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A method is introduced that provides an accurate and fast approximation of high-order maps of fringe fields
and other fields that change along the reference trajectory. While the effects of main fields of optical elements
can be determined very efficiently with differential algebrdd®) methods via exponentiation of the respec-
tive propagator, the computation of high-order maps of nonstationary fields in general requires time-consuming
DA integration. The method of symplectic scaling presented in this paper provides a very fast approximation
of such maps by relating an arbitrary map to a specific previously computed map. This is achieved by a
combination of geometric scaling and scaling with rigidity performed in a canonically perturbative treatment of
a strength parameter. The method is useful for detailed analysis of nonlinear motion in particle optics, which
in many cases is strongly influenced or even dominated by the presence of fringe fields. The use of the
symplectic scaling method typically speeds up the computation of fringe-field effects by around two orders of
magnitude and thus approaches speeds similar to that of the main-field calculation. The method has been
implemented in the codeosy INFINITY; several examples from various subfields of beam physics are given to
illustrate the accuracy and speed of the methi8d.063-651X96)04911-2

PACS numbeps): 41.85—p, 02.70--c

[. INTRODUCTION and a main-field region. If fringe-field effects are to be con-
sidered, they are represented by the perturbative so-called
Beam physical systems can be described by a map thétnge-field map that is sandwiched between the drift and the
relates coordinates in an initial plane to coordinates ina  Main-field map at the positios,. Hence the fringe-field map
final plane, and all information about the optical properties isconsists of a negative drift to the region where the field van-

; : : > ishes, the map through the varying field, and the application
contained in the map. This ma for a system off degrees of an inverse main-field map back g, as shown in Fig(l).

of freedom depends ona cc_)llectlezgnf_p parameters of the g4 the fringe-field map represents the necessary corrections
system and thus magig* " into R** via to the simple step function field model described by
zi=M(z,9). oy - . o
. B(X,Y,Sy) for s in the main field
Since the relationship between initial and final variables is ~ Bwr(X,Y,8)=
weakly nonlinear, often the map is represented by its Taylor
expansion, a concept that goes back all the way to Hamilton
[1], who utilized what he called the characteristic function towheres, describes the center of the main field. The abrupt
compute expansions for rotationally symmetric optical Sys.change of the field in this model of course violates Laplace’s
tems to third order. Since then the method has been usetfluation and therefore cannot represent a physical system.
beneficially in many cases and even now forms the basis of0 describe a realistic system, the main-field map has to be

0 for s outside the main field,

various important beam physics COC[QS—s] Composed with fringe-field maps, which describe the con-
The motion of the particles is described by a set of ordi-nection of the main-field to the field-free region outside the

nary differential equations element.

P 2 B

dSZ_ (Z, 18)1 ( )
wheres is the coordinate along the central trajectory and
describes the usual particle optical coordinates. Under mild . 50 o
conditions forf, the equation has a unique solution through no field
any given initial pointz; and thus defines the may. {fringe field]

Because of the simplifications involved in the regions
where the field does not depend srtraditionally the effect
of a particle optical device is represented by a field-free drift FiG. 1. Fringe-field region of an optical element with effective

edge atsy. For computational purposes, all fringe-field effects are
usually concentrated in a map of length zero sandwiched between a
*Present address: DESY, 22603 Hamburg, Germany. pure drift map up tesy and a main-field map beginning sg.

main field
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The main-field map of optical elements can usually be time
computed more easily than that of the fringe fields. This 2130 - —
holds both for the case of low-order codes based on analytic 1700 ]

formulas for the nonlinear effec{—-6] and also for high-
order codes based on differential algebré®A) methods
[7-10. In the latter case, the main-field map can be evalu- 853 L
ated very quickly by applying the propagation operator of the
autonomous equation of motion. Lét denote the direc-

tional derivative, i.e., the operatdf 9+ ds. Then the equa- L

tion of motiondz/ds=f(z,4,s) allows one to compute the order
transfer map via

1280 L

427 |

FIG. 2. Computational expense of DA map computation for
1 fringe fields relative to that of main fields for a dipole magnet as a
_—|_'f£ (4) function of expansion order.

beam line and the S800 spectrograph under construction at
provided mild smoothness conditions are satisfied. Unfortuthe National Superconducting Cyclotron Laboratory
nately, for nonautonomous systems the propagator cannot KBSCL). Listed are the computational expense for the hard-
evaluated in DA11] due to the derivativé,, which reduces edge model, for a full fringe-field integration, as well as the
the order ins of the DA vector on which it acts. syscamethod discussed in this paper.

As mentioned above, the fringe-field mﬁﬁq:,: is defined I .
as a correction to be inserted at the edge of the element ar%r?ly main fields with propagator o1 sec

is formalized as follows. Les, denote the effective field 'Nge fields with DA integration 7°h, 10 min, 50 sec
boundary at the entrance of the element,a position so far ~ Fringe fields with SYSCA 6 min, 38 sec
before the optical device that the field can be neglected, and Unfortunately, merely ignoring the fringe-field effects

s, a position so far inside the element ti(x,y,s) already  |eads to quite substantial errors in the nonlinearities of the
changes very little witts. Let the mapM MF.sp—s, describe e!ement. To stress thisf point, we compute the maps of a
particle motion through the main field given in B8) from  dipole both with and without fringe-field effects and com-

the effective field boundary te, . The fringe—field map is Pa'® the results. The dipole has simple wedge shape with a

. = radius of 2 m, an angle of 30°, and an aperture of 2.54 cm.
constructed in such a way that a dlﬁf‘gfﬂso from s_ to the The chosen ion is%0%* with an energy of 25 MeV per

effective field boundary composed wit ¢ and then with  nucleon. The fringe fields used are those of the Enge model

I\7IM,:S _s. Yields the transfer maWIS _s from s_ to [7,17,18.
0T - In order to analyze whether the transfer map can be rep-

St resented well by the main-field map, we define the normal-
- - - ized average deviatio,,, between the Taylor coefficients of
Ms_ s, =Mues;—s,° Me Ds_ s (®)  the transfer map and those of the main-field map in order

o - _ m for a typical charged particle optics devices. The quantity
Here,e indicates the composition of maps. Hence the fringe-A , approaches zero for high similarity between two maps

field map has the form and one for the case of purely randomly chosen coefficients.
) R _) _ Figure 3 shows examples for the valuesAgf for a dipole
Mee=Mpyte oo Mg _g oDt . (6) and various calculation orders. It can be seen that to first
S0 S+ -5+ -7

order, the errors are very slight, while for the cases in which

Computing fringe-field maps requires the computation offigh-order terms do not vanish due to symmetry many high-
- K order aberrations are so wrong when fringe fields are ignored
the mapMs s of a system wher8(x,y,s) and hence the

thatA,, is close to unity, the value corresponding to a totally
differential equation(2) depends ors. For this, methods to

find general solutions of nonautonomous differential equa- accuracy
tions are needed. The method of numerical integration in DA 1090, N
yields the Taylor map to such an equation of motion to ar- 0.873L

bitrary expansion orddr2,13,11,14—1p However, numeri-
cal integration in DA is very time consuming in comparison
to evaluating the propagator. Figu(®) shows the ratio of 0.436|
computational expense when calculating fringe-field effects
and main-field effects of dipoles for various orders in the
codecosy INFINITY. For quadrupoles and higher-order mul- 0‘0000
tipoles the relative speed of main-field computations is simi- order

larly high.

This phenomenon manifests itself dramatically in typical FiG. 3. Accuracy of the “sharp cutoff{SCOFB approxima-
calculations. As an example, we consider an extensive optiion for different orders of a dipole transfer map. The errors are
mization problem of a total of 20 first- and second-ordersubstantial and often even approach unity, which would also occur
conditions for the case of the multipole fields of the S800for a plainly random choice of coefficients.

0.655 |

0.218}
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random selection of map coefficients. For quadrupoles andions with respect to the field excitation leads to approximate

higher-order multipoles the errors are similarly unacceptableTaylor transfer maps that satisfy the symplectic condition in
The importance of fringe fields becomes apparent whe@very evaluation order exactly.

realizing that many nonlinear properties of an electric or The symplectic scaling process for obtaining a transfer

magnetic field are due to the dependence of the fielé.on Map including fringe-field effects therefore starts with read-

For quadrupoles and higher multipoles, this can most easil{d from a file a previously computed and stored symplectic

be seen from the scalar potentig}, which defines the field Tepresentation that depends on the field excitation. Now one
> > : figures which field excitation one has to choose to scale this
by B=—dVg and can be expanded as

symplectic representation to the special partigle., mass,

® o (= 1/ ! f:harge, and energya_nd.to the s_peg:ial size of the element of

Vg (r, ) = 2 E U2 v interest. Ins.ertmg this f|¢|d excitation Ieac_is to the symplectic
v=2 \=0 AM(A+v)! representation from which the symplectic transfer map can

be extracted.

XR{[V,(s)e! W]Ne-1ron, - (7)
Il. DESIRABLE PROPERTIES OF ARBITRARY ORDER
a well-known relationship found frequently in the literature, FRINGE-FIELD APPROXIMATIONS
for example, i 19]. Many nonlinear contributions only arise
because of the nonvanishing derivativesf(s). But the In the preceding section it became apparent that, on the

functions involved and also their derivatives can be quiteone hand, a detailed study of nonlinear motion requires care-
Comp"cated; one frequenﬂy used model is the SO_Ca”edul consideration of frlnge-fleld effects, while, on the other

Enge function, which has the form hand, the expense of DA integration makes the use of effi-
cient models very desirable. Any approximation for fringe-

¥ (s;) field effects should satisfy various requirements. First and

V. (s)= 17 exiT b ot by a(5/a) + by (S F -]’ foremost, it should be accurate, but besides, it should have

®) certain properties important in typical problems encountered
in beam physics simulations. Altogether, it is desirable that

wherea is the aperture of the device under consideration an@n @pproximation s_houl(i) lead to ordem sy_mplectlc maps,
b, are real coefficients modeling the details of the field's(il) represent the fringe effect well for a wide range of aper-
falloff. tures, andiii) be usable for arbitrary orders.

Altogether, a careful treatment of fringe-field effects 1he simplest approximation, as already described, is
seems imperative for a detailed study of nonlinear effectsSCOFF, where fringe fields are simply ignored. As illus-
and the advantages of very fast DA evaluation of propagator§ated in Sec. IV, this method strongly violates the accuracy
can only be taken advantage of if an efficient fringe-fieldreduirement and pointii). The impulse approximatiof20]
approximation can be found. used in the COdEERANSPORT.[Zl] _V|olates pointdii) ang(|||)

Our search for ways out of this dilemma leads to the@nd the method of fringe-field integrdl82—24 used in the
method of symplectic scaling. The particle motion throughComputer codesios [25,3] violates point(i) and(iii). In the
and therefore the transfer map of an optical device depend8!lowing, we will illustrate the particular requirements and
on the field excitation in that device. There are, howeverPriefly discuss their importance.
some scaling properties of particle motion in electric and in
magnetic fields that allow one to relate the motion of par-
ticles through an optical device at a certain field excitation to The necessity for order-symplecticity is especially ap-
the motion through a similar but bigger device with a differ- parent when long-term behavior in storage rings is to be
ent field excitation. We call this property “geometric scal- analyzed. If the Taylor map does not approximate a symplec-
ing.” Similarly, the motion of a particle with different mass, tic map very well, then the phase-space volume is not nec-
energy, or charge can be related to the motion through thessarily conserved, which can have detrimental effects on
same optical device excited to a different field. We call thissimulation. In[26], for instance, it is illustrated that in the
well-known property “scaling with magnetic rigidity.” case of the Superconducting Super Collider lattice, expan-
These two scaling laws illustrate that it is sufficient to knowsion to 12th order is needed to have a sufficient degree of
the transfer map of an optical device as a function of excitasymplecticity of the total map; but if the fringe-field approxi-
tion field strength in order to compute the map of that devicemation does not preserve symplecticity, even very high
for the transport of all different charged particles and forevaluation orders cannot lead to trustworthy predictions of
similar devices of all sizes. It is in general not possible tolong-term behavior.
compute and store such a field-dependent transfer map; how- There are a variety of methods to perform symplectic
ever, via DA methods we can approximate this function bytracking with generating functions computed from the Taylor
the Taylor expansion of such maps in respect to the fielanap[27-30. These methods rely on the ordersymplec-
excitation. ticity of the underlying map and therefore only a fringe-field

However, approximating transfer maps in this way leadsapproximation that leads to ordarsymplectic maps can be
to maps that only approximately satisfy the symplectic con-used for symplectic tracking.
dition. In order not to compromise on the very important Yet another important reason for ordersymplectic
symplectic symmetry, we do not store the field-dependentringe-field maps is the fact that symplecticity imposes inter-
transfer map but field-dependent symplectic representationglations between different Taylor coefficients. Some sys-
of it. Approximating these representations by Taylor expantems rely on these interrelations in order to correct aberra-

A. Order-n symplecticity
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tions. Examples are the high-order achromats described in
Refs.[31,32 and the opening aberration correction for elec-
tron microscopes by means of hexapoles described in
[33,34], to mention just a few. All these systems cannot be
studied properly if fringe-field maps are used that are not — T —
ordern symplectic.

Ao

A
B. Accuracy for a wide range of apertures and fields
JC: B _ A pn

Designing spectrographs, simulating electron micro-
scopes, and analyzing beam lines and high-energy storage
rings are all topics that rely on the same principle of calcu- FIG. 4. If the size of an element is scaled by a factoand
lating transfer maps from the equation of motion. It thereforeSimultaneously the strength of the field is scaled by a factar 1/
seems highly desirable to formulate calculation methods thdfen coordinates of particle trajectories scale with the fagtor
work equally well for all these subfields of particle optics.

The effect of the fringe fields in these different areas is ofterscaled up by a factar and simultaneously the field strength
of different importance and frequently this is connected tois scaled down by the facter, then the original orbit can be
the range of apertures of the elements. In the case of highscaled up by the factow along with the geometry of the
energy accelerators, fringe fields in many cases have limiteglevice (Fig. 4). The reason for this phenomenon is that the
influence because apertures are small and so is the amountigbmentary radius of curvature of the orbit, which is geomet-
bending per element. ric in nature, is inversely proportional to the field. This fact
On the other hand, nuclear spectrographs are often chagan easily be deduced from the Lorentz equation. If a trajec-

acterized by exceedingly large apertures and very extensiigry described by(t) andp(t) satisfies
fringe fields. Thus a good fringe-field approximation has to

work over an extended range of apertures. df)
e
dt

dx - - - )
EXB(X)-I-E(X) , (10

C. Usability for arbitrary orders

With the use of DA methods, it is easily possible to com- R R R R
pute Taylor maps to very high order, and the limit is onlythen a scaled trajectorX(t) = ax(t/a) and P(t)=p(t/«a)
given by computer memory and computation time. To un-satisfies
leash the potentials of the DA approach under the presence
of fringe fields, the computation of fringe-field maps should
be possible for arbitrary evaluation orders. Especially since dp
an efficient way of computing fringe-field maps was sought at =q
for the arbitrary order codeosy INFINITY, this requirement
was important for the development of symplectic scaling
(SYSCA.

dX 1. . 1.
—X—B(X/a)+—E(X/a)). (11)
dt  « a

There is one limitation to this approach connected to the
fact that the shape of the field is not only influenced by the
. THE SYSCA METHOD geometry generating it, but also by possible saturation effects
The general problem is to determine the transfer map ofhat depend on the ;trength of the field. This I|m|t§ the range
interest for a beam with reference particle of enegynass of the factora to a size where changes of saturation can be
m, and chargey in a magnetic or electric particle optical '9nored. _
device. The device is characterized by a size paranfetar It is also important to note that once the ratio of length to

reference field strength, as well as possibly additional pa- aperture of a d_evice_exc_eeds a certain minimum, the exact
terss. Thus the task is to find the transfer ma shape of the fringe field is almost unaffected by the actual
rameterso. P length of the device. So for the treatment of fringe fields, in

a good approximation, the aperture of the element can be
used as the size parameter

which will be achieved by relating it through a sequence of For the actual use of the method, it is important to observe
transformations to a suitably chosen previously computedh@t only geometric quantities associated with the particle,
and stored reference map. The SYSCA method relies on twdUch as positions, slopes, and lengths of trajectories, scale
different scaling mechanisms, one being based on geometriith the geometry, while the canonical momenta used in

observations and the other one relying on the linear relatiof@ny codes, includingosy INFINITY [7], do not scale prop-
between rigidity of a particle and the field. erly. Thus before scaling it is necessary to transform the map

to purely geometric coordinates such as those used in the
codeTRANSPORT[21]. The transformation between these two
sets of coordinates depends on the endfgyand the mass

The first scaling method used in the determination of themo of the reference particle and is denoted f)@Eo Mo).

map of a general element is based on a simple geometr . -
observation. Assume that a certain space-dependent field ahc(tj‘e coordinates are denoted by =(x,a,y,b,5,7) and

an orbit through it are given. If the geometry of the field is Zp0=(x,x’,y,y’,l ,6p) and the transformation is given by

MEMAAF(z,5), (9)

A. Geometric scaling
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a b In the following we will discuss the practically more im-
X' = Ly = , portant case of the magnetic field in detail and only briefly
p\?2 p\2 mention the electric case. L= x*/x be the ratio of the
—| —a%-Db? —| —a?—pb? rigidity associated with the stored map and the map under
Po Po consideration. Because o’ =qu X B, a simultaneous scal-
v 2+ 7 v ing of magnetic rigidity and magnetic field has no influence
|:|i_v_1+7] (r—7)+ v——l)S, on the orbit and we have MEMIATFlaz  5)
° ° ° =ME"m".a"ATF-Blaz | 5). The change of a trajectory in-
V[Eo(1+ 60) 2+ 2EqmE(1+ o) duced by a relative energy deviatidig depends on the en-
b= -1, (12 ergy E of the reference particle. It is essential that this is not
PoC true for 6,. Due to the scaling law for magnetic rigidity, a
which has the inverse relatl.ve momentum deV|a.t|oﬁp creates the same c_:hanges in
a trajectory no matter which reference momentonis used.
o ! o Y’ Thus the full transformation to the reference map is obtained
== == as
Po/ V1+x'Z+y’2’ (po) Ji+x'2+y'? . I R
MEMAAF(ze §)=T 1(E,m)eS; "
_ Uol+770| | v . % SEX g%, m* A% > 2=
T—Ti—72+7]0 == U_o_l S|, 0 X{T(E*,m*)eM*=-9"M"A% (7. 5,F)
o 71 -
B \/[poc(1+ 5p)]2+(mC2)2_mC2 L (13) T (E*,m*)}|F:Fﬁ/a
Eo ' 0S,oT(E,m). (16)

The mapsf andT ! can be evaluated conveniently in DA to Lo . -
arbitrary order. It is worthwhile to point out that in order to Again it is apparent that besides the dependence of the origi-

perform the transformation, the knowledge of the total ard’@ map on the parametess its dependence on the fiekl
length s of the system under consideration as well as the'a@S to be known. While the exact dependence of the map on
mass and energy of the reference particle is required; thd$e field is usually difficult to obtain, the DA method very
these quantities have to be stored along with the referencgPnveniently allows one to determine the expansion in terms

map. In geometric coordinates, the mép erforming the of the field strength.
p-ng ) . ' b 9 For an electric field of strength the trajectory does not
scaling is characterized simply by

change if the quantityFq/vp does not change because

Xo=X1, Y,=Yia, |l,=lja, vﬁ’ zqﬁ. ThereforeTRANSPORTcoordinatesZp with &, are
., ., ) not appropriate, but it is necessary to use the relative devia-
Xp=X1 Y2= Y1, Op2= Opas 19 tion 8, Of the quantityv p from the corresponding value for
) . ) ] the reference particle.
in the case that there are any parameiérsheir scaling Even though this expansion can be obtained to rather high
behavior also has to be considered. order, it still represents a source of errors and hence a study

Altogether, the geometric scaling thus allows one to exf the influence of these errors is warranted. The first ques-
press a map that is associated with the size skateterms  ton js that of the accuracy of the expansion. For this purpose

of a stored reference map whose size scal®is- aA. This it js useful to analyze the range of values the quantity
is accomplished by the transformations

MEMAFAZ. §)=T LS, toToEAMA" Fla F=F= (17)

(Zg,8)°T 1S, T. (15)
can assume; this establishes how far away from a chosen
expansion point the extrapolation will have to be made.
0IQOwever, as it turns out, the quantiy has a rather simple
geometric meaning. Note that both in the process of size
o _ scaling and in the process of rigidity scaling, the total deflec-
B. Rigidity scaling tion of a particle transversing the field at the aperture is not
The next step in the transformation is to make adjustchanged. Thus the quantify plays the role of an universal
ments for the fact that the properties of the reference particletrength parameter.
differ in the stored map and in the map that is to be com- Clearly apertures and especially fields of elements vary
puted. To this end, the rigidity of the reference particle of widely in the different subdisciplines of charged particle op-
interest is computed and compared to that of the stored maiics encompassing electron microscopy, mass spectrometry,
x*; since electric and magnetic rigidities depend on themomentum spectrometry, and high-energy accelerators; but
guantitiesE,q,m in different ways, this requires that electric the amount of deflection a particle at the aperture experi-
and magnetic fields not be present simultaneously. ences in any one given element is always limited.

Since the stored reference map has to be evaluatéfatit
is clear that the reference map has to be known as a functi
of the field strength.
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This is particularly true for the fringe fields, which usually
only represent a small contribution to the overall deflection
effect of the device. Thus, in this case, a very good perfor-
mance is to be expected by just choosing an expansion poirl

—

M(Zg, &, 6m, 6, 84, 55)

in a neighborhood of typical deflection values.
But even the treatment of entire elements by the scaling V (@21 at B, m
method is expected to work reasonably well as long as thg

overall focusing power of the devices to be considered doeq
not vary considerably. While this is not of importance for
guadrupoles since their main fields can be determined very
quickly, it proves very beneficial for the treatment of sole-
noids in electron microscopy and other applications. In this
case, it is useful to estimate an approximate range for the
strength parameter of the solenoid of interest and then
choose the expansion point in the respective range when creg

(18)

1
4
| *
— %
=
©
N

ating the reference representation. [P (8,870), P (0.5, 60)
Another reason why the SYSCA method can be expected V (21) at B*, m"
to yield rather accurate results lies in the simple fact that it is ’

based on the same type of polynomial expansion that forms
the basis of all commonly used map perturbation methods,

which are usually deemed accurate enough for most pur-

poses. - |Ematate ), e AR (75,8
The other important consideration in the process of ap- “ [

proximating the field dependence in terms of an expansion is

the question of symplecticity. Even if the errors produced by

insertion into the truncated polynomial are minor, without

additional considerations they violate the symplectic symme- FIG. 5. Schematic outline of the procedures leading to the ref-

try of the map. erence representation and from the reference representation to the
This problem can be avoided by storing a symplectic repgeneral transfer map.

resentation of the map. For the nonlinear part of the map, it _. . . .

appears advantageous to choose a one-operator Dragt-FinnS'm'Iarly’ the two scaling properties can be used to com-

representatiof35] using the pseudo-Hamiltonian, which can pute the map's dependence on a relative change of the
be readily determined from the map aperture 55, the massé,, and the charges,. There-

fore, no special parameteré have to be introduced to
I\7I(ZE,3,F)=L(5,F)e:P( |Aw)zg ,8,F): (18) compute these dependences if they are desired and we
write the most general parameter-dependent map as
On the other hand, in the linear part the Dragt-Finn repM Evqu,AvF(EE,g, 18O, OF).
resentation contains just the linear matrix in ordinary non- Another possible extension is the use of the parameters
symplectic form. In order to preserve the symplecticity of 5 ¢, the description of other degrees of freedom of the field
this linear part, it is advantageous to represent it in terms of,qer consideration. These could include details about the
a generating fqnctlon in mixed variablg36], which again falloff or about the geometric form of the effective field
can be conveniently calculated from the nja]. boundary. Especially the last topic is of great practical im-
portance and can also conveniently be treated by rotating the
C. Extensions fringe-field map of a wedge dipole appropriately as dis-
There are various ways to extend the method of sympleccussed ir{38]. . _ _ o _
tic scaling. First of all, it is worthwhile to note that the re-  Finally, for practical considerations it is worthwhile to
quired knowledge of the dependence of the map on a relativ@ention that it is sufficient to store only maps of entrance
field changed: can be indirectly obtained from the conven- fringe fields. Given the entrance fringe field map
tional map itself. To this end, it is merely necessary to ex-Le[exp(P:)z], the exit fringe-field map is described by the
press the chromatic dependence of the map not in terms oéversed map
the conventional energy deviatiof, but in terms of the . _1ms
momentum deviatior$,, and substitute Rlexp(: —P:)z]o(L""R2),

where the matrixR exchanges the sign @, b, and 7. In
addition, if a representation approximates maps ofpdles
X (X, X"y, Y"1, 8,/ (1+ 5¢)). with fields close toB, then a rotation by an angle of
(19 180°/v allows approximations close to the fietdB.

MEMOAF(Zg | 6¢) =T(E,m)oMEmaAF

This observation is particularly useful for the practical use of D. Summary: Algorithm of SYSCA method

the method since it does not require any special setup to The left-hand side of Fig. 5 describes the procedure of
determine the stored map. computing the symplectic reference representation, which is
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(zloza) (10*m) logso(4)
0 -8
3 B S
-8 —10
4
_ _ 5 .
16 12 1mm 0.1mm
—24 —14
0 1 2 3 4 B(T) 0 1 2 3 4B(T)

FIG. 8. Beam spots predicted by SYSQkeft) and SCOFF
(right) approximations. The plot of the spot predicted by using the
FIG. 6. Left: (x|xxa) for a quadrupole as a function of the field exact fringe fields cannot be distinguished from the one produced
at the pole tip. Right: erroA of the approximation ofX|xxa) with ~ with SYSCA. Note the difference in scale.
different expansion orders for the reference representati@~&

T map T(E,m) from canonical to transport coordinates de-
) ] . pends on the properties of the particle which’'s motion the
s}orfd* |*n *ae rejerence file. First the Taylor mapmap describes:
MM AT ATFT (7o, 8) for a certain size of the optical element
and for a certain particle is computed in canonical variables.
In our implementation this is done with the codmsy 303 DT T3 BTl
: Y i M(z,,0)=T(E,m)°eM(zg,d)°T~ ~(E,m). 21
INFINITY. Scaling with rigidity yields the field dependent (2p,9)=T( JoM(ze.9) ( ) @Y
map M™ 4" A% (zc., 8, 5¢+). From this map the parameter-
dependent symplectic representations(3,5:«) and The map inTRANSPORTcoordinates, can then be scaled
P(EE* 3 Se+) are computed and stored in a fjla9). to the desired field by scaling with rigidity and to the correct
The Taylor expansion of the general parameter-dependeftze of the element by geometric scaling. As mentioned be-

map is written asl\7|(£E,3, Sm:8q.5n,55). The goal is to fore, we can obtain the general parameter-dependent map

; . from the specific map by scaling. With DA this procedure
compute this Taylor map from the reference representation, . . ;
utomatically leads to the Taylor expansion with respect to

The nght—hand_ side of Fig. 5 |I|u§trates the procedgre thag” the parameters. Finally, one obtains the required general
will achieve this goal. After reading the reference file, the arameter-dependent  order- symolectic Tavior ma
first step is to insert a valué-« into the field dependence of para P ymp y P

the symplectic representatiofic is chosen in such a way M(Ze:99m,9q.8a,5F) by transforming back to canonical
that the symplectic representation describes particle motiofoordinates. _ . .
that differs only by a scale in geometrical size from the tra- Syrm?llectlc ?clalflng fc_an b? ﬁjpphed toTahny fml?p' butitis
jectories of the desired mad ™A F (z;). For magnetic el- oopooay USSILL TOT TrNGE-NSid maps. “ne 1otowing ex-

: i B . .o amples show the accuracy and speed of obtaining fringe-field
tehrzf;tosr,ethe appropriate field B=B(p*qA/pg™A”) and maps by symplectic scaling of a stored symplectic reference

representation.

P LI Ao R (20)
P pgrAr IV. EXAMPLES

In this section, we will illustrate the profitable use of the
has to be inserted. For an electric element the required fielthethod with several examples. In order to evaluate the speed
is given byF(v* p* qA/vpg* A*). and accuracy of the proposed approximation, we analyze a

From the so-scaled symplectic representation one contertain aberration coefficient of a quadrupole. Figure 6
putes the orden symplectic Taylor map, which is then shows the dependence of the expansion coefficiexx@)
transformed torRANSPORT coordinates. The transformation on the fieldB at the pole tip. Because functions like this can

be closely approximated by polynomials, it can be expected
speod that symplectic scalingSYSCA) is very accurate. The quad-
7. rupole used here has a length of 41.9 cm and an aperture of

1420}

10701

order

FIG. 7. Relative savings of computational expense of SYSCAto FIG. 9. 500 turn tracking withoufleft) and with (right) fringe
numerical integration for a dipole. fields trough a 1-GeV proton storage ring.
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TABLE |. Amplitude- and energy-dependent tune shifts with
and without fringe fields.

SCOFF SYSCA
v,=0.34 v, =0.34

+0.005¢ +0.005¢
+30.21¢, +23.82,
+156.6%, +743.50,
—19.3362 +28.3452

+534.2%,5¢ +271.3%,5¢

—1792.76,6¢ —9685.2%, ¢
+1260.32° +1072.7052

+25599.562
+68007.73¢,
~89715.35;
+32939.09252
+51138.52; 5%
+9918.055%

+13240.9%2
—625777.2%,€,

~1377087.48;
+593.75252%
—~72396.7%,6%

—448338.65;

| LT

IZOmrad

I?Omrad IQOmrad

2cm 2cm
—_ —

2cm
—

FIG. 10. 5000-turn tracking with fringe fields obtained by nu-
merical integration(left), SYSCA (middle), and a nonsymplectic
fringe-field approximatioriright). The initial position of the particle
is (x,y)=(3 cm, 3 cm) with no initial inclinationg’ andy’.

ponents in order not to avoig-y coupling. The left-hand
picture was computed using the SCOFF approximation,
whereas the right-hand picture was computed with SYSCA.
Note the difference in the short-term dynamic aperture. Also
the amplitude- and energy-dependent tune shifts of this sys-
tem indicate that fringe fields can have very significant in-

fluences in repetitive systems. In Table I, the nonlinear de-
pendence of the tune is given; in order to make the
2.54 cm. The chosen ion €03 with an energy of 25 MeV  comparison as fair as possible, all fitting procedures were
per nucleon. performed both without fringe fields and then with fringe

Even at the border of the range in Fig. 6, the methodfields. In particular, the linear tune and the chromaticity were
presented is within the default tolerance allowed in the autoadjusted to the same values.
matic step size control of the eight order Runge-Kutta inte- The consequences of using symplectic approximations for
grator incosy INFINITY. Close to the value with which the the fringe-field maps are important for the case of repetitive
reference file was produced, the accuracy increases drastracking. As an example of this point, we use the lattice of
cally. The results in Fig. 6 were obtained by evaluating thethe proposed Proton Storage Ring Il of the Los Alamos Na-
symplectic reference representation to third, fourth, and fifthjonal Laboratory . The ninth-order 5000-turn tracking pic-
order. The accuracy can be further improved by increasingyres are displayed in Fig. 10.
this order, which of course increases the computation time The tracking was performed with the described standard
that has to be invested for creating the reference map iQumerical integration, with SYSCA, and with a nonsymplec-
advance. This investment can be very rewarding, especiallyc fringe-field approximation obtained by low-accuracy nu-
when beam lines or spectrometers are being fitted or whemerical integration. Nonsymplectic tracking strongly violates
system errors are analyzed so that maps of similar fringghe conservation of phase-space volumes.
fields are needed over and over again with only slightly dif-  However, due to limited accuracy, sometimes even stan-
ferent parameters. dard numerical integration produces maps that slightly vio-

The SYSCA approximation is especially helpful in the |ate symplecticity. To eliminate this possibility, the first
design of realistic systems after approximate parameters @facking picture in Fig. 10 was obtained by symplectification
the elements have been obtained by neglecting fringe fieldsia generating functions. For SYSCA this additional time
These values can be used to create a reference file for synhvestment is not required, since maps obtained by
plectic scaling. In this way, a very high accuracy almostsySCA are completely order-symplectic. The correspond-
equivalent to accurate but time intensive numerical integraing ninth-order maps were produced with the SYSCA mode
tion can be obtained. The time savings obtained by thisn cosy INFINITY in 30 min, whereas the standard numerical
method is illustrated in Fig. 7. integration took 15 h, and the nonsymplectic approximation

A very important example is the computation of beamtook 44 min on a VAX 4000 90 computer.
spots under the presence of nonlinear effects. For this pur- |n this paper we applied symplectic scaling mostly to
pose, a cone of particles was sent through the seventh-ordgfnge-field maps. In conclusion, we would like to emphasize
map of the A1200 isotope separator at the NSCL. The imagain that symplectic scaling is a method that can be used to
ages with the SCOFF and SYSCA approximations are showgpeed up the computation of symplectic transfer maps in
in Fig. 8. The maximum angle used is 15 mrad. Note themany other cases where nonautonomous differential equa-
difference in scale; the beam spot predicted with SCOFF igigns have to be solved.
only one-tenth as big. Hence trusting SCOFF would lead to a
loss of most of the beam.

Also for long-term tracking in storage rings, fringe fields
have influences. In Fig. 9, typical tracking pictures are dis-
played. An example storage ring for 1-GeV protons was op- This work was supported in part by the National Science
timized for a big dynamical aperture. Eight particles wereFoundation, Grant No. PHY 89-13815, and the Alfred P.
tracked with phase-space coordinates that>hatddy com-  Sloan Foundation.
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