
Symplectic scaling of transfer maps including fringe fields

Georg Heinz Hoffsta¨tter* and Martin Berz
Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University,

East Lansing, Michigan 48824
~Received 5 January 1996!

A method is introduced that provides an accurate and fast approximation of high-order maps of fringe fields
and other fields that change along the reference trajectory. While the effects of main fields of optical elements
can be determined very efficiently with differential algebraic~DA! methods via exponentiation of the respec-
tive propagator, the computation of high-order maps of nonstationary fields in general requires time-consuming
DA integration. The method of symplectic scaling presented in this paper provides a very fast approximation
of such maps by relating an arbitrary map to a specific previously computed map. This is achieved by a
combination of geometric scaling and scaling with rigidity performed in a canonically perturbative treatment of
a strength parameter. The method is useful for detailed analysis of nonlinear motion in particle optics, which
in many cases is strongly influenced or even dominated by the presence of fringe fields. The use of the
symplectic scaling method typically speeds up the computation of fringe-field effects by around two orders of
magnitude and thus approaches speeds similar to that of the main-field calculation. The method has been
implemented in the codeCOSY INFINITY; several examples from various subfields of beam physics are given to
illustrate the accuracy and speed of the method.@S1063-651X~96!04911-2#

PACS number~s!: 41.85.2p, 02.70.2c

I. INTRODUCTION

Beam physical systems can be described by a map that
relates coordinateszW i in an initial plane to coordinateszW f in a
final plane, and all information about the optical properties is
contained in the map. This mapMW for a system ofd degrees
of freedom depends on a collectiondW of p parameters of the
system and thus mapsR2d1p into R2d via

zW f5MW ~zW i ,dW !. ~1!

Since the relationship between initial and final variables is
weakly nonlinear, often the map is represented by its Taylor
expansion, a concept that goes back all the way to Hamilton
@1#, who utilized what he called the characteristic function to
compute expansions for rotationally symmetric optical sys-
tems to third order. Since then the method has been used
beneficially in many cases and even now forms the basis of
various important beam physics codes@2–5#.

The motion of the particles is described by a set of ordi-
nary differential equations

d

ds
zW5 fW~zW,dW ,s!, ~2!

wheres is the coordinate along the central trajectory andzW
describes the usual particle optical coordinates. Under mild
conditions forfW , the equation has a unique solution through
any given initial pointzW i and thus defines the mapMW .

Because of the simplifications involved in the regions
where the field does not depend ons, traditionally the effect
of a particle optical device is represented by a field-free drift

and a main-field region. If fringe-field effects are to be con-
sidered, they are represented by the perturbative so-called
fringe-field map that is sandwiched between the drift and the
main-field map at the positions0. Hence the fringe-field map
consists of a negative drift to the region where the field van-
ishes, the map through the varying field, and the application
of an inverse main-field map back tos0, as shown in Fig.~1!.
So the fringe-field map represents the necessary corrections
to the simple step function field model described by

BW MF~x,y,s!5H BW ~x,y,sm! for s in the main field

0W for s outside the main field,
~3!

wheresm describes the center of the main field. The abrupt
change of the field in this model of course violates Laplace’s
equation and therefore cannot represent a physical system.
To describe a realistic system, the main-field map has to be
composed with fringe-field maps, which describe the con-
nection of the main-field to the field-free region outside the
element.

*Present address: DESY, 22603 Hamburg, Germany.

FIG. 1. Fringe-field region of an optical element with effective
edge ats0. For computational purposes, all fringe-field effects are
usually concentrated in a map of length zero sandwiched between a
pure drift map up tos0 and a main-field map beginning ats0.
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The main-field map of optical elements can usually be
computed more easily than that of the fringe fields. This
holds both for the case of low-order codes based on analytic
formulas for the nonlinear effects@2–6# and also for high-
order codes based on differential algebraic~DA! methods
@7–10#. In the latter case, the main-field map can be evalu-
ated very quickly by applying the propagation operator of the
autonomous equation of motion. LetL f denote the direc-
tional derivative, i.e., the operatorfWT]W1]s . Then the equa-
tion of motiondzW/ds5 fW(zW,dW ,s) allows one to compute the
transfer map via

MW 5n(
i51

`
1

i !
L f
i zW ~4!

provided mild smoothness conditions are satisfied. Unfortu-
nately, for nonautonomous systems the propagator cannot be
evaluated in DA@11# due to the derivative]s , which reduces
the order ins of the DA vector on which it acts.

As mentioned above, the fringe-field mapMW FF is defined
as a correction to be inserted at the edge of the element and
is formalized as follows. Lets0 denote the effective field
boundary at the entrance of the element,s2 a position so far
before the optical device that the field can be neglected, and
s1 a position so far inside the element thatBW (x,y,s) already
changes very little withs. Let the mapMW MF,s0→s1

describe
particle motion through the main field given in Eq.~3! from
the effective field boundary tos1 . The fringe–field map is
constructed in such a way that a driftDW s2→s0

from s2 to the

effective field boundary composed withMW FF and then with
MW MF,s0→s1

yields the transfer mapMW s2→s1
from s2 to

s1 :

MW s2→s1
5MW MF,s0→s1

+ MW FF+ DW s2→s0
. ~5!

Here,+ indicates the composition of maps. Hence the fringe-
field map has the form

MW FF5MW MF,s0→s1

21 + MW s2→s1
+ DW s2→s0

21 . ~6!

Computing fringe-field maps requires the computation of
the mapMW s2→s1

of a system whereBW (x,y,s) and hence the

differential equation~2! depends ons. For this, methods to
find general solutions of nonautonomous differential equa-
tions are needed. The method of numerical integration in DA
yields the Taylor map to such an equation of motion to ar-
bitrary expansion order@12,13,11,14–16#. However, numeri-
cal integration in DA is very time consuming in comparison
to evaluating the propagator. Figure~2! shows the ratio of
computational expense when calculating fringe-field effects
and main-field effects of dipoles for various orders in the
codeCOSY INFINITY. For quadrupoles and higher-order mul-
tipoles the relative speed of main-field computations is simi-
larly high.

This phenomenon manifests itself dramatically in typical
calculations. As an example, we consider an extensive opti-
mization problem of a total of 20 first- and second-order
conditions for the case of the multipole fields of the S800

beam line and the S800 spectrograph under construction at
the National Superconducting Cyclotron Laboratory
~NSCL!. Listed are the computational expense for the hard-
edge model, for a full fringe-field integration, as well as the
SYSCAmethod discussed in this paper.

Only main fields with propagator 51 sec
Fringe fields with DA integration 7 h, 10 min, 50 sec
Fringe fields with SYSCA 6 min, 38 sec

Unfortunately, merely ignoring the fringe-field effects
leads to quite substantial errors in the nonlinearities of the
element. To stress this point, we compute the maps of a
dipole both with and without fringe-field effects and com-
pare the results. The dipole has simple wedge shape with a
radius of 2 m, an angle of 30°, and an aperture of 2.54 cm.
The chosen ion is16O31 with an energy of 25 MeV per
nucleon. The fringe fields used are those of the Enge model
@7,17,18#.

In order to analyze whether the transfer map can be rep-
resented well by the main-field map, we define the normal-
ized average deviationDm between the Taylor coefficients of
the transfer map and those of the main-field map in order
m for a typical charged particle optics devices. The quantity
Dm approaches zero for high similarity between two maps
and one for the case of purely randomly chosen coefficients.
Figure 3 shows examples for the values ofDm for a dipole
and various calculation orders. It can be seen that to first
order, the errors are very slight, while for the cases in which
high-order terms do not vanish due to symmetry many high-
order aberrations are so wrong when fringe fields are ignored
thatDm is close to unity, the value corresponding to a totally

FIG. 2. Computational expense of DA map computation for
fringe fields relative to that of main fields for a dipole magnet as a
function of expansion order.

FIG. 3. Accuracy of the ‘‘sharp cutoff’’~SCOFF! approxima-
tion for different orders of a dipole transfer map. The errors are
substantial and often even approach unity, which would also occur
for a plainly random choice of coefficients.
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random selection of map coefficients. For quadrupoles and
higher-order multipoles the errors are similarly unacceptable.

The importance of fringe fields becomes apparent when
realizing that many nonlinear properties of an electric or
magnetic field are due to the dependence of the field ons.
For quadrupoles and higher multipoles, this can most easily
be seen from the scalar potentialVB , which defines the field
by BW 52]WVB and can be expanded as

VB~r ,f!5 (
n52

`

(
l50

`

r n12l
~21/4!ln!

l! ~l1n!!

3R$@Cn~s!e~ iun!# [2l]e~2 inf!%, ~7!

a well-known relationship found frequently in the literature,
for example, in@19#. Many nonlinear contributions only arise
because of the nonvanishing derivatives ofCn(s). But the
functions involved and also their derivatives can be quite
complicated; one frequently used model is the so-called
Enge function, which has the form

Cn~s!5
Cn~s1!

11exp@bk,01bk,1~s/a!1bk,2~s/a!21•••#
,

~8!

wherea is the aperture of the device under consideration and
bk,l are real coefficients modeling the details of the field’s
falloff.

Altogether, a careful treatment of fringe-field effects
seems imperative for a detailed study of nonlinear effects,
and the advantages of very fast DA evaluation of propagators
can only be taken advantage of if an efficient fringe-field
approximation can be found.

Our search for ways out of this dilemma leads to the
method of symplectic scaling. The particle motion through
and therefore the transfer map of an optical device depends
on the field excitation in that device. There are, however,
some scaling properties of particle motion in electric and in
magnetic fields that allow one to relate the motion of par-
ticles through an optical device at a certain field excitation to
the motion through a similar but bigger device with a differ-
ent field excitation. We call this property ‘‘geometric scal-
ing.’’ Similarly, the motion of a particle with different mass,
energy, or charge can be related to the motion through the
same optical device excited to a different field. We call this
well-known property ‘‘scaling with magnetic rigidity.’’
These two scaling laws illustrate that it is sufficient to know
the transfer map of an optical device as a function of excita-
tion field strength in order to compute the map of that device
for the transport of all different charged particles and for
similar devices of all sizes. It is in general not possible to
compute and store such a field-dependent transfer map; how-
ever, via DA methods we can approximate this function by
the Taylor expansion of such maps in respect to the field
excitation.

However, approximating transfer maps in this way leads
to maps that only approximately satisfy the symplectic con-
dition. In order not to compromise on the very important
symplectic symmetry, we do not store the field-dependent
transfer map but field-dependent symplectic representations
of it. Approximating these representations by Taylor expan-

sions with respect to the field excitation leads to approximate
Taylor transfer maps that satisfy the symplectic condition in
every evaluation order exactly.

The symplectic scaling process for obtaining a transfer
map including fringe-field effects therefore starts with read-
ing from a file a previously computed and stored symplectic
representation that depends on the field excitation. Now one
figures which field excitation one has to choose to scale this
symplectic representation to the special particle~i.e., mass,
charge, and energy! and to the special size of the element of
interest. Inserting this field excitation leads to the symplectic
representation from which the symplectic transfer map can
be extracted.

II. DESIRABLE PROPERTIES OF ARBITRARY ORDER
FRINGE-FIELD APPROXIMATIONS

In the preceding section it became apparent that, on the
one hand, a detailed study of nonlinear motion requires care-
ful consideration of fringe-field effects, while, on the other
hand, the expense of DA integration makes the use of effi-
cient models very desirable. Any approximation for fringe-
field effects should satisfy various requirements. First and
foremost, it should be accurate, but besides, it should have
certain properties important in typical problems encountered
in beam physics simulations. Altogether, it is desirable that
an approximation should~i! lead to order-n symplectic maps,
~ii ! represent the fringe effect well for a wide range of aper-
tures, and~iii ! be usable for arbitrary orders.

The simplest approximation, as already described, is
SCOFF, where fringe fields are simply ignored. As illus-
trated in Sec. IV, this method strongly violates the accuracy
requirement and point~ii !. The impulse approximation@20#
used in the codeTRANSPORT@21# violates points~ii ! and~iii !
and the method of fringe-field integrals@22–24# used in the
computer codeGIOS @25,3# violates points~i! and~iii !. In the
following, we will illustrate the particular requirements and
briefly discuss their importance.

A. Order-n symplecticity

The necessity for order-n symplecticity is especially ap-
parent when long-term behavior in storage rings is to be
analyzed. If the Taylor map does not approximate a symplec-
tic map very well, then the phase-space volume is not nec-
essarily conserved, which can have detrimental effects on
simulation. In@26#, for instance, it is illustrated that in the
case of the Superconducting Super Collider lattice, expan-
sion to 12th order is needed to have a sufficient degree of
symplecticity of the total map; but if the fringe-field approxi-
mation does not preserve symplecticity, even very high
evaluation orders cannot lead to trustworthy predictions of
long-term behavior.

There are a variety of methods to perform symplectic
tracking with generating functions computed from the Taylor
map @27–30#. These methods rely on the order-n symplec-
ticity of the underlying map and therefore only a fringe-field
approximation that leads to order-n symplectic maps can be
used for symplectic tracking.

Yet another important reason for order-n symplectic
fringe-field maps is the fact that symplecticity imposes inter-
relations between different Taylor coefficients. Some sys-
tems rely on these interrelations in order to correct aberra-
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tions. Examples are the high-order achromats described in
Refs.@31,32# and the opening aberration correction for elec-
tron microscopes by means of hexapoles described in
@33,34#, to mention just a few. All these systems cannot be
studied properly if fringe-field maps are used that are not
order-n symplectic.

B. Accuracy for a wide range of apertures and fields

Designing spectrographs, simulating electron micro-
scopes, and analyzing beam lines and high-energy storage
rings are all topics that rely on the same principle of calcu-
lating transfer maps from the equation of motion. It therefore
seems highly desirable to formulate calculation methods that
work equally well for all these subfields of particle optics.
The effect of the fringe fields in these different areas is often
of different importance and frequently this is connected to
the range of apertures of the elements. In the case of high-
energy accelerators, fringe fields in many cases have limited
influence because apertures are small and so is the amount of
bending per element.

On the other hand, nuclear spectrographs are often char-
acterized by exceedingly large apertures and very extensive
fringe fields. Thus a good fringe-field approximation has to
work over an extended range of apertures.

C. Usability for arbitrary orders

With the use of DA methods, it is easily possible to com-
pute Taylor maps to very high order, and the limit is only
given by computer memory and computation time. To un-
leash the potentials of the DA approach under the presence
of fringe fields, the computation of fringe-field maps should
be possible for arbitrary evaluation orders. Especially since
an efficient way of computing fringe-field maps was sought
for the arbitrary order codeCOSY INFINITY, this requirement
was important for the development of symplectic scaling
~SYSCA!.

III. THE SYSCA METHOD

The general problem is to determine the transfer map of
interest for a beam with reference particle of energyE, mass
m, and chargeq in a magnetic or electric particle optical
device. The device is characterized by a size parameterA, a
reference field strengthF, as well as possibly additional pa-
rametersdW . Thus the task is to find the transfer map

MW E,m,q,A,F~zW,dW !, ~9!

which will be achieved by relating it through a sequence of
transformations to a suitably chosen previously computed
and stored reference map. The SYSCA method relies on two
different scaling mechanisms, one being based on geometric
observations and the other one relying on the linear relation
between rigidity of a particle and the field.

A. Geometric scaling

The first scaling method used in the determination of the
map of a general element is based on a simple geometric
observation. Assume that a certain space-dependent field and
an orbit through it are given. If the geometry of the field is

scaled up by a factora and simultaneously the field strength
is scaled down by the factora, then the original orbit can be
scaled up by the factora along with the geometry of the
device~Fig. 4!. The reason for this phenomenon is that the
momentary radius of curvature of the orbit, which is geomet-
ric in nature, is inversely proportional to the field. This fact
can easily be deduced from the Lorentz equation. If a trajec-
tory described byx(t) andp(t) satisfies

dpW

dt
5qS dxW

dt
3BW ~xW !1EW ~xW ! D , ~10!

then a scaled trajectoryXW (t)5axW (t/a) and PW (t)5pW (t/a)
satisfies

dPW

dt
5qS dXW

dt
3
1

a
BW ~XW /a!1

1W

a
E~XW /a! D . ~11!

There is one limitation to this approach connected to the
fact that the shape of the field is not only influenced by the
geometry generating it, but also by possible saturation effects
that depend on the strength of the field. This limits the range
of the factora to a size where changes of saturation can be
ignored.

It is also important to note that once the ratio of length to
aperture of a device exceeds a certain minimum, the exact
shape of the fringe field is almost unaffected by the actual
length of the device. So for the treatment of fringe fields, in
a good approximation, the aperture of the element can be
used as the size parameterA.

For the actual use of the method, it is important to observe
that only geometric quantities associated with the particle,
such as positions, slopes, and lengths of trajectories, scale
with the geometry, while the canonical momenta used in
many codes, includingCOSY INFINITY @7#, do not scale prop-
erly. Thus before scaling it is necessary to transform the map
to purely geometric coordinates such as those used in the
codeTRANSPORT@21#. The transformation between these two
sets of coordinates depends on the energyE0 and the mass
m0 of the reference particle and is denoted byTW (E0 ,m0).
The coordinates are denoted byzWE05(x,a,y,b,dE ,t) and

zWp05(x,x8,y,y8,l ,dp) and the transformation is given by

FIG. 4. If the size of an element is scaled by a factora and
simultaneously the strength of the field is scaled by a factor 1/a,
then coordinates of particle trajectories scale with the factora.

54 5667SYMPLECTIC SCALING OF TRANSFER MAPS . . .



x85
a

AS p
p0

D 22a22b2

, y85
b

AS p
p0

D 22a22b2

,

l5 l i2
v
v0

21h0

11h0
~t2t i !1S vv0 21D s,

dp5
A@E0~11dE!#212E0mc2~11dE!

p0c
21, ~12!

which has the inverse

a5S pp0D x8

A11x821y82
, b5S pp0D y8

A11x821y82
,

t5t i2
v0
v
11h0

21h0
F l2 l i2S vv0 21D sG ,dE

5
A@p0c~11dp!#

21~mc2!22mc2

E0
21. ~13!

The mapsTW andTW 21 can be evaluated conveniently in DA to
arbitrary order. It is worthwhile to point out that in order to
perform the transformation, the knowledge of the total arc
length s of the system under consideration as well as the
mass and energy of the reference particle is required; thus
these quantities have to be stored along with the reference
map. In geometric coordinates, the mapSW a performing the
scaling is characterized simply by

x25x1a, y25y1a, l 25 l 1a,

x285x18 , y285y18 , dp25dp1 ; ~14!

in the case that there are any parametersdW , their scaling
behavior also has to be considered.

Altogether, the geometric scaling thus allows one to ex-
press a map that is associated with the size scaleA in terms
of a stored reference map whose size scale isA*5aA. This
is accomplished by the transformations

MW E,m,q,F,A~zWE ,dW !5TW 21+SW a
21+TW +MW E,q,m,A* ,F/a

~zWE ,dW !+TW 21+SW a+TW . ~15!

Since the stored reference map has to be evaluated atF/a, it
is clear that the reference map has to be known as a function
of the field strength.

B. Rigidity scaling

The next step in the transformation is to make adjust-
ments for the fact that the properties of the reference particle
differ in the stored map and in the map that is to be com-
puted. To this end, the rigidityx of the reference particle of
interest is computed and compared to that of the stored map
x* ; since electric and magnetic rigidities depend on the
quantitiesE,q,m in different ways, this requires that electric
and magnetic fields not be present simultaneously.

In the following we will discuss the practically more im-
portant case of the magnetic field in detail and only briefly
mention the electric case. Letb5x* /x be the ratio of the
rigidity associated with the stored map and the map under
consideration. Because ofvpW 85qvW 3BW , a simultaneous scal-
ing of magnetic rigidity and magnetic field has no influence
on the orbit and we have MW E,m,q,A* ,F/a(zWp ,dW )
5MW E* ,m* ,q* ,A* ,F•b/a(zWp ,dW ). The change of a trajectory in-
duced by a relative energy deviationdE depends on the en-
ergyE of the reference particle. It is essential that this is not
true for dp . Due to the scaling law for magnetic rigidity, a
relative momentum deviationdp creates the same changes in
a trajectory no matter which reference momentump is used.
Thus the full transformation to the reference map is obtained
as

MW E,m,q,A,F~zWE ,dW !5TW 21~E,m!+SW a
21+

3$TW ~E* ,m* !+MW E* ,q* ,m* ,A* ~zWE ,dW ,F̄ !

+TW 21~E* ,m* !%u F̄5Fb/a

+SW a+TW ~E,m!. ~16!

Again it is apparent that besides the dependence of the origi-
nal map on the parametersdW , its dependence on the fieldF
has to be known. While the exact dependence of the map on
the field is usually difficult to obtain, the DA method very
conveniently allows one to determine the expansion in terms
of the field strength.

For an electric field of strengthF the trajectory does not
change if the quantityFq/vp does not change because

vpW 85qEW . ThereforeTRANSPORTcoordinateszWp with dp are
not appropriate, but it is necessary to use the relative devia-
tion dvp of the quantityvp from the corresponding value for
the reference particle.

Even though this expansion can be obtained to rather high
order, it still represents a source of errors and hence a study
of the influence of these errors is warranted. The first ques-
tion is that of the accuracy of the expansion. For this purpose
it is useful to analyze the range of values the quantity

F̄5F
b

a
~17!

can assume; this establishes how far away from a chosen
expansion point the extrapolation will have to be made.
However, as it turns out, the quantityF̄ has a rather simple
geometric meaning. Note that both in the process of size
scaling and in the process of rigidity scaling, the total deflec-
tion of a particle transversing the field at the aperture is not
changed. Thus the quantityF̄ plays the role of an universal
strength parameter.

Clearly apertures and especially fields of elements vary
widely in the different subdisciplines of charged particle op-
tics encompassing electron microscopy, mass spectrometry,
momentum spectrometry, and high-energy accelerators; but
the amount of deflection a particle at the aperture experi-
ences in any one given element is always limited.

5668 54GEORG HEINZ HOFFSTA¨ TTER AND MARTIN BERZ



This is particularly true for the fringe fields, which usually
only represent a small contribution to the overall deflection
effect of the device. Thus, in this case, a very good perfor-
mance is to be expected by just choosing an expansion point
in a neighborhood of typical deflection values.

But even the treatment of entire elements by the scaling
method is expected to work reasonably well as long as the
overall focusing power of the devices to be considered does
not vary considerably. While this is not of importance for
quadrupoles since their main fields can be determined very
quickly, it proves very beneficial for the treatment of sole-
noids in electron microscopy and other applications. In this
case, it is useful to estimate an approximate range for the
strength parameter of the solenoid of interest and then
choose the expansion point in the respective range when cre-
ating the reference representation.

Another reason why the SYSCA method can be expected
to yield rather accurate results lies in the simple fact that it is
based on the same type of polynomial expansion that forms
the basis of all commonly used map perturbation methods,
which are usually deemed accurate enough for most pur-
poses.

The other important consideration in the process of ap-
proximating the field dependence in terms of an expansion is
the question of symplecticity. Even if the errors produced by
insertion into the truncated polynomial are minor, without
additional considerations they violate the symplectic symme-
try of the map.

This problem can be avoided by storing a symplectic rep-
resentation of the map. For the nonlinear part of the map, it
appears advantageous to choose a one-operator Dragt-Finn
representation@35# using the pseudo-Hamiltonian, which can
be readily determined from the map

MW ~zWE ,dW ,F !5L~dW ,F !e:P~ uAw!zE ,d
W ,F): IW. ~18!

On the other hand, in the linear part the Dragt-Finn rep-
resentation contains just the linear matrix in ordinary non-
symplectic form. In order to preserve the symplecticity of
this linear part, it is advantageous to represent it in terms of
a generating function in mixed variables@36#, which again
can be conveniently calculated from the map@37#.

C. Extensions

There are various ways to extend the method of symplec-
tic scaling. First of all, it is worthwhile to note that the re-
quired knowledge of the dependence of the map on a relative
field changedF can be indirectly obtained from the conven-
tional map itself. To this end, it is merely necessary to ex-
press the chromatic dependence of the map not in terms of
the conventional energy deviationdE , but in terms of the
momentum deviationdp and substitute

MW E,m,q,A,F~zWE ,dF!5TW ~E,m!+MW E,m,q,A,F

3„x,x8,y,y8,l ,dp /~11dF!….

~19!

This observation is particularly useful for the practical use of
the method since it does not require any special setup to
determine the stored map.

Similarly, the two scaling properties can be used to com-
pute the map’s dependence on a relative change of the
aperture dA , the massdm , and the chargedq . There-
fore, no special parametersdW have to be introduced to
compute these dependences if they are desired and we
write the most general parameter-dependent map as
MW E,m,q,A,F(zWE ,dW ,dm ,dq ,dA ,dF).

Another possible extension is the use of the parameters
dW for the description of other degrees of freedom of the field
under consideration. These could include details about the
falloff or about the geometric form of the effective field
boundary. Especially the last topic is of great practical im-
portance and can also conveniently be treated by rotating the
fringe-field map of a wedge dipole appropriately as dis-
cussed in@38#.

Finally, for practical considerations it is worthwhile to
mention that it is sufficient to store only maps of entrance
fringe fields. Given the entrance fringe field map
LW +@exp(:P:)zW#, the exit fringe-field map is described by the
reversed map

R@exp~ :2P: !zW#+~L21RzW !,

where the matrixR exchanges the sign ofa, b, and t. In
addition, if a representation approximates maps of 2n poles
with fields close toB, then a rotation by an angle of
180°/n allows approximations close to the field2B.

D. Summary: Algorithm of SYSCA method

The left-hand side of Fig. 5 describes the procedure of
computing the symplectic reference representation, which is

FIG. 5. Schematic outline of the procedures leading to the ref-
erence representation and from the reference representation to the
general transfer map.
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stored in a reference file. First the Taylor map
MW m* ,q* ,A* ,F* (zWE* ,dW ) for a certain size of the optical element
and for a certain particle is computed in canonical variables.
In our implementation this is done with the codeCOSY
INFINITY . Scaling with rigidity yields the field dependent
mapMW m* ,q* ,A* (zWE* ,dW ,dF* ). From this map the parameter-
dependent symplectic representationsF(dW ,dF* ) and
P(zWE* ,dW ,dF* ) are computed and stored in a file@39#.

The Taylor expansion of the general parameter-dependent
map is written asMW (zWE ,dW ,dm ,dq ,dA ,dF). The goal is to
compute this Taylor map from the reference representation.
The right-hand side of Fig. 5 illustrates the procedure that
will achieve this goal. After reading the reference file, the
first step is to insert a valuedF* into the field dependence of
the symplectic representation.dF* is chosen in such a way
that the symplectic representation describes particle motion
that differs only by a scale in geometrical size from the tra-
jectories of the desired mapMW m,q,A,F(zWE). For magnetic el-
ements, the appropriate field isBs5B(p* qA/pq*A* ) and
therefore

dF*5S F p* qA
pq*A*

2F* D Y F* ~20!

has to be inserted. For an electric element the required field
is given byF(v* p* qA/vpq*A* ).

From the so-scaled symplectic representation one com-
putes the order-n symplectic Taylor map, which is then
transformed toTRANSPORTcoordinates. The transformation

map TW (E,m) from canonical to transport coordinates de-
pends on the properties of the particle which’s motion the
map describes:

MW ~zWp ,dW !5TW ~E,m!+MW ~zWE ,dW !+TW 21~E,m!. ~21!

The map inTRANSPORTcoordinateszWp can then be scaled
to the desired field by scaling with rigidity and to the correct
size of the element by geometric scaling. As mentioned be-
fore, we can obtain the general parameter-dependent map
from the specific map by scaling. With DA this procedure
automatically leads to the Taylor expansion with respect to
all the parameters. Finally, one obtains the required general
parameter-dependent order-n symplectic Taylor map
MW (zWE ,dW dm ,dq ,dA ,dF) by transforming back to canonical
coordinates.

Symplectic scaling can be applied to any map, but it is
especially useful for fringe-field maps. The following ex-
amples show the accuracy and speed of obtaining fringe-field
maps by symplectic scaling of a stored symplectic reference
representation.

IV. EXAMPLES

In this section, we will illustrate the profitable use of the
method with several examples. In order to evaluate the speed
and accuracy of the proposed approximation, we analyze a
certain aberration coefficient of a quadrupole. Figure 6
shows the dependence of the expansion coefficient (xuxxa)
on the fieldB at the pole tip. Because functions like this can
be closely approximated by polynomials, it can be expected
that symplectic scaling~SYSCA! is very accurate. The quad-
rupole used here has a length of 41.9 cm and an aperture of

FIG. 6. Left: (xuxxa) for a quadrupole as a function of the field
at the pole tip. Right: errorD of the approximation of (xuxxa) with
different expansion orders for the reference representation atB52
T.

FIG. 7. Relative savings of computational expense of SYSCA to
numerical integration for a dipole.

FIG. 8. Beam spots predicted by SYSCA~left! and SCOFF
~right! approximations. The plot of the spot predicted by using the
exact fringe fields cannot be distinguished from the one produced
with SYSCA. Note the difference in scale.

FIG. 9. 500 turn tracking without~left! and with ~right! fringe
fields trough a 1-GeV proton storage ring.
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2.54 cm. The chosen ion is16O31 with an energy of 25 MeV
per nucleon.

Even at the border of the range in Fig. 6, the method
presented is within the default tolerance allowed in the auto-
matic step size control of the eight order Runge-Kutta inte-
grator inCOSY INFINITY. Close to the value with which the
reference file was produced, the accuracy increases drasti-
cally. The results in Fig. 6 were obtained by evaluating the
symplectic reference representation to third, fourth, and fifth
order. The accuracy can be further improved by increasing
this order, which of course increases the computation time
that has to be invested for creating the reference map in
advance. This investment can be very rewarding, especially
when beam lines or spectrometers are being fitted or when
system errors are analyzed so that maps of similar fringe
fields are needed over and over again with only slightly dif-
ferent parameters.

The SYSCA approximation is especially helpful in the
design of realistic systems after approximate parameters of
the elements have been obtained by neglecting fringe fields.
These values can be used to create a reference file for sym-
plectic scaling. In this way, a very high accuracy almost
equivalent to accurate but time intensive numerical integra-
tion can be obtained. The time savings obtained by this
method is illustrated in Fig. 7.

A very important example is the computation of beam
spots under the presence of nonlinear effects. For this pur-
pose, a cone of particles was sent through the seventh-order
map of the A1200 isotope separator at the NSCL. The im-
ages with the SCOFF and SYSCA approximations are shown
in Fig. 8. The maximum angle used is 15 mrad. Note the
difference in scale; the beam spot predicted with SCOFF is
only one-tenth as big. Hence trusting SCOFF would lead to a
loss of most of the beam.

Also for long-term tracking in storage rings, fringe fields
have influences. In Fig. 9, typical tracking pictures are dis-
played. An example storage ring for 1-GeV protons was op-
timized for a big dynamical aperture. Eight particles were
tracked with phase-space coordinates that hadx andy com-

ponents in order not to avoidx-y coupling. The left-hand
picture was computed using the SCOFF approximation,
whereas the right-hand picture was computed with SYSCA.
Note the difference in the short-term dynamic aperture. Also
the amplitude- and energy-dependent tune shifts of this sys-
tem indicate that fringe fields can have very significant in-
fluences in repetitive systems. In Table I, the nonlinear de-
pendence of the tune is given; in order to make the
comparison as fair as possible, all fitting procedures were
performed both without fringe fields and then with fringe
fields. In particular, the linear tune and the chromaticity were
adjusted to the same values.

The consequences of using symplectic approximations for
the fringe-field maps are important for the case of repetitive
tracking. As an example of this point, we use the lattice of
the proposed Proton Storage Ring II of the Los Alamos Na-
tional Laboratory . The ninth-order 5000-turn tracking pic-
tures are displayed in Fig. 10.

The tracking was performed with the described standard
numerical integration, with SYSCA, and with a nonsymplec-
tic fringe-field approximation obtained by low-accuracy nu-
merical integration. Nonsymplectic tracking strongly violates
the conservation of phase-space volumes.

However, due to limited accuracy, sometimes even stan-
dard numerical integration produces maps that slightly vio-
late symplecticity. To eliminate this possibility, the first
tracking picture in Fig. 10 was obtained by symplectification
via generating functions. For SYSCA this additional time
investment is not required, since maps obtained by
SYSCA are completely order-n symplectic. The correspond-
ing ninth-order maps were produced with the SYSCA mode
in COSY INFINITY in 30 min, whereas the standard numerical
integration took 15 h, and the nonsymplectic approximation
took 44 min on a VAX 4000 90 computer.

In this paper we applied symplectic scaling mostly to
fringe-field maps. In conclusion, we would like to emphasize
again that symplectic scaling is a method that can be used to
speed up the computation of symplectic transfer maps in
many other cases where nonautonomous differential equa-
tions have to be solved.
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FIG. 10. 5000-turn tracking with fringe fields obtained by nu-
merical integration~left!, SYSCA ~middle!, and a nonsymplectic
fringe-field approximation~right!. The initial position of the particle
is (x,y)5(3 cm, 3 cm) with no initial inclinationsx8 andy8.

TABLE I. Amplitude- and energy-dependent tune shifts with
and without fringe fields.

SCOFF SYSCA

nx50.34 nx50.34

10.00dE 10.00dE

130.21ex 123.82ex
1156.69ey 1743.50ey

219.33dE
2 128.34dE

2

1534.29exdE 1271.39exdE

21792.76eydE 29685.27eydE

11260.32dE
3 11072.70dE

3

125599.56ex
2 113240.99ex

2

168007.73exey 2625777.29exey
289715.35ey

2 21377087.43ey
2

132939.09ex
2dE

2 1593.75ex
2dE

2

151138.52ey
2dE

2 272396.79ey
2dE

2

19918.05dE
4 2448338.65dE

4

54 5671SYMPLECTIC SCALING OF TRANSFER MAPS . . .



@1# W. R. Hamilton, inAbhandlungen zur Strahlenoptik, edited by
G. Prange~Akademische-Verlagsgesellschaft, Leipzig, 1933!.

@2# T. Matsuo and H. Matsuda, Mass Spectrom.24, 19 ~1975!.
@3# H. Wollnik, GIOS user’s manual, Justus Liebig University

Gießen, 1992~unpublished!.
@4# K. L. Brown, The ion optical programTRANSPORT, Stanford

Linear Accelerator Center Technical Report No. 91, 1979~un-
published!.

@5# A. J. Dragt, L. M. Healy, F. Neri, and R. Ryne, IEEE Trans.
Nucl. Sci.5, 2311~1985!.

@6# M. Berz, H. C. Hofmann, and H. Wollnik, Nucl. Instrum.
Methods A258, 402 ~1987!.

@7# M. Berz, COSY INFINTY version 6 reference manual, Michigan
State University Technical Report No. MSUCL-869, 1992~un-
published!.

@8# Y. T. Yan, in Computational Accelerator Physics, edited by
Robert Ryne, AIP Conf. Proc. No. 297~AIP, New York,
1994!, pp. 279–284.

@9# L. Michelotti, in Computational Accelerator Physics~Ref.
@8#!, pp. 264-266.

@10# J. van Zeijts, inComputational Accelerator Physics~Ref. @8#!,
pp. 285–290.

@11# M. Berz, Nucl. Instrum. Methods A298, 426 ~1990!.
@12# M. Berz, Computer Arithmetic and Enclosure Methods

~Elsevier Science, Amsterdam, 1992!, pp. 439–450.
@13# M. Berz, Automatic Differentiation of Algorithms~SIAM,

Philadelphia, 1991!.
@14# M. Berz, Part. Accel.24, 109, ~1989!.
@15# M. Berz, Nucl. Instrum. Methods A528, 431 ~1987!.
@16# L. B. Rall, Automatic Differentiation: Techniques and Appli-

cations~Springer, New York, 1981!.
@17# S. Kowalski and H. A. Enge,RAYTRACE user’s manual, Mas-

sachusetts Institute of Technology Technical Report, 1987~un-
published!.

@18# K. L. Brown and J. E. Spencer, IEEE Trans. Nucl. Sci.,3,
2568 ~1981!.

@19# H. Rose, Nucl. Instrum. Methods A258, 374 ~1987!.
@20# R. H. Helm, Stanford Linear Accelerator Center Technical Re-

port No. 24, 1963~unpublished!.
@21# K. L. Brown, F. Rothacker, D. C. Carey, and Ch. Iselin,

TRANSPORTuser’s manual, Stanford Linear Accelerator Center
Technical Report No. SLAC-91, 1977.

@22# B. Hartmann, M. Berz, and H. Wollnik, Nucl. Instrum. Meth-
ods A297, 343 ~1990!.

@23# B. Hartmann, H. Irnich, and H. Wollnik, inNonlinear Prob-
lems in Accelerator Physics, edited by M. Berz, S. Martin, and
K. Ziegler, IOP Conf. Proc. No. 131~Institute of Physics and
Physical Society, London, 1993!, pp. 87–96.

@24# H. Wollnik, Nucl. Instrum. Methods38, 56 ~1965!.
@25# H. Wollnik, B. Hartmann, and M. Berz, inLinear Accelerator

and Beam Optics Codes, edited by Charles R. Eminhizer, AIP
Conf. Proc. No.177 ~AIP, New York, 1988!, p. 74.

@26# Y. Yan, in The Physics of Particle Accelerators, edited by M.
Month and M. Dienes, AIP Conf. Proc. No. 249~AIP, New
York, 1992!, p. 378.

@27# M. Berz, inLinear Accelerator and Beam Optics Codes~Ref.
@25#!, p. 275.

@28# M. Berz,Nonlinear Problems in Future Accelerators~World
Scientific, Singapore, 1991!, pp. 288–296.

@29# Y. Yan, Superconducting Super Collider Laboratory Technical
Report No. 157, 1993~unpublished!.

@30# I. M. Gjaja, In Nonlinear Problems in Accelerator Physics
~Ref. @23#!, pp. 185–192.

@31# W. Wan, E. Goldmann, and M. Berz, inNonlinear Problems in
Accelerator Physics~Ref. @23#!, pp. 201–207.

@32# W. Wan, E. Goldmann, and M. Berz, inComputation Accel-
erator Physics~Ref. @8#!, pp. 143–149.

@33# H. Rose, Optic85, 19 ~1990!.
@34# G. H. Hoffstätter, Master’s thesis, Technische Hochschule

Darmstadt, 1991~unpublished!.
@35# A. J. Dragt and J. M. Finn, J. Math. Phys.17, 2215~1976!.
@36# H. Goldstein,Classical Mechanics, 2nd ed.~Addison-Wesley,

Reading, MA, 1980!.
@37# M. Berz, Symplectic Tracking in Circular Acceleratos with

High Order Maps~World Scientific, Singapore, 1991!, p. 288.
@38# G. H. Hoffstätter and M. Berz, Nucl. Instrum. Methods A363,

124 ~1995!.
@39# G. H. Hoffstätter, Ph.D. thesis, Michigan State University,

1994 ~unpublished!.

5672 54GEORG HEINZ HOFFSTA¨ TTER AND MARTIN BERZ


