (HLbL) terms (aHV Pµ and aHLbLµ , respectively).

The lowest order HVP diagram shown in Fig. 1.3 dominates the hadronic contribution

and its associated error. Virtual hadron energies in these processes are below the perturbative

𝜇 𝜇

𝛾

(a) (b)
𝜇 𝜇

𝛾

had

had𝛾 𝛾

𝛾

𝜈!

Figure 1.3: Feynman diagrams of the LO hadronic vacuum polarization (HVP) and light-
by-light scattering (HLbL).

region of QCD (pQCD). For this reason, dispersion relations (R) from experimental data are
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required in addition to pQCD in order to calculate the LO hadronic contribution to aSMµ :

a
HV P,LO
µ =

(αmµ

3π

)2
∫ ∞
m2
π

K(s)R(s)ds for R ≡ σtot(e
+e− → hadrons)

σ(e+e− → µ+µ−)
, (1.13)

where s is the energy (E =
√
s), K(s) a known function, and σ’s are cross sections. In

Eq. (1.13), perturbative QCD can be used at larger energies instead of data-driven input.

A number of experiments—BaBar, BELLE, KLOE, VEPP, and BES3— provide the exper-

imental data to calculate the cross sections for all final states [23, 24]. The leading HVP

contribution comes from the π+π− channel, and yields in total [22]:

aHV Pµ = 6845(40)× 10−11. (1.14)

In the light-by-light hadronic contribution to aSMµ , processes involving four virtual pho-

tons coupled to a hadronic state as shown in Fig. 1.3(b) are computed. Since no aid from

data-driven dispersion relations as for the HVP contributions can be applied to HLbL inter-

actions, low-energy hadronic models with relatively large associated errors are needed [20].

HLbL terms represent around 2% of the overall hadronic aµ-contribution; however, it ac-

counts for about 40% of its error. A contemporaneous value for HLbL contributions to aSMµ

was established by a collaboration of theorists under the name “Glasgow consensus” [25]. In

it, several alternative and model-dependent approaches were accounted for, and a detailed

discussion of the consensus can be found in [20]. The accepted value from HLbL processes

is [26]:

aHLbLµ = 92(18)× 10−11. (1.15)

3Detailed references to these experimental efforts can be found in [22].
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Another strategy for quantifying hadronic effects is lattice QCD [22]; an established

method for first-principle calculations of certain simple hadronic observables. However, HVP

is a multi-scale quantity and hence not as simple as other quantities for which lattice calcula-

tions have been performed with sub-percent precision. The SM contributions aforementioned

follow the guidance from the Muon g-2 Theory Initiative [22] of a reliable theory prediction.

The above component parts of aSMµ are added together to encapsulate from the theory

side

aSMµ = 116591810(43)× 10−11. (1.16)

With this prediction determined to a relative precision of 369 ppb, the search for tensions

between aSMµ and the experimental muon’s anomalous magnetic moment embodies the spirit

of Fermilab’s muon g-2 experiment. Next, contemporaneous comparisons between theoretical

and experimental anomalous magnetic moments of the muon are presented.

1.1.2 Muon g-2: Theory versus experiment

The symbiosis between theoretical formulations posterior to Dirac’s g = 2 prediction and

experimental measurements of g-factors has been the main driver of muon g-2 experiments

during the last decades [1], culminating in the Muon g-2 experiment at Fermilab. After

Schwinger, motivated by observations of an unexpectedly large hydrogen’s hyperfine struc-

ture [15], formulated the first radiative correction of the g-factor beyond Dirac’s equation,

the work proposed by Lee and Yang on parity violation from decays mediated by the weak

force [27] paved the way to go beyond g = 2 with muons from the experimental front. Since

then, a consecutive series of experimental and theoretical improvements has led to the ten-

sion between the world average measurement and the prediction shown in Eq. (1.16) that
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Fermilab’s g-2 experiment aims to settle down.

Figure 1.4 shows the tension between recent SM predictions of aµ together with the mea-

surement performed at Brookhaven National Laboratory (BNL) from years 1997 to 2001 [8]

and the latest measurement at E989 from 2018 (i.e., Run-1) [28]. Fermilab result is the most

Figure 1.4: Difference between the theoretical (green) and most recent measurements of
aµ [28]. The inner tick marks indicate the statistical contribution to the total uncertainties.
The theoretical value follows the recommendation from the Muon g-2 Theory Initiative [22].
The ×4 smaller experimental error goal at Fermilab requires twenty times more statistics
and systematic uncertainties reduced by a factor of ' 3.

precise measurement of the anomalous magnetic moment of the muon. The experimental

technique employed during this experiment, presented in Sec. 1.2, followed the same princi-

ples as in the g-2 experiment at BNL. With a combined precision of 350 ppb from E821 and

the first E989 measurement (Run-1), the experiment average is

a
Exp
µ = 116592061(41)× 10−11. (1.17)

The experimental result deviates from the current theoretical by a significance of 4.2σ, being
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σ the fractional error associated to the difference [22]

∆aµ = a
Exp
µ − aSMµ = (251± 59)× 10−11. (1.18)

Consequently, the result prompts numerous formulations beyond the Standard Model and

further experiments toward explaining and validating the discrepancy.

From the theoretical side, a first lattice result at sub-percent precision (∼ 0.7 %) was

reported by the BMW Collaboration [29] at the time of this dissertation. Their result is in

2σ tension with the data-driven evaluation, but with a systematics-dominated uncertainty.

Independent lattice calculations with comparable errors are required in order to test and

validate the results, due to the intricacy of the computations needed for these efforts. These

calculations are a high priority for the Theory Initiative, thus, are expected to take place in

the near future [22].

From the experimental side, the muon g-2 experiment at Fermilab was proposed to reduce

BNL’s experimental error by a factor of about 4 (see Fig. 1.4), allowing for a significance

in the discrepancy more prominent than 5σ—if the central theory and experiment values

remain unchanged—that could lead to fundamental breakthroughs. This amount of data is

expected to be collected and analyzed by the fiscal year 2023.

1.2 The Muon g-2 Experiment at Fermilab: Experi-

mental Method

In the search for evidence of new physics, muon g-2 experiments have made use of longitudi-

nally polarized muons to measure their anomalous magnetic moment. Fermilab’s muon g-2

12



experiment (E989) aims at extracting this quantity experimentally by counting the number of

high-energy positrons over time from the µ+ → e+νeν̄µ weak-decay channel. With the same

(and significantly upgraded) machine and concept employed at the muon g-2 experiment at

Brookhaven National Laboratory (BNL) [8], a highly polarized muon beam produced along

the Muon Campus as part of Fermilab’s accelerator complex (see Chap. 2) is injected into a

storage ring [30] (see Chap. 3). The muon beam circulates the storage ring for hundredths of

microseconds until all of them have decayed. At the same time, specialized detection systems

measure positrons from muon decay and characterize the injected beam and magnetic guide

field for systematic error assessment.

In this section, the experimental technique to measure the anomalous magnetic moment of

the muon is presented. A brief overview of the systems directly involved in the experimental

technique and beam dynamics measurements is also included. The other components of the

g-2 storage ring are presented in Chap. 3 together with corresponding numerical models of

them for beam dynamics studies and beam tracking simulations.

1.2.1 The anomalous muon precession frequency ωa

Ideally, muons with magic momentum p0 = mµc/
√
aµ perfectly injected into the g-2 storage

ring would circulate around centered orbits of radius r0 ≈ 7.112 m, perpendicular to a

perfectly uniform vertical magnetic field ~B0 = (p0/er0) ŷ. Under such circumstances, the

spin and cyclotron frequencies [30], ~ωs and ~ωc respectively, at which the muon’s spin and

momentum rotate in the laboratory frame would be equal to

~ωs = −g e
~B0

2mµ
− (1− γ0)

e ~B0

γ0mµ
and ~ωc = − e ~B0

γ0mµ
. (1.19)
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In Eq. (1.19), g, e, γ0, and mµ are the g-factor, electric charge, ideal Lorentz factor, and

mass of the muon, respectively. The adjective magic for the momentum case p0 denotes the

convenient case in which the electric fields used to confine muons in the vertical direction

of the muon g-2 storage ring do not directly introduce additional spin precessions in the

cyclotron frame (see Eq. (1.30), where the term with the electric field ~E involved vanishes

for muons with magic momentum, i.e., δ = ∆p/p0 = 0).

For this case, a frequency of the spin relative to the muon’s direction of motion, known

as the anomalous precession frequency, can be well defined:

~ωa ≡ ~ωs − ~ωc = −aµ
e ~B0

mµ
. (1.20)

This direct relation between ~ωa and aµ in Eq. (1.20) is the foundation of Fermilab’s muon

g-2 experiment; a careful measurement of ~ωa is tantamount to a precise measurement of the

muon’s anomalous magnetic moment.

Without any radiative corrections, aµ would be equal to zero, and the relative angle

between momentum and spin in the storage ring would not change. However, as this is not

the case, the anomalous magnetic moment introduces a frequency of ωa ≈ 4.37µs (i.e., about

one revolution every 29.33 turns around the storage ring).

The anomalous precession frequency is measured by exploiting parity violation in the

µ+ → e+νeν̄µ weak-decay channel. In the muon’s rest frame, a positron with the highest

possible energy (i.e., with momentum p′e
∗
max ≈ 53 MeV/c) is produced when the two neutri-

nos are parallel to each other. On the other hand, parity violation in weak decays constraints

the spin and momentum directions of the nearly massless emitted neutrino(anti-neutrino) to

be anti-aligned(aligned) (i.e., ±1 helicity). Consequently, conservation of angular momen-
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tum implies that the emitted positron fully inherits the muon’s intrinsic angular momentum.

Therefore, since the weak interaction couples with the right-handed part of the positron, its

emission occurs preferentially in the direction of the muon spin. In more general terms, from

V -A theory [31], the differential decay distribution of positrons from µ+ → e+νeν̄µ in the

muon’s rest frame (given the positron’s energy much larger than its rest mass) is equal to:

dP (y′, θ′) ∝ n′(y′)
[
1 +A(y′) cos θ′

]
dy′dΩ′. (1.21)

Here, dΩ′, y′, and θ′ are the solid angle, fractional momentum of the positron p′e/p
′
e max,

and angle between the positron-momentum and muon-spin directions, respectively. The

quantities n′(y′) and A(y′) are given by:

n(y′) = 2y′2(3− 2y′) and A(y′) =
2y′ − 1

3− 2y′
. (1.22)

Both n′(y′) and A(y′) increase for higher y′ values, which translates into decay positrons

emitted along the muon’s spin direction being a more probable process, especially for y′ ≥ 0.5.

In the laboratory frame, a Lorentzian boost of Eq. (1.21) yields a time-dependent number

of decay positrons from a muon beam proportional to:

Ne(t, E) ∝ e−t/γτNe0(E) [1 + Ae(E) cos(ωat+ ϕ0(E))] , (1.23)

where

Ne0(E) ∝ (y − 1)(4y2 − 5y − 5) , Ae(E) = P−8y2 + y + 1

4y2 − 5y − 5
, y =

E

Emax
, (1.24)
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Figure 1.5: Number of positrons from a highly polarized muon beam (P = 0.95) decaying
via µ+ → e+νeν̄µ, subject to the positron energy E in the laboratory frame and ignoring the

exponential term e−t/γτ . The energy distribution oscillates as the muon beam polarization
rotates relative to the beam’s direction of motion with an angular frequency ωa independent
of time. The black curve corresponds to the polarization parallel to momentum, whereas the
blue and red curves show the energy distribution when these two directions are perpendic-
ular and anti-parallel to momentum, respectively. Arrows on the top-right corner illustrate
polarization directions relative to momentum direction (gray), with the same color scheme
as the curves. The oscillation is statistically maximized when integrating above ∼ 1.8 GeV.

E is the positron energy in this frame and P is the muon beam polarization. γτ ≈ 64.44µs

is the dilated muon lifetime and Emax ≈ 3.1 GeV the maximum positron energy in the

laboratory frame for magic-momentum muons. Ignoring the exponential term, Fig. 1.5

illustrates the oscillation of Ne(E) for a highly polarized muon beam.

In the experiment, positrons above a threshold energy Eth are selected to maximize the

statistical power of the detected number-of-positrons signal:

N(t, Eth) = N0(Eth)e−t/γτ [1 + A(Eth) cos(ωat+ ϕ0(Eth))] , (1.25)
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where

N0(Eth) ∝ (yth − 1)2(−y2
th + yth + 3) , A(Eth) = P yth(2yth + 1)

−y2
th + yth + 3

, (1.26)

and yth = Eth/Emax. When a fitting of the form of Eq. (1.25) is performed to data collected

as shown in Fig. 1.6, the threshold energy that minimizes the statistical fractional error,

inversely proportional to
√
NA2 [32], is Eth ≈ 1.8GeV, where detectors acceptance and

energy resolution play a role. Additional effects from detection acceptance must be included

in Eq. (1.25) to obtain a reasonable χ2-value when fitting collected data for a clean extraction

of ωa [33].
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Figure 1.6: Number of positrons above energy threshold detected at Fermilab’s muon g-2
experiment, Run-1.
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1.2.2 Muon g-2 detection systems

A set of 24 calorimeter detectors equidistantly distributed along the inner part of the storage

ring has the primary purpose of measuring ωa. By measuring the energy and arrival time of

positrons, calorimeters count the number of positrons over time produced by the muon beam

as it decays while circulating the storage ring. This way, the modulated signal as shown in

Fig. 1.6 is obtained for the subsequent extraction of the anomalous precession frequency.

Each calorimeter station is composed of 25 mm × 25 mm × 140 mm crystals made of

PbF2 and arrayed in a 9(wide) : 6(tall) grid [34]. The depth of the crystals (140 mm)

equals about 13 radiation lengths, allowing for stopping positrons effectively. The energy

deposited by the positrons into the crystal lead-fluoride material excites e+e− production,

from which short-pulsed Cherenkov light is emitted. The total amount of light bounces

toward Silicon PhotoMultipliers (SiPMs), where photons hit electrons in pixels that then

cascade into a measurable current (and posteriorly amplified multiple times). The emanated

digitized pulses are fitted to get a peak time and pulse integral, proportional to the positron’s

arrival time and energy, respectively.

In order to fulfill the precision goals of the ωa measurement, calorimeters have to distin-

guish light showers separated by 5 ns or more with 100% efficiency and must support a time

resolution smaller than 100 ps of the short-pulsed signals. The systematic uncertainty associ-

ated with the pileup of two low-energy positrons entering a PbF2 crystal with similar impact

times and being recorded as one signal is reduced with such requirements. Since the time-

arrival measurement is taken from positrons above a specific energy threshold, an energy

resolution of 5% at 2 GeV is sufficient. Furthermore, a laser calibration system guarantees

residual gain stability while correcting gain drifts during the measurement time window.
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In addition to the calorimeter detectors aimed to measure the anomalous precession

frequency, the muon g-2 experiment at Fermilab possesses supplementary detection systems

to characterize the spatial and temporal distributions of the injected muon beam. On the

one hand, the beam profile (together with its intensity and relative arrival time) is measured

upstream of the entrance to the storage ring with a SiPM and photomultiplier tubes (PMTs)

attached to a scintillator [35]. On the other hand, an inflector beam monitoring system

(IBMS) of three scintillating-fiber retractable detectors—placed nearby the hole in the ring’s

magnet yoke through which the beam enters the ring—provides beam profile measurements

in the transverse plane (i.e., 2D space spanned by unit vectors êx and êy, where êx is a

horizontal vector perpendicular to the idealized direction of the beam motion ês, and êy

points vertically upward such that ês × êx = êy) during beam injection for beam-tuning

purposes [36]. Furthermore, a set of two “fiber harp” detectors, each made of seven parallel

scintillating fibers, measures the profiles of the beam in both horizontal and vertical directions

when inserted into the storage region of the ring [37].

Of particular importance in the context of the work presented in this thesis is the Muon

g-2 straw tracking detection system [38]. Its ability to measure the transverse beam profile

non-destructively at two azimuthal locations of the ring4 allows for a thorough determination

of the muon beam dynamics along the entire ring and, moreover, the reconstruction of

unmeasured guide fields under special conditions as described in detail in Chap. 3. Its main

principle to resolve the transversal coordinates of a muon is to reconstruct its position before

decay based on the detected trajectory of the corresponding decay positron.

A straw tracking station consists of eight detector modules in series (see Fig. 1.7), where

4A third station is probable to be installed in the fiscal year 2021 or afterward for the remaining data-
taking g-2 runs at Fermilab.
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four layers of 32 straws of 5 mm in diameter are grouped in pairs of two and oriented at

±7.5◦ away from the vertical to resolve vertical locations. The straws are coated with gold

on their inner wall and grounded to act as a cathode, in conjunction with a 25µm-thick wire

made of gold-plated tungsten and placed along the straw axis. A positive high voltage of

1.625 kV is applied across the wires to create a cylindrical electric field. As decay positrons

cross the straws, argon gas trapped inside is ionized along their path. The released electrons

form an avalanche strongly attracted by the electric field towards the wire in the center,

inducing a detectable signal. A quench gas (i.e., ethane) is also added to a 1:1 ratio with the

argon gas in the interior of the straws to avoid secondary avalanches originated beyond the

positron trajectory, which would add false track signals to the main readouts. Additionally,

a small amount of water is confined inside the straws to help reduce their aging. A fitting

algorithm extrapolates the momentum and time back to the muon decay position.

(a) (b)

Figure 1.7: (a) Straw tracking station and (b) a detector module [38].
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Figure 1.8: Muon g-2 storage ring housed at Fermilab. The steel yokes and superconduc-
tive coils crossed thousands of miles from Brookhaven National Laboratory to Fermilab for
extended use. After the first data-taking period at Fermilab, the storage ring magnet was
covered with thermal insulation to reduce temperature gradients that affect the uniformity
of the magnetic field.

1.2.3 The muon g-2 magnetic field

In concert with the anomalous precession frequency measurement, the magnetic field utilized

at E989 [39] to induce this precession must be known to a precision of 70 ppb or less in order

to achieve the experimental goals.

A vertical magnetic field of p0/er0 ≈ 1.4513 T is supplied by four circular superconducting

coils operating at about 5200 A [30], exciting the g-2 Storage Ring magnet (See Fig. 1.8)

which is built as one continuous superferric magnet made of mainly six layers of high-quality

magnet steel and two pole pieces as shown in Fig. 1.9. With the yoke steel manufactured

for the muon g-2 experiment at BNL being reused at E989, the physical parameters of the

g-2 storage ring magnet are unchanged (see Table 1.2). Nevertheless, the magnetic field

shimming at E989 for the first data-taking runs achieved a uniformity of the magnetic field
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Figure 1.9: Cross section of the storage ring magnet. The yoke is made of six layers of
magnet steel with an open side to allow for positrons from muon decay to reach the inner
side of the ring. A total of twelve of these sections assembled together provide a continuous
and ultra-uniform magnetic field within the pole’s gap, where the stored muon beam revolves
for several thousands of turns. Passive and active shimming via surface currents, thousands
of pieces and around the muon storage region, and other movable pieces of the storage ring
magnet allow to calibrate and further reduce inhomogeneities of the magnetic field in the
storage region [40].

improved by a factor of two [41].

A network of pulsed nuclear magnetic resonance probes (pNMR) is used to measure

the magnetic field in the muon storage region [40]. An RF magnetic field rotates the net

magnetization of protons in petroleum jelly samples inside the pNMR probes by π/2 rad with

respect to the mostly vertical magnetic field from the storage ring. By virtue of the Larmor

precession of spins under the influence of an external magnetic field, the magnetization

rotates around the storage ring’s B-field with a Larmor frequency ωL = geB/2m until

relaxing back to equilibrium, parallel to the external field. The ‘free induction decay’ signal
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Table 1.2: Magnet parameters of the g-2 storage ring.

Parameter Value
Design magnetic field 1.45 T
Design current 5200 A
Design orbit radius 7.112 m
Nominal gap between poles 18 cm
Iron mass 682 tons
Magnet self-inductance 0.48 H
He-cooled lead resistance 6µΩ
Warm lead resistance 0.1 mΩ
Yoke height 157 cm
Yoke width 139 cm
Pole Width 56 cm

corresponding to this relaxation is read out by pickup coils embedded inside the pNMR

probes. These signals provide a 10 ppb-precision measurement of the Larmor precession

frequency, which in turn yields the magnetic field at the location of the material sample

within the probe.

A set of 17 pNMR probes distributed across a trolley, as shown in Fig. 1.10, periodically

measures the magnetic field in the storage region of the ring. When the Muon Campus at

Fermilab is not delivering the beam to the muon g-2 experiment, rails around the storage ring

guide the trolley around the storage region to capture local variations of the magnetic field.

For the conversion from petroleum jelly to free proton Larmor frequencies and calibration

of the trolley probes, a ‘plunging’ pNMR probe with water as the proton sample is used

[42]. Additionally, 378 fixed probes distributed along the ring’s azimuth (see Fig. 1.9) are

constantly taking data, even during muon beam storage, to interpolate data recorded by the

trolley.
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Figure 1.10: Array of pNMR probes installed in the trolley (white circles), used to pe-
riodically measure the magnetic field in the storage region. Fixed probes installed above
and below the storage region (shown in Fig. 1.9) are used to interpolate the magnetic field
data between trolley runs. The heat map represents a typical sample of the magnetic field
from trolley data fitted with a multipole expansion, within the storage region and averaged
azimuthally along the ring [39]. The color legend units are Tesla.

1.3 Beam Dynamics: Requirements

1.3.1 Polarization and beam production performance

It is essential for the muon g-2 experiment to control and minimize the statistical and

systematic uncertainties of the anomalous magnetic moment measurement. The need of

sufficient number of positrons that compose the data (Fig. 1.6) to deliver a ωa measurement

to a statistical precision of 100 ppb or less sets the statistical minimum limit. In a method

with energy thresholds as in Eq. (1.25), such statistical error δε [30] is subject to the beam
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polarization P of the injected muon beam via the asymmetry (A in Eq. (1.26)):

δε =

√
2ωa

τµ
√
NA2

. (1.27)

As explained in Sec. 2.3.2, the muon beam production across the Muon Campus at Fermilab

exploits parity violation in the π → µνµ decay which, constrained by the momentum accep-

tance, transports longitudinally polarized muons through the beamlines. A highly polarized

muon beam is therefore expected to be injected into the storage ring. However, while muons

exponentially decay at different locations of the beam delivery system, the coupling between

the muon production location and beamline elements distribution along the Muon Campus

can potentially affect the resulting beam polarization. These latent imprints on P and other

possible sources of de-polarization are presented in Chap. 2 as well as the beam production

performance, to which the stored positrons rate in the storage ring is bounded.

From the systematic-errors front, correlations between beam polarization and other dy-

namic variables can lead to apparent ωa shifts, caused by the so-called “g-2 Phase” ϕ0 in the

functional form “f(t)” used to extract the anomalous precession frequency from data (see

Eq. (1.25)):

f(t) ∝ cos (ωat+ ϕ0) . (1.28)

The g-2 phase represents the overall muon beam angle between spin and momentum at

injection time. Besides positron detection effects, stored muons that do not contribute to an

expected calorimeter signal—due to them being lost by hitting instrumentation during data

collection—can potentially introduce a time-dependent g-2 phase. If the individual phases

of these “lost muons” are not equal to each other and, additionally, are correlated with an
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observable Z, the corresponding apparent ωa can be quantified:

∆ωa(t) =
dϕ0(t)

dt
=

dϕ0

d〈Z〉

∣∣∣
t0

d〈Z(t)〉
dt

. (1.29)

Lost muons favoring specific values of Z yield a nonzero ∆ωa(t) if dϕ0/d〈Z〉 6= 0. Section 4.2

presents the contribution to this systematic error by taking the momentum of the muons as

the observable Z in data-driven simulations of the beam delivery system and storage ring.

1.3.2 Beam characterization along the entire storage ring

The g-2 straw tracker detectors permit to precisely determine several properties of the beam

circulating the storage ring (see Sec. 1.2.2). With the broad transverse acceptance at the

tracker locations, a small spatial resolution of a few millimeters, and a time resolution of less

than 3.4 ns, it is possible to measure the beam widths, centroids, and longitudinal decoher-

ence on a run-by-run basis. Nevertheless, such information is limited to the locations where

the two trackers are placed, as shown in Fig. 1.11. For this reason, in order to characterize

the beam behavior along the whole azimuthal extension of the ring for quantifying beam-

dynamics-related systematic errors, a dedicated model of the storage ring is appropriate for

this purpose.

The g-2 storage ring is a rather weakly focusing system on which a mismatched muon

beam is injected, occupying most of the 45 mm storage aperture. Moreover, in addition to

coherent betatron oscillations due to beam-ring mismatch, the ppm-level inhomogeneities of

the vertical magnetic field and sub-mm misalignments of electrode plates used for vertical

beam focusing originate millimetric azimuth-dependent distortions of the closed orbit around

which the beam revolves the ring. In principle, these features together with∼ 2% beam width
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Figure 1.11: Horizontal (left) and longitudinal (right) acceptances of the two g-2 straw
tracker detector stations [43]. Each tracker station reads decay vertexes along azimuthal
segments of ≈ 0.4 mrad, whose maximum acceptance peaks are positioned at about 1 m
upstream of the modules.

longitudinal variations of hundredths of microns across the ring do not significantly affect

the g-2 measurement to first order. However, due to the tight systematic-error budget of the

experiment, the aforementioned transverse variations of the stored muon beam need to be

accounted for.

In particular, the coupling between the g-2 phase and detection acceptance [44] introduces

a phase dependence on time when the beam moments exhibit coherent drifts (especially the

vertical beam width, which strongly couples to the calorimeter muon efficiency). During the

first official run of the experiment, this was the case as a consequence of damaged instru-

mentation [45]. A method that takes the beam profile measured by the straw tracker and

calorimeter detectors as input and provides a full reconstruction of the time-dependent elec-

tric guide fields during the first g-2 run is elaborated in Chap. 4. With the reconstructed fields

and the storage ring model explained in Chap. 3, a full characterization of the muon beam

is delivered, which is critical to the determination of the aforementioned largest systematic
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uncertainty for the first g-2 official results.

Another relevant case is the magnetic field that plays a role in the anomalous magnetic

moment (see Eq. (1.20)). In E821, it was calculated by averaging a multipole expansion of the

magnetic field—azimuthally averaged and from representative NMR trolley runs [8]—with

the muon distribution moments. Though this approach does not account for the entangle-

ments between azimuthal variations of the muon distribution and the magnetic field, the

associated systematic error is negligible compared to the statistical error from E821 [46].

But for the muon g-2 experiment at Fermilab, the targeted systematic uncertainty of the

muon-weighted magnetic field is 10 ppb or less, demanding a different approach. In Chap. 4,

a method to calculate the magnetic field experienced by muons at E989 is presented together

with related systematic-error studies.

1.3.3 Momentum spread and vertical motion

In terms of the magnetic ( ~B) and electric ( ~E) guide fields within the storage ring, the

anomalous precession frequency ωa is the precession frequency of the muon beam polarization

[47, 48] relative to its momentum in the lab frame, which can be defined for the muon g-2

experiment at Fermilab as:

ωa = |〈~ωS − ~ωC〉| =

∣∣∣∣∣− e

mµ
aµB̃ +

e

mµ
aµ

〈(
γ

γ + 1

)
(~β · ~B)~β +

(
1− 1

(1 + δ)2

) ~β × ~E

c

〉∣∣∣∣∣ ,
(1.30)

where ~ωS and ~ωC are the spin and cyclotron frequencies, respectively, γ the Lorentz factor, ~β

the velocity in speed-of-light units, and δ the momentum offset relative to magic momentum

p0 = mµc/
√
aµ. Under conventional g-2 storage ring settings, ωa is treated as the first term

on the right-hand side of Eq. (1.30) (aka g-2 frequency) with the explicit addition of the so-
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called “E-field” (Ce) and “pitch” (Cp) corrections, whose standard expressions are derived

from Eq. (1.30) [30,49] (see Fig. 1.12):

ωa = ωa0
(
1 + 〈∆ωea/ωa0〉+

〈
∆ω

p
a/ωa0

〉)
≈ ωa0

(
1− Ce − Cp

)
, (1.31)

where ωa0 = −(e/mµ)aµB̃ and B̃ is the muon-weighted magnetic field [39].5 In Eqs. (1.30)
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Figure 1.12: Illustrations of the pitch (left) and E-field (right) corrections. The pitch cor-
rection emerges mainly from the transverse vertical motion of muons in the lab frame; the
standard pitch correction becomes non-negligible at E989 for the typical vertical oscillations
maintained by the storage ring (i.e., . 2 mrad vertical tilt angles relative to the horizontal
midplane). In the E-field correction, the spin of muons away from the magic momentum
p0 = mµc/

√
aµ experiences rotations mostly contained in the transversal plane as expressed

in the last term of Eq. (1.30). The momentum acceptance δ ∼ 0.5% and the electric field,
Ey ∼ 6 kV/cm at 4 cm from the ideal orbit, provided by the Electrostatic Quadrupole sta-
tions (ESQ) contribute to an overall vertical precession frequency of about 400 ppb opposite
to the nominal g-2 frequency.

and (1.31), the delimiters 〈〉 denote quantities averaged over the stored muons.

At present, the amount e/mµ in Eq. (1.31) contributes to an uncertainty of about 26 ppb

[17], while the magnetic field experienced by muons at E989 is expected to be measured to

5Indirect ωa biasing from the g-2 time dependencies due to muon loss “Cml” and phase acceptance “Cpa”
effects, introduced in this section, can also be added to Eq. (1.31) similar to Ce and Cp.
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a precision of 70 ppb or less. On the other hand, the E-field and pitch corrections lower the

nominal frequency ωa by a non-negligible level of the order of tenths of ppm. The standard

formulae of these corrections are given by [30,49]

Ce =
n0β

2
0

1− n0
2
〈
δ2
〉

(1.32)

and

Cp =
n0

2ρ2
0

〈
y2
〉
, (1.33)

where the subscript 0 denotes the nominal case of a muon with magic momentum and no

betatron amplitudes. The field index n0 = −(39/90)(ρ0/vBy)∂Ey/∂y is the effective field

index commonly used in the muon g-2 collaboration [50], which is proportional to the nominal

orbital radius ρ0 ≈ 7.112 m and the axial focusing gradient ∂Ey/∂y. Figures 1.13 and 1.14

illustrate typical relative-momentum and vertical beam spreads, which yield corrections in

the order of CE → O(400 ppb) and Cp → O(200 ppb). However, several assumptions are

#

Figure 1.13: Sample of the muon spread distribution from Fast Rotation analysis [45].

needed to be imposed in order to get the standard equations (1.32) and (1.33), including
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Figure 1.14: Vertical beam profile from the tracking detection system [45].

• continuous electrostatic quadrupole stations (and thus no fringe fields),

• linear guide fields,

• harmonic transverse motion, and

• orbital muon frequencies beyond the ballpark g-2 frequency.

For the purpose of validating the standard E-field/pitch corrections and assessing any asso-

ciated systematic errors, direct calculations of ωa were carried out via nonlinear orbital and

spin tracking (see Chap. 4). Several of the assumptions to derive Ce and Cp were also tested

with simulated storage ring configurations.

Another effect from the beam dynamics front that introduces a considerable systematic

correction to Ce is the momentum-time correlation [51]. By construction, the overall mo-

mentum spread in Eq. (1.32) is obtained from the Fourier transform of the intensity signal
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(see Fig. 1.15) detected by calorimeters. When the relative time-of-flight and momentum

g-2Simulation

Figure 1.15: Beam transverse intensity from realistic storage ring simulations, referred as
the fast-rotation signal. Due to momentum spread, the range of cyclotron frequencies causes
high- and low-momentum muons to recombine as the beam decoheres in the longitudinal
direction. The cyclotron frequencies distribution is recovered from a Fourier transform,
which yield the momentum spread distribution (see sample in Fig. 1.13) for the E-field
correction.

coordinates of the muon beam are uncorrelated at the start time of the Fourier analysis,

all the cyclotron frequencies are equally weighted in the transformation as expected. Alas,

a momentum-time correlation breaks the symmetry, which potentially distorts the momen-

tum spread reconstruction for Ce. Correlations between momentum and times-of-flight in

the stored beam are a consequence of an imperfect injection kicker; the under-kicking of

high-momentum muons out of sync with the kicker-strength peaks favors them to end up

getting stored. The ringing of the kicking signal also dictates which muons are stored. With

a detailed modeling of the Run-1 injection kicker as well as beam collimation and realis-

tic parameters of the storage ring, the momentum-time distribution—unmeasured at the

time of this dissertation—is calculated (Sec. 3.5.4) and allows for Ce systematic correction

quantifications.
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Chapter 2

The Beam Delivery System (BDS)

2.1 Introduction

The number of recorded high-energy positrons from muon decay in the g-2 storage ring at

E989 is required to increase by a factor of 20 with respect to E821. The Fermilab Muon

Campus E989 beam delivery system (BDS), which is a series of 1 km long beamlines between

the pion production target and the entrance of the Muon g-2 Storage Ring (SR), is designed

to meet the statistical goal and deliver (0.5–1.0)×105 highly polarized muons to the storage

ring per 1012 protons that arrive at the pion production target.

On the other hand, the relative statistical uncertainty in the experimental aµ is inversely

proportional to the muon beam polarization (see Eq. (16.6) in [30]). Thus, it is worth

studying the effect of nonlinearities and performing spin dynamics simulations. In addition,

due to the momentum acceptance (i.e., relative momentum range that a machine can sustain)

of about ± 0.5% in the storage ring, it is of interest to numerically evaluate the dynamical

properties of the muon beam as it is delivered to the storage ring.

Motivated by these reasons, a model of the E989 beamlines [52] was developed to re-

produce numerical simulations of the muon beam’s statistical performance and dynamical

behavior, including spin using COSY INFINITY [53, 54]. In particular, the transport effi-

ciency of secondary protons, pions, daughter muons from pion decay, and muons produced
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right at the entrance of the E989 beamlines downstream of the pion production target is ad-

dressed in these high-statistical simulations. Nonlinear effects due to standard fringe fields,

up to fourth-order beam dynamics, spin dynamics, beam collimation, and misalignments of

the multiple BDS beamline elements are examined.

This chapter begins with a description of the Muon Campus E989 beam delivery sys-

tem. Then, details of the beam dynamics simulations throughout the E989 beamlines from

the production target to the storage ring entrance and beam performance results modeling

nonlinear effects are described.

2.2 The E989 Beam Delivery System (BDS)

The main purpose of the E989 beamlines analyzed in simulations, depicted in Fig. 2.1, is to

deliver a clean muon beam with “magic momentum” p0 ∼ 3.094 GeV/c (see Sec. 1.2.1) to the

storage ring. Batches of four bunches made of 1012 protons each are directed to an Inconel-

600 “pion production” target—an alloy of iron, chromium, and nickel—located at the AP0

target hall (a long-existing building of the accelerator complex at Fermilab), from which

positive secondary particles emerge. The main components and beamline sections of the

Fermilab Muon Campus E989 beam delivery system (BDS) are the aforementioned target

station, the M2/M3 beamlines, the Delivery Ring, and the M4/M5 beamlines, described

next.

2.2.1 The pion production target station

The Pre-Accelerator, Linac, Booster, MI-8 line, and Recycler as part of the Fermilab Ac-

celerator Complex deliver 8.9 GeV/c protons to the Pion production target station, which
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Figure 2.1: A schematic layout of the beam delivery system (BDS). Secondary particles
(mostly pions, muons, and protons) downstream of the target station at AP0 are canalized
through the M2/M3 lines and injected into the Delivery Ring (DR), where protons are
discarded and most of the remaining pions decay after four turns. A cleaner beam of mostly
muons is extracted to the M4/M5 lines and ultimately delivered to the Muon g-2 Storage
Ring (SR).

is the already existing target station that was in operation for antiproton production prior

to the Tevatron Collider shutdown but repurposed for pion production. Figure 2.2 illus-

trates the proton pulses per cycle. A magnetic quadrupole triplet focuses the proton pulses

1400 ms

10 ms 197 ms 1063 ms

Figure 2.2: Time structure of the 1012-, 120 ns-pulse train impinging the production target
per cycle [55].

upstream of the production target to a transverse size of about 150µm to minimize beam

loss [56]. 30 cm downstream of the Inconel 600 production target, a 160-kA current flowing
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through a lithium cylinder provides a 232 T/m strong magnetic gradient around the optical

axis (i.e., the ideal trajectory of the beam around which beamline elements are positioned) to

transversely focus the secondary particles that emerge from the target. Thereafter, a pulsed

magnet called “PMAG” with a field of 0.53 T selects 3.115 GeV/c ±10% positive particles

and bends them 3 ◦ up, towards the 50 m long M2 line.

2.2.2 M2/M3 beamlines

Encompassing a total of 50 m of beamlines, starting from the lithium lens and leading to the

intersection with the M3 line further downstream, the M2 beamline collects the pions sepa-

rated by the PMAG and is designed to transport magic-momentum muons with momentum

and transverse acceptance1 of ±2% and 40 mm.mrad, respectively, from pion decay. The M3

beamline, a ∼ 230 m section of mainly focusing/defocusing quadrupole magnets and bending

insertions, shares the same goal as the M2 line in order to deliver a beam composed of mostly

pions, muons, protons that bypass the production target, and other secondary particles to

the Delivery Ring. The optical lattice of the M2/M3 beamlines is shown in Fig. 2.3, which,

together with the beamline apertures and post-target beam conditions, dictate the number

of particles that enter the Delivery Ring (see Fig. 2.4).

To assess the transport performance of the beam throughout the beamlines, Courant-

Snyder α, β, and γ parameters are commonly used [58]. Of particular interest are the β

and η functions which characterize the beam transverse2 width and dispersion,3 respectively

1Similar in concept to the momentum acceptance previously defined, the transverse acceptance (or ad-
mittance) is the maximum sustainable area of a particle beam in transverse phase space (spot size and
divergence) within the limiting apertures of a beamline.

2The word transverse denotes the direction perpendicular to the main direction of the beam motion,
parallel on average to the so-called optical axis.

3The letter D is also used to symbolize the dispersion function.
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Figure 2.3: M2/M3 beta and dispersion functions. The horizontal dispersion (solid green
line) originated by the pulsed magnet at the start of the M2 line is canceled out by a
switch dipole 50 m downstream, whose large pole width accommodates the beam to enter
the M3 line. At around 170 m, the 100 m FODO channel (i.e., an alternating-gradient ar-
rangement of magnetic quadrupoles focusing(defocusing) and defocusing(focusing) in the
horizontal(vertical) direction) is interrupted by two horizontal bends (18.3 ◦) to align the
optical axis with the downstream beamline and a quadrupole triplet to cancel out horizontal
dispersion. On the right-hand side of the plot, the optical functions reflect the geometric and
optical matching section to transport the beam to the Delivery Ring, elevated approximately
4 ft above from the M3 line.

(for more details, see Eqs. (3.53) and (3.57)). These functions are calculated with COSY

INFINITY [53] by transporting the initial values α0, β0, and γ0—which are calculated from

the beam spot size and divergence at 0.723 m upstream of the PMAG—in the horizontal

direction x, as follows from the explicit transformation of the invariant ellipse defined by the

Courant-Snyder parameters [59,60]:


βx(s)

αx(s)

γx(s)

 =


(x|x)2 −2(x|x)(x|a) (x|a)2

−(x|x)(a|x) (x|x)(a|a) + (a|x)(x|a) −(x|a)(a|a)

(a|x)2 −2(a|x)(a|a) (a|a)2




βx0

αx0

γx0

 . (2.1)

The vertical Courant-Snyder parameters (denoted with subscript y) are transformed in

37



0 50 100 150 200 250
7−10

6−10

5−10

4−10

3−10

2−10

's+p
's+π

<2%δ's +π
<0.5%δ's +π

's+µ
<2%δ's +µ
<0.5%δ's +µ

2.29×10!"

1.24×10!#

1.05×10!"

8.64×10!"

2.72×10!$

1.55×10!%

2.19×10!"

s[m]

N
o.

 o
f P

ar
tic

le
s 

pe
r P

O
T

Figure 2.4: Number of muons, µ+, pions, π+, and protons, p+, per proton on target (POT)
along the M2/M3 beamlines. The horizontal axis represents the longitudinal distance of the
optical axis. Main muon losses of about 11% and 20% take place at the 18.5 ◦ horizontal bend
(s ∼ 160.0 m) and along the vertical injection upstream of the DR (s ∼ 280.0 m), respectively.
The star-shaped marker around s ∼ 235 m depicts the number of total particles per POT
from measurements (Fig. 3 in [57]).

a similar way as in Eq. (2.1), where the variable s denotes the longitudinal distance along

the optical axis relative to the coordinates of the initial Courant-Snyder parameters. The

elements inside the transformation matrix are linear components of the transfer map (see

Eqs. (2.2) and (2.3)), calculated from the beamline settings during Run-1 of the muon g-2

experiment as 
x(s2)

a(s2)

δ

 =


(x|x) (x|a) (x|δ)

(a|x) (a|a) (a|δ)

0 0 (δ|δ)




x(s1)

a(s1)

δ

 , (2.2)
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
y(s2)

b(s2)

δ

 =


(y|y) (y|b) (y|δ)

(b|y) (b|b) (b|δ)

0 0 (δ|δ)




y(s1)

b(s1)

δ

 . (2.3)

In Eqs. (2.2) and (2.3) and throughout this document, x and y are the horizontal and vertical

positions relative to the optical axis, a = px/p0 and b = py/p0, where p0 is the reference

momentum (in this case the magic momentum) and px, py correspond to the momentum

perpendicular to the optical axis. The variable δ = ∆p/p0 symbolizes the momentum offset.

Due to the absence of electrostatic fields along the BDS, δ is a constant of motion. On the

other hand, the correspondence between dispersion functions and linear matrix components

is as follows:

ηx = (x|δ) , ηy = (y|δ). (2.4)

2.2.3 The Delivery Ring (DR)

At the end of the M3 line, a series of magnets involving a C-magnet, a pulsed magnetic

septum dipole, and kicker modules, inject the beam to the Delivery Ring (DR) after a

vertically upward bend of about 5.7 ◦. Through the 505 m of circumference of the DR,

previously used as a debuncher ring and now reconditioned for the muon g-2 experiment,

the remaining pions have enough time to decay into mostly muons as they circulate four

times before being extracted into the M4 line (see Fig. 2.5). The DR also allows protons to

longitudinally separate from the other lighter particles by a rate of 75 ns per turn [56]; this

feature lets a 180 ns rise-time kicker within the DR to safely remove the protons after the

fourth turn. The optical functions βx, βy, ηx, and ηy of the DR using COSY INFINITY are

shown in Fig. 2.6. An arrangement of FODO cells fills all the sections of the DR, interrupted
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Figure 2.5: Number of muons, µ+, pions, π+, and protons, p+, per proton on target (POT)
along four turns around the Delivery Ring. The design momentum acceptance of 2% reveals
naturally in beam tracking simulations when accounting for the beamline apertures present
in the DR. All pions decay prior to the third turn along the DR.
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Figure 2.6: Beta and dispersion functions at one three-fold symmetric section of the delivery
ring (DR) where the longitudinal distance of the beamline is shown in the horizontal axis.
Fringe fields modeled in simulations change the beta functions, βx and βy, by less than 3%.
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by a series of 22 rectangular magnets at each of the three-fold symmetric sections from which

horizontal dispersion and spin-momentum beam correlations are originated. The betatron

tunes in the DR are approximately equal to 9.78 in both horizontal and vertical directions,

whereas the associated chromaticity of the DR sections is balanced by sextupole magnets.

2.2.4 M4/M5 beamlines

After four turns around the Delivery Ring, a system of two kicker magnets at a bending-free

section of the DR and parallel to the M3-line end extracts the beam radially outwards into the

M4 beamline. The beam is further bent upwards with a set of three vertical bending magnets

to reach a final elevation of 0.81 m with respect to the Delivery Ring. 30 m downstream, a

beam composed of mostly |δ| < 2% muons (see Fig. 2.8) crosses the last 100 m of the BDS,

i.e., the M5 beamline. Around s ∼ 70 m in Fig. 2.7, the radial dispersion introduced by

horizontal bending magnets (27.1 ◦ deflection) to align the beam towards the muon g-2

storage ring entrance is shown. At the end of the M5 beamline, four tunable sections with

four quadrupole magnets provide the appropriate configuration to maximize the stored beam

fraction [61].
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Figure 2.7: M4/M5 lattice functions calculated with COSY INFINITY. The design of the
M4/M5 beamlines favors losses minimization.
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Figure 2.8: Number of muons, µ+, per proton on target (POT) along the M4/M5 beamlines.
The pale-rose dashed line depicts muons within the muon g-2 storage ring momentum accep-
tance. For g-2 runs posterior to Run-1, the insertion of passive wedge absorbers in the BDS
maximized the muon population within |δ| < 0.5% to increase the stored beam fraction [62].

2.3 Realistic Modeling of the BDS

With a package dedicated to the design and analysis of particle optical systems as part of

COSY INFINITY [53], high-order transfer maps M calculated with Differential-Algebraic

(DA) methods to compute the flow of the beam optics Ordinary Differential Equations

(ODEs) are prepared to recreate the beam dynamics along the BDS. By defining the sec-

ondary particles beam downstream of the pion production target as an array of scaled coor-

dinates

~z = (x, a, y, b, l, ~δ), (2.5)
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BDS beam tracking simulations are performed via

~zf =M(~z0). (2.6)

In Eq. (2.6), the transfer map can represent a single beamline element (e.g., a “quadrupole

magnet” with magnetic potential VB ∝ xlym where {l,m} = {0, 1, 2} and l+m = 2 for beam

focusing/defocusing, a “bending magnet” with uniform magnetic field for beam steering, a

“magnetic sextupole” for the control of chromatic aberrations [59], or “drifts” with no guiding

fields present), a segment, or a set of beamline elements of the BDS, which transforms the

vector ~z from the longitudinal position s0 to sf . In Eq. (2.5), l = −(t−t0)v0γ0/(1+γ0).4 For

BDS beam tracking simulations using COSY INFINITY, the vector ~δ contains the kinetic

energy and rest-mass offsets (δK and δm, respectively) relative to the magic-momentum

muon.

Tracking simulations of the E989 beamlines start with an initial distribution at the exit

of the pion production target from a MARS [63] simulation of 109 protons on target [64].

Protons, positive pions, and positive muons from the target and pion decay (see 2.3.2) are

tracked down and collimated by the BDS beamline physical apertures (see 2.3.1). Simulations

of the BDS were carried out in parallel computing on clusters from the Department of Physics

and Astronomy at Michigan State University.

4The subindex “0” corresponds to a reference ray with ~z = ~0, lab-frame speed v0, time-of-flight t0, and
Lorentz factor γ0.
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Table 2.1: Second-order transfer map of the Delivery Ring. The first five columns correspond
to (x|, (a|, (y|, (b|, and (l|, whereas the last column indicates (j1, j2, . . . , j7) in that order.
For instance, in the ninth row, first column, the (x|xa) coefficient is displayed.

(x| (a| (y| (b| (l| j1j2j3j4j5j6j7
5.9525950E-01 2.6487970E-01 0.0000000E+00 0.0000000E+00 2.8760050E-05 1000000
-4.6900250E+00 -4.0703700E-01 0.0000000E+00 0.0000000E+00 -1.8329100E-04 0100000
0.0000000E+00 0.0000000E+00 -1.6020400E+00 2.8708540E-01 0.0000000E+00 0010000
0.0000000E+00 0.0000000E+00 -1.4857920E+01 2.0383330E+00 0.0000000E+00 0001000
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.0000000E+00 0000100
2.5779670E-05 -3.6843670E-05 0.0000000E+00 0.0000000E+00 -7.5443060E+00 0000010
8.7984830E-07 -1.2574580E-06 0.0000000E+00 0.0000000E+00 -8.2662620E-01 0000001
9.3642760E-02 -1.3390570E-01 0.0000000E+00 0.0000000E+00 9.4620480E-02 2000000
-1.1940090E+00 1.7068280E+00 0.0000000E+00 0.0000000E+00 -5.8103630E-01 1100000
3.8058830E+00 -5.4386960E+00 0.0000000E+00 0.0000000E+00 -7.5259510E-01 0200000
0.0000000E+00 0.0000000E+00 -5.3148190E-01 -4.6300560E-01 0.0000000E+00 1010000
0.0000000E+00 0.0000000E+00 -7.2282930E+00 3.1733130E+00 0.0000000E+00 0110000
-1.2017650E+00 2.1644980E-01 0.0000000E+00 0.0000000E+00 6.4741360E-02 0020000
0.0000000E+00 0.0000000E+00 -7.4658000E+00 -3.6324400E+00 0.0000000E+00 1001000
0.0000000E+00 0.0000000E+00 -7.5726850E+01 3.3803910E+01 0.0000000E+00 0101000
-1.8049540E+01 5.3450280E+00 0.0000000E+00 0.0000000E+00 3.2265500E+00 0011000
-5.8702240E+01 3.1994630E+01 0.0000000E+00 0.0000000E+00 1.8204650E+01 0002000
5.4167760E-01 -7.6876660E-12 0.0000000E+00 0.0000000E+00 -1.5090600E-01 1000010
-3.6210540E+00 -6.3519760E-01 0.0000000E+00 0.0000000E+00 9.6209290E-01 0100010
0.0000000E+00 0.0000000E+00 -3.2449130E+00 6.6236000E-01 0.0000000E+00 0010010
0.0000000E+00 0.0000000E+00 -1.0385800E+01 3.8754890E+00 0.0000000E+00 0001010
1.8487210E-02 -2.6237660E-03 0.0000000E+00 0.0000000E+00 -5.1503210E-03 1000001
-1.2358490E-01 -2.1679010E-02 0.0000000E+00 0.0000000E+00 3.2835580E-02 0100001
0.0000000E+00 0.0000000E+00 -1.1074740E-01 2.2606050E-02 0.0000000E+00 0010001
0.0000000E+00 0.0000000E+00 -3.5446260E-01 1.3226870E-01 0.0000000E+00 0001001
-6.7526670E-02 9.6723460E-02 0.0000000E+00 0.0000000E+00 -1.1706210E+00 0000020
-4.6092790E-03 6.6022130E-03 0.0000000E+00 0.0000000E+00 1.0019550E+00 0000011
-7.8671320E-05 1.1268670E-04 0.0000000E+00 0.0000000E+00 -2.4413610E-01 0000002

2.3.1 Beamline elements

The transfer maps M contain the Taylor coefficients to track each of the zi components of

a ray ~z as follows:

zi,f =
∑
j1

· · ·
∑
j7

(zi |xj1 aj2 yj3 bj4 lj5 δ
j6
K δ

j7
m )x

j1
0 a

j2
0 y

j3
0 b

j4
0 l

j5
0 δ

j6
K δ

j7
m . (2.7)

The summations go from ji = 0 up to the chosen map order. As an example, Table 2.1

displays the Delivery Ring transfer map (without fringe fields accounted for).
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To assess the statistical performance of the beam across the BDS, transfer maps representing

∼ 20 cm segments of beamline elements are prepared. In between these sections, specific

routines eliminate particles with spatial coordinates beyond the transverse apertures of the

BDS beamline elements. Beamline apertures of the BDS take multiple shapes, e.g., circular,

rectangular, elliptical, and more involved geometries to accommodate the large transverse

acceptance for the muon g-2 experiment, as those present in most of the BDS quadrupole

magnets.

2.3.2 Muon production from pion decay

COSY-based modules were implemented in the BDS tracking simulations to account for the

following particle decays:

µ+ → e+ + νe + ν̄µ , π+ → µ+ + νµ. (2.8)

Even though the former case (muon decay) is the main channel through which ωa is ex-

perimentally measured in the muon g-2 storage ring, its impact on the beam performance

along the BDS is minimal; due to the relatively long muon lifetime in the moving frame,

γ0τµ ≈ 64.5µs, compared to the longitudinal extent of the BDS (about 2.4 km when the

beam circulates the DR four times), most of the muons emitted near the production target

reach the end of M5 unless they hit a beamline element. Furthermore, injected positrons

do not survive for more than 4µs inside the muon g-2 storage ring [65]; thus, positrons are

neglected in the studies presented here.

On the other hand, the π+ → µ+νµ decay requires more attention as most of the muon

beam emerges via this channel, and its kinematics dictates the muon beam polarization [66].
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Parity violation of the π+ → µ+νµ weak decay constraints the spin and momentum directions

in the pion rest frame of the emitted neutrino to be anti-aligned (i.e., −1 helicity). Therefore,

conservation of angular momentum implies that the emitted muon is completely polarized

in the pion rest frame.

From two-body kinematics, the constant decay-muon momentum p∗µ and energy E∗µ in

the pion rest frame are well defined (c = 1):

p∗µ =
(m2

π −m2
µ)

2mπ
, E∗µ =

(m2
π +m2

µ)

2mπ
(2.9)

where mπ and mµ are the pion and muon rest masses, respectively.5 In the laboratory

frame where the longitudinal axis is parallel to the pion’s momentum prior to decay, a

Lorentz transformation yields the longitudinal pL and transverse pT components of the

muon momentum in this frame as follows:

pL = γπ(βE∗µ + p∗ cos θ∗) , pT = p∗ sin θ∗ (2.10)

where θ∗ is a random number, γπ corresponds to the pion’s Lorentz factor and βπ = vπ/c

in the lab frame (v is the speed as observed in the lab frame). To express the decay-

muon direction in terms of a and b for numerical simulations (see Eq. (2.7)), pT is randomly

decomposed into two orthogonal directions and, together with pL, transformed to the optical

axis frame:

aµ =
1

p0

f
pL

√
1−

(
bπ

1 + δπ

)2

− pT cosα
bπ

1 + δπ

+ pT sinα

√
1− f2

 (2.11)

5The neutrino mass has been approximated to zero
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Figure 2.9: Momentum spread of the muon beam after four turns around the Delivery Ring.
The momentum acceptance sustained at the BDS beamlines allows for the preparation of a
highly polarized muon beam (P=0.969 from BDS simulations).

bµ =
1

p0

pL bπ
1 + δπ

+ pT cosα

√
1−

(
bπ

1 + δπ

)2
 (2.12)

In Eqs. (2.11) and (2.12), α is a uniformly random angle and the subindex “π” denotes zi

coordinates of the pion in the optical frame. The factor f is equal to

f =
bπ√

(1 + δπ)2 − b2π
. (2.13)

The new muon’s momentum offset δµ is axiomatically defined from Eqs. (2.10):

δµ =
√
p2
L + p2

T /p0 − 1. (2.14)
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From the muon polarization side, the transverse component of the velocity four-vector is

invariant under Lorentz transformation. Consequently, in the optical coordinates the muon

polarization is given by

Sx = SLaµ − ST cos (α) aµbµ + ST sin (α) (2.15)

Sy = SLbµ + ST cos (α) (2.16)

Sz = SL − ST cos (α) bµ − ST sin (α) aµ, (2.17)

where

ST =
pπmµ

pµmπ
sin θ∗ , SL =

√
1− S2

T (2.18)

are the transversal, ST , and longitudinal, SL, muon polarizations relative to the pion’s

motion in the lab frame. From Eq. (2.10) and on the other hand the limited momentum

acceptance throughout the Muon Campus (see Fig. 2.9), only decay muons with angles θ∗ in

the rest frame close to zero—i.e., forward muons—remain within the beamline channel, which

further constraints the transversal muon beam polarization ST yielding a highly polarized

muon beam at the end of the M5 beamline as shown in Fig. 2.10.

2.3.3 Nonlinear effects on beam performance

In addition to the linear description of the beam dynamics, COSY INFINITY allows the

computation of high-order effects of the beamline elements [54]. Specifically, particle co-

ordinates are calculated as shown in Eq. (2.7). BDS tracking simulations were performed

up to fourth-order terms. High-order effects on the beam population were studied with the

BDS model by computing the beam performance with and without high-order terms. In
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Figure 2.10: Histograms of the normalized muon beam spin components (in natural units) in
optical coordinates at the end of M3 (left), Delivery Ring (center), and M5 (right) beamline
sections. The polarization projections Px, Py, and Pz (parallel to the x, y, and s directions,
respectively) are shown inside the thick black frames. As indicated by the projection Py = 0,
the high polarization P of the beam is largely contained in the horizontal plane.

Table 2.2, the relative number of particles per species from the production target at the end

of the M3, Delivery Ring, and M5 beamlines is shown.

Table 2.2: Number of protons (p), muons (µ), and pions (π) along the BDS (quantities per
proton on target).

M3 exit DR exit SR entrance

µ’s 2.19× 10−6 1.04× 10−6 7.48× 10−7

µ’s (|δ| < 0.5%) 2.72× 10−7 2.85× 10−7 1.89× 10−7

π’s 1.55× 10−5 0 0

p’s* 1.24× 10−4 6.80× 10−5 5.86× 10−5

*Results for the case of proton removal at DR turned off.

Figure 2.11 shows the subtle effects of high-order terms (up to fourth) on the muon population

as well as pions as they decay. Such nonlinearities tend to reduce the number of muons/pions

as they are transported throughout the BDS; nevertheless, the repeated beam collimation,

especially across bending elements, washes out the mitigation. Even though the combination

of beamlines can accommodate at least 40πmm-mrad phase space, high-order effects do not

have a considerable effect on the muon beam population (see Table 2.4).
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Figure 2.11: Simulation results of the number of pions and muons with |δ| < 2% per POT
under up to fourth-order (o4) effects along the M2/M3 lines with fringe fields (FR) turned
on. The longitudinal distance along the M2/M3 lines is shown in the horizontal axis. As
depicted by the overlapping curves of the muon population for the two o1/o4 cases, linear
simulations do not significantly differ from results when high-order terms in the computation
of the particle dynamics are simulated.

Map computations of the fields at the longitudinal edges, also known as fringe fields, of

each beamline element are performed for the analysis of their impact on the beam perfor-

mance. The longitudinal-dependent tapering of the multipole strengths is modeled by a six

parameter Enge function (see Fig. 2.12):

F (z) =
1

1 + exp
(
a1 + a2 · (z/D) + · · ·+ a6 · (z/D)5

) (2.19)

where z is the distance perpendicular to the effective field boundary and D is the full aperture

of the particle optical element. The ai coefficients are taken by default based on measured

data from PEP at SLAC [54]; for such cases, the integrated multipole strengths along the
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optical axis of each beamline element remain the same as for simulations with hard-edge

modeling, guaranteeing this way reliability in the following comparisons between numerical

results with fringe field effects turned on and off.

-0.3 -0.2 -0.1 0.1 0.2 0.3
z

0.2

0.4

0.6

0.8

1.0

Figure 2.12: Enge function falloff of a typical dipole element in COSY INFINITY, used to
represent fringe fields in the BDS simulations. The aperture for this case is equal to 10 cm.

Fourth-order numerical calculations with and without fringe fields were implemented.

Figure 2.13 shows the differences between the two scenarios along the DR. After four turns

in the DR, simulations suggest a favorable contribution due to fringe fields on the muons

(i.e., 9.4% increase) and pion population. Downstream of the DR, simulation results show

an increase of 5.2% more muons at the entrance of the storage ring. Furthermore, fringe

fields have a larger contribution in the number of surviving muons than in pions; i.e., at the

end of the M3 line (s = 290 m)—where most of the pions still have not decayed—fringe fields

maintained 8.9% more muons on track whereas pion population at that location increased

by only 0.4%, which is within the ∼2% range of the simulations statistical error. Fringe

fields do not distort the Courant-Snyder parameters significantly, reflected in the modulated

distortion in beta functions which from calculations does not exceed 4% [67].
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Figure 2.13: Fringe field effects on the population of pions and muons along the delivery ring
(DR). The horizontal axis represents the longitudinal distance corresponding to four con-
secutive turns in the DR. From the COSY-based BDS model simulations, fringe fields (FR)
contribute to maintaining more pions within the apertures of the DR, which consequently
increase the population of muons by 9.4% before being extracted to the M4 line. The “o4”
abbreviation in the legend denotes the order of the computation (i.e., fourth order).

Misalignments also studied in our COSY-based BDS simulations are introduced by trans-

forming the transport maps that represent each beamline element. Transformations follow

randomly Gaussian-distributed horizontal and vertical misplacements with standard devia-

tions of 0.25 mm, introducing constant terms to the maps. A total of ten random misalign-

ment configurations of the beam delivery system initialized with different random seeds were

analyzed to obtain statistical ranges within which the beam performance would be expected

to occupy.

Figure 2.14 shows how the repercussions of misalignments under consideration could

accumulate as muons travel along the BDS, decreasing the number of muons that make it to

the end of M5. However, even though the overall misplacements of the beamline elements are
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Table 2.3: Relative difference in pion population at the end of the M3 beamline from fringe
field effects, up to fourth-order nonlinear terms, and random misalignments of beamline
elements (horizontal and vertical misplacements with standard deviations of 0.25 mm). Sta-
tistical errors in the last row are calculated based on numerical simulations with ten different
misplacement scenarios, initialized with independent random seeds.

M3 exit
Fringe Fields 0.4%
Higher order -9.6%
Misalignments -10.5±5.5%

small, the correctors along the beamlines are expected to mitigate such detrimental effect.

Tables 2.3 and 2.4 summarize the impact of high-order terms, fringe fields, and realistic

misalignments on the muon and pion population.

Table 2.4: Relative difference in muon population at the end of the M3, Delivery Ring (after
four turns), and M5 beamline sections from fringe field effects, up to fourth-order nonlinear
terms, and random misalignments of beamline elements (horizontal and vertical misplace-
ments with standard deviations of 0.25 mm). Statistical errors in the last row are calculated
based on numerical simulations with ten different misplacement scenarios, initialized with
independent random seeds.

M3 exit DR exit SR entrance
Fringe Fields 8.9% 9.4% 5.2%
Up to fourth order -1.9% -2.2% -1.7%
Misalignments -9.2±9.7% -27.5±16.2% -26.0±11.6%

2.3.4 Spin-orbit correlations

Fringe fields from the BDS beamline elements were also modeled in spin tracking simulations.

For the pion decay channel, the resulting muon beam polarization is calculated based on the

module explained in Sec. 2.3.2, thereafter tracked with COSY INFINITY’s DA mapping

methods.

The resulting polarization, shown in Fig. 2.10, is P = 0.97, in agreement with G4beamline

numerical simulations [56] which do not include fringe fields. Therefore, fringe fields do not
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Figure 2.14: Simulation results of the muon population with |δ| < 2% under the effects of
beamline misalignments along the M4/M5 lines. The number of muons per proton on target
(POT) is shown in the vertical axis as a function of the longitudinal distance along the
M4/M5 lines. The red line depicts the number of muons for the ideal case of no misalignments
present in the beam delivery system. The green band summarizes simulation results for
several scenarios of beamline elements randomly misaligned in both vertical and horizontal
directions.

interfere with the muon beam polarization. Another spin variable worth analyzing is the an-

gle between the spin vector projection in the horizontal plane and the reference optical axis,

ϕa, which resembles the phase that is indirectly measured in the storage ring (see Fig. 2.15).

The muon beam average precession frequency of this phase, ωa, plays an essential role in

the final measurement of aµ at E989, which implies a deep understanding of its evolution

as the beam circulates through the storage ring. In particular, the correlation between ϕa

and the Lorentz factor γ of a muon might result in a sub-ppm systematic effect of ωa.

High-momentum muons decay at a slower rate than low-momentum muons and, depending

on correlations between ϕa and γ, the overall precession ωa could shift as the muon beam

decays [68].
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Figure 2.15: Histogram of the muon spin projection angle in the horizontal plane with
respect to the reference optical axis at the storage ring (SR) entrance from simulations. The
beam delivery system (BDS) is designed to favor the capture of longitudinally polarized
muons from pion decay. However, as the muon beam travels through the bending sections
of the BDS—especially along the Delivery Ring which houses multiple rectangular bending
magnets—the polarization develops a transversal component before the beam is delivered to
the g-2 storage ring.

Tracking simulations were performed with and without fringe fields to study the effect of

fringe fields on the spin-momentum correlation mγ = d〈ϕa〉/dγ. For the case of fringe fields

turned on, simulations show a correlation mγ equal to 29.2±9.4 mrad after four turns around

the Delivery Ring as shown in Fig. 2.16. On the other hand, similar simulations without

fringe fields (conventional hard-edge model) indicate a correlation mγ = 92.1 ± 9.8 mrad.

This unexpected discrepancy on spin-momentum correlations apparently originated from

fringe field effects of the numerous magnetic beamline elements within the DR, especially

the rectangular bending magnets, is worthy of more detailed studies. Specifically, the large

error bars in Fig. 2.16 can be reduced by increasing the statistics in simulations. Moreover,

higher computational orders of the fields that represent the beamline elements in the BDS
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Figure 2.16: Beam average of the spin projection angle in the horizontal plane with respect
to the reference optical axis, 〈ϕa〉, versus the Lorentz factor, γ, at the exit of the delivery ring
after four turns. Simulation results presented in this figure correspond to our COSY-based
BDS model with fringe fields turned on.

COSY-based ring model could be implemented; in this way, the modeling of fringe fields

would encompass higher nonlinear effects.

2.4 Conclusions

A detailed model of the beam delivery system at E989 has been developed. Realistic features

based on DA methods such as fringe fields, high-order effects, and misalignments are included

to describe the statistical and dynamical performance of the secondary beam produced at the

pion production target. Simulation results suggest that fringe fields increase the number of
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muons that are delivered to the storage ring by ∼5%, whereas the muon beam polarization

is unaffected. However, spin-momentum correlations that could add systematic effects to

the final measurement of E989 due to differential decays are significantly affected by the

fringe fields from the rectangular dipole magnets of the delivery ring; further studies with

higher statistics and computational orders in simulations are necessary to confirm this effect.

Regarding high-order effects, our numerical studies indicate that they do not affect the

secondary beam performance along the BDS. In addition to the presented results, the COSY-

based model served to validate numerical calculations prepared by other members of the

muon g-2 collaboration and check the performance of the Fermilab Muon Campus E989

beam delivery system.
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Chapter 3

Beam Dynamics at the Muon g-2

Storage Ring

3.1 Introduction

With a high-fidelity characterization of the muon beam that gets stored inside the g-2 storage

ring, the ωa corrections driven by beam dynamics effects and the magnetic field experienced

by the stored beam can be assessed to the precision demanded by the experiment goals.

To first order, the periodic functions of the storage ring (i.e., α, β, and γ) together with

closed orbit distortions are used to describe the entire azimuthal behavior of the storage

ring, beyond the tracker detectors longitudinal acceptance. To higher orders, nonlinear

contributions of the storage ring guide fields drive betatron resonances, longitudinal beam

de-coherence, amplitude- and momentum-tune shifts, and betatron-amplitude modulations.

Furthermore, sensible modeling of the electric and magnetic fields in the ring storage volume

allows quantifying the periodic ring functions, as well as the nonlinear effects aforementioned.

For this characterization purpose, a detailed particle optical model of the Muon g-2 Stor-

age Ring [69] has been developed using a computational environment for various advanced

concepts of modern scientific computing with specialized application packages in COSY IN-

FINITY [53]. The package dedicated to the design and analysis of particle optical systems
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is employed for the modeling of the storage ring. Differential-algebraic (DA) map methods

in COSY INFINITY allow the preparation of transfer maps that describe the solutions of

storage ring beam optics ordinary differential equations (ODEs) for arbitrarily complicated

fields and to arbitrary order [54]. The manipulation of such transfer maps in COSY IN-

FINITY facilitates the characterization of the leading order and nonlinear properties of the

storage ring, as well as their action on the dynamics of the injected beam through repetitive

tracking. Map methods allow for the incorporation of all measured field effects for these pur-

poses and, in conjunction with COSY INFINITY’s parallel computation features, yield fast

high-statistics particle tracking in contrast to conventional orbit-integration beam dynamics

codes. Symplecticity is enforced in beam tracking with high-order transfer maps in COSY

INFINITY to ensure energy conservation and control error propagation [70].

Each of the optical elements that constitute the storage ring is represented by a time-

dependent transfer map, and their ordered multiplication via map methods result in the

assembly of the COSY-based storage ring model. The following elements are the main

components of the model (see Fig. 3.1):

1. The electrostatic quadrupole system. The electrostatic fields generated by each of the

eight sets of curved electrodes aligned with the design orbit are computed in COSY

INFINITY from the field information in the midplane, which was calculated using

conformal mapping methods [71]. The geometry of the electrostatic quadrupole sys-

tem (ESQ) is symmetric with respect to the horizontal midplane, allowing to recreate

the 3D electrostatic field immersed in the vertical magnetic field as a Taylor expan-

sion in transversal coordinates [72]. The coefficients of the expansion are automati-

cally computed to satisfy the Laplacian in curvilinear coordinates. The fringe fields

and the effective field boundary are modeled based on numerical calculations using
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Figure 3.1: Layout of the Muon g-2 storage ring at Fermilab. The four locations of the
ESQ are found next to labels “Q1-Q4” (each covering 39◦ azimuthally) and labels “K1-K3”
indicate the place of the injection kicker plates within the ring. “C” labels denote the beam
collimators arrangement.

COULOMB [71]. The map representation of the fringe fields is accurately computed

with DA methods in COSY INFINITY [72]. The modeling during the scraping and

time-dependent stages of the ESQ is handled with transfer maps of the mis-powered

ESQ electrodes combined with the maps that describe the main guide fields.

2. Injection kickers. The transversal kicker action on the injected beam is represented

via symplectic kicks proportional to the longitudinal lengths and characteristic time-

dependent strengths of the kickers. Particles within the beam experience the kick

individually at the azimuthal center of each kicker station, where the time-of-flight
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coordinates and turn number establish the degree to which their directions deviate.

3. Magnetic field data. The ppm-level magnetic field inhomogeneities measured by the

nuclear magnetic resonance (NMR) probes in the storage ring are fitted with transverse

multipole expansion functions to prepare segmented transfer maps of the magnetic field.

Magnetic multipole elements encompassing ∼ 2 mrad azimuthal sections throughout

the ring represented by such maps simulate the azimuthal dependence of the magnetic

field. These representations, together with symplectic kicks that recreate the lowest

order fits to magnetic field measurements, are superimposed over the uniform portion

of the guide fields automatically computed in 3D from the midplane information.

Aperture cuts are applied during repetitive tracking employing special commands of COSY

INFINITY’s beam physics package, where particles with transverse coordinates beyond the

circular apertures of the collimators inserted at specific locations of the storage ring are

flagged as lost. High-statistics numerical studies of muon loss rates of the stored muon beam

due to betatron resonances are computed with a short turnaround time based on the tools

described above. Numerous studies concerning the lowest order and nonlinear dynamics of

the muon beam and lattice properties of the storage ring have been performed, such as muon

capture efficiency, amplitude-dependent betatron tune shifts, muon beam characterization

(spin dynamics, distribution correlations, beam de-coherence, etc.), closed orbit distortions,

ring lattice parameterization, and systematic studies and correction calculations of the pre-

cession frequency ωa. The contributions to ωa where the output of the COSY-based storage

ring model played a direct role are presented in Chap. 4. In terms of the Beam Dynam-

ics framework, the main results—and some of them are considered intermediate in view of

beam dynamics-driven ωa and B̃ corrections— of the model are presented in Sec. 3.3 and 3.4
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from both the linear and nonlinear front. A nominal characterization (i.e., under nominal

operational settings) of the stored muon beam is delineated in Sec. 3.5, whereas the peculiar

behavior of the beam during the first official run of the g-2 storage ring (i.e., “Run-1”) is

described in Sec. 3.6.

3.2 The COSY-based Muon Storage Ring Model

Figure 3.2 illustrates the components, interrelations, and input of the COSY-based Muon

Storage Ring Model (or “COSY-based model” for short) as part of the muon g-2 experiment.

The main purpose of this model is to express the physics that dictates the dynamics of the

muon beam in practical terms, in order to use it for beam characterization (see Sec. 3.3-

3.6) and accurate calculations of beam-driven uncertainties (see Chap. 4) in the E989 main

measurement. To achieve a trustworthy beam-physics representation of the storage ring, the

COSY-based model heavily relies on precise measurements of its guide fields (or data-driven

reconstructions of them when not available) and realistic initial beam distributions.

Two initial beam distributions are prepared with different methods. The features of these

two inputs are described in Sec. 3.2.5 and 3.6.3.

The physics emerged from the implemented guide fields (see Sec. 3.2.1-3.2.3) is captured

as high-order transfer maps. For the preparation of these maps, the beam physics code

of COSY INFINITY integrates the ordinary differential equations of motion (ODEs) in

particle optical coordinates with an eighth-order Runge-Kutta integrator over a differential

algebra (DA) nDv, where n is the computation order and v is the number of phase space

coordinates [72]. The result is a transfer map M used to obtain the zf coordinates of any
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Figure 3.2: Flow chart of the COSY-based Muon Storage Ring Model. Experimental mea-
surements constitute the guide fields as defined in the model, whose main output is nonlinear
transfer maps for the calculation of optical lattice functions and beam orbital (and spin)
symplectic tracking. With special methods explained in this chapter, guide fields are recon-
structed and initial beam distributions are recreated for a detailed characterization of the
muon beam in the g-2 storage ring. The characterization is further used for quantifications
of beam dynamics systematic corrections in the g-2 final measurement.

particle based on its initial conditions:

~zf =M(~zi). (3.1)

Besides performing long-term beam tracking, the resulting maps are further used and ma-

nipulated for tracking-independent formulations of the storage ring optical lattice (e.g., beta

functions, dispersion functions, and closed orbits, and betatron tunes) as well as amplitude-

and momentum-dependent tune shifts (see Sec. 3.3-3.6).
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3.2.1 The electrostatic quadrupole system

The electrostatic quadrupole system (ESQ) is a four-fold azimuthally symmetric system

(see Fig. 3.1) with four plates centered around the ideal orbit [73] (see Fig. 3.3) meant to

supply vertical beam focusing, but at the cost of horizontal defocusing and nonlinear beam

dynamics effects due to the specific geometry of the plates. Each ESQ station consists of

Figure 3.3: Photograph of one ESQ station. For vertical confinement of (positive) muons,
the top and bottom plates are positively charged whereas the lateral plates are charged with
negative voltage. The vertical magnetic field in the storage ring largely contributes to stable
motion in the horizontal direction, in spite of the defocusing radial gradient from the ESQ
inner and outer plates.

a short and long section separated by 4◦, and extended by azimuthal lengths of 13◦ and

26◦, respectively. Together with the vacuum chambers, all the ESQ was adopted from the

previous E821 experiment at BNL. The plates are made with aluminum graded such that

their low magnetic susceptibility and thicknesses do not interfere either with the overall

magnetic field quality nor the calorimeters energy resolution (as decay positrons trajectories

often cross the lateral plates). The four-fold symmetry, inherited from E821, was chosen to
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accommodate instrumentation in-between the stations and, simultaneously, minimize beam

variations (i.e., less than 3%) around the ring.

The ESQ plates play the role of electrodes while being charged by power supplies via

high-voltage resistors; the circuitry involved to carry the voltage to the plates is configured to

deliver charge to them every 700µs in one or two steps. To generate closed orbit distortions

(see Sec. 3.3.3) for beam scraping purposes, a specific set of plates (i.e., all bottom plates,

inner plates at Q2, and outer plates at Q4) is connected to the 2-step pulsers, which rise

initially from 0 to about 6 kV below the nominal High-Voltage (HV) setpoint (see Fig. 3.4).

The rising times are such that these mis-powered plates reach a steady HV when the beam
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Figure 3.4: Illustration of the HV traces from plates connected to the 1-pulse (red line) and
2-pulse (blue curve) HV supplies. The mis-powered ESQ plates (blue) during the initial
∼ 7µs after injection shift the beam towards the limiting apertures of the storage volume,
in order to scrape the beam in preparation for the data taking period at t > 30µs.

is injected into the storage ring for about 7µs, at which point the second pulse takes place

to charge them up to the nominal HV value. The transitions from mis-powered to nominal

HVs are adiabatic, where the resistors connected to the plates are chosen to yield transition

times of τC = RC ≈ 5µs. The total to-ground capacitance of the plates, on the order of

100 − 300 pF [74], are not easily malleable since they surge from several properties on the
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grounding, intervened by HV leads, feed-throughs, plates geometry, etc. Since τC � TC

(where TC ≈ 0.1492µs is the cyclotron period), beam tracking simulations are reliably

performed with one-turn transfer maps prepared per cyclotron period. After commissioning,

the typical HV setpoints of the first g-2 runs (HV∼ 18 kV) were chosen so that the ESQ

can stably run without discharging sparks and, on the other hand, to try to avoid betatron

resonances. The resulting focusing/defocusing electric fields reach values on the order of

6 kV/cm.

Due to the longitudinal curvature and overall geometry of the ESQ electrodes, the gener-

ated electric fields exhibit nonlinear features whose effect is perceived more noticeably near

the limits of the storage volume, as shown in Fig. 3.5. To reproduce a realistic representa-
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Figure 3.5: Radial electric field along the midplane (HV= 18.3 kV). Near the aperture limits
at x = 45 mm, nonlinearities from the ESQ electric fields distort the otherwise linear radial
field.

tion of the ESQ electric fields, the transverse electrostatic potential is defined as a transverse

Taylor expansion in the radial-vertical (or, equivalently, x-y) plane at a longitudinal location

s:

V = V (x, y, s) =
∞∑
k=0

∞∑
l=0

ak,l(s)
xkyl

k!l!
. (3.2)
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By exploiting the horizontal-plane symmetry of the ESQ station’s cross section, all the ak,l(s)

coefficients are uniquely determined out of the midplane coefficients ak,0(s) as follows [60]:

ak,l+2 =− a′′k,l − kha
′′
k−1,l + kh′a′k−1,l − ak+2,l − (3k + 1)hak+1,l

− 3khak−1,l+2 − k(3k − 1)h2ak,l − 3k(k − 1)h2ak−2,l+2

− k(k − 1)2h3ak−1,l − k(k − 1)(k − 2)h3ak−3,l+2,

(3.3)

where h is the inverse of the station curvature radius (7.112 m) and a′k,l = dak,l/ds. The

resulting set of coefficients satisfies Laplace’s equation in curvilinear coordinates to ensure

a Fully Maxwellian field. The ak,0 coefficients at the main ESQ field region are calculated

with conformal mapping methods [71] and specified in COSY INFINITY, which computes

the fields from a 3D out-of-plane expansion via DA methods [75] for the computation of

transfer maps.

Table 3.1 shows the ak,l terms specific to a nominal ESQ station charged at HV= 18.3 kV.

The four-fold symmetric geometry of the plates around the station center favors the presence

of the leading quadrupole (k=2), 12 pole (k=6), 20 pole (k=10), and further 4(2i− 1) pole

midplane-symmetric (l=0) terms, being the quadrupole term—which largely defines the be-

tatron tunes of the ring—about 3.4% higher than the voltage applied to the plates [76]. Of

special interest is the 20 pole, whose larger relative magnitude manifests itself in betatron

resonance and tune shifts, as elaborated in the next chapter. Figure 3.6 shows the overall and

nonlinear structures of the electrostatic potential from a charged ESQ station implemented

in the COSY-based model.

The effective field boundary (zEFB = 1.2195 cm) and fringe fields of the ESQ are cal-

culated using COULOMB’s [50,71] boundary-element method field solver. Figure 3.7 shows
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Table 3.1: ak,0 coefficients at the main ESQ field region (see Eq. (3.3)) for HV= 18.3 kV,

scaled by rk+l
0 /k!l! (r0 = 5 cm). Due to the ESQ midplane symmetry, coefficients with odd

l values are zero.

k l = 0 l = 2 l = 4 l = 6 l = 8 l = 10
0 0 1.900E+04 -9.388E−01 -4.796E+01 2.489E−02 -7.298E+02
1 0 -4.006E+02 4.621E−02 9.103E+00 -3.997E−03 3.848E+02
2 -1.900E+04 5.633E+00 7.194E+02 -6.969E−01 3.284E+04 -6.926E+01
3 0 -5.281E−02 -4.046E+01 3.240E−02 -5.540E+03 6.986E+00
4 0 -7.194E+02 1.280E+00 -1.533E+05 4.594E+02 5.058E+04
5 0 1.517E+01 -2.861E−02 1.357E+04 -2.512E+01 -9.601E+03
6 4.796E+01 -2.133E−01 1.533E+05 -6.485E+02 -1.517E+05 9.198E+02
7 0 2.199E−03 -7.387E+03 2.167E+01 1.829E+04 -5.919E+01
8 0 -3.284E+04 2.061E+02 1.517E+05 -1.165E+03 -3.715E+06
9 0 6.923E+02 -4.174E+00 -1.174E+04 5.152E+01 5.659E+05
10 7.298E+02 -9.739E+00 -5.058E+04 4.990E+02 3.715E+06 -4.505E+04
11 0 1.014E−01 2.327E+03 -1.510E+01 -3.989E+05 2.474E+03
12 0 4.598E+03 -6.226E+01 -1.576E+06 2.296E+04 -1.050E+02
13 0 -9.696E+01 1.216E+00 1.151E+05 -9.276E+02 3.665E+00
14 -5.053E+01 1.363E+00 2.598E+05 -4.643E+03 2.941E+01 -1.096E−01
15 0 -1.426E−02 -1.169E+04 1.341E+02 -7.778E−01 2.885E−03
16 0 -1.299E+04 3.063E+02 -3.088E+00 1.784E−02 -6.826E−05
17 0 2.740E+02 -5.871E+00 6.028E−02 -3.649E−04 1.475E−06
18 8.491E+01 -3.853E+00 9.206E−02 -1.036E−03 6.788E−06 -2.950E−08

the resulting fringe field falloff, which is implemented in the COSY-model ESQ transfer maps

via an Enge-function:

F (z) =
1

1 + exp
(
a1 + a2 · (z/D) + . . .+ a6 · (z/D)5

) , (3.4)

where D is the full aperture of the ESQ (D = 10 cm) and the Enge coefficients are

a1 = 0.14389529, a2 = 6.85939851, a3 = −1.87096936,

a4 = 0.80158053, a5 = −0.40704326, a6 = 0.06588881.

(3.5)

With the fringe fields falloff, the leading electric multipole coefficient strengths are scaled

accordingly and the longitudinal dependencies are captured recursively in COSY INFINITY

for the ESQ modeling. The effective field boundary for this specific case elongates the field

extension of each station, reducing radial tunes by ∼ 0.07% and increasing the vertical ones
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Figure 3.6: Main electrostatic potential [kV ] from an ESQ station on the left side, overlaid
with electric vector field represented with arrows. On the right, electrostatic potential from
higher order terms in the Taylor expansion; the curvature of the plates and the presence of
the 20 pole are manifested near the limiting bounds of the storage region.

by ∼ 0.05% with respect to a hard-edge case.

Two of the 32 HV resistors connected to the ESQ plates were damaged during the first

data-taking run (“Run-1”) of the muon g-2 experiment. Consequently, the resulting electric

fields exhibited special behaviors that affected the transverse stability of the stored beam,

as described in Sec. 3.6.

For the transfer maps preparation in the COSY-based model, the ODEs subject to the

ESQ electric fields described above also account for the embedding magnetic field in the

storage ring. The implementation and features of the magnetic fields in the COSY-based

model are described next.

3.2.2 Magnetic field data

The subtle imperfections of the magnetic field within the storage region of the ring drive

closed orbit distortions and betatron resonances at specific high-voltage settings of the ESQ.
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Figure 3.7: Longitudinal fringe field at an ESQ station edge. The effective field boundary
extends the occupancy of the electric fields in the hard-edge view by ∼ 0.436%.

In our model, such inhomogeneities are included based on fits of nuclear magnetic resonance

(NMR) trolley run measurements from the g-2 Field Team. The azimuth-independent fits

provide the extraction of 2D magnetic normal and skew multipole coefficients (up to the

decapole term) by attributing the scalar measurements to the predominant vertical magnetic

field.

By considering Laplace’s equation in cylindrical coordinates and omitting azimuthal z

variations of the magnetic potential V ,

∇V (r, θ, z) =
1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r

∂

∂θ

(
1

r

∂V

∂θ

)
= 0, (3.6)

the vertical magnetic field is expressed as a summation of magnetic multipole coefficients:

By(r, θ) = v0 +
∞∑
n=1

(
r

r0

)n
[vn cosnθ + wn sinnθ] . (3.7)

In Eqs. (3.6) and (3.7), r =
√
x2 + y2 is the transverse distance from the design orbit and
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r0 is the reference radius of the multipoles. The angle θ is the counterclockwise angle from

the x axis such that cos θ = x/r.

Since the NMR measurements of the scalar magnetic field are insensitive to its direction

and, on the other hand, the field is known a priori to be dominantly vertical, a sensible

approximation of taking By as the scalar field itself yields

B(r, θ) ≈ By(r, θ) = B0

(
b0 +

∑
n=1

(
r

r0

)n
[bn cos(nθ) + an sin(nθ)]

)
. (3.8)

Due to the ppm-level radial and longitudinal components of the magnetic field in the storage

ring [40], this approach adds a small error of only ∼ 10 ppb to NMR measurements [77]. In

the determination of the field, the main errors originate from field transients, temperature

fluctuations, motional effects, calibration and positioning uncertainties of the probes that

map the field within the storage volume (refer to [39]). However, thanks to the high unifor-

mity of the field to some extent, such errors were small for Run-1, i.e., ∼ O(100 ppb) relative

to the main dipole field and are expected to be reduced for Run-2 and posterior runs.

The relative strengths of the magnetic multiple components implemented in the COSY-

based model are shown in Fig. 3.8 and follow the notation in [78]:

∆By + i∆Bx = B0

∑
n

(bn + ian) (x+ iy)n. (3.9)

In the model, the transfer map of an ESQ station of azimuthal length L with magnetic

field inhomogeneities within (ME,B) is prepared as a sequence of adjacent optical elements
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Figure 3.8: Magnetic field multipoles from Trolley Run 3956. All the multipole terms are
expressed relative to the ideal vertical magnetic field B0 that sustains magic muons in the
ideal orbit. The skew dipole term (also called radial field) was measured with a Hall probe
in 2016 [40] and averaged out to recreate the expected effect of the surface correction coils
(SCC).

as follows:

ME,B(L) =
(
ME(Li/2) · ML(−l) · MB(φ, l) · ME(Li/2) + Cx(Li, φ) + Cy(Li, φ)

)n
.

(3.10)

The mapME(Li) encapsulates the Fully Maxwellian ESQ electric fields (see Sec. 3.2.1) em-

bedded in the ideal vertical magnetic field B0 = pµ/eρ0 where p0 is the magic momentum, e

the elementary charge, and the design radius is ρ0 ≈ 7.112 m. The azimuthal length Li (typ-

ically about 0.1◦) is chosen so that the final map length corresponds to L and the azimuthal

variation of the magnetic multipoles is captured. By virtue of the thin lens approximation—

and the significantly small sizes of the magnetic field inhomogeneities relative to the main

vertical field— an elementMB(φ, l) with a superposition of the azimuthally dependent nor-
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mal and skew magnetic multipoles at the azimuth φ acts on the map to cover the effects

of the magnetic field errors; the length l is equal to 1µm and the multipoles are properly

scaled. A multi-Gaussian function is implemented to calculate the magnitudes of the mea-

sured magnetic multipoles at any azimuth. A drift element ML(−l) of negative length is

defined for counteracting the nonzero length of MB(φ, l). The low-order skew and normal

magnetic coefficients, a0 and b0, are modeled as symplectic kicks and act on the constant

part (written explicitly as Cx and Cy in Eq. (3.10)) of the transfer map so that

∆a = −B0b0Li/χm , ∆b = B0a0Li/χm, (3.11)

where χm = B0ρ0 is the magnetic rigidity. ∆a and ∆b are the radial and vertical direction

offsets in particle optical coordinates. To preserve the Hamiltonian (via phase-space preser-

vation) during beam tracking simulations with this detailed implementation of the subtle

magnetic field errors, the symplectic condition is enforced in COSY INFINITY.

3.2.3 Injection kicker magnets

Three kicker stations (see Fig. 3.9) 1.27 m long and about 1/4 of radial betatron wavelength

downstream of the inflector exit, where the beam enters the ring, are installed in the storage

ring (see Fig. 3.1) for beam injection. The muon beam emerges ∼ 77 mm tangentially shifted

from the ideal orbit. In order for the injected muons to end up within the ring storage

volume, the kicker stations are required to steer them about 10.5 mrad radially outward.

To this end, the kicker plates supply an integrated magnetic field of 1.1 kG.m oppositely

directed to the vertical field of the storage ring. The kicker stations need to pulse at 100 Hz

synchronized to the 120 ns pulse train from the beamlines (see Fig. 2.2), and shut off before
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Figure 3.9: Transverse view of a kicker station. The plate geometry is designed to maximize
current-to-field conversion in the storage region.

the pulse revolves the 149 ns-long storage ring [79]. In view of these timing specifications, a

robust pulser and low-impedance kicker stations are desired to meet the required rise and

decay times.

Due to impedance mismatch, the temporal shape of the kicker strengths exhibits a ringing

structure as the signal is reflected after the main transient field is induced. Figure 3.10 shows

a typical sample during the first run of the muon g-2 experiment [80].

In the COSY-based model, each injected muon is deflected at each longitudinal center of

the three kicker stations per turn. The steering is applied as symplectic kicks in both radial

and vertical directions:

∆a(x, y, t) ≈ −e∆L
p0

Bky (x, y, t) , ∆b(x, y, t) ≈ e∆L

p0
Bkx(x, y, t), (3.12)

where ∆L is the design kicker length. The transverse structure of the transient field ~Bk is
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Figure 3.10: Representative kicker strength pulse during the first run of the muon g-2 ex-
periment, measured with a magnetometer.

based on available OPERA simulations of the x−y kickers geometry enclosed by the storage

ring vacuum chamber [81]; Fig. 3.11 shows the vector field. The time dependence of ~Bk is

captured based on magnetometer measurements of the kicker strength (see Fig. 3.10), scaled

according to the specific kicker settings of the g-2 data period being analyzed; typical summed

kicker strengths during the first production runs were around 130 kV. Further improvements

can be made on the implementation of Eqs. (3.12), namely multiple scaled kicks along each

kicker station and the addition of momentum-offset dependence.

For spin tracking, a 3 × 3 rotation matrix R(~zi) (due to electric ~E′ and magnetic ~B′

fields) to act on the initial ~si = (sx, sy, sz) spin coordinates of muons in optical coordinates

~zi = (xi, ai, yi, bi, li, δ) (see Sec. 3.3 for a definition of the coordinates) is obtained from the
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Figure 3.11: Cross section of the magnetic field implemented in the COSY-based model for
tracking. The field is stronger near the plate edges and uniform around the center, to deflect
muons radially outward.

T-BMT equation [47]

~ω′S = − e

m

{(
1

γ
+ aµ

)
~B′ − aµ

γ

1 + γ

(
~β · ~B′

)
~β −

(
aµ +

1

1 + γ

)
1

c
~β × ~E′

}
(3.13)

where ~ω′S is the spin precession frequency in the laboratory frame. The ~z variable δ is the

particle momentum offset relative to p0 and l is proportional to the time of flight relative to

the maximum peak of the beam’s time profile, which coincides in turn with the maximum

kicker strength at station K2 in COSY-based tracking injection studies. The timing between

these two profiles is not easily determined, although no offset between them is a good proxy

for storage fraction optimization.

In the Frenet-Serret frame relative to the reference particle, the axis of rotation vector ~u

of the spin-rotation matrix is defined from Eq. (3.13). Further expressing the instantaneous
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precession angle θ′ in terms of a differential arc-length advance, the matrix is defined as

R(x, a, y, b, δ) =


cos θ′ + u2

x

(
1− cos θ′

)
uxuy

(
1− cos θ′

)
− uz sin θ′ uxuz

(
1− cos θ′

)
+ uy sin θ′

uyux
(
1− cos θ′

)
+ uz sin θ′ cos θ′ + u2

y

(
1− cos θ′

)
uyuz

(
1− cos θ′

)
− ux sin θ′

uzux
(
1− cos θ′

)
− uy sin θ′ uzuy

(
1− cos θ′

)
+ ux sin θ′ cos θ′ + u2

z

(
1− cos θ′

)

 (3.14)

where

ux =
ω′Sx
ω′S

, uy =
ω′Sy
ω′S

, uz =
ω′Sz
ω′S

(3.15)

and

dt =
dL

v
=

(
1 +

x

ρ0

)
ds0

v
⇒ θ′ = ω′Sdt = ω′S

(
1 +

x

ρ0

)
ds0

v
. (3.16)

The notation ds0 refers to the nominal arc-length advance in a time interval dt; ρ0 is the

deflection radius, v the particle speed, and x the radial offset relative to the design orbit. In

terms of optical particle coordinates, momenta pi and βi = vi/c can be defined in terms of

~zi coordinates:

px = γmcβx = p0a =⇒ βx =
p0
γmca =

γ0β0
γ a

py = γmcβy = p0b =⇒ βy =
p0
γmcb =

γ0β0
γ b

pz = γmcβz = p0

√
(1 + δ)2 − a2 − b2 =⇒ βz =

γ0β0
γ

√
(1 + δ)2 − a2 − b2,

(3.17)

which yield

ω′Sx = − γ0v0

B0ρ0

{(
1

γ
+ aµ

)
B′x − aµ

γ

1 + γ

(
~β · ~B′

)
βx −

(
aµ +

1

1 + γ

)
1

c

[
~β × ~E′

]
x

}
= − γ0v0

B0ρ0

{(
1

γ
+ aµ

)
B′x − aµ

(γ0β0)2

γ(1 + γ)

(
aB′x + bB′y

)
a

+
E′y
c

γ0β0

γ

(
aµ +

1

1 + γ

)√
(1 + δ)2 − a2 − b2

}
,

(3.18)
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ω′Sy = − γ0v0

B0ρ0

{(
1

γ
+ aµ

)
B′y − aµ

γ

1 + γ

(
~β · ~B′

)
βy −

(
aµ +

1

1 + γ

)
1

c

[
~β × ~E′

]
y

}
= − γ0v0

B0ρ0

{(
1

γ
+ aµ

)
B′y − aµ

(γ0β0)2

γ(1 + γ)

(
aB′x + bB′y

)
b

− E′x
c

γ0β0

γ

(
aµ +

1

1 + γ

)√
(1 + δ)2 − a2 − b2

}
,

(3.19)

and

ω′Sz = − γ0v0

B0ρ0

{
−aµ

γ

1 + γ

(
~β · ~B′

)
βz −

(
aµ +

1

1 + γ

)
1

c

[
~β × ~E′

]
z

}
= − γ0v0

B0ρ0

{
−aµ

(γ0β0)2

γ(1 + γ)

(
aB′x + bB′y

)√
(1 + δ)2 − a2 − b2

−γ0β0

γ

(
aµ +

1

1 + γ

)(
a
E′y
c
− bE

′
x

c

)}
,

(3.20)

where ~E′ = E′xx̂ + E′yŷ and ~B′ = B′xx̂ + B′yŷ. For the injection kickers case, ~B′ = ~Bk and

~E′ = 0.

3.2.4 Beam collimation

The components that define the bounds of the storage volume in the ring are the so-called

collimators; see Fig. 3.12. These rings are made of copper, with inner and outer radii of

45 mm and 50 mm respectively. Due to their low magnetic susceptibility of −9.63 × 10−6,

the effect on the surrounding magnetic field when they are inserted or retracted is equally

negligible [82].

During the first ∼ 50 turns after beam injection, the main purpose of the collimators is

to scrape the muons with the largest transverse excursions while the application of asym-

metric voltages along the ESQ stations distorts the closed orbits. Furthermore, the circular

geometry of the collimators contributes to minimizing muon losses while data is taken by
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Figure 3.12: Picture of a collimator inserted around the design orbit.

significantly excluding the nonlinear electric fields from the ESQ beyond the collimator aper-

tures. For the former intent, muons hitting collimators lose rigidity by transferring energy

to the collimators, made of copper. Moreover, once these muons start diverging from the

storage volume towards the inner side of the ring, they do so quickly enough so that their

corresponding emitted positrons do not enter into the signal from which ωa is extracted.

There are five collimator stations along the storage ring, as shown in Fig. 3.1. During

the first run of Fermilab’s muon g-2 experiment, only two collimators were inserted around

the ideal orbit to compensate for the initially lower-than-nominal kickers injection scheme.

Afterward, all the 5 collimators were inserted.

Using tools in COSY INFINITY, the muon beam is treated as an array of vectors which

permits to efficiently collimate muons beyond well-defined apertures during tracking.

3.2.5 Initial beam distribution

As explained in Chap. 2, the accelerator complex at Fermilab delivers highly polarized muon

bunches to the g-2 storage ring at 100 Hz. A handful of numerical studies with different
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programs recreated the beam transported along the Muon Campus during the commissioning

of the muon g-2 experiment [52,56,83], whose coordinated effort allowed to benchmark each

package. For betatron resonance scans and momentum-time correlation studies, an external

distribution [84] was taken for subsequent beam analysis with the COSY-based storage ring

model. This distribution results from transferring G4beamline numerical simulations [56]

at the end of the M5 line through fringe fields to the entrance of the ring backleg iron [85].

The maps of these fields are superimposed with the field through the material-free yoke

volume where a superconducting inflector is placed to cancel out the field, accounting for the

parameters (e.g., inflector angle and field) that maximize the stored fraction. At this point,

the mismatched beam is centered ∼ 77 mm radially outward from the ideal orbit. Figure 3.13

illustrates the beam distributions in phase space and momentum-time spread. The initial
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Figure 3.13: Simulated beam distribution at the exit of the inflector, after the final focus to
pass the beam through the hole in the backleg iron. The beam is mostly tangential to the
design orbit and about 77 mm radially outward at injection.

time profile of the beam is set based on measurements from scintillating detectors [35]. Two

photomultiplier tubes (PMTs) on the vertical sides of a scintillator read out the resulting

light, which is adjusted with density filters to ensure an operational range. Prior to entering

the storage ring, the incoming beam crosses the “T0” detector, which measures its intensity

and longitudinal profile. For beam tracking simulations, an interpolation to T0 data—from
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the average of a representative train of eight pulses during the first runs of the experiment—

replaced the original time profile from the G4beamline distribution transferred through

the inflector (see Fig. 3.14). The maximum peak of the T0 signal is aligned with the rays
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Figure 3.14: Representative longitudinal profile of the muon beam as measured by the T0
detector. Its length is desired to be contained within the main peak of the kicker pulse to
maximize beam storage. The solid line shows the type of multi-Gaussian interpolation used
in the model to recreate the longitudinal profile of the simulated muon beam.

originally with no time-of-flight, and its relative timing with the central kicker maximum

strength is set to zero; this proxy relation agrees with the experimental tuning to maximize

muon storage via this parameter. The time profile coupled with the injection kicker ringing

signals determines the correlation between time-of-flight and momentum of the stored muon

beam.
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3.3 Linear Beam Dynamics

By treating the g-2 storage ring as an optical system, the beam dynamics framework lays out

practical conceptual tools for a thorough characterization of the stored beam. To achieve

a full extent of such characterization for further aµ systematic error analysis to the ppb

level, the action of nonlinear guide fields on the muon beam needs to be accounted for (see

Sec. 3.4). Nevertheless, the consideration of electric and magnetic fields in the storage ring

up to first order (i.e., dipole and quadrupole components in a Taylor expansion description of

the fields, in terms of the optical particle coordinates) encompasses most of the effects that

define the beam orbital motion along the ring. Even though the difficult injection process for

the muons to get into the storage ring yields the storage volume (i.e., a mostly circular toroid

with sectional radius r0 ≈ 45 mm and overall radius ρ0 ≈ 7.112 mm) almost full of muons,

the small admittance limited by the inserted collimators and a rather weak focusing allows

to satisfy the paraxial approximation and, this way, the following linear matrix formalism.

In this regime, the equations of motion are linearized so that the optical coordinates

of an individual muon ~z(θ2) = {x2, a2, y2, b2, l2, δ} are defined by its initial state ~z(θ1) =

{x1, a1, y1, b1, l1, δ}, where θ1 and θ2 are two azimuthal locations in the ring:

zi(θ2) =
6∑
j=1

(
zi|zj

)
zj(θ1) + Ci. (3.21)

In Eq. (3.21), zi is the ith coordinate of the vector ~z where x and y are the horizontal

and vertical spatial deviations from the reference orbit1; a = px/p0 and b = py/p0 are

the momentum deviations in x and y relative to the reference momentum p0 (in this case

1Reference orbit (also known as ideal orbit) refers to the circular trajectory with radius ρ0, fully horizontal,
aligned with the storage ring center, and in the vertical center of the ESQ stations.
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the magic momentum mµc/
√
aµ ≈ 3.094 GeV/c); l = −(t − t0)v0γ0/(1 + γ0) a parameter

proportional to the time-of-flight t− t0 relative to a reference particle with t = t0, speed v0

and Lorentz factor γ0; and δ = (p − p0)/p0 the momentum deviation. The
(
zi|zj

)
and Ci

terms are coefficients derived from the equations of motion and it is customary to arrange

them algebraically in a linear matrix M(1→ 2) such that

~z(θ2) = M(1→ 2)~z(θ1), (3.22)

or in extended form:



x

a

y

b

l

δ


2

=



(x|x) (x|a) (x|y) (x|b) (x|l) (x|δ)

(a|x) (a|a) (a|y) (a|b) (a|l) (a|δ)

(y|x) (y|a) (y|y) (y|b) (y|l) (y|δ)

(b|x) (b|a) (b|y) (b|b) (b|l) (b|δ)

(l|x) (l|a) (l|y) (l|b) (l|l) (l|δ)

(δ|x) (δ|a) (δ|y) (δ|b) (δ|l) (δ|δ)





x

a

y

b

l

δ


1

+



Cx

Ca

Cy

Cb

Cl

Cδ



. (3.23)

This formalism permits to treat the g-2 storage ring as an optical lattice made of a sequence

of optical elements, where each of these elements is represented with a corresponding matrix

defined by the guide fields along its azimuthal span. In the storage ring, there are four types

of optical elements in the absence of magnetic field errors or ESQ plate misalignments (see

Fig. 3.1 for visualization):

• “DIEQS”: Short ESQ station (θDIEQS = 13◦ + 2θEFB long).

• “DIS”: Short magnetic section between a short ESQ station (upstream) and a long

ESQ station (downstream) (θDIS = 4◦ − 2θEFB long).
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• “DIEQL”: Long ESQ station (θDIEQL = 26◦ + 2θEFB long).

• “DIL”: Long magnetic section between a long ESQ station (upstream) and a short

ESQ station (downstream) (θDIL = 47◦ − 2θEFB long).

As explained in Sec. 3.2.1, the angle θEFB = zEFB/ρ0 accounts for the effective field

boundary at the edges of ESQ stations. In this simplified but representative approach, DIL

and DIS are homogeneous sector magnets described [60] by

MDI(θ) =



cos θ ρ0 sin θ 0 0 0 ρ0(1− cos θ)

− sin θ/ρ0 cos θ 0 0 0 sin θ

0 0 1 ρ0θ 0 0

0 0 0 1 0 0

− γ0
γ0+1 sin θ − γ0

γ0+1ρ0(1− cos θ) 0 0 1 −ρ0

[
γ0−1
γ0

θ −
(

γ0
γ0+1

)
sin θ

]
0 0 0 0 0 1



,

(3.24)

where θ is the azimuthal length of the sector and ρ0 = 7.112 m the nominal bending radius.

In a similar manner, the DIEQ elements correspond to inhomogeneous sector magnets [50]

where the inhomogeneity index ne—which introduces a linear dependence to the effective

bending field By(x)—emerges from the ESQ electric quadrupole gradient:

By(x) = B0

(
1− ne

x

ρ0

)
(3.25)

= B0

(
1−

[
ρ0

v0B0

∂Ex
∂x

]
x

ρ0

)
. (3.26)

B0 = p0/eρ0 ≈ 1.4513 T is the vertical nominal field and the radial electric field gradient
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∂Ex/∂x horizontally defocuses the positively charged muon beam. The solution of the

linearized equations of motion for such optical element produce the following result:

MDIEQ(θ) =



cos(
√

1− neθ)
ρ0√
1−ne

sin(
√

1− neθ) 0 0 0 (x|δ)

−
√

1−ne
ρ0

sin(
√

1− neθ) cos(
√

1− neθ) 0 0 0 (a|δ)

0 0 cos(
√
neθ)

ρ0√
ne

sin(
√
neθ) 0 0

0 0 −
√
ne
ρ0

sin(
√
neθ) cos(

√
neθ) 0 0

(l|x) (l|a) 0 0 1 (l|δ)

0 0 0 0 0 1



, (3.27)

where

(x|δ) =
ρ0

1− ne
[1− cos(

√
1− neθ)], (3.28)

(a|δ) =
1√

1− ne
sin(
√

1− neθ), (3.29)

(l|x) = − γ0

γ0 + 1

1√
1− ne

sin(
√

1− neθ), (3.30)

(l|a) = − γ0

γ0 + 1

ρ0

1− ne
[1− cos(

√
1− neθ)], and (3.31)

(l|δ) = −ρ0
γ0

γ0 + 1

{[
1

1− ne
− 1

(1 + η0)2

]
θ − 1

(1− ne)3/2
sin(
√

1− neθ)

}
. (3.32)

With these transfer matrices, the coordinates vector ~z of a muon can be transferred through

the ring. For instance, the coordinates ~zi of a muon upstream of a short ESQ station after

n full revolutions evolve according to the repeated action of each ring element as follows:

~zn = M0
n~zi =

(
MDI(θDIL) ·MDIEQ(θDIEQL) ·MDI(θDIS) ·MDIEQ(θDIEQS)

)4n
~zi

(3.33)

At HV= 18.3 kV (a typical ESQ high voltage during Run-1 of the muon g-2 experiment),
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the one-turn matrix M0
1 is2

M0
1 =



0.92045E + 00 −0.25743E + 01 0.00000E + 00 0.00000E + 00 0.00000E + 00 0.48687E + 00

0.45556E − 01 0.95902E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00 −0.35324E + 00

0.00000E + 00 0.00000E + 00 −0.60304E + 00 0.18795E + 02 0.00000E + 00 0.00000E + 00

0.00000E + 00 0.00000E + 00 −0.41356E − 01 −0.36936E + 00 0.00000E + 00 0.00000E + 00

0.34732E + 00 −0.44242E + 00 0.00000E + 00 0.00000E + 00 0.10000E + 01 −0.49502E + 02

0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00 0.10000E + 01



. (3.34)

As shown in M0
1 , the radial and vertical motion in the ring is linearly decoupled (e.g.,

(x|y) = (x|b) = (y|x) = (y|a) = 0 and any other map components that relate radial and

vertical coordinates). Expectedly, the momentum deviation δ is not influenced by the other

orbital coordinates (and Cδ = 0) being the storage ring a time-independent Hamiltonian

system. Furthermore, one can demonstrate that the transverse coordinates x and y do not

diverge since

|(x|x) + (a|a)| < 2 , |(y|y) + (b|b)| < 2. (3.35)

The map M0
1 does not account for the ppm-level magnetic field inhomogeneities. When

these are introduced in the calculation of the map as explained in Sec. 3.2.2 based on NMR-

probe measurements, constant terms (i.e., Ci terms in Eq. (3.23)) emerge. The nonzero

terms in M0
1 slightly change by less than 0.1 % as a consequence of the normal quadrupole

terms from magnetic field imperfections. And moreover, magnetic skew quadrupole terms

add weak coupling between the radial and vertical motion via nonzero (x|y), (x|b), (a|y),

(a|b), etc. terms. Such new map M ′1 relative to the ideal orbit in the storage ring can be

re-expanded around the closed orbit originated by the magnetic field imperfections. Each of

2In the following discussion, δ-related components are sometimes expressed in terms of δk = (K−K0)/K0
instead, where K is the kinetic energy for compatibility with COSY INFINITY’s set of particle coordinates.
For the momentum acceptance and reference value in the g-2 storage ring, δ and δk do not differ by more
than (γ0 + 1)/γ0 − 1 ≈ 3.41%.
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the ~z0(θ; δ) = {x0(δ), a0(δ), y0(δ), b0(δ), 0, δ}(θ) momentum-dependent fixed points at any

azimuth θ that compose this new closed orbit can be found with the following operation:

~z0(θ; δ) = (M ′(θ)− I)−1~0, (3.36)

where I is the identity map, M ′ is the original map around the reference orbit at θ, and ~0

contains the ~z coordinates of the reference orbit ~0 = {0, 0, 0, 0, 0, δ}.

In order to extract the field index, Twiss parameters, and dispersion functions (See

Sec. 3.3.2), as well as to perform symplectic beam tracking and nonlinear calculations, maps

such as M ′1 are re-expanded around their corresponding fixed points. This way, the resulting

map is origin-preserving (i.e., the vector ~0 is unchanged under the action of M). For this

purpose, and taking M ′1 as an example, the map around the fixed point M1 is found as

follows:

M1(θ) = M ′1(θ) (~z0(θ; δ) + I)− ~z0(θ; δ). (3.37)

In the linear regime, M1 = M ′1. However, under the presence of nonlinear terms, that is

not the case; nonlinear terms leak inside the linear terms of M1 when ~z0 is nonzero (refer to

Sec. 3.4 for the discussion of nonlinear beam dynamics in the muon g-2 experiment). The

resulting one-turn map M1 for NMR-probe data during the last Run-1 dataset is

M1 =



0.92089E + 00 −0.25742E + 01 −0.43513E − 03 −0.23697E − 03 0.00000E + 00 0.48210E + 00

0.45431E − 01 0.95891E + 00 0.26600E − 04 0.73226E − 04 0.00000E + 00 −0.35194E + 00

0.88037E − 03 0.65890E − 02 −0.60221E + 00 0.18825E + 02 0.00000E + 00 0.90815E − 02

−0.13050E − 04 −0.12671E − 03 −0.41352E − 01 −0.36789E + 00 0.00000E + 00 0.26431E − 03

0.34600E + 00 −0.44366E + 00 −0.35668E − 03 −0.83647E − 02 0.10000E + 01 −0.49482E + 02

0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00 0.10000E + 01



. (3.38)
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With these linear maps, beam tracking simulations are plausible with the limitation

of overlooking nonlinear effects such as betatron oscillations de-coherence (i.e., nonlinear

amplitude- and momentum-dependent tune shifts) and betatron resonance effects (presented

in the subsections below). Moreover, the information contained in the (zi|zj) terms allows

for the characterization of several beam parameters, as shown next.

3.3.1 Betatron tunes

It is customary in the muon g-2 collaboration to parametrize some dynamical proper-

ties of the beam by visualizing the storage ring as a single inhomogeneous sector magnet

MDIEQ(360◦) (refer to Eq. (3.27)). In this perspective, which is possible thanks to the

rather weak focusing in the ring, the field index ne is scaled by the ESQ stations occupancy

in the ring’s azimuth to obtain:

n =
4(θDIEQS + θDIEQL)

4(θDIEQS + θDIS + θDIEQL + θDIL)
ne = 0.4376998ne. (3.39)

During the four Run-1 datasets, the two nominal ESQ voltages were HV = 18.3 kV and

HV = 20.4 kV which correspond to the following g-2 field indices:

n = 0.108790931 and 0.121275137. (3.40)
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For comparison purposes with M0
1 (Eq. (3.34)), at HV = 18.3 kV the representative linear

map is

MDIEQ(360◦) =



0.93882E + 00 −0.45717E − 01 0.00000E + 00 0.00000E + 00 0.00000E + 00 0.47213E + 00

0.45717E − 01 0.93882E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00 −0.35279E + 00

0.00000E + 00 0.00000E + 00 −0.48084E + 00 0.18906E + 02 0.00000E + 00 0.00000E + 00

0.00000E + 00 0.00000E + 00 −0.40664E − 01 −0.48084E + 00 0.00000E + 00 0.00000E + 00

0.35279E + 00 −0.47213E + 00 0.00000E + 00 0.00000E + 00 0.10000E + 01 −0.49560E + 02

0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00 0.10000E + 01



. (3.41)

A set of betatron tunes (νx, νy)—defined as the average number of transverse oscillations

per turn—can be calculated from the traces of MDIEQ(360◦):

νx =
1

2π
cos−1

(
(x|x) + (a|a)

2

)
=
√

1− n (3.42)

νy =
1

2π
cos−1

(
(y|y) + (b|b)

2

)
=
√
n, (3.43)

where for HV = 18.3 kV:

νx = 0.944038701 and νy = 0.329834703. (3.44)

In Table 3.2, relative comparisons with measurements [86] are shown (i.e., (νx−νdatax )/νdatax ).

Table 3.2: Relative comparisons of computed horizontal tunes with measurements.

HV [kV] MDIEQ M0
1 M1

18.3 -0.0557% -0.0108% -0.0053%
20.4 -0.0701% -0.0137% -0.0034%

Radial tunes obtained from the approximated model MDIEQ(360◦), from the ideal ring

model (M0
1 ) and from a ring with magnetic field inhomogeneities (M1) differ by less than
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0.08% relative to tunes extracted from tracker data during Run-1, being M1 the most ac-

curate case; accounting for the ±30 ppm background of the normal magnetic quadrupole

component yields the superior description of the tunes. As explained in Sec. 3.6, failures

in the instrumentation of the ESQ led to time-dependent tunes which evolved by about

0.5 % during the measurement period. Thus, for the relative differences in Table 3.2 the

stable tunes were extracted from the observed frequencies fCBO of the beam radial betatron

oscillation at late times of the fills, where

fCBO = fc(1− νx) (3.45)

and the cyclotron frequency fc is taken as

fc =
p0

2πmµγ0ρ0
= 6.704958 MHz. (3.46)

As explained in [50], fringe fields at the ESQ edges distort the tunes by less than 0.0008%.

Other effects such as ESQ plate misalignments which are not considered in the presented

models could be the reason for the small deviation from experimental data. By varying the

voltage on the ESQ stations, the setpoint to control the set of betatron tunes is adjusted.

Figure 3.15 shows several computations of the tunes for several ESQ voltages. It is desired

to avoid ESQ voltages that satisfy resonant conditions (see Eq. (3.66)), which under the

presence of the high-order components of the ring’s main magnetic field and ESQ electric

fields could induce unstable transverse motion as explained in Sec. 3.4.

Of particular interest for beam de-coherence and betatron resonance analyses are the
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Figure 3.15: Radial (black) and vertical (blue) betatron tunes as a function of ESQ voltage.

linear chromaticities ξx,y, defined as

ξx,y ≡
∆νx,y
δ

(3.47)

where ∆νx,y are tune shifts due to a momentum offset δ. To find them, momentum-

dependent fixed points ~z0(θ; δ) are computed and the diagonal terms of the map relative

to the fixed points are used to calculate the momentum-dependent tunes:

νx(δ) =
1

2π
cos−1

(
(x|x)(δ) + (a|a)(δ)

2

)
= ν0

x + ξxδ + · · · , (3.48)

νy(δ) =
1

2π
cos−1

(
(y|y)(δ) + (b|b)(δ)

2

)
= ν0

y + ξyδ + · · · . (3.49)

In this way, linear chromaticities for several ESQ voltages are calculated; see Fig. 3.16 for

the results.
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Figure 3.16: Radial (black) and vertical (blue) linear chromaticities as a function of ESQ
voltage.

3.3.2 Optical lattice functions

With the origin-preserving linear transfer maps in hand, periodic functions that define the

beam structure at equilibrium can be defined [58]. This parametrization results from the

guide fields in the storage ring, which in more general terms is an optical lattice that acts

on the muons treated as rays. There are three of such functions commonly used:

αx(θ) =
(x|x)(θ)− (a|a)(θ)

2 sin 2πνx
, βx(θ) =

(x|a)(θ)

sin 2πνx
, γx(θ) = − (a|x)(θ)

sin 2πνx
. (3.50)

The angle θ indicates the azimuthal location in the ring, and the numerator components

on the right-hand side are extracted from one-turn maps at θ. The vertical situation is

analogous to the vertical case. With the guide fields implementation, the one-turn maps are

prepared along the ring azimuth and then rotated around their fixed points for the extraction

of the optical lattice functions. α(θ), β(θ), and γ(θ) can also be transferred with the origin-

preserving map components between to azimuths, though the former case was chosen for
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computational efficiency. Figures 3.17 and 3.18 show these lattice functions along the g-2

storage ring for ring configurations during Run-1.

Due to the momentum spread of the stored muon beam, the dispersion function Dx,y(θ)

is also necessary to describe the beam. The following periodic condition is satisfied by the

dispersion function:


D

D′

1

 =


(x|x) (x|a) (x|δ)

(a|x) (a|a) (a|δ)

0 0 1




D

D′

1

 , (3.51)

which implies

Dx(θ) =
(1− (a|a)(θ))(x|δ)(θ) + (x|a)(θ)(a|δ)(θ)

2− (x|x)(θ)− (a|a)(θ)
. (3.52)

In Figs. 3.19 and 3.20 dispersion functions for several storage ring settings are presented.

The longitudinal derivative of the dispersion function, D′, relates to the effect of momentum

offsets on a and b, and is not relevant for the characterization intended in this dissertation.

For the beam extrapolation around the ring based on beam diagnosis at two azimuthal

locations, the following relations between beam widths (interpreted as RMSs and symbolized

with σ) and lattice functions are used:

σ2
x(θ, t) = εx(t)βx(θ, t) +D2

x(θ, t)σ2
δ , (3.53)

where the time dependence of the width, β and dispersion functions emerge from evolving

guide fields, such as Run-1 during production period (see Sec. 3.6). The momentum distri-

bution spread σδ is obtained from Fast Rotation analysis [87]. From realistic simulations
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Figure 3.17: Radial α, β, and γ functions at 5µs (red curves), 20µs (green curves), and
1000µs (black curves). On the left-side plots HV = 18.3 kV, whereas HV = 20.4 kV for plots
on the right side. Gray shadows depict ESQ stations along the azimuth, where the Q1S
upstream edge is at θ = 0. Orange lines indicate collimator locations. Red curves are
subject to the effects of the ESQ scraping configuration and the green curves have almost
reached the equilibrium values.
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Figure 3.18: Vertical α, β, and γ functions at 5µs (red curves), 20µs (green curves), and
1000µs (black curves). On the left-side plots HV = 18.3 kV, whereas HV = 20.4 kV for plots
on the right side. Gray shadows depict ESQ stations along the azimuth, where the Q1S
upstream edge is at θ = 0. Orange lines indicate collimator locations. Red curves are
subject to the effects of the ESQ scraping configuration and the green curves have almost
reached the equilibrium values.
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Figure 3.19: Radial dispersion function at 5µs (red curves), 20µs (green curves), and 1000µs
(black curves). The ESQ voltage is equal to HV = 18.3 kV on the left-side plot, whereas
HV = 20.4 kV for the plot on the right side. Inhomogeneities in the normal quadrupole term
of the magnetic field break the four-fold symmetry.
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Figure 3.20: Vertical dispersion function at 5µs (red curves), 20µs (green curves), and
1000µs (black curves). On the left-side plot HV = 18.3 kV, whereas HV = 20.4 kV for the
plot on the right side. As the magnetic field is mostly oriented vertically, vertical dispersions
are negligible.
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with the COSY-based model, in worst-case scenarios accounting for muon scraping, σδ varies

by less than 0.8% during the muon fill; the sensitivity level of radial widths to this scale of

momentum spread variations is small compared to the overall azimuthal width modulations,

i.e., on the order of 0.03 mm. For the analogous vertical case, the dispersion from measured

magnetic gradients is negligible (see Fig. 3.20) for the beam characterization. The transverse

emittance εx is the RMS of the beam distribution in phase space:

εx =
√
〈x2〉〈a2〉 − 〈xa〉2. (3.54)

With the two straw tracking detectors data of the beam transverse coordinates over time

together with Eq. (3.53), the emittance is quantified, allowing to project the beam widths in

this way. For vertical width projections, tracker data at only one location is sufficient since

Dy ≈ 0.

The main modulations of the lattice functions are produced by the ESQ electric field and

the vertical magnetic field. Magnetic field imperfections mostly from the normal quadrupole

component contribute to additional modulations in the optical functions, of about 0.5%

or less in relation to the case of a perfect magnetic field (see Figs. 3.21 and 3.22). Since

the extracted multipole coefficients from trolley data (except dipole terms) changed by less

than 100 ppb relative to B0, the extra distortions from magnetic field imperfections are not

expected to change on a run-by-run basis. On the other hand, ESQ plate misalignments

can add gradient errors as well. An external analysis based on alignment survey data [88]

have determined them to be similar in size as distortions from magnetic field errors. For

Run-1 analysis, the implementation of (and effects from) magnetic field inhomogeneities are

necessary for the beam means and widths calculation around the ring; the effects from ESQ
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Figure 3.21: Beta function distortions from magnetic field inhomogeneities at 5µs (red
curves), 20µs (green curves), and 1000µs (black curves) for HV = 18.3 kV.

plate misalignments are treated as errors.
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Figure 3.22: Dispersion function distortions from magnetic field inhomogeneities at 5µs (red
curves), 20µs (green curves), and 1000µs (black curves) for HV = 18.3 kV. The plot on the
right side shows the total distortion in the vertical dispersion function, which is equal to zero
in the nominal case, whereas on the left side the relative distortion of the radial dispersion
function is displayed.

The framework provided by the β and dispersion functions as used in Eq. (3.53) is

well consolidated for beams with elliptical distributions in phase space and matched—i.e.,

aligned—with the invariant ellipse of the machine (in this case the storage ring) around the
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fixed point, defined by:

γx(x−Dxδ)2 + 2αx(x−Dxδ)(a−D′xδ) + βx(a−D′xδ)2 = A, (3.55)

where A is a constant. Due to the challenging beam injection, the stored beam is mismatched

to the invariant ellipse. As a result, coherent betatron oscillations (which mostly vanish at

late times of the measurement-period cycles) produce temporal beating around the lattice

functions. In spite of the mismatching, the lattice functions recreate the beam modulations

around the ring for ωa systematic corrections and the muon weighting, as explained in

Sec. 3.5. The other ingredients for a full description of the muon beam along the azimuth

are closed orbit distortions presented next.

3.3.3 Closed orbits

As defined in this section and within the framework of transfer maps, closed orbits are the

set of fixed points ~z0(θ; δ) for 0 ≤ θ < 2π that remain unchanged after being transferred

around one full revolution (M ′(θ)~z0(θ; δ) = ~z0(θ; δ)). These are obtained via ~z0(θ; δ) =

(M ′(θ)−I)−1~0 for (M ′(θ)−I) invertible, as in the g-2 ring case. When the muon coordinates

coincide with those of a fixed point, it follows the trajectory defined by the closed orbit in

the absence of external perturbations. Furthermore, for a stable system (see Eq. (3.35)),

muons within the dynamic aperture and apart from the closed orbit oscillate around it by

virtue of the guide field restoring forces. In the linear case, the matched muon beam can be
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statistically averaged to a centroid z̄(θ, δ) and its spatial coordinates will obey

x̄(θ, δ) = x0(θ, δ),

ȳ(θ, δ) = y0(θ, δ).

(3.56)

Due to the small momentum acceptance in the g-2 case, an explicit distinction from the

momentum-dependent fixed point can be made with sufficient precision, by accounting for

the linear momentum dependence of the fixed point:

x̄(θ) = x0(θ) +Dx(θ)δ̄,

ȳ(θ) = y0(θ).

(3.57)

Similar to the beam widths case, a mismatched beam exhibits transverse oscillations of its

centroids around the closed orbit. In this case, the individual betatron (i.e., transverse)

amplitudes Ax,y
√
βx,y of the stored muons move coherently per turn N :

x(θ,N) = x0(θ) +Dx(θ)δ + Ax
√
βx(θ)cos(2πνxN + φx),

y(θ,N) = y0(θ) + Ay

√
βy(θ)cos(2πνyN + φy).

(3.58)

From the harmonic transverse motion in Eq. (3.58), which results from the linear ODEs

with the form of Hill’s equations3, oscillations of the mismatched beam centroids and widths

emerge. As explained in Sec. 3.4, the coherent modulations tend to de-cohere after beam

injection where nonlinear amplitude- and momentum-dependent tune shifts play a significant

role.

There are two mechanisms that drive closed orbit distortions relative to the ideal orbit,

3As explained in Sec. 3.4.3, nonlinearities drive betatron amplitude modulations for which cases Eq. (3.58)
does not apply.
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namely, the asymmetric ESQ voltage application during the first turns after beam injection

(see Sec. 3.2.1) for intentional collimation is one of them and the presence of magnetic and

electric steering errors.

In the former case, the imbalance between voltages from top/bottom and inner/outer

ESQ plates induce an electric skew and normal dipole component, respectively. The effect is

implemented as constant symplectic terms that act on the transfer map as (see Eq. (3.21))

Ca,b = −∆V

De
b0
e∆l

p0v0
, (3.59)

where ∆V = V0 − V ′ is the difference between nominal and mis-powered voltages (e.g.,

V0 = 18.3 kV and V ′ = 13.3 kV for several Run-1 datasets), De = 5 cm is the ESQ aperture,

and b0 = 0.34428 is the normal dipole term for one top/bottom ESQ plate at 1 V and

the others at 0 V [89]. The ∆l term is the ESQ segment length over which the additional

dipole term is applied (∼ 1 cm in the implementation). Once the regular one-turn map is

prepared in this manner at several azimuthal locations, their x0 and y0 fixed points are

calculated with Eq. (3.36) which all together compose the radial and vertical closed orbits.

Figures 3.23 and 3.24 displays closed orbits during collimation in red color. The other

mechanism through which the ideal orbit is distorted, steering field errors, are driven mostly

by the electric and magnetic normal/skew terms (see Sec. 3.2.2). Figure 3.25 shows closed

orbit distortions during Run-1, where the magnetic multipole coefficients were taken from

four trolley runs at each Run-1 dataset, named (and ordered in chronological order) as 60h

(1a), HK (1b), 9d (1c), and EG (1d). The radial closed orbit evolved due to temperature-

induced instabilities in the normal magnetic field, and similarly for the vertical case, whose

effect on the overall vertical shift is determined from positrons vertical data as recorded by
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Figure 3.23: Radial closed orbits (δ = 0) at 5µs (red curves), 20µs (green curves), and
1000µs (black curves). On the left-side plot HV = 18.3 kV, whereas HV = 20.4 kV for the
plot on the right side. The intentional stretching of the orbit during scraping increases the
probability of outermost muons to hit a collimator and, in this way, minimize muon loss
rates.
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Figure 3.24: Vertical closed orbits (δ = 0) at 5µs (red curves), 20µs (green curves), and
1000µs (black curves). On the left-side plot HV = 18.3 kV, whereas HV = 20.4 kV for the
plot on the right side. The induced skew dipole ESQ field created from the HV imbalance
between the top/bottom plates shifts the vertical closed orbit for beam scraping.
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Figure 3.25: Representative closed orbits during the datasets of the first run (Run-1) of the
experiment (60h (1a), HK (1b), 9d (1c), and EG (1d)). Fluctuations in temperature affected
the dipole terms of the magnetic field, which led to different closed orbits per Run-1 dataset.

calorimeters; the azimuthal average of the implemented skew dipole field 〈B0a0〉 is tuned to

match these measurements, where a vertical offset of 1 mm corresponds to 〈a0〉 ≈ 19.5 ppm.

It is assumed in these calculations that for the first Run-1 dataset 〈a0〉 ≈ 0, which recreates

the expected case of the surface correction coils (SCC) averaging out the radial field.

3.4 Nonlinear Beam Dynamics

Similar to the linear map components described to this point, nonlinear map terms are also

calculated by integration of the ODEs where higher order relations are considered [72]. The

nonlinear mapM, computed to order n, transfers the initial particle coordinates ~z(θ1) at θ1

to its final state ~z(θ2):

~z(θ2) =M(1→ 2)~z(θ1). (3.60)

In this extended regime, the transfer mapM = {Mx,Ma,My,Mb, . . . } is treated as a col-

lection of DA vectors in COSY INFINITY and equivalent to the following Taylor polynomial
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expansion:

zi(θ2) =
∑
j1=0

· · ·
∑
j6=0

(
zi
∣∣ xj1aj2yj3bj4lj5δj6) (xj1aj2yj3bj4lj5δj6)(θ1).

= Ci +
6∑
j=1

(
zi | zj

)
zj (θ1)

+
∑

j1+···+j6≥2

(
zi
∣∣ xj1aj2yj3bj4lj5δj6) (xj1aj2yj3bj4lj5δj6)(θ1).

(3.61)

The summations over j1, j2, . . . , j6 start at zero (constant terms) and go up to the order

n = 10 (i.e., terms with
∑6
i=1 ji ≤ 10) in the presented analysis, which is found to be

sufficient to capture all the relevant high-order contributions for nonlinear effects, such as

the 20 pole from the ESQ electrostatic field.4 Nonlinear contributions O(2) are captured

in the terms of the last line of Eq. (3.61); due to their relatively smaller effect on the

muons motion when sufficiently away from betatron resonances, they can be treated as

aberrations or corrections to the linear system of the g-2 storage ring. Nevertheless, the

understanding of experimental observations and the high level of precision demanded for

the E989 measurement requires the characterization of the nonlinear motion. In particular,

nonlinear detuning, betatron resonances, and nonlinear-driven muon losses are elaborated

next.

3.4.1 Momentum- and amplitude-dependent tune shifts

From design, the further muons move away from the closed orbit, and the more they deviate

from the nominal momentum, the stronger the influence of guide field nonlinear components

on their dynamics becomes. This can be seen in Eq. (3.61); as zi →∞, the nonlinear poly-

4Nonlinear terms are also included in Eq. (3.37) and in any re-expansion of maps around fixed points.
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nomial coefficients gain an increasing weight in the transformation of ~z(θ1). Thus, betatron

tunes are no longer subject to only the usual effects from linear forces. The COSY-based

environment, COSY INFINITY, allows to capture the effects of nonlinearities on betatron

tunes via its differential algebra normal form (NF) algorithm; for a thorough explanation of

the algorithm, see [72]. In essence, the algorithm yields a set of NF coordinates for which

the transformed map is greatly simplified and leads to rotational invariance up to the calcu-

lation order in the NF space. From this order-by-order transformation, the NF coordinates

{x, a, y, b} → {s1, t1, s2, t2} exhibit circular behaviors that depend only on amplitudes and

parameters such as δ:

s1

t1


2

=

cos (νx(r1, r2; δ)) − sin (νx(r1, r2; δ))

sin (νx(r1, r2; δ)) cos (νx(r1, r2; δ))


s1

t1


1

, (3.62)

where r2
1 = s2

1 + t21 and r2
2 = s2

2 + t22 are the squared amplitudes in normal form. Thus,

with the NF map and a straightforward computation of, say, the arc cosine within the DA

framework, the full tunes are expressed as Taylor expansions up to the order of the original

map:

νx =
∑

i,j,k=0

(
νx|ri1r

j
2δ
k
)
ri1r

j
2δ
k,

νy =
∑

i,j,k=0

(
νx|ri1r

j
2δ
k
)
ri1r

j
2δ
k.

(3.63)

For example, nominal tunes from the linear, origin-preserving maps correspond to the(
νx,y|1

)
terms and linear chromaticities are naturally calculated from ξx,y =

(
νx,y|δ

)
.

A caveat of the rotational invariance in Eq. (3.62) emerges for systems near the effects

of resonances. For these cases, the NF algorithm cannot remove some nonlinear map com-

ponents, and a direct computation of amplitude-dependent tune shifts is not possible. As
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such, amplitudes of rays under the effects of the resonance-driven terms are not constant

and, thus, tunes can evolve over the motion in phase space, losing their physical meaning;

however, their limiting average would correspond to the formal definition of a tune as in reg-

ular phase space. An important consequence is amplitude modulations that increase muon

loss rates in the muon g-2 experiment, as described in Sec. 3.4.2 and 3.4.3.

A thorough investigation of momentum- and amplitude-dependent tune shifts for the

muon g-2 storage ring is reported in [90]. Of special importance on nonlinear detuning is the

20 pole from the ESQ electrostatic potential. Its presence in the storage region is manifested

in the amplitude-dependent tune shifts as shown in Figs. 3.26 and 3.27 (for δ = 0) .

The shift scaling grows in an 8th-power fashion from the closed orbit toward the limiting

apertures, as a consequence of the electric 20 pole [90]. On the other hand, magnetic field

imperfections do not contribute noticeably to tune shifts, as indicated in the figures.

In the momentum-dependent case (r1,2 = 0), tune shifts are mostly proportional to

the linear chromaticities for |δ| < 0.2% (see Fig. 3.28). Beyond that region and within

the momentum acceptance, tunes experience shifts of ∼ 4 × 10−3, being negative in the

vertical case. The ppm-level magnetic field errors do not contribute noticeably to momentum-

dependent tune shifts.

In reality, muons with the same betatron amplitudes but separated in momentum (see

Eq. (3.58) for a good approximation) scan different regions of the storage volume and, con-

sequently, different field nonlinearities. Thus, momentum- and amplitude-dependent tune

shifts have to be treated simultaneously as indicated by δ − ri crossed terms in Table 3.3.

Particle-by-particle tune spreading in accelerator machines can lead to beam de-coherence

[91]. The g-2 ring is not an exception. Beam tracking simulations with the COSY-based

model indicate a strong influence of nonlinearities on the beam de-coherence of the coherent
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Figure 3.26: Amplitude-dependent tune shifts (δ = 0) within the storage region without
magnetic field imperfections (HV= 18.3 kV). The horizontal axis corresponds to radial
betatron amplitudes and the vertical axis represents vertical amplitudes.

Figure 3.27: Amplitude-dependent tune shifts (δ = 0) within the storage region with mag-
netic field imperfections (HV= 18.3 kV). The horizontal axis corresponds to radial betatron
amplitudes and the vertical axis represents vertical amplitudes.
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Figure 3.28: Momentum-dependent tune shifts (no betatron amplitudes) with and without
magnetic field imperfections (HV= 18.3 kV). Nonlinear shifts take place for |δ| > 0.2%,
inside the momentum acceptance.

betatron oscillation (CBO). Furthermore, toy Monte Carlo simulations [92, 93] with only

COSY-based tune shifts are capable of reproducing the observed beam de-coherence. As an

example, by taking momentum- and amplitude-dependent tunes in Table 3.3 (up to order 10)

with momentum and amplitude δν’s independently and scaled, and reproducing a simulated

linear motion as in Eq. (3.58), the radial de-coherence recorded by the g-2 straw tracking

detectors is closely recreated (see Fig. 3.29). Without tune shifts, the beam still reduces

its initial CBO due to the longitudinal recombination between high- and low-momentum

muons, as shown in Fig. 3.47. However, without the nonlinear detuning, observations are

not reproduced. At the end of the measurement period (∼ 700µs after beam injection), a

CBO amplitude remanent of about 1 mm might survive as suggested by these simulations

extended in time (see Fig. 3.47). Also, Fig. 3.47 suggests small re-coherence pulsations might

manifest but to a low extent.
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Table 3.3: Tune coefficients at HV= 18.3 kV up to fifth order, normalized by 100order. For
example, (νx|δ) = −0.13199935.

Radial tune(
νx|ri1r

j
2δ
k
)

order i j k

9.4446263E-01 0 0 0 0
-1.3199935E-03 1 0 0 1
-1.3028752E-06 2 2 0 0
4.2332676E-06 2 0 2 0

-3.9055732E-05 2 0 0 2
6.9991197E-05 3 2 0 1

-4.2045086E-04 3 0 2 1
7.5544892E-04 3 0 0 3
2.3798658E-05 4 4 0 0

-4.1727784E-04 4 2 2 0
6.0854702E-04 4 0 4 0
2.2570512E-03 4 2 0 2

-1.3199217E-02 4 0 2 2
1.1914645E-02 4 0 0 4
1.9657417E-06 5 4 0 1

-3.3974259E-05 5 2 2 1
4.7589424E-05 5 0 4 1
7.9046305E-05 5 2 0 3

-2.8914099E-04 5 0 2 3
3.0339641E-04 5 0 0 5

Vertical tune(
νy|ri1r

j
2δ
k
)

order i j k

3.3081444E-01 0 0 0 0
3.8975399E-03 1 0 0 1
4.2332682E-06 2 2 0 0
5.0651491E-06 2 0 2 0
4.3361598E-05 2 0 0 2

-4.2045082E-04 3 2 0 1
6.3490582E-04 3 0 2 1

-2.2468635E-03 3 0 0 3
-2.0863889E-04 4 4 0 0
1.2170941E-03 4 2 2 0

-5.9016314E-04 4 0 4 0
-1.3199216E-02 4 2 0 2
1.9295418E-02 4 0 2 2

-3.4840049E-02 4 0 0 4
-1.6986818E-05 5 4 0 1
9.5177294E-05 5 2 2 1

-5.3892581E-05 5 0 4 1
-2.8913252E-04 5 2 0 3
4.1910614E-04 5 0 2 3

-4.7759203E-04 5 0 0 5

3.4.2 Betatron resonances

When the transverse motion of muons couples with the periodicity of local forces in the

storage ring, their betatron oscillation amplitudes may rapidly diverge from the storage

volume defined by the collimators, or more commonly experience turn by turn amplitude

modulations in a way that they end up hitting the collimators during data taking [69]. Such

muons, commonly known as lost muons within the muon g-2 collaboration, give up energy to

the material they interact with (see Sec. 3.2.4), moving inward and whose daughter positrons

escape from detection; in Sec. 3.4.3 the impact of such muons on the ωa measurement

is explained. The electrostatic scraping right after beam injection is crucial for removing

109



50 100 150 200 250
s]µt [

5−

0

5

10

15

20

x 
M

ea
n 

[m
m

]

data
sim, with tune shifts

50 100 150 200 250
s]µt [

5−

0

5

10

15

20

x 
M

ea
n 

[m
m

]

data

sim, without tune shifts

50 100 150 200 250
s]µt [

8

10

12

14

16

18

20

22

x 
R

M
S

 [m
m

]

data
sim, with tune shifts

50 100 150 200 250
s]µt [

8

10

12

14

16

18

20

22

x 
R

M
S

 [m
m

]

data

sim, without tune shifts

Figure 3.29: Beam radial de-coherence with (left) and without (right) tune shifts at the
readout location of the straw tracking detector (station 12). As a reference, data from the
tracker is shown in red. The two plots on top display radial beam centroids, whereas the
bottom plots correspond to radial beam widths.

muons with large betatron amplitudes. However, even muons with initially small betatron

amplitudes around unstable motion regions and nonlinear fixed points in phase-space could

become lost at later times under the modulation effects close to resonant conditions.

High-statistical numerical studies of muon loss rates were performed with the COSY-

based model to unveil the set of ESQ operating points where significant betatron resonances

occur. In Fig. 3.30, simulation results for several high-voltage values applied to the ESQ are

presented. The figure shows the fraction of lost muons during the time interval 121− 186µs
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Figure 3.30: Fraction of muon losses between 121 − 186µs after beam injection with the
COSY-based model for several ESQ configurations. Measurements [94]—shown in arbitrary
units—result from detections of minimum ionizing particles that deposit ∼ 170 MeV of
energy in two adjacent calorimeters while two collimators were inserted to the storage region.

after beam injection. Vertical error bars correspond to the standard error of the multiple

simulations executed in parallel that were necessary to surpass the resolution required and

clearly distinguish resonance peaks (i.e., ∼ 6.8× 106 muons at beam injection).

Due to the sensitivity of E989, even the relatively small effects of high-order resonance

conditions are avoided. To describe the interplay between the field imperfections in the

storage ring and the resonant conditions, the ring is idealized as a superposition of a uniform

vertical magnetic field and electric quadrupole fields coming from the ESQ, where all the

extra field from the ESQ design and magnetic field imperfections are treated as perturbations

to the linear case. In particular, for simplicity this model assumes a smooth behavior of the

unperturbed betatron oscillations that does resemble the real case [95]:

x(θ) ≈ H cos(2πνxθ + φx) , y(θ) ≈ V cos(2πνyθ + φy) (3.64)

where θ is the azimuth, and H and V are constant radial and vertical betatron amplitudes (a
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good approximation in the weakly focused g-2 stored muon beam), respectively. Considering

both magnetic and electric potentials in the form

Φ(x, y, θ) =
∞∑
l=0

∞∑
m=0

∞∑
N=0

Cl,m,Nx
lym cos(Nθ + φlmN ) , (3.65)

Eqs. (3.64) and (3.65) can be combined to estimate the transversal forces in terms of 2k-pole

terms (k = l + m) and Nth azimuthal harmonics. The leading terms from Fourier analysis

of the perturbations yield the following conditions that resonate with the betatron motion:

(l − 1)νx ±mνy ±N = Λ , lνx ± (m− 1)νy ±N = Λ (3.66)

where Λ = ±νx,y depending on the field that drives the resonance. In general, vertical

forces induce more muon losses than horizontal forces due to the relatively smaller vertical

admittance of the ring (see Sec. 3.5.1). The storage ring fields are mostly four-fold symmetric,

thus favoring N = 0, 4, 8, ... . Figure 3.31 depicts resonance lines as well as the operating

setpoints of the storage ring. Resonant tune lines up to k = 10 are shown, which are

sufficient for our purposes of covering all the main multipole terms that are implemented in

the COSY-based ring model, including the ESQ 20 pole.

Along with the resonance conditions shown in Fig. 3.31, the observed resonances in the

storage ring depend on the angle advancement spread in phase-space, betatron amplitudes,

momentum deviations, and initial phase of muons revolving the storage ring. The com-

bination of these properties dictates how frequently a muon crosses unstable conditions in

phase-space to experience resonant effects or not. For instance, the continual growth of

resonance peak widths for increasing HV observed in Fig. 3.30 relates to the vertical angle
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Figure 3.31: An illustration of resonant tune lines and operating points (i.e., ESQ nomi-
nal voltages) of the g-2 storage ring. The high-voltage applied to the ESQ plates to set
operating points are shown next to resonances predicted by numerical studies with the
COSY-based ring model. Measurements of lost muons have revealed resonance peaks at
∼ 13.1, 16.8, 18.6, and 21.1 kV as well (see Fig. 3.30). Lost muons measurements have not
been performed for higher ESQ voltages. Red markers show the operating points used in
Run-1.
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advancement spread. It is worth noting that this angle, which can be defined as the turn-

by-turn angular evolution of the muon coordinates in vertical phase-space at an arbitrary

azimuth location, advances in a more periodic manner as the vertical betatron function of

the storage ring, βy, significantly decreases on average for higher voltages within the explored

HV range. Regarding betatron amplitudes and momenta, these properties, which are unique

to each muon within the stored beam, indirectly define the attributes of the peaks presented

in Fig. 3.30 as well, since resonance conditions in Eq. (3.66) are not uniquely satisfied by all

the stored muons due to nonlinear tune shifts in the g-2 storage ring. The tune footprint for

HV= 18.3 kV (used in Runs 1a and 1d) in Figure 3.32 illustrates this effect. Even though

the operational setpoint is not at resonance, it is close enough to the 3νy = 1 resonant condi-

tion so that momentum- and amplitude-dependent tune shifts push muons to the resonance

region.

To minimize systematic errors due to muon losses, the storage ring must run at operating

points sufficiently away from betatron resonances. As shown in Fig. 3.31, the system falls into

resonance around specific setpoints and not at every intersection with resonant tune lines.

This feature is mostly due to the rather specific set of nonlinear electrostatic multipoles

provided by the 4-fold symmetric ESQ, where the 20 pole has the largest strength. In

addition, the reinforcement of multiple resonant conditions is also a main determinant of

the observed and measured betatron resonances, which can be noticed in their proximity

to the points where several resonance conditions converge. Nevertheless, even though the

multipoles that describe the measured magnetic field imperfections do not favor particular

azimuthal harmonics due to their somewhat random distribution along the ring azimuth,

they still have an important effect on betatron resonances, as shown next.
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Figure 3.32: With the tune shifts readily available from the COSY-model, momentum and
normal form radii of stored muons from a realistic initial distribution as described in Sec. 3.2.5
are used for the calculation of the tune footprint. The ESQ setpoint is 18.3 kV. Due to
nonlinear amplitude- and momentum-tune shifts, a considerable fraction of the stored muons
is affected by the resonance around in tune space, especially the 3νy = 1 resonant condition
driven by the skew magnetic sextupole term. Red(blue) markers indicate high(low) density
of entries in the tune footprint.

Resonance Driving Terms

A deep understanding of the forces that drive betatron resonances is tantamount to a de-

tailed characterization of the conditions in the storage ring that excite muon loss rates. By

identifying all the resonances that emerge from the imperfections of the ring already known
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(i.e., nonlinear electric perturbations contributed by the ESQ and magnetic field inhomo-

geneities from NMR probes measurements), it is possible to address the origin of resonant

peaks from lost muons measurements not accounted for in the COSY-based model. Extra

peaks could be generated by mis-powering or misalignments of the ESQ plates, transient

magnetic fields outside the bandwidth of the NMR probes, and other factors not included in

the symplectic tracking simulations that otherwise would be difficult to evaluate and would

also directly affect the evolution of ωa under momentum-spin correlations.

In addition, modifications to the default settings of the simulated ring model permit

determining the driving terms that generate each betatron resonance peak. In Fig. 3.33,

simulation results are shown for the following modifications to the original ring model con-

figuration (see marker legend in Fig. 3.33 for each case):

(i) All E-multipoles, B-field inhomogeneities ON (original case, red)

(ii) Only 4th E-multipole, B-field inhomogeneities ON (gold)

(iii) No 20th E-multipole, B-field inhomogeneities ON (magenta)

(iv) All E-multipoles, B-field inhomogeneities OFF (blue)

(v) Only 4th and 20th E-multipoles, B-field inhomogeneities OFF (green)

(vi) No 20th E-multipole, B-field inhomogeneities OFF (orange).

The 2D multipole fits to the magnetic field NMR measurements (abbreviated as “B-

field inhomogeneities” in the list above) introduce lost muon fractions of ∼ 6 × 10−4/γτµ

even at operating points away from the main betatron excitations. Betatron resonance

peaks observed from measurements and/or simulations can be explained from resonance
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Figure 3.33: Fraction of muon losses from simulations during the time interval 121− 186µs
after beam injection. Configuration details are listed on page 116. The bottom figure
depicts lost muon fractions with a reduced vertical range to discern losses when magnetic
field imperfections are not accounted for.
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conditions (Eq. (3.66)), which can be independently driven by one or several electric and

magnetic high-order multipoles in the storage ring model (see Table 3.4).

Table 3.4: Resonant conditions related to betatron excitations.

HV [kV] aνx + bνy = c
13.1 3νx + 4νy = 4
16.8 νx − 3νy = 0
18.6 3νy = 1
21.1 2νx + 6νy = 4
24.7 νx + 8νy = 4
30.4 3νx + 3νy = 4

Nevertheless, Fig. 3.33 shows the interplay between magnetic(electric) nonlinearities and

electric(magnetic) resonances. For instance, for a ring with HV ∼ 13.1 kV the resonance

driven by the electric 20-pole terms derived from the curvature of the plates is boosted by

lower order nonlinearities from the imperfect magnetic field; several resonant tune lines near

such an operating point reinforce the resonance. However, by analyzing the high-order terms

of the storage ring transfer map in Normal Form (NF) it is possible to understand with more

detail the role of nonlinearities in relation to resonances.

For HV ∼ 16.8 kV, either the magnetic or electric guide fields can drive the resonance

condition νx − 3νy = 0. The magnetic forces build up a larger resonance than the electric

case, as found in simulations. In the electric case, electrostatic potential coefficients from

the 20 pole are needed to see a resonance. On the other hand, the magnetic octupole can

drive the resonance through vertical forces from horizontal magnetic fields proportional to

Bx ∝ xy2. Azimuthal independence of the electric/magnetic potential (i.e., N = 0) is

favored for this resonance.

TheHV ∼ 18.6 kV resonance deserves particular attention [96–98] as it is near enough the

ESQ operational setpoints during Runs 1a and 1d (i.e., 18.3 kV). Simulations with the COSY-
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Figure 3.34: On the left, magnetic skew sextupole coefficient a2 as measured by NMR
probes. On the right plot, Fourier decomposition of the coefficient a2 in azimuthal harmonics
a2 =

∑n
N=0 a2,N cos (Nθ + φN ). The N = 1 term, which is the main driver of the resonant

condition 3νy = 1, is depicted in green color.

based model indicate that the resonance is purely driven by magnetic field inhomogeneities,

though a reciprocity between resonances and nonlinearities from different origin—electric or

magnetic—exists. The driving force behind this vertical resonance is the radial magnetic

field

∆Bx(x, y, θ) = −B0a2,N=1 cos(θ + θ1)y2, (3.67)

The coefficient a2,N=1 is the first azimuthal harmonic of the magnetic skew sextupole; a fast

Fourier transformation (FFT) of the measured a2 in Fig. 3.34 (right plot) shows a non-zero

N = 1 component, sufficiently large to drive a nonlinear betatron resonance as depicted in

Fig. 3.35.

The effect of the 3νy = 1 resonance extends all the way to the Run-1 ESQ setpoint

HV = 18.3 kV due to amplitude- and momentum-dependent tune shifts. By turning on and

off the skew sextupole component of the magnetic field implementation in the COSY-based

model [98], it was demonstrated that in the absence of a2 the betatron resonance peak at

HV ≈ 18.6 kV does not build up. Moreover, it was also found that by reducing the most
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Figure 3.35: Lost muons fraction over a muon lifetime after the scraping stage is completed.
In red (triangular markers), all the magnetic multipole terms are turned on during the beam
tracking simulation, whereas in blue (diamond markers), these are turned off. In subsequent
simulations, it was found that only the magnetic skew sextupole term from measured field
inhomogeneities was sufficient to drive the betatron-resonance peak at HV ≈ 18.6 kV.

prominent peak of the skew sextupole component around the azimuth noticeably reduces

a2,N=1 and, consequently, the resonance effect. However, it might be more practical to

configure the ESQ setpoint away from HV ≈ 18.6 kV rather than smoothing out the skew

sextupole magnetic field inhomogeneities with active shimming, but it depends on the specific

operational circumstances. The impact of equivalent electric skew sextupole coefficients from

ESQ plate misalignments was also analyzed. Qualitatively, the sharpness of the observed

muon loss rate resonance at HV ≈ 18.6 kV was not reproduced in this scenario. And

quantitatively, the misalignment configuration necessary to recreate a discernible resonance

peak was unrealistic based on subsequent misalignment surveys [99]. Thus, it was concluded

that the magnetic skew sextupole was the main driving force of the 3νy = 1 resonance.
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3.4.3 Lost muon mechanisms

For a stored beam with momentum-phase correlations at injection time, muons that perma-

nently escape from the storage volume during data taking (and whose decay positrons are not

detected by the calorimeters) can potentially bias the measured ωa by inducing slow drifts

in the phase in Eq. (1.25). Since the Beam Delivery System (BDS) delivers a muon beam

with a correlation between the g-2 phase and momentum of about 10 mrad per ∆δ = 0.01

(Sec. 2.3.4), a reduction of these so-called lost muons is tantamount to a mitigation in ωa

systematic errors.

By tracking symplectically the muon beam with the COSY-based model for n = 1 and

n = 10 order transfer maps, a detailed picture of the mechanisms that drive muons to be lost

can be developed. Externally to the work presented in this document, several mechanisms

that potentially drive muon loss have been studied (for details, see [100]), among them muon

scattering with the residual vacuum in the storage region, transient electromagnetic fields,

and nonlinear fields away from resonances. In the analysis, it was also determined that the

main reason there are lost muons during production measurements in the linear regime is

the scraping method implemented after beam injection; a small fraction of muons beyond

the limiting apertures of the storage region (i.e.,
√
x2 + y2 > 45 mm at collimator locations)

can revolve the ring for thousands of turns before a direct collision with a collimator. Linear

simulations are able to reproduce the muon loss rates shown in Fig. 3.30 away from betatron

resonances [100].

At HV= 18.3 kV (the setpoint used in Runs 1a and 2d, and next to the ESQ voltage HV=

18.2 kV used in posterior g-2 runs), nonlinear resonances driven by the 3νy = 1 condition

play a significant role in muon loss rates. As shown next, under the Run-1 injection settings
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nonlinear loss rates contribute to considerably higher muon loss rates than linearly driven

losses.

It is helpful to start with a muon that does not get lost in the linear regime and take its

motion as a reference, where HV= 18.3 kV. In the stroboscopic view (i.e., at one azimuthal

location), such muon follows well-defined elliptical motion in radial/vertical phase space as

indicated by Eq. (3.58) and expected from Liouville’s theorem. Also, its radii in normal form

coordinates are invariant. Figure 3.36 illustrates the motion in this case. Consequently, the
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Figure 3.36: Phase space coordinates and maximum excursion of a muon not lost (reference
case).

maximum transverse excursion r0 relative to the ideal orbit can be described as

rmax =

√
(Ax + |Dxδ + x0|)2 +

(
Ay + |y0|

)2
. (3.68)

In fact, this dynamical evolution is also expected in the nonlinear regime only when there

are no resonance-driven terms that could affect the pursued rotational invariance of a normal

form transformation (see Eq. (3.62)).

Lost muons also emerge in COSY-based linear simulations. Even though a muon beam

with data-driven initial conditions at 4µs (see Sec. 3.6.3) and initially cleaned via conven-
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tional scraping (see Sec. 3.2.1) is tracked down, alas, about 0.2% of the stored muons at

t > 30µs with rmax > r0 are not removed from the beam. Figure 3.37 shows a typical

sample of these muons and Fig. 3.38 their maximum excursions, which confirm their sur-

vival for several microseconds inside the data-taking time range. High-order resonances
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Figure 3.37: Trajectories in phase space of three different muons (distinguished by color) in
the linear regime.

are irrelevant in the linear regime, and as a consequence linear chromaticities are the only

contributors to small tune shifts, given the constrained momentum acceptance of δ ∼ 0.55 %

(see Fig. 3.39).5

Now the attention is turned to the case where nonlinear motion is accounted for. The

same initial muon distribution and scraping scheme are used as in the linear simulations

5In this subsection, the meaning of color coding is shared in figures.
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Figure 3.38: Maximum excursions of three lost muons in the linear regime.

described above. However, the symplectic condition is enforced via a symplectic transfor-

mation of the transfer map as described in [70]. In this manner, the Jacobian of the map

is equal to one, and consequently the phase space volume is conserved turn by turn, an

essential characteristic of Hamiltonian motion.

Figure 3.40 shows phase space in regular coordinates of three muons lost in the nonlinear,

symplectic simulations. The radial motion is not influenced by resonance terms, in agree-

ment with the 3νy = 1 vertical resonance driven by skew sextupole terms of the magnetic

field. On the other hand, vertical amplitude modulations manifest and, as a result, max-

imum excursions evolve over time (see Fig. 3.41). In the linear mechanism, the statistics

involved in the time it takes a muon with rmax > r0 is plain. The higher rmax is, the faster

the muon is lost (loss rates can be derived from Eq. (3.58)). On the other hand, muons

nonlinearly modulated whose maximum excursions intermittently visit values beyond colli-

mation apertures survive for longer periods, as indicated by linear versus nonlinear muon

loss simulation comparisons (see Fig. 3.43).

When the shifted tunes of nonlinearly driven lost muons are extracted as explained in
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Figure 3.39: Tunes of three lost muons in the linear regime. Note the proximity between the
red and black entries (the red marker partially covers the marker in black color).

Sec. 3.4.1, all their coordinates in tune space fall within the vicinity of the 3νy = 1 resonance

as shown in Fig. 3.42; as they move around unstable and stable 3-period fixed points in

phase space [101], tunes constantly shift in conjunction with vertical betatron amplitudes in

phase space.6 The period-3 fixed point structures are clearly visible from muon symplectic

tracking within the storage region and momentum acceptance, as shown in Fig. 3.44. Vertical

betatron amplitudes are modulated as muons move in phase space around the stable and

unstable fixed points generated by the 3νy = 1 nonlinear resonance. Although the motion is

6Animated examples of lost muon shifting tunes can be found in [102].
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Figure 3.40: Trajectories in phase space of three different muons (distinguished by color) in
the nonlinear regime.

stable, modulations interfere with the time it takes for a muon to become lost.

Further studies summarized in Fig. 3.45 were aimed at understanding the multi-dimensional

nature of muon loss rates. Using an initial distribution based on straw trackers Run-1a data

and the scraping scheme used during Run-1, it is concluded that muon loss rates are char-

acterized not only by resonance-driven effects but by the number of inserted collimators. In

the presented results regarding muon loss driving mechanisms, two collimators were inserted

(downstream of ESQ stations Q3L and Q4S) as in Run-1 during tracking simulations. For

posterior runs, all collimators are inserted, for which case muon loss rates are substantially

reduced as suggested by the COSY-based model simulations. However, another factor to

account for is the beam injection quality which determines the number of outermost muons
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Figure 3.41: Maximum excursions of three lost muons in the nonlinear regime.

likely to get lost. In addition, Fig. 3.45 also displays a comparison with and without the

effect of the time-evolving ESQ fields during Run-1d (see Sec 3.6), indicating higher a muon

loss fraction in the former case as the nominal tune moves toward the 3νy = 1 resonance

and the vertical beam centroid drifts over the data taking period. More important for a

reliable analysis of lost muons is the symplectic transformation for tracking; in its absence,

an overall emittance growth is observed in simulation results, consequently producing an

artificial muon loss fraction increase (see Fig. 3.45).

3.5 Nominal Characteristics of the Stored Beam

Under normal circumstances, the beam delivery and injection process into the g-2 storage

ring at Fermilab, as well as the electric/magnetic lattice inside the ring, specify the tempo-

ral and azimuthal behavior of the muon beam. Due to the beam transverse profile being

mismatched with the ring optical settings (especially in radial phase space), transverse os-
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Figure 3.42: Tunes of three muons in the nonlinear regime before getting lost.

cillations of the beam centroids and widths are common.7 On the azimuthal side, beam

centroids typically follow mm-level closed orbits and beam radial/vertical widths are mod-

ulated by the variations of the optical lattice (of about 0.4 mm along the ring azimuth) in

an almost four-fold symmetric pattern. By tracking down a realistic beam—whose initial

conditions are prepared based on Run-1a beam data (see Sec. 3.6.3)—with the COSY-based

model under nominal settings at HV= 18.3 kV (and magnetic fields as measured around

Run-1a), representative samples of the beam over time and azimuth are presented in this

7At the time of this dissertation, advanced RF techniques to substitute conventional ESQ scraping were
being developed by Muon g-2 collaborators to mitigate beam beating [103].
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Figure 3.43: Muon loss fractions with nonlinearities (black curve) and without them (gray
curve) from symplectic tracking, COSY-based, beam simulations. The ESQ setpoint was
18.3 kV, two collimators were inserted, and both cases start with the same data-based initial
distribution. Muon loss rates are highly affected by nonlinearities of the guide fields.
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Figure 3.44: Stroboscopic tracking in the vertical phase space illustrating orbit behavior with
two period-3 fixed point structures present [101], for ESQ voltage at 18.3 kV. Trajectories
in blue and green colors are examples of muons (within the ring admittance and momen-
tum acceptance) with highly modulated vertical amplitudes. Picture by courtesy of Adrian
Weisskopf.
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Figure 3.45: Muon loss rates from several tracking simulations (HV=18.3 kV). The effect of
damaged resistors and the effect from symplectic enforcement during tracking is shown.

section. Several experimental improvements were made after Run-1 concluded, where the

radial CBO amplitudes were reduced and momentum spread became better centered, reduc-

ing in this way dispersive effects. However, the main features discussed in this section are

always expected to an observational level.

The results presented next serve to characterize the transverse frequencies of the muon

beam and validate the implementation of optical lattice functions—as well as a distinction

of their limitations—to describe the transverse beam intensity around the azimuth of the

storage ring. These validations are important since the optical lattice functions from the

COSY-based model are extensively used for ωa systematic corrections (i.e., pitch [104], phase

acceptance [44], and Run-1 E-field [105] corrections) and the muon weighting of the magnetic

field B̃ [106].

First, it is useful to specify the boundaries of the stored muon beam. And at the end

of the section, the initial momentum-time correlation of the beam in the muon g-2 experi-

ment obtained from these studies was used to discover and estimate the largest systematic

uncertainty of the E-field correction.
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Figure 3.46: Qualitative comparison between stored muon rates from simulations (gray) at
t = 186µs after beam injection and measured relative positron rates (arbitrary units) from
stored muon decays [107]. Error bars correspond to standard errors of the multiple numerical
analyses for each ESQ voltage configuration. As the vertical and radial admittances increase
and decrease, respectively, proportional to the ESQ voltage, the fraction of stored muons
increases, reaching a plateau at 22 kV where the stored fraction starts to become more
sensitive to the radial admittance. The low fraction of stored muons is a consequence of
the momentum spread being about two times larger than the momentum acceptance, the
dispersion mismatch between the end of the M5-line and the storage ring, and the imperfect
kicks purposed to inject the beam.

3.5.1 Beam boundaries

The r0 = 45 mm radius aperture of inserted collimators together with the optical lattice

of the ring define the largest transverse emittance (known as admittance) and momentum

acceptance in the storage ring. From these bound parameters, the maximum betatron am-

plitudes, maximum angles a and b, and limiting momentum can be established along the

azimuth. Furthermore, the stored muons fraction is also affected by these quantities, as

shown in Fig. 3.46.

By finding the largest beta functions at collimator locations and using Eq. (3.55), admit-
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tances are defined as

εmaxx,y =
r2
0

βmaxx,y
. (3.69)

For Run-1 datasets, their nominal values are shown in Table 3.5. It is worth highlighting

the role of the magnetic field in the larger radial admittance.

Table 3.5: Storage ring nominal admittances for Run-1 ESQ setpoints.

HV [kV] εmaxx [πmm.mrad] εmaxy [πmm.mrad]

18.3 268.757 92.8262
20.4 266.946 97.8427

The collimator geometry is circular and not squared; thus, admittance values as shown in

Table 3.5 would correspond to a beam with very low intensity.

Maximum angles are obtained via

amax(θ) =
√
εmaxx γx(θ) , bmax(θ) =

√
εmaxy γy(θ) (3.70)

and maximum betatron amplitudes are given by

xmax(θ) =
√
εmaxx βx(θ) , ymax(θ) =

√
εmaxy βy(θ) (3.71)

For a numerical reference see Table 3.6, which displays the small variations thanks to the

relatively weak focusing scheme.

Table 3.6: Maximum value ranges in the storage ring along the azimuth for Run-1 settings.

HV [kV] xmax [mm] amax [mrad] ymax [mm] bmax [mrad]
18.3 {44.46, 45.41} {5.91, 6.04} {44.27, 45.10} {2.06, 2.10}
20.4 {44.42, 45.57} {5.86, 6.01} {44.18, 45.12} {2.17, 2.21}
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The momentum acceptance is also directly calculated in the optical view, where the

maximum radial dispersion at collimator locations is taken, which yields

δmax,min = ± r0
Dmax
x

≈ ±0.56 %. (3.72)

3.5.2 Temporal motion of the beam

The optical configuration at the end of the M5 beamline is meant to focus the beam horizon-

tally for its passage through the backleg hole in the ring, which houses the 18 mm× 56 mm

(horizontal and vertical dimensions, respectively) superconducting inflector meant to can-

cels out the surrounding magnetic field. The outcome of this process is a beam whose α,

β, and γ functions do not correspond to the optical lattice functions of the ring. Also, the

radial dispersion prior to the storage ring entrance is close to zero; thus, stored muons will

follow different momentum-dependent radial closed orbits with an overall coherence due to

the injection favoring the storage of specific betatron phases. All these features lead to a

mismatched beam.

As indicated by Eq. (3.58), the nonzero averaged betatron amplitudes give place to

oscillations of the beam centroids and widths over time. Figures 3.47 and 3.48 depict such

temporal behavior as seen at one azimuth of the ring from COSY-based simulations. As

explained in Sec. 3.4.1, nonlinear tune shifts and (to a lower extent) the recombination of

high- and low-momentum muons yield the de-coherence of the temporal modulations, which

are expected to have amplitudes of less than a millimeter by the end of each fill (∼ 700µs).

The beam-ring mismatching is less severe in the vertical phase space than in the radial case

thanks to the negligible vertical dispersion and more comparable beam-ring optical functions.
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Figure 3.47: Long-term radial beam de-coherence.

Fast Fourier transforms (FFT), shown in Figs. 3.49 and 3.50, reveal the typical transverse

frequencies of the stored beam. Since in this stroboscopic perspective the beam is observed

at one location, its frequencies are combinations of cyclotron and radial/vertical frequencies,

listed in Table 3.7.

Table 3.7: Transverse motion frequencies of the g-2 stored beam (HV= 18.3 kV). The last
column indicates cyclotron revolutions per frequency cycle.

Frequency (f) Expression [MHz] [rad/µs] Period [µs] Cyclotron revs.
fc p0/(2πmµγ0ρ0) 6.7050 42.128 0.14914 1.0000
fx fcνx 6.3326 39.789 0.15791 1.0588

fCBO,x fc (1− νx) 0.37238 2.3397 2.6855 18.006
fy fcνy 2.21810 13.937 0.45084 3.0228

fCBO,y fc
(
1− νy

)
4.4869 28.192 0.22287 1.4943

In Sec. 3.3, the concepts of closed orbits and optical lattice functions were elaborated in

the context of the g-2 storage ring. In this way, a description of a matched beam is expected

to be exact in the linear regime. At this point where nonlinearities and beam mismatch

are sufficiently quantified, the beam-to-ring relations that emerge in this framework (i.e.,
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Figure 3.48: Long-term vertical beam temporal modulations.

Eqs. (3.53) and (3.57)) are tested.

In the temporal dimension, beam centroids and widths at azimuthal locations are tracked

from symplectic and nonlinear simulations, and the closed orbits and optical lattice functions

are calculated with the COSY-based model. Figures 3.51 and 3.52 display results at 157◦

downstream from the entrance of ESQ station Q1S. An electric field at ESQ station Q1L

with the time dependence expected during Run-1a (see Sec. 3.6.1) is also accounted for

in these tracking-vs-lattice comparisons in order to test the framework beyond its nominal

conditions. Random time offsets of the size of oscillation periods shown in Table 3.7 are

applied to temporal coordinates from simulation results in order to wash out frequencies

from beam mismatching and directly compare beam drifts over the whole data taking period.

Such drifts are the relevant quantity to pay attention to since they can potentially bias the

ωa measurement; in general, effects from oscillations driven by beam mismatch cancel out.

Beam centroids do follow closed orbits as indicated in Eq. (3.57) and shown in Fig. 3.51;

the beam centroid oscillates with the closed orbit as the equilibrium fixed point. Beam
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Figure 3.49: Beam frequencies extracted with FFT from centroids motion.

0 10 20 30 40 50 60 70

s]µRadial width frequencies [rad/

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

m
ag

ni
tu

de
 [a

.u
.]

0 10 20 30 40 50 60 70

s]µVertical width frequencies [rad/

0

200

400

600

800

1000

1200

1400

1600

1800

2000

m
ag

ni
tu

de
 [a

.u
.]

Figure 3.50: Beam frequencies extracted with FFT from widths motion.

widths, on the other hand, require a less straightforward extraction from the lattice side. In

the radial case, the momentum spread σδ is required to calculate the dispersive effect on the

radial width. In addition, emittances are also necessary to be known. In the experiment,

emittances and the momentum beam distributions are obtained externally from FR analysis

[51] and straw tracker data; in tracking simulations, these quantities are directly obtained.

Figure 3.52 shows how the vertical width is well described by Eq. (3.53) when the time-

evolving vertical emittance is taken into account (see Fig. 3.53). However, the description

of the radial width in the temporal dimension from Eq. (3.53) is off by a scale factor of
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Figure 3.51: Comparison between closed orbit and beam centroid from tracking at 157◦

downstream from the entrance of Q1S. Tracking data is randomized to remove beam beating
from mismatch. The initial distribution and guide fields are prepared for the 60h case as
explained in Sec. 3.6.
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Figure 3.52: Comparison between beam width from optical lattice functions (green and red
entries) and beam width from tracking at 157◦ downstream from the entrance of Q1S. The
differences are discussed in the main text. Tracking data is randomized to remove beam
beating from mismatch. The initial distribution and guide fields are prepared for the Run-
1a case as explained in Sec. 3.6. The red line corresponds to a case with constant emittances,
which in the vertical case plays a role in describing accurately vertical beam widths.

137



50 100 150 200 250

s]µt[

32.5

33

33.5

34

34.5

35

35.5

6−10×
.m

.r
ad

]
π [ xε

0 50 100 150 200 250

s]µt[

8

8.2

8.4

8.6

8.8

9

6−10×

.m
.r

ad
]

π [ yε

Figure 3.53: Beam emittances from tracking. Due to the smaller vertical admittance, the
vertical emittance is more affected by muon loss rates.

about 1.07. This discrepancy originates from the skewness of the radial (and mismatched)

distribution, which deviates from the postulate of having elliptical distributions in phase

space (or, equivalently, normal distributions per dimension). Nevertheless, the scale factor is

constant and the time evolution is captured by Eq. (3.53). Figures 3.54 and 3.55 show from

the simulation side the phase space in both transverse directions, as well as their spatial

projections (note skewed radial distribution).

3.5.3 Beam azimuthal modulation

The precise reconstruction of muon coordinates from the straw tracking detector measure-

ments provides reliable time-dependent transverse muon beam intensity profiles. On the

other hand, the two tracking detector stations are limited to their narrow sensitivity of

about 5◦, ∼ 1 m upstream from their azimuthal locations (see Fig. 1.11). All things consid-

ered, the 24 calorimeters around the inner side of the ring could ideally be used to measure

the muon beam along the azimuth. However, these detectors were specifically designed to
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Figure 3.54: Radial phase space at late times of the data taking period (left) and its spatial
projection (right) from Run-1 simulation. The pattern closely resembles observations and
its characteristic skewness is present in all Run-1 datasets.

measure positrons energy and arrival time (see Sec. 1.2.2); a trustworthy reconstruction of

the muon beam transverse profile out of detected positrons that hit calorimeter crystals

is therefore difficult due to acceptance, resolution, and material effects as positrons travel

through the ring instrumentation.

For this purpose, the COSY-based model provides optical lattice functions—verified with

reliable tracking simulations—in order to extrapolate straw tracker transverse beam data

around the ring. The resulting extrapolation is used to quantify systematic errors from the

pitch, electric, and phase acceptance corrections to ωa. It is also utilized to average the

magnetic field with the muon beam around the ring for the calculation of B̃ in Eq. (1.30).

Using optical lattice functions is more advantageous than beam tracking simulations since

it is not subject to frequencies from beam mismatch nor features of the tracking simulation

(e.g., symplecticity and computational time). Once detailed modeling of the guide fields

(under normal or unexpected scenarios as during Run-1) in the storage ring is implemented,

optical lattice functions are reproduced on a case-by-case basis. Furthermore, it has been
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Figure 3.55: Vertical phase space at late times of the data taking period (left) and its spatial
projection (right) from Run-1 simulation.

shown that a proper transformation of the measured beam with all its features is also possible

with the optical lattice functions for the purposes of the experiment analysis.

Based on tests with the COSY-based model, the azimuthal behavior of the beam is indeed

reproduced by the optical lattice functions. Since tracker data provides information at two

azimuths, an effective radial emittance is calculated via Eq. (3.53), where σδ is extracted

from fast rotation (FR) analysis [51], the measured radial width is taken, and the radial

beta and dispersion functions are calculated at tracker locations. In the vertical case, the

emittance is simply calculated with vertical width measurements and vertical beta functions

from the model. It is necessary to first wash out the beam temporal oscillations with data

randomization [108] or averaging measurements within time ranges being multiples to CBO

frequencies. Figures 3.56 and 3.57 show the good performance of optical functions for the

extraction of the beam azimuthal behavior. Even though the radial distribution is not well

behaved, the lattice functions can be safely used within errors of 0.04 mm.

To extrapolate the beam transverse intensity M(x, y, t; θ1) → M(x, y, t; θ2) muon by
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Figure 3.56: Comparison between closed orbits (red curves) and randomized beam centroids
from Run-1 tracking simulations.

Figure 3.57: Comparison between beam widths from optical lattice functions (red curves)
and randomized beam widths from Run-1 tracking simulations.

muon, the following expression is used:

x(θ2) = κx(θ1, θ2) (x(θ1)− x̄(θ1)) + x0(θ2) +Dx(θ2)δ̄

y(θ2) = κy(θ1, θ2) (y(θ1)− ȳ(θ1)) + y0(θ2),

(3.73)

where

κx(θ1, θ2) =

√
εxβx(θ2) +D2

x(θ2)σδ
σx(θ1)

and κy(θ1, θ2) =

√
βy(θ2)

βy(θ1)
. (3.74)

In this form, the temporal oscillations as measured are captured. Analysis for the phase
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acceptance correction has proved the validity of these transformations with tracker data as

input [109]. For the muon weighting of the magnetic field, since the temporal modulations are

not relevant, the entire beam distribution integrated over time is shifted and scaled according

to Eq. (3.74); see Sec. 4.5 for more details. Pitch [104] and E-field corrections [105] require

a more direct use of the COSY-based optical lattice functions.

3.5.4 Time-momentum correlations

As explained in Sec. 1.3.3, a momentum-time correlation after beam injection introduces

the largest systematic error of the E-field correction. At the time of this dissertation, no

procedure to measure this correlation in the experiment has been established. With the

COSY-based model, the initial distribution at the inflector exit (see Sec. 3.2.5) is transferred

into the storage ring, whose longitudinal profile (Fig. 3.14) and the injection kickers pattern

(Fig. 3.10) determine the initial momentum-time correlation. 4µs after beam injection, the

resulting collimated beam is expected to yield a momentum-time distribution as shown in

3.58 under Run-1a kicker settings (−200,−170,−185G as maximum strengths). Injection of

high-momentum muons ahead of the longitudinal center of the beam is favored; such muons

require less outward kick to be stored, and the ringing of the kicker pulse benefits the process.

The same pattern occurs for high-momentum muons on the other side of the beam, although

to a lower extent. Figure 3.59 reveals the characteristic shape of the beam momentum

spread from FR analysis, which indicates a proper recreation of the injection process in

the COSY-based simulation. Other g-2 collaborators produce similar simulations of the

momentum-time distribution [110] and the output is qualitatively equivalent, although the

COSY-based simulation exhibits a stronger correlation; collaborative efforts are in process to

refine the calculation of the systematic error associated with the momentum-time correlation
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tracking simulation.
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for g-2 runs posterior to Run-1.

3.6 Beam Dynamics of Run-1

During all the four Run-1 datasets (in chronological order 60h (1a), HK (1b), 9d (1c), and

EG (1d)), measurements of the transverse muon beam from the straw tracker detectors

revealed unexpected drifts of the beam centroid and width over a fraction of the fill [86]

(i.e., t . 200µs after beam injection). Furthermore, CBO frequencies of the radial centroid

oscillations were also found to evolve during the data taking period, slowly converging to

their nominal values over the course of a fill.

Under nominal conditions the ESQ stabilizes after t ≈ 30µs, in which case the guide fields

are constant and thus the optical lattice, too. In this normal scenario, CBO frequencies do

not change since the stable lattice provides constant betatron tunes (see Table 3.7). Also,

closed orbits are expected to be stable and, consequently, the fixed points around which

beam centroids oscillate are indeed fixed. As presented in Sec. 3.5.2, transverse emittances

are sensitive to muon loss rates as experienced during Run-1; therefore, beam widths could

drift under a stable optical lattice. All these expectations served to interpret observations

and determine the specific behavior of the optical lattice during Run-1.

In particular, CBO frequencies relate to field gradients, and centroid coordinates result

from dipole field steering. Less ambiguously and in the view of 2D multipoles field expan-

sion, normal quadrupole terms strongly relate to the radial CBO frequency via radial tunes

and skew dipole terms define long term motion of the vertical beam centroid via vertical

closed orbits. Being mindful of such lattice-beam relations, measurements of the radial CBO

frequency and vertical beam centroid over the four Run-1 datasets (see Figs. 3.60 and 3.61)
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are taken as input for the reconstruction of the unmeasured Run-1 ESQ electric fields.
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Figure 3.60: Radial CBO frequencies during the four Run-1 datasets from straw tracking
detectors data. Semi-transparent markers are obtained from sliding sinusoidal fits (±5µs)
to the recorded radial beam centroid, whereas solid lines result from multi-parameter fits
through the entire fill. Both methods are equivalent.

On the other hand, a handful of potted resistors (which connect to ESQ plates as part of

the RC circuitry) with HVRs in series were installed during Run-1 for logistical reasons [111]

(see Fig. 3.62). Two of them, connected to the top and bottom long plates at ESQ station

Q1 (“Q1LT” and “Q1LB”), were measured for several high voltages with a HV probe after

Run-1 concluded and found to be damaged. Their HV traces were expected to behave like the

nominal ones shown with thin lines in Fig. 3.63. However, measurements displayed longer

relaxation times (circular markers in Fig. 3.63). Moreover, the peculiar HV traces from

the damaged resistors manifested fluctuations over the course of the probe measurements,

providing strong evidence of multimodal stages of the ESQ station Q1L during Run-1 (also

reflected from tracker data shown in Figs. 3.60 and 3.61). The faulty behavior of these two

resistors (out of all the thirty-two installed in the ESQ circuitry) indicated corona discharges

on the resistor surface [112]; resistors outgassed while their temperature raised, leading to
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Figure 3.61: Vertical centroid drifts during Run-1 from straw tracking detectors data. Solid
lines are fits with double exponential terms and a constant part as the functional form.

the discharge at low voltages. The outgassing was likely more dramatic during the last and

longest Run-1 dataset (1d), pushing the ESQ to produce more unusual electric guide fields.

In Sec. 3.6.1, a method to reverse-engineer the Q1LT- and Q1LB-HV traces per Run-1

dataset is elaborated. From the reconstruction results, derived optical lattice functions are

presented in Sec. 3.6.2.

Section 3.6.3 describes a reliable method to reconstruct the beam 6D structure out of

experimental data. Lastly, in Sec. 3.6.4 the stored muon beam from tracking simulations is

presented, with the reconstructed HV traces and data-based initial beam conditions as input

for the COSY-based model.
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Figure 3.62: Single-CADDOCK high-voltage resistor (top) and chain of potted HV resistors
(bottom). Two of the latter type of resistors became damaged during Run-1.

3.6.1 Reconstruction of the electric guide fields during Run-1

Technique

The electrostatic potential produced at an ESQ station can be represented as a superposition

of the four contributions originated by each of its top “T”, bottom “B”, inner “I”, and outer

“O” plates. In addition to the potential V0(x, y, t) expected at ESQ-station Q1L under

nominal conditions, an additional contribution ∆VT (x, y, t) and ∆VB(x, y, t) from the faulty

Q1LT and Q1LB plates, respectively, during Run-1 is overlaid as a perturbation under the

straight-plates approximation as follows:

∆V (x, y, t) = ∆VT (x, y, t) + ∆VB(x, y, t)

=
∞∑
k=0

∞∑
l=0

(
∆HVT (t)gk,l + ∆HVB(t)bk,l

)
xkyl (3.75)

In Eq. (3.75), ∆HVT (t) and ∆HVB(t) are the extra high voltages “HV” on the top and

bottom plates due to the damaged resistors in Run-1 such that the total HV traces are given
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Figure 3.63: HV-traces sample (circle markers) from HV probe measurements in September
2018, at Q1L plates connected to the damaged resistors. Blue and red lines depict nominal
HV traces.

by

HVT (t) = HV0,T (t) + ∆HVT (t) and HVB(t) = HV0,B(t) + ∆HVB(t), (3.76)

where HV0 is the nominal case. The coefficients gk,l and bk,l determine the distribution

of ∆HVT,B(t) among the top/bottom plate multipoles. Since b1,0 = 0, b1,1 = 0, and

bk,l = (−1)k+lgk,l due to the orientation and 180◦ rotational symmetry of the top/bottom

plates, Eq. (3.75) can be rewritten as

∆V (x, y, t) = ∆V sdip(t)y + ∆V nquad(t)(x
2 − y2) + · · · , (3.77)
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where

∆V sdip(t) = [∆HVT (t)−∆HV B(t)] b0,1 and ∆V nquad(t) = [∆HVT (t) + ∆HV B(t)] b2,0.

(3.78)

The study [89] provides the coefficients b0,1 and b2,0. Given the orthogonality of the two

equations in Eq. (3.78) in terms of ∆HVT and ∆HVB , there is a unique set of top and

bottom HV traces that yield ∆V sdip(t) and ∆V nquad(t). To evaluate these traces, the extra

skew dipole ∆V sdip(t) and normal quadrupole ∆V nquad(t) terms must be linked to beam

dynamic observables measured by the g-2 straw tracking detectors, as shown next.

Implementation

Under the presence of the extra vertical dipole electric potential ∆V sdip(t) (Eqs. (3.77) and

(3.78)), the vertical closed orbit becomes distorted. Therefore, by measuring the distortion

of the vertical closed orbit at one azimuthal location of the storage ring (aka vertical fixed

points “y0”) over time, ∆V sdip(t) can be quantified. In fact, the straw trackers have the

ability to extract such vertical beam equilibrium positions around specific locations within

the ring.

To illustrate the relation between ∆V sdip(t) and the observable y0 (equivalent to the non-

oscillating vertical mean from tracker data), the former variable can be treated as a dipole

steering error [113]:

 y

b


0

=
(
I −My

0

)−1

 0

∆θy

 , ∆θy ≈ −
e∆V sdip
E0

l

rref
(3.79)

where M
y
0 is the vertical quadrant of the storage ring transfer map without the steering
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error, ∆θy is the resulting vertical steering angle, E0 the energy, rref the reference radius

of ∆V sdip, and l is the length of the element that provides the steering error. It is worth

mentioning that the linear vertical transfer map M
y
0 has to account for the gradient error

explained next.

The normal quadrupole extra term ∆V nquad(t) introduces a distortion to the radial defo-

cusing gradient at Q1L. Consequently, the betatron tunes νx,y and beam transversal widths

are affected due to the nonzero ∆V nquad(t). Trackers can indirectly measure the radial CBO

frequency (see Fig. 3.60), ωCBO, which relates to the tunes through the cyclotron frequency,

fC , via ωCBO ≈ 2πfC(1 − νx). In a similar fashion, the relation between ∆V nquad(t) and

the observable ωCBO can be elucidated by treating the action of ∆V nquad(t) as a gradient

error [78]:

νx = 1− ωCBO
2πfC

=
1

2π

(
4 cos−1

(
Tr(Mx

0 )

2

)
+
e∆V nquad

pv

βxl

r2
ref

)
, (3.80)

where Tr(Mx
0 ) is the trace of the horizontal quadrant of the storage ring transfer map without

the gradient error. In reality, the action of the extra skew dipole and normal quadrupole

terms at Q1L during Run-1 is entangled and magnetic field inhomogeneities already distort

closed orbits. Moreover, trackers do not measure the vertical closed orbit at Q1L. Thus, the

illustrative but simplistic equations (3.79) and (3.80) do not suffice to solve for ∆HVT,B(t) via(
∆V nquad(t),∆V

s
dip(t)

)
with (y0, ωCBO) from tracker data. For this purpose, with the high-

fidelity COSY-based storage ring model and optimization algorithms supported by COSY

150



INFINITY [53,54], a more representative set of bijective equations is prepared:

y0(t) = F1(∆HVT −∆HV B , ~A; t), (3.81)

ωCBO(t) = F2(∆HVT + ∆HV B , ~A; t). (3.82)

With these relations fully established, the Q1LT and Q1LB high-voltage traces are recon-

structed. The vector ~A contains all the other nominal parameters of the storage ring in-

dependent of the bad resistors behavior. Fig. 3.64 illustrates the optimization process for

one set of tracker measurements (y0, ωCBO) to obtain the optimal top and bottom HV-trace

values at a specific time. In Fig. 3.64, right plot, “fobj” is the sum of objective functions

that the optimizer minimizes iteratively:

fobj,1 =

(
1− νsimx (∆HVT ,∆HV B)

νTracker data
x

)
and fobj,2 =

(
1−

ysim0 (∆HVT ,∆HV B)

yTracker data
0

)
,

(3.83)

where the superscript “sim” stands for the values from the COSY-based model, dependent

on the ∆HVT and ∆HV B values input to the model.

Reconstruction Results

Fig. 3.65 presents the HV traces from Q1LT and Q1LB during Run-1 datasets as recon-

structed with the method described above. For the time window prior to the nominal

measurement start time, t < 30µs, the HV-traces reconstruction fails to output results that

resemble the functional forms as directly measured with the probe. To bypass such limi-

tation, the functional form of the reconstructed HV traces at t > 30µs is extended to fill

out the gap at t < 30µs. The implementation of the reconstructed HV traces is validated
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Figure 3.64: High voltage on Q1LT and Q1LB plates (left) and objective function (right)
per iteration as the optimization takes place for the Run-1, EndGame dataset, at 40µs.
The optimizer supported by COSY INFINITY (i.e., the generalized least squares Newton
method) fits Q1LT/Q1LB HVs such that the COSY-based storage ring model with damaged
resistors accounted for reproduces a vertical fixed point (equivalent to the vertical mean)
and CBO frequency as measured by tracker station 12.

Figure 3.65: Reconstructed HV traces (normalized to their nominal voltage set-points) at
Q1L during Run-1 datasets. Dashed and solid lines correspond to Q1LT and Q1LB plates,
respectively.
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by comparing beam tracking simulation results with tracker data, i.e., CBO frequencies and

vertical centroids over time as shown in Fig. 3.66.
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Figure 3.66: Comparisons between tracker data (blue markers) and tracking simulations
(red markers) at tracker S12 azimuthal readout location with the damaged-resistors effect
implemented. On the left is the CBO frequency, whereas on the right vertical centroids are
shown. Similarly, strong agreements are obtained for the other Run-1 datasets. For compar-
ison purposes, the vertical entries on the right plot are shifted within tracker misalignment
errors.

Cross checks and uncertainty estimation

The HV-traces reconstruction raises from the observation of slowly changing beam parame-

ters (CBO frequency and vertical mean) at the azimuthal locations in the ring where trackers

take data from. The CBO frequency is a global parameter independent of the ring location,

as it is directly related to the betatron tunes, and its direct extraction from radial beam

oscillations and functional fits has demonstrated to be reliable. On the other hand, the

early-to-late vertical mean drift is more subject to the limited statistics of the available data,

especially at late times in the fill. To compensate for this aspect, vertical mean drifts as

recorded by calorimeters around the ring serve as an extra input to constrain the equilibrium

vertical mean after the effect of the damaged resistors during the fill, this way guaranteeing

the overall vertical drifts from tracker data.
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Figure 3.67: Black markers are vertical beam drifts (40-300µs) from calorimeter data (energy
threshold of 1.7 GeV) under material-effect corrections, where double exponential fits were
employed. In blue, vertical closed orbit distortion drifts from 40-300µs using the COSY-
based model with the reconstructed HV traces implemented. The blue error band is an
estimate of the uncertainty introduced by the vertical dispersion. The red squares are from
a gm2ringsim muon tracking simulation [45] with an implementation of the electric guide
fields reconstructed with the COSY-based model. The simulations are matched to data by
associating the closed orbit placed ∼ 22◦ upstream of the calorimeter position.

Moreover, several aspects from the storage ring modeling that could interfere with the

sensitivity of the vertical beam mean and CBO frequency to changes in the guide fields were

considered [114], namely:

• Magnetic multipole coefficient errors from Trolley data (not greater than 300 ppb).

• HV reconstruction based on data from tracker station S12 vs. S18.

• Ambiguity of magnetic field reference azimuthal angle.

The largest impact of the listed effects on the reconstructed HV traces came from mag-

netic coefficient errors and, for instance, their corresponding optical lattice functions led to

systematic errors of the phase acceptance correction of about 1 ppb.

The presence of a third damaged resistor at station Q3L was also suspected. However,

when a reconstruction of three traces was attempted under these conditions (information
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of the vertical beam at the two tracker stations was accounted for simultaneously, to con-

sider three optimization objective functions), the optimization method did not converge to

physical results. At a qualitative level, HV measurements of the third possible plate to

have been damaged during Run-1 exhibited a stable behavior after the fit start time [111].

Also, comparisons shown in Fig. 3.67 considering two damaged resistors recreate calorimeter

observations within experimental errors.

3.6.2 Optical lattice functions during Run-1

With the reconstructed HV traces at Q1LT and Q1LB for each Run-1 dataset, the total

electric potential at Q1L is defined in the COSY-based model and optical lattice functions

prepared (see Sec. 3.3.2).

Figure 3.68 shows how vertical closed orbits are shifted due to the effect from damaged

resistors. The minimum distortion on the vertical orbit occurs at Q1L, where the steering

error is located. At the opposite side of the ring, the vertical closed orbit suffers its largest

drift. A similar pattern arises from the vertical beta functions beating (see Figs. 3.69 and

3.72). The ring is a closed system where extra steering or gradient errors beyond design

have global implications on the entire lattice. For instance, while muons cross the mis-

powered station Q1L, the lower focusing vertical gradient lets the beam spreads out to a

larger amount than the design case, wherein vertical beta functions reflect a proportional

azimuthal evolution.

On the radial end, larger radial tunes change the resulting patterns driven by Q1L during

Run-1 (see Figs. 3.70 and 3.71). The radial closed orbit is minimally affected by the damaged

resistors; the top and bottom plates at Q1L do not introduce normal dipole electric fields.

As the Q1LT and Q1LB plates slowly converge to the nominal HV setting, all optical
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Figure 3.68: Vertical closed orbits at 30µs (red curves), 100µs (blue curves), 200µs (green
curves), and 300µs (black curves) during Run-1. Gray shadows depict ESQ stations along
the azimuth, where the Q1S upstream edge is at θ = 0. Orange lines indicate collimator
locations. Red curves are subject to the effects of the ESQ scraping configuration and the
green curves have almost reached the equilibrium values.
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Figure 3.69: Vertical beta functions at 30µs (red curves), 100µs (blue curves), 200µs (green
curves), and 300µs (black curves) during Run-1.

functions adiabatically converge to a stable state. Figure 3.73 shows the time evolution of

the lattice at 210◦ from the upstream entrance of station Q1S (Run-1 dataset 1d), where the

lattice gradients are the largest.

With these dataset-by-dataset periodic functions of the optical lattice, tracker data is

extrapolated around the ring (see Sec. 3.5.3). Figure 3.74 displays the beam centroids and

widths based on tracker data (EG), station 12.
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Figure 3.70: Radial beta functions at 30µs (red curves), 100µs (blue curves), 200µs (green
curves), and 300µs (black curves) during Run-1.

3.6.3 Initial beam distributions

The muon g-2 straw tracking detector system has the beam-diagnosis capability of recording

radial x and vertical y muon coordinates to resolutions of σ ≈ 4 mm and time t coordinates

with 3.4 ns precision during Run-1 [38].

In the stroboscopic perspective, tracker measurements can be treated as localized in a

well-defined azimuthal location as a result of the narrow azimuthal sensitivity (≈ 4.9◦) and

the weakly focusing optics approximation. In this view, the radial motion of the beam

is modeled for small time ranges as an ensemble of monochromatic muons oscillating at

a common radial CBO frequency ωCBO with different equilibrium positions xie, betatron
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Figure 3.71: Radial dispersion functions at 30µs (red curves), 100µs (blue curves), 200µs
(green curves), and 300µs (black curves) during Run-1.

amplitudes Aj , and phases φk:

x(t) = xie + Aj cos (ωCBOt+ φk) . (3.84)

The measured data-bin intensity Nmn at coordinates (xm, tn)—see Fig. 3.75—can be ex-

pressed as [115]

Nmn =

ni∑
i=1

nj∑
j=1

nk∑
i=k

βijkmnfijk, (3.85)

where fijk is the relative muon population identified by the set {xie, Aj , φk} from the beam

probability density function (PDF) f(xe, A, φ). In Eq. (3.85), the summation upper bounds
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Figure 3.72: Relative vertical beta functions drift from 30µs to 1000µs.

correspond to the number of values subject to the binning size along each coordinate in fijk

(e.g., ni = 45 for x1
e = [−45,−43] mm, x2

e = [−43,−41] mm, . . . , x45
e = [43, 45] mm).

On the other hand, the relative number of muons with specific
(
xie, Aj , φk

)
coordinates

that contribute to the measured intensity Nmn, symbolized by βijkmn in Eq. (3.85) and not

to be confused with betatron functions, is equal to the probability of such muons to be found

at the bin (xm, tn):

βijkmn =

∫ r+

xm=r−

∫ t+

tm=t−

ε (xm)√
2πσ

e
− 1

2σ2

[
xm−

(
xie+xoff+Aj cos(ωCBOtn+φk)

)]2
dxmdtn.

(3.86)

The radial acceptance ε(x) in Eq. (3.86) [38] accounts for detection effects of the tracker

stations. The offset xoff is determined based on data and accounts for closed orbit distortions,

tracker reconstruction offsets, and tracker misalignments.

With these well-established relations between beam PDFs and x − t tracker data, the
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Figure 3.73: βx, βy, Dx, and vertical closed orbit at 210◦ from the upstream entrance of
station Q1S for dataset Run-1d.

optimal fijk functions can be estimated via non-negative least squares (NNLS) minimization

of the following χ2 expression:

χ2 =

nm∑
m=1

nn∑
n=1

(∑
i,j,k βijkmnfijk −Nmn

)2

σ2
Nmn

. (3.87)

Under constraints inspired by further data analysis, the minimization converges to physical

solutions after less than 10,000 iterations. For instance, the FR signal [51] enables to limit

the conditional PDF f(xe|A, φ), wherein resulting deviations from the original signal can be

attributed to differences between calorimeter and tracker detection efficiencies.
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Figure 3.74: Beam drifts from 40µs to 300µs anchored to tracker data for the Run-1d
dataset. Gray shadows depict ESQ stations along the azimuth, where the Q1S upstream
edge is at θ = 0. Orange lines indicate collimator locations. With the Run-1 optical lattice
functions, the observed beam drifts measured by the muon g-2 straw tracking detectors are
projected along the entire azimuth of the storage ring.

Figure 3.76 shows a typical f(xe, A, φ) function projected along two dimensions. Correla-

tions between xe, A, and φ are expected to result from the dynamics caused by the injection,

collimation, and circulation of the muon beam in the storage ring [116].

Thanks to the periodicity of the mismatched beam motion over time, a data range of

one CBO period is sufficient to reconstruct the beam conditions (and necessary to ignore

betatron tune shifts). In order to capture the beam scraping process (an essential component

for realistic muon loss rates modeling) that took place during Run-1 the PDFs are calculated

from data at around 4µs after injection while the scraping scheme is at its initial stage.

From the vertical-motion front, the reconstruction follows the same process as for the

radial case with a simplification of all vertical oscillations following the same fixed point in
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Figure 3.75: Resolution- and acceptance-corrected radial position versus time from tracker
data, Station 12. By reconstructing the trajectory of decay positrons detected by the tracking
planes, muon decay positions are extrapolated. Coherent oscillations are a consequence of
the beam injection process.

the absence of vertical dispersion. Specifically, the vertical distribution of the muon beam is

described with vertical betatron functions and constant oscillation offsets.

The initial time profile of the beam is set based on measurements from scintillating de-

tectors. With the COSY-based model, which includes the observed injection-kicker ringing

pattern during Run-1 and a realistic beam distribution at injection (see Sec. 3.2.5), a cor-

relation between time and momentum offsets is assigned to the initial beam distribution at

4µs.

Using the linear beam dynamics framework, the initial ~zi ray coordinate sets are prepared

for each muon from the reconstructed PDFs for nonlinear beam tracking simulations with

the COSY-based model.

Even though nonlinearities are not considered in the reconstruction of the initial beam
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Figure 3.76: Reconstructed beam distribution in the radial direction. On the left plot,
the upper limits are determined by the physical apertures of the collimators which bound
maximum radial excursions, whereas the maximum kicker strength defines the lower limits.

conditions, all the de-coherence, betatron amplitude modulation, and tune-dependent shifts

originated by the higher order guide fields are manifested in the nonlinear beam tracking

simulations.

This reconstructed method assumes no correlations between the radial and vertical mo-

tion, which agrees with observations from the straw tracking detectors. Sufficiently large

skew quadrupole coefficients from the electric and magnetic fields can potentially introduce

x-y beam correlations, and proper modeling of these fields in the simulation gives rise to

such effects.

3.6.4 The simulated Run-1 beam

The following features developed in this dissertation set the stage for a highly realistic

recreation of the stored muon beam during Run-1:

• COSY-based model of the muon g-2 storage ring.

• Reconstructed ESQ fields at station Q1L based on experimental data.

• Realistic initial beam distribution based on experimental data.
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Figure 3.77: Muon beam intensity from simulation (left) and tracker data (right), station
12, during Run-1a from 30µs < t < 300µs.

By performing symplectic tracking, the beam information is regenerated at arbitrary az-

imuthal locations. With these distributions—and the optical lattice functions from the

COSY-based model—, beam dynamics systematic uncertainties in the muon g-2 experiment

are assessed to the precision demanded by the objectives of the experiment (see Chap. 4).

To validate the results derived from this analysis, experimental data are used to compare

results from tracking. Figures 3.77-3.81 show examples.

In Fig. 3.77, the transverse profile of the beam at tracker station 12 is shown during

Run-1a, integrated from 30µs < t < 300µs. The characteristic radial structure dictated

by correlations between the muon dynamic parameters (momentum-dependent fixed points,

betatron phases, and betatron amplitudes) is captured in the simulated beam. The vertical

projection, which resembles more closely a normal distribution, is also well represented in the

numerical results. Figure 3.78 shows the corresponding projections in Fig. 3.77 2D distribu-

tions. Due to either an imperfect simulated scraping process during the first microseconds
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Figure 3.78: Muon beam intensity projections from simulation (red) and tracker data (blue),
station 12, during Run-1a from 30µs < t < 300µs.

Figure 3.79: Radial beam evolution over time from tracker S12 data (top) and simulated
beam (bottom) during Run-1a. The data-driven reconstruction of the initial beam conditions
allows to capture in beam tracking simulations (in this case with the COSY-based model)
the transverse and temporal evolution of the observed beam.
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Figure 3.80: Radial CBO frequencies from simulated beam (red) and tracker data (blue) for
each Run-1 dataset.

after beam injection or tracker data resolution, discrepancies smaller than 2 mm are evident

in the radial case. Figure 3.79 shows the radial beam motion over time at tracker station 12

(Run-1a).

The measured CBO radial frequency is closely followed in the simulated beam thanks to

the implementation of the reconstructed HV traces at ESQ plates Q1LT and Q1LB, which

serves as a closure test. CBO radial frequencies are shown in Figure 3.80.

The beam centroid drifts from simulations are also reproduced (see Fig. 3.81). Results

from tracker data and simulations are shifted vertically for the intended comparison of gra-

dients. Without the introduced offsetting, data and simulations agree within the vertical
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Figure 3.81: Vertical centroid from simulated beam (red) and tracker data (blue), station 12
for each Run-1 dataset.

alignment uncertainty of the straw trackers (∼ 0.6 mm).

The agreement of the momentum spread from simulated Run-1 beams with results from

the FR analysis is also strong since the latter was one of the inputs to prepare initial muon

beam distributions (see Sec. 3.6.3). Several efforts within the muon g-2 collaboration were

carried out to validate the beam extrapolated as presented in this document with data

calorimeter detectors. An example of this collective effort is Fig. 3.67. However, in contrast

with the straw tracking detection system and its specialized design to measure the muon

beam, the task is daunting since calorimeters measure positron energies and arrival times

and not the transverse coordinates of muons where positrons originated in the first place.
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3.7 Conclusions

In this chapter, the developed COSY-based model of the muon g-2 storage ring was pre-

sented. The model allows for preparations of realistic tenth-order transfer maps used for

a detailed characterization of the muon beam stored in the ring via calculations of optical

lattice functions and symplectic tracking simulations. The detailed implementation of the

electric and magnetic fields based on measurements and modeling allows capturing both the

linear and nonlinear behavior of the stored beam.

With the presented linear framework wherein nonlinearities permeated the results on

some occasions, the optical lattice functions of the ring (including closed orbits) are prepared

and, furthermore, their validity is tested to describe the beam reliably for the case of the

g-2 storage ring. On the other hand, the assessment of nonlinearities permitted to build

a detailed description of amplitude- and momentum-dependent tune shifts, as well as their

implications on beam de-coherence, betatron resonances, and lost muons due to betatron

amplitude modulations.

A nominal characterization of the typical beam injected into the ring was also performed,

which is used in the experiment to extrapolate the measured beam transverse intensity to the

full azimuthal span. With the modeling of the injection kickers as part of the COSY-based

storage ring, the largest systematic uncertainty of the E-field correction is quantified.

The special behavior of the ESQ during Run-1 was reproduced numerically via optical

lattice functions and symplectic tracking thanks to the developed method to reconstruct fields

at the damaged ESQ station based on experimental data. Furthermore, the elaboration of a

method to define initial beam conditions from available data allowed to reproduce with high

fidelity the Run-1 beam beyond data, used for systematic correction studies at E989.
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Chapter 4

Beam Dynamics Correction Studies

4.1 Introduction

As presented in Sec. 1.3, the dynamical properties of the stored beam from which the anoma-

lous magnetic moment of the muon aµ is indirectly measured introduces ppb-level systematic

corrections to the measured anomalous precession frequency ωa [45]. Applications using the

beam characterization developed with the COSY-based model of the muon g-2 storage ring

(see Chap. 3) aimed at quantifying those corrections and their uncertainties are presented

in this chapter.

To initiate the discussion of the aforementioned corrections, it is appropriate to start

with the nominal case. In this idealized case of perfect circular motion and the ESQ stations

turned off, ωa is equal to the nominal g-2 frequency ωa0:

ωa0 ≡ −aµ
eB0

mµ
, (4.1)

where the magnetic field ~B0 is vertical and constant in magnitude. The four beam dynamics

systematic corrections—necessary to carry ωa0 towards the reality of the beam stored in the

g-2 storage ring to a ppb-level precision—are symbolized and identified as follows:

• Cml: Muon loss correction.
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• Cpa: Phase acceptance correction.

• Ce: E-field correction.

• Cp: Pitch correction.

With these systematic corrections properly quantified, the measured frequency ωa is unbiased

and the true aµ calculated 1:

aµ = −
mµ

eB̃
ωa0

=
mµ

eB̃
ωa (1 + Cml)

(
1 + Cpa

)
(1 + Ce)

(
1 + Cp

)
≈
mµ

eB̃
ωa
(
1 + Cml + Cpa + Ce + Cp

)
,

(4.2)

where B̃ is the average magnetic field weighted by the muon beam [39] instead of simply B0,

due to the beam transverse profile and magnetic field inhomogeneities. As shown in Sec. 4.5,

the azimuthal characterization of the beam presented in Chap. 3 is utilized to weight the

measured magnetic field with the muon beam around the ring. For reference, the Run-1

beam dynamics corrections are listed in Table 4.1.

Cml and Cpa are intrinsic to the experimental technique used in the muon g-2 experiment,

wherein ωa is extracted from fitting the time-dependent detected number of positrons above

energy threshold (see Sec. 1.2.1) with a sinusoidal multi-parameter functional form [33]

proportional to

cos (ωat+ ϕ0) . (4.3)

As explained in Sec. 1.3, an overall change in the g-2 Phase ϕ0 during the data taking

1The muon g-2 experiment measures the scalar magnitude ωa, for which the negative signs are removed
in the right-hand side of the last two lines in Eq. (4.2).
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Table 4.1: The Run-1 beam dynamics corrections [45]. The Cml and Cpa corrections are
anticipated to be significantly smaller for runs posterior to Run-1 where the ESQ fields are
expected to behave stably during data taking. The E-field correction Ce counteracts the
largest biasing in ωa due to additional spin precessions of stored muons away from magic
momentum.

Correction [ppb] Uncertainty [ppb]
Ce 489 53
Cp 180 13
Cml -11 5
Cpa -158 75
Total 499 93

period (i.e., ∼ 30µs < t < 700µs after beam injection) is indistinguishable and quietly

absorbed by the extracted ωa from the χ2−minimization fit. When the physical meaning of

ϕ0 is accounted for, it does become time dependent due to lost muons and momentum-spin

correlations; the magnitude of these two beam properties can lead to non-negligible muon

loss corrections. In Sec. 4.2, a simulation-driven calculation of the Cml correction during

Run-1 with the COSY-based model is presented.

On the detection side, the g-2 phase is in fact an observable derived from positrons that

are detected in the experiment [44]. Out of each transverse location, positrons are emitted

within a decay cone which, due to finite calorimeter acceptance, is not entirely detected most

of the cases. The distribution of detected phases over the decay cone is not uniform since

the initial directions of the positrons are correlated with the spin direction of muons prior to

the decay. Therefore, the observed g-2 phase depends on the transverse distribution of the

muon beam. During Run-1, the transverse profile of the muon beam exhibited drifts over

the data taking period (see Sec. 3.6). Consequently, the g-2 phase also varied (see Sec. 4.3).

This effect introduces the Cpa correction. Section 4.3 elaborates on the multiple efforts from

the beam dynamics side that were performed as part of this dissertation to quantify the Cpa

correction, which became relevant during Run-1 due to the faulty ESQ behavior (posteriorly
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repaired).

On the other hand, Ce and Cp directly bias the measured precession ωa without the

intervention of the g-2 phase. Instead, these corrections encapsulate the first-order effects of

vertical motion and momentum spread on the spin dynamics relative to the cyclotron beam

motion, for which the expression of the nominal g-2 frequency ωa0 is not sensitive. As shown

in Sec. 4.4, the standard expressions of Ce and Cp were tested with the COSY-based model

beyond the assumptions on which they were derived for previous versions of the muon g-2

experiment (i.e., CERN III and BNL).

4.2 The Muon Loss Correction

4.2.1 Momentum-phase correlations

In real terms, ϕ0 in Eq. (1.25) represents the overall angle between the beam spin polarization

and its momentum at t = 0, i.e., the precession-fit reference time which corresponds to the

moment when the beam is injected into the storage ring:

ϕ0(t) =
1

Ns(t)

Ns(t)∑
i=1

ϕ0,i, (4.4)

where Ns(t) is the number of stored muons at time t and ϕ0,i the individual phase of a muon

within the stored beam.

For this reason, if there are lost muons (see Sec. 3.4.3) whose individual phases are

correlated with their momenta and, in addition, the stored beam relative-momentum average

〈δ〉 is sensitive to muon loss, then a time-dependent phase sufficiently large to bias ωa can
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potentially emerge (see Eq. (1.29)):

∆ϕ0(t) =
dϕ0

d〈δ〉

∣∣∣
t=0
〈δ〉(t) = mδ〈δ〉(t). (4.5)

As explained in Sec. 2.3.4, due to dispersive effects and the momentum compaction

factor in the Delivery Ring, high-momentum muons experience greater integrated magnetic

dipole fields along their trajectories. Thus, their spins precess larger angles in the midplane

in comparison to low-momentum muons. This effect leads to ϕ0−δ correlations. From

simulations of the Beam Delivery System (BDS) described in Chap. 2 (Fig. 2.16), the beam

linear correlation between the g-2 phase and the Lorentz factor γ is mγ = 29.2 ± 9.4 mrad.

In terms of δ as in Eq. (4.5), from mδ ≈ γ0β
2
0mγ (derived in turn from p = γmβc) the ϕ0−δ

linear correlation is

mδ ≈ 8.79± 2.8 mrad/(%δ), (4.6)

where “%δ” denotes momentum offsets in units of percentage. Results in agreement with

Eq. (4.6) from external tracking simulations of the Muon Campus [117] are used instead for

the following simulation-based calculation of Cml. The correlation derived from this work is

shown in Fig. 4.1.

4.2.2 Momentum spread subject to lost muons

The other ingredient to numerically reproduce the changing phase from muon loss is the

evolution of the beam momentum average. For this purpose, the momentum spread from

tracking simulations for each of the Run-1 datasets with the COSY-based model (described

in Sec. 3.6.4) is numerically traced as muons get lost during the data-taking period in the
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Figure 4.1: Momentum dependence of the initial g-2 phase ϕ0. The simulations (black plot
markers) are in good agreement with experimental data (blue, preliminary). The experimen-
tal data were obtained by studying the behavior of muons with momenta above and below
the magic momentum in the storage ring [118].

simulation.

In general, the momentum compaction in the storage ring yields a longitudinal dilution

as shown in Fig. 4.2. Even though the overall momentum spread is diluting in time, as can

be observed at any given azimuthal location, this effect does not introduce a slowly changing

momentum profile; for time intervals of the order of a cyclotron period as used in positron

signals to extract ωa, the average momentum does not change.

On the other hand, muon losses cause a lasting momentum dependence when their overall

momentum is not the beam’s momentum average. Run-1 muon loss rates were low, but large

enough to produce a 10 ppb-level systematic error as indicated by dedicated measurements

[45] and the beam tracking simulations presented in this section. Figure 4.3 displays muon

loss fractions from simulations and data.

Notwithstanding the comparable muon loss fractions between measurements and simula-
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Figure 4.2: Momentum spread over time from Run-1d tracking simulations at early and late
times. While the beam spreads in the longitudinal direction, muons with different momenta
combine together.
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Figure 4.3: Muon loss rates versus time, 30µs after injection, from symplectic tracking Run-
1 simulations (left) and data (right, [119]). The 3νy = 1 resonance nearby Runs 1a and 1d
increases the loss fraction (Sec. 3.4.3). Uncertainty bands on the curves from data accounts
for experimental scaling errors in the determination of muon loss rates.
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tions, differences arise from the implementation in the COSY-based model of outdated radial

magnetic field data, a single implementation of the trolley run measurements for all Run-1

datasets, and gain correction uncertainties from the data-taking front.

Several factors influence the relative amount of muon losses. In particular, while the

Run-1a and Run-1d datasets operated at a nominal ESQ set-point of HV = 18.3 kV near

the 3νy = 1 resonant condition, the other Run-1 datasets (HK and 9d) operated at HV =

20.4 kV, farther from the nearest resonant conditions of HV ≈ 18.6 kV and HV ≈ 21 kV (see

Sec. 3.4.3). For this reason, muon loss rates were lower for HK and 9d datasets. Moreover, the

larger the number of inserted collimators, the more likely a muon—either with a modulated

betatron amplitude from nonlinearities or not—is to hit a collimator and get lost faster,

yielding less lost muons at later times. The initial beam distribution that results from the

injection process also determines the population of muons prone to be lost (e.g., outermost

muons), thus becoming an important factor in this regard.

Off-momentum muons oscillate around fixed points closer to the limiting collimator aper-

tures as indicated by radial dispersion functions. This effect exacerbates muon losses, as

shown in Fig. 4.4.

4.2.3 The correction Cml from the Run-1 simulated beam

Depending on the betatron amplitude beam distributions and the number of muons with

largest momentum offsets, the average momentum of lost muons does modify the overall

momentum spread of stored muons though to a low extent, as shown in Fig. 4.5. With mδ

and 〈δ〉(t) evaluated, the relative shift of the phase ∆ϕ0(t) with respect to the phase at

t = 30µs is estimated; results are shown in Fig. 4.6.

Monte Carlo (MC) simulations are prepared to reproduce histograms from which ωa is
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Figure 4.4: Relative momentum offsets of lost muons from Run-1 symplectic tracking sim-
ulations (30µs < t < 300µs). The vertical axis indicates the number of lost muons (in
arbitrary units) per bin of momentum offset.

Figure 4.5: Stored beam’s average momentum offset, relative to magic momentum, over time
from tracking simulations with the COSY-based model.
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Figure 4.6: g-2 phase time evolution from Run-1 symplectic tracking simulations driven by
lost muons. The beam injection scheme and operational set-points lead to different functional
forms per Run-1 dataset.

extracted in the experiment, where the generation of events is obtained from a 5-parameter

functional form similar to Eq. (1.25):

N(t) = N0 · e−t/γ0τ {1 + A cos [ωat− (ϕ0 + ∆ϕ0(t))]} . (4.7)

The parameters N0, γ0τ , A, ωa, and ϕ0 are constants and the value taken for ωa in the MC

simulation is 1.43729 MHz. The resulting histogram is fitted back with the same generating

function, although the phase is a simple parameter with no time dependence. The frequency

ω′a that minimizes the χ2-fit performed to MC data is taken in order to calculate the muon

loss systematic correction as 2

Cml = −
(
ω′a − ωa

)
ωa

. (4.8)

2For a convention where the phase is accompanied by a negative sign in the functional form, the Cml
sign is reversed, too.
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Results from each of the COSY-based Run-1 tracking simulations are shown in Table 4.2,

which are within < 12 ppb away from data-driven results [45].

Table 4.2: ωa corrections due to muon losses from beam tracking simulations. Errors for
each calculation are produced after considering the measured spin-momentum correlation
uncertainties and simulation statistical limits.

Cml [ppb]
Run-1a (60h) -14.13 ± 4.30
Run-1b (9d) 2.18 ± 2.86
Run-1c (HK) 4.16 ± 4.47
Run-1d (EG) -24.57 ± 2.47

4.3 The Phase Acceptance Correction

Similar to the muon loss correction Cml, drifts of the g-2 phase ϕ0 during the data taking

period bias the measured anomalous precession frequency ωa. As explained in the intro-

duction of this chapter, the phase acceptance correction Cpa accounts for phase changes

from the detection side rather than its physical meaning. From the parity-violating muon

decay µ+ → e+νeν̄µ, highest energy positrons are emitted in the muon spin direction with a

probability proportional to the angle between these two directions. On the other hand, the

positron emitted direction together with its energy and initial transverse coordinates in the

storage volume determine whether it is detected by a calorimeter or not (see Fig. 4.7, right

side, for a typical calorimeter acceptance map). Therefore, since the g-2 phase carried by a

positron is indirectly related by its initial direction due to the parity-violating decay process,

positron transverse decay coordinates and g-2 phases are correlated. Phase acceptance maps

in transverse x−y planes along the storage region are prepared by Khaw et al. [44] with a

Geant4-based simulation program named gm2ringsim [120]. The model includes decay
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modules as well as all of the active detectors and most of the passive components installed

in the storage ring, which allows recreating with high detail material effects that emitted

positrons experience from their initial coordinates to the calorimeter locations. Figure 4.7

shows typical phase- and detection-acceptance maps prepared with the gm2ringsim model.
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Figure 4.7: Typical detected-phase ϕ0,k (left) and calorimeter acceptance εc,k (right) maps
from gm2ringsim [44]. In the phase map, values indicated by the color legend (in mrad) are
relative to a central g-2 phase defined at injection. 1µrad phase shifts over a muon lifetime
in the laboratory frame induce ωa shifts of about 10 ppb.

Under normal conditions, the stored beam—although it may exhibit fast beam and width

betatron oscillations due to beam mismatch—is expected to maintain a constant transverse

distribution on the time scales of data taking periods (i.e., 30µs < t < 700µs) under the ef-

fects of a stable optical lattice. If ESQ specifications are met, such scenario is expected [121]

and the overall detected phase remains unchanged over the measurement (i.e., Cpa = 0).

Nevertheless, sufficiently large muon loss rates can potentially induce vertical width beam

drifts after the nominal fit start t = 30µs posterior to injection (see Fig. 3.52). Another

potential mechanism that could introduce a changing detected phase owing to beam drifts
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are amplitude modulations from betatron resonances. However, muon loss studies with the

COSY-based model (see Sec. 3.4.3) indicate that stored muons under these modulations ex-

hibit periodic patterns around 3-period fixed points but do not coherently grow nor decrease

to induce slow beam transverse gradients; if they get collimated, their effect potentially adds

to the phase acceptance correction via beam width drifts instead. Regardless of any of these

mechanisms, the g−2 straw tracking detectors [38] high-resolution measurements encapsulate

the information required to quantify beam drifts at their two readout azimuthal locations.

This was the case during Run-1, where the unstable optical lattice produced slowly changing

beam centroids and widths beyond t = 30µs (see Sec. 3.6).

A method was needed to be developed in order to systematically quantify phase accep-

tance corrections during the analysis of Run-1 datasets. For this purpose, a multi-disciplinary

task force within the muon g−2 collaboration was established [44], wherein the author of

this dissertation participated in the determination of methods to extract Cpa from tracker

data (Sec. 4.3.1), in the distinction of the main mechanisms that drive these corrections

(Sec. 4.3.2), and in the extrapolation of phase drifts from tracker data to the entire storage

ring (Sec. 4.3.3).

4.3.1 Extraction of phase drifts

At a given calorimeter ck, where k = {1, 2, . . . , 24} denotes the calorimeter number, the

number of detected positrons above energy threshold

Nk(t) = N0,ke
−t/τ

[
1 + Ak cos

(
ωat+ ϕ

ck
0 (t)

)]
(4.9)
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arises from positrons emitted at transverse coordinates
(
xi, yj

)
within the storage region.

The detected signal from each transverse location Nijk(t) is equal in form to Eq. (4.9) as

follows [122]:

Nijk(t) = MT,k

(
xi, yj , t

)
εc,k

(
xi, yj

)
e−t/τ

[
1 + Ak(xi, yj) cos

(
ωat+ ϕ0,k

(
xi, yj

))]
,

(4.10)

where MT,k

(
xi, yj , t

)
is the relative muon beam intensity at

(
xi, yj

)
at calorimeter k read-

out location, εc,k the acceptance that positrons emitted at
(
xi, yj

)
will hit calorimeter k

and enter the Nk(t) histogram, Ak(xi, yj) is the asymmetry amplitude (see Eq. (1.24)),

and ϕ0,k

(
xi, yj

)
the detected position-dependent phase at calorimeter k. In this view and

considering

Nk(t) =
∑
i,j

Nijk(t), (4.11)

the total phase ϕ
ck
0 (t) detected by the kth calorimeter is the phasor addition of all the

weighted transverse locations [44]:

ϕ
ck
0 (t) = arctan

∑
ijMT,k

(
xi, yj , t

)
· εc,k

(
xi, yj

)
· Ak

(
xi, yj

)
· sin

(
ϕ0,k

(
xi, yj

))∑
ijMT,k

(
xi, yj , t

)
· εc,k

(
xi, yj

)
· Ak

(
xi, yj

)
· cos

(
ϕ0,k

(
xi, yj

)) . (4.12)

Equation (4.12) constitutes the basis to estimate Cpa corrections in ωa extracted from the T -

Method [33] and is used to calculate detected phases in the following analysis. As observed

from this equation, the detected phase develops a time dependence due to beam drifts

accounted for in MT,k

(
xi, yj , t

)
, which was indeed the case during all Run-1 datasets.

With Eq. (4.12), the phase, acceptance, and asymmetry maps from the gm2ringsim

Team and, on the other hand, the measured beam intensity MT at tracker azimuthal readout

locations [86], the observed phase at nearby calorimeters (i.e., k = 13 and k = 19) can be
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extracted. The next step once ϕ
ck
0 (t) is extracted is to determine the resulting shift on ωa

induced by the changing phase. For this end, three alternatives were analyzed to extract

the slow component of the phase derived from Eq. (4.12) (Fig. 4.8 shows the detected phase

from Eq. (4.12) and its corresponding slow component):

0 50 100 150 200 250 300
s]µt [

17

18

19

20

21

22

23

24

25

26

 [m
ra

d]
13c 0ϕ

50 100 150 200 250
s]µt [

21.4

21.42

21.44

21.46

21.48

21.5

21.52

 [m
ra

d]
13c 0ϕ

S
lo

w
 p

ha
se

 fr
om

 

 / ndf 2χ    408 / 234
 13ϕ  0.0003414± 21.41 

 13ϕ∆  0.001375± 0.1678 
     τ      0± 72.35 

 / ndf 2χ    408 / 234
 13ϕ  0.0003414± 21.41 

 13ϕ∆  0.001375± 0.1678 
     τ      0± 72.35 

Figure 4.8: On the left side, the phase ϕ
c13
0 (t) from the COSY-based Run-1a simulated beam

and gm2ringsim maps (T-Method) via Eq. (4.12). On the right, the phase drift extracted
from non-randomized window fits (black markers), which effectively capture the phase drift
without the modulation induced by the beam coherent oscillations shown on the left plot.
The red curve is a single-exponential fit to the resulting phase drift without modulation.

• Non-randomized, single fit [122]:

A functional form with all the oscillatory acceptance-induced components

φ(t) = ϕ′0 + ∆ϕe−t/τ

+ ACBOe
−t/τCBO sin (ωCBO(t)t+ φCBO)

+ A2CBOe
−2t/τCBO sin (2ωCBO(t)t+ φ2CBO)

+ AVW e−t/τV W sin (ωVW (t)t+ φVW )

(4.13)
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is fitted to ϕ
ck
0 (t) and use

ϕ′0 + ∆ϕe−t/τ (4.14)

from the fit to represent the phase drift. The frequency ωCBO(t) follows tracker data

and

ωVW(t) = ωc − 2
√

2kVW · ωCBO(t) · ωc − k2
VW · ω

2
CBO(t) (4.15)

accounts for the aliased “vertical width” frequency ωc − 2ωy [33]. For more details of

the single fit, refer to [122].

• Randomized [108]:

Produce a beam profile MT,k(xi, yj , t
′) without the frequencies of the beam transverse

motion ωi = 2π/Ti by defining t′ = t +
∑
i=1 rani, where rani is a random number

within {−Ti, Ti}. Use MT,k(xi, yj , t
′) in Eq. (4.12) to obtain the phase drift.

• Non-randomized, window fits [123]:

Fit ∼ ±8µs segments of ϕ
ck
0 (t) with the functional form

φi = ϕeq,i

+ ACBO,τ sin (ωCBOt+ ϕCBO)

+ A2CBO,τ sin (2ωCBOt+ ϕ2CBO)

+ AVW,τV W
sin (ωVW t+ ϕVW )

(4.16)

and use ϕeq,i’s from the fits to define the slow drift.

From Run-1a simulated data with the COSY-based model (see Sec. 3.6.4), it was es-

tablished that detector acceptance effects damage the randomization procedure to extract
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phase drifts [123], as shown in Fig. 4.9. Analysis performed by Mott [124] determined the
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Figure 4.9: Extracted drifting phases from all extraction methods. On the left, all methods
agree when detector acceptance is absent. On the right plot, the randomized method does
not capture the phase drift from radial CBO de-coherence, which emerges under the presence
of nonuniform detector acceptance.

cause of the misleading phase drifts from randomization to be radial de-coherence; as the

acceptance of the beam is subject to the coherent betatron motion in the radial direction,

the slow de-coherence drives a changing coupling of the beam intensity with the observed

phase. Since the randomization method deletes the CBO component of the beam motion,

ωa shifts introduced by phase drifts from the randomization method are underestimated

(see Fig. 4.10). Nevertheless, since coherent betatron oscillations at calorimeters in opposite

sides of the ring are out of phase by π radians, their phase drifts due to CBO de-coherence

mostly cancel out [44]. The Cpa correction is induced by the overall detected phases around

the twenty-four azimuthal locations where calorimeters accept positrons. Therefore, slowly

changing detected phases from CBO de-coherence tend to cancel out. In the determination

of Cpa central values for Run-1 datasets, the randomization method was used for this reason
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Figure 4.10: ωa shifts due to phase acceptance corrections mediated by the different phase
drift extraction methods, without (left) and with (right) detector acceptance. Monte Carlo
N(t) histograms are generated with the drifting phases accounted for to extract the corre-

sponding ωa shifts. In gray, results from the raw phase ϕ
calo13
0 (t) without drift extraction

are shown. The removal of phase drifting induced by the radial CBO de-coherence from the
randomized method is clearly visible in the right plot.

and the associated error from the partial cancellation was accounted for as a systematic

error [44].

4.3.2 Phase drift driving mechanisms

Detected-phase distributions ϕ0,k(xi, yj) exhibit a rather consistent and symmetric pattern

in x and y directions for k = {1, 2, . . . , 24} as shown in Fig. 4.7. In the radial direction,

the projected phase accounting for constant, linear, and quadratic terms has an asymmetric

linear trend:

ϕ0,k(xi) =
∑
j

ϕ0,k(xi, yj) ≈ ax,0 + ax,1xi, (4.17)
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whereas in the vertical case

ϕ0,k(yj) =
∑
i

ϕ0,k(xi, yj) ≈ ay,0 + ay,2y
2
i (4.18)

the detected-phase growth is mostly quadratic around y = 0. On the beam transverse

distributions side, its representative beam moments during Run-1 are largely dominated

by the radial centroid and widths in both transverse directions (see Fig. 4.29). Thus, in

the perspective of Eq. (4.12) and recognizing that |ϕ0,k(xi, yj)| � 1, time dependencies of

the detected phase are dominated by its coupling with the beam radial centroid and the

vertical width. And as discussed in Sec. 4.3.1, phase drifts also emerge from radial CBO

de-coherence.

The three dominant mechanisms that produce long-term (30µs < t < 700µs) variations

of the detected phase are shown in Table 4.3.

Table 4.3: Main mechanisms of detected-phase drifts. The vertical contribution dominates
the phase acceptance correction during Run-1 at calorimeters k = 13 and k = 19 near
trackers longitudinal acceptance.

Mechanism Phase drift term ∆ϕ13,..., Run-1a sim.

Vertical beam drifts ϕk,Y + ∆ϕk,Y e−t/τSlow 0.145 mrad

Radial beam drifts ϕk,XSlow + ∆ϕk,XSlowe−t/τSlow 0.053 mrad

Radial CBO de-coherence ϕk,XCBO + ∆ϕk,XCBOe−t/τCBO −0.011 mrad

For Run-1 cases, the phase drifts can be represented with the single-exponential functions

shown in Table 4.3. The last column lists drift amplitudes by plugging MT,13 from the

COSY-based Run-1a simulated beam (see Sec. 3.6.4) at k = 13, and phase, asymmetry, and

acceptance maps from gm2ringsim, T-Method [44].
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In order to extract drifts for each mechanism individually, the distribution MT,k is ma-

nipulated as follows:

• Vertical (Y ): Take MT,k(xstable, y, t), where xstable,i’s are time-independent (i.e., only

vertical slow drifts) and follow the radial beam distribution integrated over 30−300µs

(see Fig. 3.54).

• Slow radial (XSlow): Take MT,k(xslow, ystable, t), where xslow,i’s are randomized radial

data (i.e., only radial slow drifts). ystable,i’s are time-independent and follow a Gaussian

distribution with ȳ and standard deviation σy from data averages between 30−300µs.

• Radial CBO (XCBO): Take MT,k(xCBO, ystable, t), where xCBO,i’s are radial data

shifted and scaled to remove mean and RMS drifts (i.e., only XCBO de-coherence).

Figure 4.11 shows the resulting phases with their corresponding drifts on the right side.

The de-coherence time constant τCBO is calculated from the radial CBO amplitudes de-

coherence and τSlow is taken to be the same for both vertical and slow-radial mechanisms.

When the entire phase drift is directly calculated from the ϕ
ck
0 (t) signal without any

manipulation of the beam distribution, the drift amplitude is in agreement within ∼ 10%

with the sum of the contributions from each mechanism [125], i.e.,

∆ϕk0 ≈ ∆ϕk,Y + ∆ϕk,XSlow + ∆ϕk,XCBO . (4.19)

The disagreement is likely due to correlations between ∆ϕk,Y , ∆ϕk,XSlow , and ∆ϕk,XCBO .

189



0 50 100 150 200 250 300
s]µt [

20.5

21

21.5

22

22.5

23

 [m
ra

d]
13

,Y
0

j

50 100 150 200 250
s]µt[

21.34

21.36

21.38

21.4

21.42

21.44

 [m
ra

d]
13

,Y
0

j
Sl

ow
 p

ha
se

 fr
om

 

 / ndf 2c  166.4 / 234
 13,Yj  0.0003233± 21.35 

 13,YjD  0.001433± 0.1453 
Slowt      0± 66.23 

 / ndf 2c  166.4 / 234
 13,Yj  0.0003233± 21.35 

 13,YjD  0.001433± 0.1453 
Slowt      0± 66.23 

0 50 100 150 200 250 300
s]µt [

18

19

20

21

22

23

24

 [m
ra

d]
13

,X
C

BO
0

j

50 100 150 200 250
s]µt[

21.03

21.04

21.05

21.06

21.07

21.08

 [m
ra

d]
13

,X
C

BO
0

j
Sl

ow
 p

ha
se

 fr
om

 

 / ndf 2c    358 / 234
 13,X-CBOj  0.0006531± 21.02 

 13,X-CBOjD  0.001281± 0.05321 
CBOt      0± 188.7 

 / ndf 2c    358 / 234
 13,X-CBOj  0.0006531± 21.02 

 13,X-CBOjD  0.001281± 0.05321 
CBOt      0± 188.7 

0 50 100 150 200 250 300
s]µt [

20.7

20.8

20.9

21

21.1 [m
ra

d]
13

,X
Sl

ow
0

j

50 100 150 200 250 300
s]µt[

21.01

21.02

21.03

21.04

21.05

21.06

 [m
ra

d]
13

,X
Sl

ow
0

j
Sl

ow
 p

ha
se

 fr
om

 

 / ndf 2c  141.6 / 98
 13,X-Slowj  0.000798± 21.03 

 13,X-SlowjD  0.003648±0.01087 - 

Slowt      0± 66.23 

 / ndf 2c  141.6 / 98
 13,X-Slowj  0.000798± 21.03 

 13,X-SlowjD  0.003648±0.01087 - 

Slowt      0± 66.23 

Figure 4.11: Phases ϕ
ck
0 (t) (left) and their corresponding phase drifts (on the right) from the

non-randomized, window fits method. The two plots on top correspond to a detected phase
at calorimeter k = 13 from vertical beam drifting. In the middle, phase changes are driven
by slow radial beam motion. At the bottom, phase drifting due to radial CBO de-coherence.
Fits in red are performed to extract drift amplitudes.
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4.3.3 Azimuthal extrapolation of phase drifts

Since Cpa corrects for detected-phase drifts at all the calorimeters and, on the other hand,

beam drifts caused by the unstable optical lattice during Run-1 were azimuthally dependent

(see Fig. 3.74), phase calculations of ϕcalo k
0 near k = 13 and k = 19 from tracker data is not

sufficient. With the detailed knowledge of the main mechanisms that drive detected-phase

drifts, it is possible to prepare methods in order to project ϕcalo k
0 from tracker data to all

calorimeter stations k = {1, 2, . . . , 24}. The most precise method found for this end is to

transform the time-dependent muon transverse coordinates {x(θ1, t), y(θ1, t)} measured by

the straw trackers one by one with the COSY-based optical lattice functions. To transform

these individual coordinates from the tracker data location θ1 to the readout azimuthal loca-

tion of calorimeter k, θ2, a pair of equations similar to Eqs. (3.73) but with time-dependent

lattice functions are used:

x(θ2, t) = κx(θ1, θ2, t) (x(θ1, t)− x̄(θ1, t)) + x0(θ2, t) +Dx(θ2, t)δ̄

y(θ2, t) = κy(θ1, θ2, t) (y(θ1, t)− ȳ(θ1, t)) + y0(θ2, t),

(4.20)

where

κx(θ1, θ2, t) =

√
εx(t)βx(θ2, t) +D2

x(θ2, t)σδ
σx(θ1)

and κy(θ1, θ2, t) =

√
βy(θ2, t)

βy(θ1, t)
. (4.21)

All the parameters in Eqs. (4.20) and (4.21) are readily available from tracker data and

the optical lattice functions for each Run-1 dataset. Shifting factors can be introduced

to match offsets between closed orbits and tracker data; these discrepancies are accounted

for as systematic errors of the phase acceptance correction [44]. Also, radial closed orbit

drifts can be ignored (see Sec. 3.6.4) and azimuthal distortions of the vertical closed orbit
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can be treated as an additional systematic error since the detected phase does not strongly

depend on beam vertical centroid drifts. Once beam transverse profiles MT,k(xi, yj , t) are

produced in this way, Eq. (4.12) can be utilized to compute the time-dependent phases at

each calorimeter station. Validation tests were performed by comparing the resulting ωa

shifts following the aforementioned method with detected phases directly computed with

MT,k from COSY-based tracking simulations [44]. Discrepancies of less than 10 ppb were

found between these two approaches, indicating reliance on the reconstructed method via

Eqs. (4.20).

Another method to reproduce detected-phase drifts at each calorimeter is to scale drift

amplitudes from the main phase acceptance correction driving mechanisms (see Eq. (4.19))

[125]. Although this procedure leads to a less accurate Cpa (∼ 50 ppb), it provides a path to

identify the overall effect of each driving mechanism on the final correction as shown next.

With the COSY-based Run-1a simulated beam (see Sec. 3.6.4) at k = {1, 2, . . . , 24},

common phase/asymmetry maps for all calorimeter stations (for comparison purposes), and

per-calorimeter acceptance maps from gm2ringsim (T-Method) [44], detected phases are

computed via Eq. (4.12). The drift amplitudes ∆ϕk,Y , ∆ϕk,XSlow , and ∆ϕk,XCBO are

thereafter calculated at all calorimeter stations as explained in Sec. 4.3.2; see results in

Figs. 4.12-4.14.

In the vertical case, even though the induced phase shifts are a consequence of both

centroid and width drifts, the drift amplitudes are strongly dominated by vertical width

changes (Fig. 4.12). This feature is evident when a reference drift, in this case at k = 13,

is scaled according to the relation between vertical width shifts along the azimuth from

t = 30µs to t = 300µs and the width change at k = 13 (red line). The scaling factor is

prepared either from beam tracking simulations or the squared-rooted ratio between vertical
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Figure 4.12: Drifting phase amplitudes from single-exponential fits to phase drifts (extracted
from non-randomized, sliding window fits) induced by vertical beam motion. In red, scaling
of the phase amplitude at calorimeter k = 3 with vertical beam width drifts only.

beta functions.

In a similar way, induced phase shifts in the XSlow case around the ring are modulated

mostly by radial centroid shifts, scaled by the time-evolving radial dispersion function. In

spite of radial width changes over time due to unstable radial beta and dispersion functions

(see Sec. 3.6.4), as shown in Fig. 4.13 drifts of the radial centroid are the main source of the

phase drifts from this end.

The situation is different in the XCBO case, where differences along the ring azimuth

are induced by differences in calorimeter acceptances. By comparing Fig. 4.14 with the

relative total intensity expected to be measured by calorimeters based on the COSY-based

simulated beam and acceptance maps from gm2ringsim (see Fig. 4.15), it is concluded that

beam drifts do not interfere considerably with the phase acceptance correction from radial

CBO de-coherence. This statement is in agreement with the fact that the de-coherence
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Figure 4.13: Drifting phase amplitudes from single-exponential fits to phase drifts (extracted
from non-randomized, sliding window fits) induced by radial slow beam drifts. In red, scaling
of the phase amplitude at calorimeter k = 3 with radial beam centroid drifts only.
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Figure 4.14: Drifting phase amplitudes from single-exponential fits to phase drifts (extracted
from non-randomized, sliding window fits) induced by radial CBO de-coherence. Variations
are largely caused by calorimeter acceptances, which exhibit a characteristic azimuthal pat-
tern owing to the instrumentation between the storage volume and the calorimeter detectors
(see Fig. 4.15).
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evolves equally along the storage ring.

Figure 4.15: Convolution of total intensities detected by each calorimeter (T-Method) using
the COSY-based Run-1a simulated beam and gm2ringsim acceptance maps. The formula
on the top-left corner indicates the weighting of the beam intensity with muon detection
efficiency.

Figure 4.16 shows the corresponding ωa shifts from each of the phase drifting mechanisms

separately and combined. The largest contributor to the phase acceptance correction—and

following the nature of detected-phase maps—is vertical width drifts over the data taking

period. The independent contributions roughly combine to produce the total precession

shift, and the optical lattice evolution together with the radial CBO de-coherence dictate

the detected phase behavior over the azimuth.

In reality, detected-phase distributions ϕ0,k

(
xi, yj

)
depend on the calorimeter loca-

tion due to material effects. Figure 4.17 is an example of the ωa shifts derived from

tracker data, the COSY-based optical lattice functions, and gm2ringsim per-calorimeter

phase/asymmetry/calorimeter maps, where the variations of per-calorimeter maps break

the symmetries displayed in Fig. 4.16.

The time-dependent optical lattice during Run-1 was the main driver of non-negligible

195



0 50 100 150 200 250 300 350
Azimuthal angle [deg.]

200−

100−

0

100

200

300

400

500

 [p
pb

]
a,

0
ω/ a

ω∆

Vertical
Radial (XSlow and XCBO)
XSlow
XCBO
All effects

Figure 4.16: Relative ωa shifts induced by each of the drifting phase mechanisms, separated
and combined. The largest shifts are produced by beam drifts of the vertical width.
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Figure 4.17: ωa shifts induced by phase-acceptance drifts from experimental data (Run-
1d) [44]. The Run-1d COSY-based optical lattice functions and per-calorimeter maps from
gm2ringsim (T-Method) are utilized to calculate all the precession corrections from phase
drifts extracted with the randomization method. Courtesy of Elia Bottalico.
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phase acceptance corrections. Beam drifts during the measurement of ωa were induced by the

unstable lattice, and to a lower extent muon loss rates also play a role in the slowly changing

vertical beam width. The faulty resistors that affected the ESQ over Run-1 datasets were

repaired. Thus, phase acceptance corrections are expected to be significantly smaller during

Runs 2 and beyond. The expertise developed during the analysis of the Run-1 dataset

is planned to be extended for posterior runs to precisely quantify Cpa from radial CBO

de-coherence and beam drifts induced by lost muons.

4.4 The Electric Field Correction and the Pitch Cor-

rection

The E-field Ce and pitch Cp corrections are used to counteract the biasing on ωa due to the

momentum spread and vertical betatron motion of the beam, respectively. As introduced in

Sec. 1.3.3, i.e., Eqs. (1.32) and (1.33), the additional precession frequencies from the terms

beyond the scope of the nominal g-2 frequency in Eq. (1.30) can be encapsulated in the

standard Ce and Cp expressions:

Ce =
n0β

2
0

1− n0
2
〈
δ2
〉

, Cp =
n0

2ρ2
0

〈
y2
〉
. (4.22)

Independent hand calculations of Ce and Cp, starting with the work of Farley [49], converge

to the expressions shown in Eq. (4.22) for similar conditions characteristic to the g-2 storage

ring. Nevertheless, a computationally driven approach to test the standard expressions

Ce and Cp is also relevant and offers advantages when benchmarking them to the ppb

level [126]. In particular, second-order effects from the nonlinear ESQ electric field, as well
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as asymmetric momentum spread and discrete ESQ plates, can conveniently be accounted

for in the determination of the E-field and pitch corrections.

4.4.1 Methodology

With the COSY-based model, spin and orbital tracking of a realistic muon beam in the g-2

storage ring is performed. The method to extract frequencies relative to the nominal g-2

frequency

∆ωa

(
t′j
)

= ωa

(
t′j
)
− ωa0 (4.23)

is to compute and track muon angles ϕa(t) per turn j around the ring. ϕa’s are defined

as angles between spin and momentum vectors projected on the horizontal midplane.3 The

frequencies ωa

(
t′j

)
are defined turn-by-turn as

ωa

(
t′j
)

=
dϕa
dt
≈ ∆ϕa

∆t
=
ϕa
(
tj+1

)
− ϕa

(
tj
)

tj+1 − tj
. (4.24)

Unless otherwise specified, a perfectly matched beam of Nmuons = 128×106 muons with

typical Run-1 experimental distributions (see Fig. 4.18) are tracked Nturns = 100 turns with

the COSY-based model for these studies. Even though the real g-2 beam is mismatched to

the optical lattice of the ring, the characteristic oscillations owing to the mismatch introduce

equally fast oscillations to the overall spin precession frequency of the beam that cancel out

during the data taking period.

The time profile of the simulated beam is shown in Fig. 3.14. To recreate similar condi-

3In reality, the measured precession frequency in the experiment results from the parity-violating observ-
able, i.e., the phase between spin and momentum (without projections onto planes). However, the method
followed in this work has been proven to recreate the nominal Ce and Cp corrections to ppb-level accuracy
and previous analyses have implemented similar methods to high reliability [127].
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tracking simulations for Ce,p analysis.

tions of the momentum spread, results from the fast rotation (FR) analysis for the Run-1d

dataset [51] are implemented in the preparation of the simulated beam (see Fig. 1.13). The

spin distribution is taken from BDS numerical results (explained in Chap. 2) at the end of

the M5-line (see Fig. 2.10).

The spin and momentum vectors of each muon in the simulation are recorded every turn

and individual ϕa’s computed. In this way, the overall spin precession frequency (relative to
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ωa0) of the simulated beam is determined as

〈
∆ωa
ωa0

〉
sim

=
1

Nturns Nmuons

Nturns∑
j=1

Nmuons∑
i=1

∆ωa

(
t′j

)
ωa0


i

, (4.25)

whereas the associated statistical error of the calculation is defined from the standard error

of the mean:

δ (∆ωa/ωa)statsim =

(
∆ωa
ωa0

)
SE

= σ

(
∆ωa
ωa0

)
1√

NturnsNmuons
. (4.26)

With the data analysis framework ROOT [128], the quantities above are processed as shown

next.

To establish the resolution that can be achieved out of this method, first a muon beam

without vertical motion is tracked around a ring with perfectly vertical magnetic field and

the ESQ turned off (i.e., HV = 0). Under these conditions, ∆ωa = 0 is expected for any

muon. Results are shown in Fig. 4.19. The limit (10−3 ppb) is comparable to the precision

of numbers in C + + utilized in ROOT. Similar results are obtained for y = b = δ = 0 and

the ESQ turned on, although in this case σ (∆ωa/ωa0) ∼ 3 ppb.

4.4.2 Electric field correction Ce

With the resolution of the framework established, more realistic features can be added to

simulations with the COSY-based model. To test Ce under the approximations necessary to

derive it, a beam without vertical betatron motion, perfectly Gaussian momentum spread is

tracked around a ring with perfect vertical magnetic field and ESQ with continuous plates

covering the entire ring and only quadrupole electric field component (i.e., ak,0 = 0 for
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Figure 4.19: 〈∆ωa〉 spread versus time (left) and momentum offset (right). Muons are
contained in the horizontal midplane, the magnetic field is uniform and oriented in the
vertical direction, and the ESQ is turned off.

k > 2). Figure 4.20 shows results for this scenario. Under these approximations,

− |Ce| −
〈

∆ωa
ωa0

〉
sim

= 0.8± 0.1 ppb. (4.27)

The small difference is likely caused by the curvature of the plates, since the simulation

accounts up to tenth-order terms in the transfer maps. When the momentum spread distri-

bution from FR analysis is used instead:

− |Ce| −
〈

∆ωa
ωa0

〉
sim

= 5.2± 0.1 ppb. (4.28)

Thus, the isolated effect of an asymmetric Run-1 style δ distribution adds a correction of

∼ 4.4 ppb to Ce, which introduces higher order distribution moments (e.g., 〈δ3〉) to the
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Figure 4.20: 〈∆ωa〉 spread distribution (right) and versus time (left). Muons are contained
within the horizontal midplane to exclude Cp. Typical frequency spreads due to the Ce
correction are approximately equal to ∼ 540 ppb, as observed from the standard deviation
in the right plot.

momentum spread such that

〈
∆ωa
ωa0

〉
=

〈
− e

m

[(
1−

(
1− 1

(1 + δ)2

))
βzEx
c

]〉
= − |Ce|+

n0β
2
0

1− n0

(
1 + 2β2

0

)〈
δ3
〉

+ · · ·

6= − |Ce| .

(4.29)

In a similar manner, further features of the storage ring—not accounted for in the sensible

approximations from which Ce and Cp are derived—are added in the tracking, namely, ESQ

plates discretization, ESQ higher order multipole terms for all ak,0 coefficients, and ESQ

fringe fields (see Sec. 3.2.1). Table 4.4 lists all the cases of study, in addition to the beam

and ring features described above (i.e., “DIEQ Ring”), and Table 4.5 shows comparisons

between Ce and tracking for each of those cases.
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Table 4.4: Cases of study for 〈∆ωa〉 tracking, from the simple (top) to the detailed model
(bottom).

Case label ESQ Plates discretization ESQ higher order multipoles ESQ Fringe fields
DIEQ Ring

DIEQ X
DIEM X X

DIEM-FR X X X

Table 4.5: Ce versus tracking (no vertical betatron motion).

Case − |Ce| −
〈

∆ωa
ωa0

〉
sim

[ppb]

DIEQ Ring 4.4± 0.1
DIEQ −5.5± 0.1
DIEM −9.8± 0.1

DIEM-FR −7.7± 0.1

While tracking results indicate an overall ωa frequency slightly higher than Ce due to an

asymmetric momentum spread, the other effect pushes the discrepancy down up to 7.7 ppb.

The disagreements are induced by muons with momentum offsets near the momentum ac-

ceptance of the ring, as indicated by δ-binned differentiated results.

4.4.3 Pitch correction Cp

Up to this point, no vertical motion of the beam has been considered in order to analyze

Ce only, without the intrusion of Cp. Next, the attention is directed to Cp instead. For

this purpose, a monochromatic beam composed of muons at magic momentum only (i.e.,

δ = 0) is tracked down. To get closer to the initial ideas that permitted the derivation Cp,

muons initially have no radial betatron motion even though an unavoidable, and small, radial

motion emerges from the curvature of the ESQ plates (Ex(x = 0, y 6= 0) 6= 0). Nevertheless,

since radial and vertical motions are mostly decoupled, the small radial motions do not
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incorporate errors to the Cp versus tracking comparisons discussed next.

In this scenario and keeping perfect vertical magnetic field as well as continuous ESQ

plates with a field structure originated only by the a2,0 quadrupole coefficient (see Sec. 3.2.1),

results as shown in Fig. 4.21 are obtained. In contrast to the Ce-only studies above where

2 4 6 8 10 12 14
6-10´

t[s]
0.25-

0.2-

0.15-

0.1-

0.05-

0

0.05

0.1

0.15

0.2

0.25

0

1

2

3

4

5

6

610´

Entries     1.24166e+09
 ña0w/aywDá 08- 2.892e±07 -2.111e- 

's
i

)a0w/aywD(

3- 2- 1- 0 1 2 3
3-10´

a0w/aywD
0

10

20

30

40

50

60

70

80

90

610´

co
un

ts
 / 

bi
n

0 5 10 15 20 25 30 35 40
3-10´

[m]
max

y

4-

3-

2-

1-

0

1
6-10´

 / 
bi

n
ñ

a0
w/

ay
w

Dá

Figure 4.21: 〈∆ωa〉 spread distribution (right) and versus time (left). Muons are launched
with no radial motion nor momentum offsets, to exclude Ce. The frequencies spread due to
the Cp correction is 0.1 % as shown in the plot on the right.

individual ∆ωa’s are spread out within a standard deviation of ∼ 537 ppb, the Cp-only case

exhibits typical spreads of about 0.1 %. As such, the associated statistical error is larger

with Nmuons = 128× 106 and Nturns = 100; namely, 8.5 ppb. The comparison yields

−
∣∣Cp∣∣−〈∆ωa

ωa0

〉
sim

= −9.1± 8.5 ppb. (4.30)

One of the main assumptions of Cp is harmonic vertical motion (y(t) = y0 cos
(
ωyt+ φy

)
).

However, to satisfy Laplace’s equation in curvilinear coordinates the vertical electric field

that drives the oscillatory vertical motion is not purely linear. Instead, nonlinear components
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influence the motion as well:

Ey(x = 0, y) = −
∞∑
l=1

a0,l
yl−1

(l − 1)!
. (4.31)

Table 3.1 shows nonzero a0,l’s for l = 0, 2, 4, . . . due to the ESQ stations geometry. Since

the tracking simulations encompass such components of the ESQ fields, Cp is not in full

agreement with the tracking results (Eq. (4.30)) for which the vertical motion is not entirely

harmonic.

4.4.4 Electric field and pitch corrections Ce + Cp

In reality, the measured precession frequency of the g-2 stored beam experiences biasing

due to both effects that the Ce and Cp attempt to correct. Up to now, the comparisons

between tracking simulation results and these corrections treated independently have yielded

reassurance on their usage to ∼ 10 ppb accuracy. The next step is to track the full beam

with betatron amplitudes in both transverse directions and realistic momentum spread, as

specified at the beginning of this section. The spread of ∆ωa is dominated by the pitch effect

as shown in Fig. 4.22. Table 4.6 lists comparison results for the implemented cases.

Table 4.6: Ce + Cp versus tracking (full betatron motion).

Case −
∣∣Ce + Cp

∣∣− 〈∆ωa
ωa0

〉
sim

[ppb]

DIEQ Ring −6.4± 8.5
DIEQ −8.7± 8.5

DIEM-FR −10.0± 8.5

Due to the circular storage volume, muons with smaller vertical betatron amplitudes ymax
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Figure 4.22: 〈∆ωa〉 spread distribution versus time of a simulated g-2 beam with Run-1
characteristics (note the logarithmic color scale). The pitch effect dominates the spread.

are allowed to have momentum offsets within the entire momentum acceptance of the ring.

On the other hand, the largest ymax amplitudes are allowed only for δ → 0, in which case the

E-field correction is minimal. This interrelation is revealed in Fig. 4.23 (left plot); muons near

the midplane are more in need of an E-field correction. The beam is normally distributed

in phase space; therefore, the population of muons with small ymax amplitudes tends to

be small and results in Fig. 4.23 are weighted accordingly to compute the total precession

frequency of the beam.

4.4.5 Run-1 considerations

During Run-1, both the field index (Fig. 4.24), defined in Eq. (3.26), and radial dispersion

function (Fig. 3.71) drifted during the data taking period. As a consequence, the ensemble

of momentum-dependent radial closed orbits xe = x0 +Dxδ slowly varied over time as well.
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Figure 4.23: 〈∆ωa〉 spread binned over vertical betatron amplitudes (left) and momentum
offsets (right) for the case of full betatron motion.
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Moreover, tracking simulations with the COSY-based model indicate a slightly changing

momentum spread distribution due to lost muons (∆δ̄(30µs → 300µs)/δ̄(30µs) ≈ 0.25%

and ∆δRMS(30µs → 300µs)/δRMS(30µs) ≈ 0.4%). By taking one of the intermediate

expressions involved in the derivation of the standard E-field correction, see Eq. (4.22), such

effects can be analyzed as follows [129]:

Ce(t) = 2
n0(t)β2

0

ρ0
〈xe(t)δ(t)〉N,ϕ ⇒ Ce(t) = 2

n0(t)β2
0

ρ0

[
〈Dx(t)〉ϕ

〈
δ(t)2

〉
N

+ 〈x0(t)〉ϕ 〈δ(t)〉N
]
,

(4.32)

where 〈〉N denotes average over the muon bunch and 〈〉ϕ are azimuthal averages along the

ring with ESQ occupancy. The momentum-independent closed orbit x0 was not significantly

affected by the changing electric fields, thus its contribution to a changing Ce is negligible.

Figure 4.25 shows how the temporary Ce changes due to the dynamic effects of Run-1,

relative to the normal calculation of the correction Ce0 (∆Ce = Ce0 − Ce(t)). To estimate

the entire effect over each Run-1 dataset due to the time-evolving ωa from changing electric

fields and momentum distribution, results shown in Fig. 4.25 are incorporated into Monte

Carlo simulations similar to the method followed in Sec. 4.2 to extract Cml but, instead

of a manipulation of ϕ0, the spin precession frequency ωa is directly defined as ωa(t) =

ωa0(1−Ce(t)). Table 4.7 lists deviations from time-independent Ce corrections; all of which

are found to be small compared to the main systematic corrections of Ce during Run-1 [45].

The effect of changing vertical beam widths on Cp has also been studied with βy from the

COSY-based model functions [104] and found to be small (∼ 1 ppb).

In conclusion, this analysis has tested the robustness of Ce and Cp and indicates that

the asymmetric momentum spread, discrete ESQ plates, nonlinear ESQ fields and its fringe

fields introduce a systematic correction of −10.0±8.5 ppb to the standard Ce+Cp formalism
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Figure 4.25: Temporal Ce(t) corrections (relative to the time-independent case) during Run-1
under the effects of changing momentum spread and time-dependent ESQ electric fields.

used in the experiment.

4.5 The Weighted Magnetic Field B̃

The driver of the muon beam rotational polarization around its momentum direction is the

magnetic field of the g-2 storage ring. Subject to the spatial distribution of the muon beam

Table 4.7: Deviations to time-independent Ce corrections during Run-1, based on tracking
simulations and optical lattice calculations with the COSY-based model of the g-2 storage
ring.

∆Ce [ppb]

Run-1a (60h) −0.24± 0.013
Run-1b (HK) −2.76± 0.011
Run-1c (9d) −3.68± 0.014
Run-1d (EG) −2.50± 0.012
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during the data taking period, the measured anomalous magnetic moment of the muon is

proportional to the ratio between the g-2 frequency ωa0 and the total field B̃ experienced by

the beam. In spite of the high uniformity of the magnetic field in the ring’s storage volume

(i.e., | ~B| = B ≈ By to O(10 ppb) accuracy [39]), its ppm-level localized variations along

the ring azimuth can couple to the azimuthal behavior of the stored beam. At the previous

muon g-2 experiment at BNL, the error budget of their aµ measurement allowed to safely

calculate the averaged field B̃ without the consideration of the beam azimuthal variations [8].

However, a consideration of such beam variations is required for the muon weighting of the

magnetic field to be determined to a precision of 10 ppb or less [46] and in this way achieve

the precision goals of the muon g-2 experiment at Fermilab.

For this purpose, a method to perform the muon weighting necessary to obtain B̃ while

accounting for beam azimuthal variations based on straw tracking detectors data [38] and

optical lattice functions (see Sec. 3.6.2) has been developed [106] and is presented in this

section. The method, which allows computing muon-weighted magnetic fields in an orderly

manner, has been implemented as part of the Run-1 magnetic field analysis. Systematic

errors associated with the method (e.g., detection acceptance and alignment) have been

analyzed in detail and documented in [106] and are not studied in this dissertation.

To benchmark the aforementioned method, a muon-weighted field B̃orig is prepared (see

Sec. 4.5.1) via nonlinear simulations with the magnetic field in the COSY-based model from

trolley data, where the beam distribution is tracked at several azimuthal locations of the

ring. With these results as reference, the method to reconstruct B̃orig out of information

of the beam transverse intensity at one azimuthal location (named B̃recon) presented in

Subsec 4.5.2 is validated as shown in Sec. 4.5.3. Lastly, sensitivity studies to understand the

dependence of the muon-weighted field calculation on specific azimuthal variations of the
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stored beam are discussed.

4.5.1 The muon-weighted field B̃ from the simulated beam

Ideally, to capture the coupling between field and beam distortions along the storage ring

azimuth in the muon weighting of the magnetic field B(x, y, θ), it is weighted by the time-

and azimuth-dependent muon transverse intensity MT (x, y, θ, t) throughout the data taking

period [39]:

B̃ =

∫ tf

t0

∫
x

∫
y
MT (x, y, θ, t)B(x, y, θ)dxdydθdt′, (4.33)

where θ is the azimuthal angle, x and y the radial and vertical coordinates, t is the time where

t = 0 coincides with beam injection into the ring, and the beam intensity is normalized:

∫ tf

t0

∫
x

∫
y
MT (x, y, θ, t)dxdydt′ = 1. (4.34)

However, the azimuthal gradients of the optical lattice functions (including closed orbits) in

the ring with rather weak vertical focusing and the resolution of tracker experimental data

are small enough to conveniently consider a discrete summation instead:

B̃ =
1

N

N∑
i=1

B̃i =
1

N

N∑
i=1

Nx∑
j

Ny∑
k

MT
(
xj , yk, θi

)
Bi
(
xj , yk

)
, (4.35)

where
Nx∑
j

Ny∑
k

MT
(
xj , yk, θi

)
= 1 (4.36)

and

• N : Number of azimuthal slices.
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• Nx: Number of x bins.

• Ny: Number of y bins.

• MT
(
xj , yk, θi

)
: Binned transverse beam profile at θi integrated over 30µs < t < tf .4

• Bi
(
xj , yk

)
: Binned magnetic field map at i-th azimuthal slice, averaged within[

θi − π
N , θi + π

N

]
.

Although N = 72 in practice [106], the number of azimuthal slices is equal to 24 for the

following analysis, which has been found to be sufficient for incorporating azimuthal depen-

dencies in B̃.

In order to obtain the B̃orig introduced above for the validation of the reconstruction

method (see Sec. 4.5.2 and 4.5.3), tracking simulation results for the Run-1a dataset are

used. Figure 4.26 shows all the MT
(
xj , yk, θi

)
beam profiles at the 24 locations of interest,

centered at the regions of maximum azimuthal sensitivity per calorimeter detector.

Each of the transverse profiles in Fig. 4.26 are combined with their corresponding mag-

netic field slice Bi
(
xj , yk

)
—shown in Figs. 4.27 and their azimuthal variations in Fig. 3.8—to

calculate B̃orig.

Figure 4.28 shows B̃i at their corresponding θi azimuthal locations. The muon-weighting

is dominated by the dipole field contribution (compare Fig. 4.28 with c0 in Fig. 4.30). To

identify the main contributions in terms of multipole coefficients, the azimuthally binned

muon-weighted field maps are expressed as follows (similar to Eq. (3.8)):

B̃i ≈ B0

(
1 + c0,i +

4∑
n=1

[
cn,iIn,i + sn,iJn,i

])
, (4.37)

4For the purposes of this section, tf = 300µs. In the experiment, tf ≈ 700µs. And for Run-1d, the

initial time was 50µs instead of 30µs.
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Figure 4.26: Run-1a simulated beam transverse profiles M
orig
T (xj , yk, θi), integrated over

30µs < t < 300µs. The 24 azimuthal locations coincide with the regions of maximum
calorimeter detection acceptance. Horizontal and vertical axes correspond to −60 mm <
x < 60 mm and −60 mm < y < 60 mm. Refer to Fig. 4.36 for the color legend.
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Figure 4.27: Magnetic field maps Bi
(
xj , yk

)
from trolley run number 3956 (close to the

Run-1a data period). The azimuthal locations of each map correspond to the beam profile

azimuths arrangement in Fig. 4.26. Field intensities are shown for
√
x2 + y2 < 45 mm, where

the horizontal and vertical axes are x and y, respectively. Each color represents a particular
magnetic field magnitude to illustrate polar uniformities.
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Figure 4.28: B̃i magnetic fields (trolley run 3956) weighted with the Run-1a simulated beam
at 24 azimuthal locations.

where B0 = p0/eρ0 is the ideal field to sustain magic momentum muons at p0 ≈ 3.094 GeV/c.

In,i =
∑
j,k

MT
(
xj , yk, θi

)(r (xj , yk)
r0

)n
cos
[
nφ
(
xj , yk

)]
Jn,i =

∑
j,k

MT
(
xj , yk, θi

)(r (xj , yk)
r0

)n
sin
[
nφ
(
xj , yk

)] (4.38)

are the normal, In,i, and skew, Jn,i, multipole beam projections (see Fig. 4.29). In Eq. (4.38),

r0 = 4.5 cm is the normalization radius, r =
√
x2 + y2 the transverse radius relative to the

reference orbit, and φ the polar angle such that x = r cosφ and y = r sinφ. The normal,

cn,i, and skew, sn,i, magnetic multipole terms in Eq. (4.37) at each of the Bi(xj , yj) maps

are shown in Fig. 4.30.

The contribution of each n ≥ 1 magnetic multipole to the muon-weighted field is strongly
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Figure 4.29: Multipole beam projections {In,i, Jn,i} versus order n from the Run-1a simu-
lated beam (Similar projections are observed in the other Run-1 datasets). Projections of
the same order and different azimuthal locations group together in the plot.
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Figure 4.30: Magnetic field multipoles averaged out every 15◦ (trolley run 3956). Refer to
Eq. (4.37).
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dictated by the {In,i, Jn,i} multipole beam projections:

B̃ =
1

N

N∑
i=1

B̃i = B0 (1 + 〈c0〉) +B0

4∑
n=1

(〈cnIn〉+ 〈snJn〉) . (4.39)

In Fig. 4.31, the weighted field contributions from each beam projection {〈cnIn〉, 〈snJn〉}

are shown.

1 2 3 4
n

100−

80−

60−

40−

20−

0

20

[p
pb

]

  〉nIn
c〈

  〉nJ
n

s〈

Figure 4.31: Weighted field contributions from beam projections {〈cnIn〉, 〈snJn〉} versus
order n from the Run-1a simulated beam and magnetic field based on trolley run 3956.

Due to the overall radial off-centering of the beam caused by the nonzero average of

its momentum spread, the normal quadrupole beam projection plays an important role

in the muon-weighting of the field. Similarly, the beam widths couple with the magnetic

normal sextupole term via its normal sextupole projection. On the other hand, the beam

is significantly more centered in the vertical than in the radial direction; the vertical closed

orbit is expected to be within 1 mm from the horizontal midplane during the data taking

period due to inhomogeneities in the skew dipole term of the magnetic field (also known as

the radial magnetic field within the muon g-2 collaboration). Therefore, skew quadrupole

beam projections weakly interfere with the muon-weighting. Uncertainties from tracker and
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ESQ misalignments are the main sources of systematic error in the muon weighting during

Run-1 (∼ 13 ppb and ∼ 5 ppb, respectively) [39,106].

Even though the radial and vertical motion are highly decoupled, small correlations driven

by the skew quadrupole component of the fields introduce a small contribution to B̃. The

validations discussed in Sec. 4.5.3 indicate that such contributions are negligible from the

magnetic field inhomogeneities side. However, it would be appropriate to assess the effects

of radial-vertical coupling from ESQ misalignments (e.g., nonzero ESQ roll angles).

Lastly, Higher order beam projections of the typical g-2 stored beam are not relevant for

the calculation of B̃ (see Fig. 4.31). The aforementioned features are observed in Fig. 4.32.

With the relevant beam projections identified (mainly affected by centroids and widths)

for the muon-weighted magnetic field in the storage ring, a method to calculate B̃ based on

tracker data at one azimuthal location and lattice functions is developed and presented next.

4.5.2 Method to calculate B̃ from experimental data

In the experiment, transverse beam profiles MT (x, y, θTr) are available at the two azimuthal

regions where straw tracking detectors are located (see Fig. 1.11). FR analysis reconstructs

momentum spread distributions [51] and lattice functions are calculated from the COSY-

based model (see Sec. 3.3.2) based on magnetic field measurements [39]. With these available

ingredients, beam profiles MT (x, y, θi) can be reconstructed by “shifting” and “scaling”

MT (x, y, θTr) at any azimuthal location θi [130] as illustrated in Fig. 4.33.

First, MT (x, y, θTr) is shifted in proportion to the radial and vertical closed orbits:

∆x = x0 (θi)− x0 (θTr) in x,

∆y = y0 (θi)− y0 (θTr) in y.

(4.40)
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Figure 4.32: Multipole beam projections {In,i, Jn,i} versus azimuthal angle from the Run-1a
simulated beam.
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Figure 4.33: Flow chart of the method to reconstruct B̃ from experimental data and the
optical lattice. With this input, beam transverse profiles MT (x, y, θi) are methodically
prepared in the experiment. Tracker data input on the left of the chart refers to the beam
transverse profiles measured by the muon g-2 straw tracking detectors [38].

The resulting profile MT
(
x+ ∆x, y + ∆y, θTr

)
is scaled by

sx =
xRMS (θi)

xRMS (θTr)
=

√
axβx (θi) + bD2

x (θi)

axβx (θTr) + bD2
x (θTr)

in x,

sy =
yRMS (θi)

yRMS (θTr)
=

√
βy (θi)

βy (θTr)
in y

(4.41)

where ax,y = εTrx,y are transverse emittances (see Sec. 3.3.2) defined from MT (x, y, θTr) via

x2
RMS (θTr) ≈ εTrx βx (θTr) + bD2

x(θTr) , y2
RMS (θTr) ≈ εTry βy (θTr) (4.42)

and b = δ2
RMS (i.e., the beam momentum spread squared) is taken from an external analysis

(e.g., FR analysis [51]). In this way, MT (x, y, θi) is reconstructed:

Mreco
T (x, y, θi) = MT

(
sx (x+ ∆x) , sy

(
y + ∆y

)
, θTr

)
. (4.43)

220



Figure 4.34 shows the resulting beam profiles where MT (x, y, θTr) prepared from the Run-1a

COSY-based simulation and the optical lattice functions are prepared with the corresponding

field settings in the COSY-based model (see Sec. 3.6.2). Although lattice functions slowly

changed over time during Run-1, only their values at t = 94µs (the mean time of the data

taking period, accounting for muon decays) were used. The validity of this method, practical

at a run level for the calculation of the muon-weighted magnetic field, is discussed next.

4.5.3 Method validation

Perfect reconstruction of the beam profiles is achieved with the “shift/scale” method if

Mreco
T (x, y, θi) = M

orig
T (x, y, θi) , (4.44)

whereM
orig
T are the original intensity profiles from tracking simulation results (see Sec. 4.5.1).

Figure 4.35 shows a comparison of centroids and widths, which are the essential beam mo-

ments for the magnetic field average by the muon beam distribution around the ring azimuth.

Disagreements between reconstructed and original distributions in the vertical direction are

below 0.02 mm, whereas in the radial case the more evident discrepancies are intrinsic to the

method; for the analysis of Run-2 and beyond, an upgraded method to reconstruct beam

profiles for the field muon-weighting is under development, which would follow more closely

Eq. (3.73). Figure 4.36 displays azimuthally averaged beam profiles from the simulated

(original) and reconstructed beam. Differences between the two cases are better observed

in Fig. 4.37, owing to not transforming properly the higher order beam moments with the

reconstruction method.

Notwithstanding the differences between reconstructed and original profiles, the result-
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Figure 4.34: Run-1a reconstructed beam transverse profiles Mreco
T (xj , yk, θi), integrated

over 30µs < t < 300µs. The 24 azimuthal locations coincide with the regions of maximum
calorimeter detection acceptance. Horizontal and vertical axes correspond to −60 mm < x <
60 mm and −60 mm < y < 60 mm. Refer to Fig. 4.36 for the color legend.
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Figure 4.35: Time-integrated beam centroids and widths over the azimuthal angle. Red
markers correspond to reconstructed beam profiles Mreco

T (x, y, θi), whereas entries from the

simulated beam profiles M
orig
T (x, y, θi) are shown in black.

ing muon-weighted field B̃reco reliably reproduces the original case B̃orig throughout the

azimuth, as shown in Fig. 4.38. The larger variations at 335◦ and 25◦ are caused by the less

uniform magnetic fields at the inflector and magnet leads, respectively. In spite of these two

regions, the reconstructed weighted field resembles the real case to high accuracy:

B̃reco − B̃orig
B̃orig

= −1.2 ppb (4.45)

An assessment of the differences from the perspective of weighted field contributions from

multipole beam projections (reconstructed versus original distributions) over the azimuth is

shown in Figs. 4.39 and 4.40, respectively. With all the weighted projections below 1 ppb

and the lower order beam moments satisfactorily transformed, the method is validated for its

use with experimental data as part of the field analysis. Since the simulated beam accounts
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Figure 4.36: Reconstructed Mreco
T (x, y) (left) and original M

orig
T (x, y) (right) beam trans-

verse profiles azimuthally averaged and integrated in time (30µs < t < 300µs).

for nonlinearities from both the electric and magnetic fields in the storage ring, it is also

concluded that their effect on the beam distribution around the ring for the magnetic field

muon-weighting is negligible.

4.5.4 Sensitivity of B̃ to azimuthal beam variations

The versatility of the method allows performing sensitivity studies of the azimuthal beam

behavior on the reconstructed field B̃reco. Centroid variations from closed orbit distortions

and width modulations from dispersion and beta functions characteristic to the ring’s optical

lattice have different consequences on the resulting B̃ as shown in Table 4.8.

It is found that although the beam width (and vertical centroid) azimuthal dependence

can be ignored while maintaining the reconstructed muon-weighted field to O(2 ppb) accu-

racy, the behavior of the radial centroid along the ring must be accounted for in order to
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Figure 4.37: Difference between reconstructed Mreco
T (x, y) and original M

orig
T (x, y) beam

transverse profiles azimuthally averaged and integrated in time (30µs < t < 300µs). Higher
order beam moments unaccounted-for in the method to reconstruct profiles Mreco

T introduce

discrepancies with the reference case M
orig
T .
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Figure 4.38: Relative differences between reconstructed and original muon-weighted fields(
B̃i,reco − B̃i,orig

)
/B̃i,orig over the azimuthal angle. Largest discrepancies emerge at az-

imuthal regions where the field is less uniform (i.e., at 335◦ and 25◦ around the inflector and
magnet leads, respectively).
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Figure 4.39: Comparison of weighted field contributions from each magnetic multipole mo-
ment using beam projections from the reconstructed versus the original muon distribution.

Table 4.8: Sensitivity studies of the muon-weighted field to azimuthal beam variations.

Case Shift/scale factors
B̃reco−B̃orig

B̃orig
[ppb]

Full shifting/scaling − −1.2
No radial centroid shifting ∆x = 0 −13.1
No vertical centroid shifting ∆y = 0 −0.6
No radial width scaling sx = 1 −1.8
No vertical width scaling sy = 1 −1.7
No shifting/scaling ∆x = ∆y = 0, sx = sy = 1 −13.6 ppb

satisfy the precision goals of the muon g-2 experiment. Unless the beam is better centered

in the radial direction and radial closed orbits from the normal dipole inhomogeneities of the

magnetic field are under control, the coupling between the normal quadrupole beam pro-

jection and the normal quadrupole magnetic field term must be considered for an accurate

calculation of B̃.

For sensitivity studies specific to Run-1, the time evolution of the optical lattice was

ignored in the reconstruction method to quantify their effect on the muon-weighting, which

was estimated to introduce an error of ∼ 1.4 ppb. Time variations of B̃ due to beam drifts

bias the measured ωa frequency and, together with the lattice functions from the COSY-

based model, were estimated (outside the work of this dissertation) to be negligible [106].
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Figure 4.40: Multipole beam projections {In,i, Jn,i} versus azimuthal angle from the Run-1a
simulated beam (semi-transparent colors) and reconstructed profiles (solid colors). The small
contributions from the skew octupole and decapole projections are not well transformed in
the reconstruction.
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4.6 Conclusions

The beam characterization developed with the COSY-based model of the storage ring and

documented in Chap. 3 was directly applied to quantify systematic corrections and their

uncertainties driven by beam dynamics effects in the muon g-2 experiment.

The computational derivations of the Run-1 muon loss corrections via symplectic track-

ing agreed with data-driven results to within 12 ppb, showing the robustness of the experi-

mental technique utilized to derive Cml from observations. The understanding of betatron

resonances, tune shifts, and the data-driven implementation of magnetic fields and the ESQ

behavior during Run-1 set the stage to reach confidence in the symplectic tracking results.

Methods to extract phase acceptance corrections from detected-phase drifts, identification

of the main driving mechanisms of Cpa, and accurate procedures to calculate this correction

based on the beam behavior along the entire storage ring were developed and tested for their

further use with experimental data. With the time-dependent optical lattice reconstructed

from tracker data, beam drifts around the ring azimuth are well understood and recreated

for the determination of the phase acceptance correction during Run-1 datasets.

The standard corrections used in the muon g-2 experiment to define the E-field and

pitch corrections were tested under effects not directly accounted for in their derivation,

such as nonlinear ESQ electric fields, fringe fields, and segmented ESQ plates. A systematic

correction of −10± 8.5 ppb from these effects was quantified in relation to the standard Ce

and Cp corrections, which in total were equal to 489(53) ppb and 180(13) ppb, respectively,

during Run-1 [45]. Specific to Run-1 conditions in the storage ring, the effect of the unstable

optical lattice on Ce was established to be negligible compared to the overall size of this

correction.
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And lastly, the optical lattice framework permitted the development of a method that

accounts for the azimuthal behavior of the beam to calculate on a run-by-run basis the muon-

weighted magnetic field, which is important for the determination of aµ from measurements.

Tests with the simulated Run-1a beam from the COSY-based model validates the method.

Also, it was determined that for typical Run-1 beam distributions and magnetic fields, the

dominant coupling that needs to be accounted for in the muon-weighting of the magnetic

field along the azimuth emerges from the radial centroid, which contributes to the total B̃

about 12 ppb relative to the main value. Minimizing field inhomogeneities of the magnetic

normal dipole term and centering the beam closer to the magic momentum is expected to

alleviate the dependence of the field muon-weighting on the radial beam centroid.
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Chapter 5

Conclusions

The objective of this dissertation was to develop a detailed characterization of the beam

dynamics in the Muon g-2 Experiment at Fermilab (E989), with the goal of constraining

effects intrinsic to the beam motion on the final measurement of the experiment. To that

end, several methods and data-driven computational models were produced to analyze the

evolution of the beam along the Muon Campus and, with more depth, inside the g-2 storage

ring.

Chapter 1 covered the theoretical and experimental efforts aimed at resolving the value

of the anomalous magnetic moment aµ to unprecedented precision. In relation to the exper-

imental technique of E989, the beam dynamics requirements that are necessary to achieve

the experimental goals were presented, and the work described in the subsequent chapters of

this document aimed at addressing them to contribute with the high-precision experimen-

tal determination of aµ. At the time of this dissertation, the discrepancy between aµ from

theory and experiment had a significance of 4.2σ. However, both the muon g-2 experiment

at Fermilab and the theory initiative still plan to keep refining their values in order to ei-

ther declare the existence of physics beyond the Standard Model or to further validate the

fundamental knowledge provided by this model.

In Chap. 2, the modeling of the beam delivery system (BDS) as part of this dissertation

was presented. Results derived from this analysis served to validate the other models of the
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Muon Campus within the muon g-2 collaboration. Numerical studies of the muon beam

polarization from pion decays were performed, as well as an analysis of the impact of non-

linearities of the guide fields along the BDS on the muon population downstream from the

pion production target. In particular, the studied effects of nonlinearities on the g-2 phase—

important for beam dynamics corrections on the measured anomalous precession frequency

ωa—suggest further investigation of the momentum-phase correlation in relation to the fringe

fields of the multiple rectangular magnets inside the Delivery Ring are appropriate.

In Chap. 3, the COSY-based model together with complementary methods to characterize

the beam dynamics in the muon g-2 storage ring were presented. These tools were developed

based on experimental data, optimization techniques, and the DA framework within COSY

INFINITY. Linear and nonlinear beam dynamics were accounted for in order to recreate all

the conditions that the stored muon beam experiences while ωa is measured. The model pro-

vided an understanding of the optimal configurations of the storage ring during data taking.

With a detailed implementation of the electric and magnetic fields in the model, nonlin-

ear effects such as betatron tune shifts and resonances were characterized, which allowed

for the detailed beam dynamics systematic corrections and uncertainties on aµ presented

in Chap. 4. Available beam diagnostics from the straw tracking detectors and high-voltage

scans of the ESQ system permitted to benchmark results from the COSY-based model via

symplectic tracking simulations. In particular, the reconstruction of the unstable ESQ guide

fields during Run-1 and a detailed description of the optical lattice allowed to quantify the

beam behavior along the storage ring azimuth under these special circumstances; from this

characterization and further extensive analysis within the muon g-2 collaboration [45], beam

dynamics corrections for the measured frequency ωa were determined to high precision. In

addition, the specific time-momentum correlations of the stored muon beam owing to the
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injection process were recreated with the model, which contributed to discover and quantify

the largest systematic error of the E-field correction. The work presented in Chap. 3 took

place during the commissioning and first data collection and analysis period (Run-1) of E989,

although it is expected to continue to be utilized for the data analysis of the experiment (i.e.,

Run-2 to Run-5).

Direct applications derived from the work presented in Chap. 3 to quantify corrections

(and their systematic uncertainties) of ωa and the convoluted magnetic field are elaborated

in Chap. 4. Muon loss corrections Cml during Run-1 were recreated from symplectic tracking

simulations with the COSY-based model, with results comparable to the data-driven quan-

tifications (< 12 ppb). Even though muon loss corrections are expected to be negligible for

Run-2 and beyond thanks to improved beam injection, the replacement of the resistors that

were found to be damaged during Run-1, more collimators inserted, temperature control,

and an ESQ setpoint further from betatron resonances, detailed simulations of muon loss

rates would contribute diagnosing the storage ring conditions during data taking.

With the detailed description of the beam around the ring from Chap. 3, a detailed study

of the phase acceptance correction Cpa during Run-1 was performed. Methods to extract

this correction, as well as the understanding of the mechanisms that induce Cpa due to the

beam motion around the storage ring were developed. Similar to the Cml correction, the

phase acceptance correction is expected to be considerably smaller during Runs 2–5 thanks

to a stable ESQ system, although the precision goals of E989 would demand to evaluate this

correction and its associated systematic uncertainties for all the runs.

In relation to the E-field (Ce) and pitch (Cp) corrections, the applicability for their us-

age in E989 was tested under several characteristic scenarios of the g-2 beam storage ring

(i.e., asymmetric momentum spread, segmented ESQ stations, and ESQ nonlinear fields).
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A correction originated by those specific features was found to be small (−10 ± 8.5 ppb).

The time-evolving ESQ electric fields during the Run-1 ωa measurement were found to not

affect the E-field correction in a significant way. As a next step, the effect of nonlinearities

(e.g., betatron amplitude modulations) and closed orbit distortions from magnetic field in-

homogeneities on the E-field and pitch corrections could be analyzed with the COSY-based

model, which could become relevant due to the proximity of the operational ESQ setpoint

to the resonant condition 3νy = 1 during Runs 2–5.

And lastly, a method for weighting the magnetic field with the stored muon beam along

the azimuth of the storage ring was discussed. Validations with tracking simulations indi-

cated reliance for its further use with experimental data. Sensitivity studies determined that,

due to the specific transverse beam profile in E899 measured by the straw tracking detectors,

azimuthal dependencies of the beam radial centroid are essential to be accounted for in the

field weighting to estimate this quantity to parts-per-billion precision. Based on this work,

it can be concluded that further improvements of the beam injection process which drive the

radial centroid of the stored beam closer to the design orbit (as in the case of Run-2 and

beyond) would lead to a muon-weighting of the magnetic field less dependent on the beam

azimuthal behavior.
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