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Abstract

A field extension R of the real numbers is presented. It has similar algebraic

properties as ; for example, all roots of positive numbers exist, and the structure

C obtained by adjoining the imaginary unit is algebraically complete. The set can
be totally ordered and contains infinitely small and infinitely large quantities.

Under the topology induced by the ordering, the set becomes Cauchy complete;

but different from , there is a second natural way of introducing a topology. It

is shown that R is the smallest totally ordered algebraically complete extension of

.

Power series have identical convergence properties as in , and thus important

transcendental functions exist and behave as in . Furthermore, there is a natural

way to extend any other real function under preservation of its smoothness prop-

erties. In addition to these common functions, delta functions can be introduced

directly.

A calculus involving continuity, differentiability and integrability is developed.

Central concepts like the intermediate value theorem, mean value theorem, and

Taylor’s theorem with remainder hold under slightly stronger conditions.

It is shown that, up to infinitely small errors, derivatives are differential quo-

tients, i.e. slopes of infinitely small secants. While justifying the intuitive concept

of derivatives of the fathers of analysis, it also offers a practical way of calculating

exact derivatives numerically.

The existence of infinitely small and large numbers allows an introduction of

delta functions in a natural way, and the important theorems about delta functions

can be shown using the calculus on R.
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1 Introduction

The real numbers owe their fundamental role in mathematics and natural

sciences to certain special properties. To begin, like all fields, they allow

arithmetic calculation. Furthermore, they allow measurement; any result of

even the finest measurement can be expressed as a real number. Additionally,

they allow expression of geometric concepts, which (for example because of

Pythagoras) requires the existence of roots - a property that at the same

time is beneficial for algebra. Further yet, they allow the introduction of

certain transcendental functions like exp, which are important in the sciences

and arise from the concepts of power series. Furthermore, they offer an

analysis involving differentiation and integration, a requirement needed for

the expression of even very simple laws of nature.

While the first two properties are readily satisfied by the rational num-

bers, the geometric requirements demand to use at least the set of algebraic

numbers. Transcendental functions, being the result of limiting processes,

require Cauchy completeness, and it is easily shown that the real numbers

are the smallest ordered field having this property. Being at such a basic

level of our scientific language, hardly any thought is spent on the funda-

mental question whether there may be other useful number systems having

the required properties.

This question is perhaps even more interesting in the light of the obser-

vation that, while the real numbers  and their algebraic completion  as

well as the vector space  have certainly proven extremely successful for

the expression and rigorous mathematical formulation of many physical con-

cepts, they have two shortcomings in interpreting intuitive scientific concepts.

Firstly, they do not permit a direct representation of improper functions

such as those used for the description of point charges; of course, within the

framework of distributions, these concepts can be accounted for in a rigorous

fashion, but at the expense of the intuitive interpretation. Secondly, another

intuitive concept of the fathers of analysis, and for that matter quite a num-

ber of modern scientists sacrificing rigor for intuition, the idea of derivatives

as ”differential quotients”, that is slopes of secants with infinitely small ab-

scissa and ordinate differences, cannot be formulated rigorously within the

real numbers.

The problems mentioned in the preceding paragraphs could be solved if,

in addition to the real numbers, there were also ”infinitely small” and ”in-
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finitely large” numbers; that is if the number system were nonarchimedean.

Since any archimedean Cauchy complete field is isomorphic to , it is in-

deed this property that makes the real numbers unique. However, since the

”fine structure” of the continuum is not observable by means of science,

archimedicity is not required by nature, and leaving it behind would pos-

sibly allow the treatment of the above two concepts. So it appears on the

one hand legitimate and on the other hand rather intriguing to study such

number systems, as long as the above mentioned essential properties of the

real numbers are preserved.

There are simple ways to construct nonarchimedean extensions of the real

numbers (see for example the books of Rudin [1], Hewitt and Stromberg [2],

or Stromberg [3], or at a deeper level the works of Fuchs [4], Ebbinghaus et

al.[5] or Lightstone and Robinson [6]), but such extensions usually quickly

fail to fulfill one or several of the above criteria of a ”useful” field, usually

even regarding the existence of roots.

A very important idea for the problem of the infinite came from Schmieden

and Laugwitz [7] which was applied to Delta Functions[8] [9] and Distributions[10].

Certain equivalence classes of sequences of real numbers become the new

number set, and perhaps most interestingly, logical statements are considered

proved if they hold for ”most” of the elements of the sequences. This ap-

proach lends itself to the introduction of a scheme that allows the transfer of

many properties of the real numbers to the new structure. This method sup-

plies an elegant tool that in particular permits the determination of deriva-

tives as differential quotients.

Unfortunately, the evolving structure, while very large, is not a field.

The ring contains zero divisors and is not totally ordered. Robinson [11]

then recognized that the intuitive method can be generalized [12] by a non-

constructive process based on model theory to obtain a totally ordered field,

and initiated the branch of nonstandard analysis. Some of the standard works

describing this field are from Robinson[13], Stroyan and Luxemburg[14], and

Davies[15]. In this discipline, the transfer of theorems about real numbers is

extremely simple, however at the expense of a non-constructive process in-

voking the axiom of choice, leading to an exceedingly large structure of num-

bers and theorems. The non-constructiveness makes practical use difficult

and leads to several oddities, for example that the sign of certain elements,

although assured to be either positive or negative, cannot be decided.

Another approach to a theory of infinitely small numbers originated in
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game theory, of all places, and was pioneered by John Conway in his mar-

vel ”On Numbers and Games” [16]. A humerous yet insightful account of

these numbers can also be found in Donald Knuth’s mathematical novel-

ette ”Surreal Numbers: How Two Ex-Students Turned to Pure Mathematics

and Found Total Happiness” [17]. (We wonder about the applicability of

the method to the problem of socially disadvantaged children, and also hap-

pily follow the author in using his fabulous TEX typesetting system). Other

important accounts on surreal numbers are by Alling[18] and Gonshor.[19] .

In this paper, analysis on a different nonarchimedean extension of the real

numbers is discussed. The numbers R were first discovered by the brilliant

young Levi-Civita [20] [21], who succeeded to show that they form a totally

ordered field that is Cauchy complete. He concluded by showing that any

power series with real or complex coefficients converges for infinitely small

arguments and used this to extend real differentiable functions to the field.

The subject appeared again in the work by Ostrowski[22], Neder[23], and

later in the work of Laugwitz[24]. Two modern accounts of this work can be

found in the book by Lightstone and Robinson[6], which ends with the proof

of Cauchy completeness, as well as in Laugwitz’ account on Levi-Civita’s

work [25], which also contains a summary of properties of Levi-Civita fields.

In this paper, we extend the previous work and attempt to formulate

the basis of a workable analysis on the Levi-Civita field R. Section 2 dis-
cusses questions about the structure of the field. We show that R admits

th roots of positive elements and that the field obtained by adjoining the

imaginary unit is algebraically closed. We also introduce a new topology,

complementing the order topology. In section 3, we apply these to the study

of sequences and series; in particular, we show that any power series with

complex coefficients converges within the conventional radius of convergence;

this allows for the direct use of a large class of functions. In section 4, we de-

velop a differential calculus onR, and we prove certain fundamental tools like
the intermediate value and mean value theorems, which hold under slightly

stronger conditions.
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2 The Nonarchimedean Fields R and C
2.1 Algebraic Structure

We begin the discussion by introducing a specific family of sets:

Definition 1 (The Family of Left-Finite Sets) A subset  of the ra-

tional numbers Q will be called left-finite iff for every number  ∈ Q there

are only finitely many elements of  that are smaller than . The set of all

left-finite subsets of  will be denoted by F .
The next lemma gives some insight into the structure of left-finite sets:

Lemma 2 Let  ∈ F . If  6= ∅, the elements of  can be arranged in

ascending order, and there exists a minimum of  . If  is infinite, the

resulting strictly monotonic sequence is divergent.

Proof:

A finite totally ordered set can always be arranged in ascending order; so we

may assume that  is infinite.

For  ∈ N , set  = { ∈  |  ≤ }. Then  is finite by the

definition of left-finiteness and we have  =
S
. So we first arrange the

finitely many elements of 0 in ascending order, append the finitely many

elements of 1 not in 0 in ascending order, and continue inductively.

If the resulting strictly monotonic sequence were bounded, there would

also be a rational bound below which there would be infinitely many elements

of  contrary to the assumption that  be left-finite. So we conclude that

the sequence is divergent.

Lemma 3 Let  ∈ F . Then we have
a)  ⊂ ⇒  ∈ F
b)  ∪ ∈ F
c)  ∩ ∈ F
d)  + = {+  |  ∈  ∈ } ∈ F
e) For every  ∈  +  there are only finitely many pairs ( ) ∈

 × such that  = + .
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Proof:

Statements a) - c) follow directly from the definition.

For d), let    denote the smallest elements in  respectively;

these exist by the preceding lemma. Let  in Q be given. Set

 = { ∈ |   − }  = { ∈  |   − }
and set

 = \  =  \

Then we have+ = (∪)+(∪) = (+)∪ (+)∪
(+)∪ (+) = (+)∪ (+)∪ ( +). By definition

of  and , (+) and ( +) do not contain any elements smaller

than . Thus all elements of  + that are smaller than  must actually

be contained in  +. Since both  and  are finite because of the

left-finiteness of and  ,+ is also finite. Thus there are only finitely

many elements in  + that are smaller than .

To show the last statement, let  ∈ + be given. Set  = + 1 and

define ,  as in the preceding paragraph. Then we have  ∈ ( +

)  ∈ ( +). Hence all pairs ( ) ∈  × which satisfy  = + 

lie in the finite set  ×.

Having discussed the family of left-finite sets, we introduce two sets of

functions from the rational numbers into  and :

Definition 4 (The Sets R and C) We define

R = { : Q → R | {|() 6= 0} ∈ F}

C = { : Q → C | {|() 6= 0} ∈ F}
So the elements of R and C are those real or complex valued functions on Q
that are nonzero only on a left-finite set, i.e. they have left-finite support.

Obviously, we have R ⊂ C. In the following, we will denote elements of
R and C by , , etc. and identify their values at  ∈ Q with brackets like

[]. This avoids confusion when we later consider functions on R and C.
Since the elements of R and C are functions with left-finite support, it is

convenient to utilize the properties of left-finite sets (2) for their description:
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Definition 5 (Notation for Elements of R and C) An element  of R
or C is uniquely characterized by an ascending (finite or infinite) sequence
() of support points and a corresponding sequence ([]) of function values.

We will refer to the pair of sequences (() ([])) as the table of .

For the further discussion, it is convenient to introduce the following

terminology:

Definition 6 (supp, , ∼, ≈, =,) For   ∈ C, we define
supp() = { ∈ Q | [] 6= 0} and call it the support of .
() = min(supp()) for  6= 0 (which exists because of left-finiteness)

and (0) = +∞

Comparing two elements, we say

 ∼  iff () = ();

 ≈  iff () = () and [()] = [()];

 =  iff [] = [] for all  ≤ ;

Furthermore, we define an operation  : C → C via
()[] = ( + 1) · [ + 1]

At this point, these definitions may feel somewhat arbitrary; but after

having introduced the concept of ordering on R, we will see that  describes
”orders of infinite largeness or smallness”, the relation ”≈ ” corresponds

to agreement up to infinitely small relative error, while ”∼ ” corresponds

to agreement of order of magnitude. The operation ”” will prove to be a

derivation which, among other things, is useful for the concept of differenti-

ation on R

Lemma 7 The relations ∼, ≈ and =are equivalence relations. They satisfy

 ≈  ⇒  ∼ 

If   ∈ Q     then  =  ⇒  = 

Furthermore, we have

() ≤ (); and if () 6= 0∞, even () = ()− 1

We now define arithmetic on R and C:
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Definition 8 (Addition and Multiplication on R and C) We define
addition on R and C componentwise:

(+ )[] = [] + []

Multiplication is defined as follows. For  ∈ Q we set

( · )[] = X
  ∈ Q 
 +  = 

[] · []

We remark that R and C are closed under addition since supp( + ) ⊆
supp()∪ supp(), so by Lemma (3), with  and  having left-finite support,
so does +. Lemma (3) also shows that only finitely many terms contribute

to the sum in the definition of the product.

Furthermore, the product defined above is itself an element of R or C
respectively since the sets of support points satisfy supp( · ) ⊆ supp() +
supp(), application of Lemma (3) shows that supp( · ) ∈ F .
It turns out that the operations + and · we just defined on R and C make

(R,+,·) and (C,+,·) into fields. We begin by showing the ring structure:

Theorem 9 (R,+,·) and (C,+,·) are commutative rings with units.

Proof:

R and C form abelian groups with respect to addition, where the neutral

element is the function that vanishes on all Q, and the additive inverse is

the function that is the pointwise inverse; obviously, the inverse is itself an

element of R or C respectively.
The unit of multiplication is the function that vanishes everywhere except

at 0, where it takes the value 1.

Multiplication is commutative since for all  ∈  and for all   ∈ C

( · )[] = X
+=

[] · [] =
X

+=

[] · [] = ( · )[]

For the proof of the associativity of multiplication, consider    ∈ C. Then
for all  ∈ Q we have:
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(( · ) · ) [] = X
·+=

(·)[·]·[] =
X

·+=

⎛⎝ X
+=·

[] · []
⎞⎠·[]

=
X

++=

[] · [] · [] =
X

+·=
[] ·

⎛⎝ X
+=·

[] · []
⎞⎠

=
X

+·=
[] · ( · )[·] = ( · ( · )) []

We note again that all sums arising are actually finite. In a similar

manner, we prove the distributive law:

((+ ) · ) [] = X
++=

(+ ) [+] · []

=
X

+=

[] · [] +
X

+=

[] · [] = ( ·  +  · ) []

and this concludes the proof.

As it turns out, R and C can be viewed as extensions of R and C, respec-
tively

Theorem 10 (Embeddings of R into R and C into C) R and C can be
embedded into R and C under preservation of their arithmetic structures.

Proof:

Let  ∈ C . Define Π by

Π()[] =

(
 if  = 0

0 else

Then Π() ∈ C, and if  ∈ R, Π() is contained in R. Π is injective, and

direct calculation shows thatΠ(+) = Π()+Π() andΠ(·) = Π()·Π().
So R and C are embedded as subfields in the rings R and C respectively.
However, the embedding is not surjective since only elements with support

{0} are actually reached.
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Remark 11 In the following, we identify an element  ∈ C with its image

Π() ∈ C under the embedding. We remind that the sum of a complex number
and an element of C has to be distinguished from the componentwise addition
of a constant to a function.

Furthermore, we note that every element in C has a unique representation
as +  · , where  denotes the imaginary unit in C and where   ∈ R.
We also make the following observation

Remark 12 Let 1 and 2 be complex numbers. Then if both 1 and 2 are

nonzero, we have 1 ∼ 2. Furthermore, 1 ≈ 2 is equivalent to 1 = 2.

So the restrictions of the relations ∼ and ≈ to R and C do not produce
anything new. Besides presenting themselves as ring extensions of  and

, because of the embeddings of  and , the new sets also become linear

spaces:

Theorem 13 (Differential Algebraic Structure) The sets R and C form
infinite dimensional vector spaces over  and , respectively. Via the multi-

plication on R and C, they are also algebras. The operation  is a derivation,
i.e.

(+ ) = +  and ( · ) = () · +  · () for all   ∈ C,
and so R and C form differential algebras.

The proof is obvious. It is also worth noting that the quantity  is actually

a valuation:

Theorem 14 (Valuation Structure) The operation  has the following

properties:

( · ) = () + () and (+ ) ≥ min(() ())
So it is a valuation of C.

Definition 15 (The Number ) Define the element  ∈ R as

[] =

(
1 if  = 1

0 else
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Lemma 16 (Algebraic Properties of ) The number  has an inverse

and admits -th roots in R

Proof:

Obviously the numbers denoted −1 and 1, where

−1[] =

(
1 if  = −1
0 else

1[] =

(
1 if  = 1

0 else

satisfy the requirements.

Note that now, rational powers  of  are defined.

We have shown that R and C contain the real and complex numbers
respectively, but in addition contain many more elements. The next theorem

shows that, from the point of view of set theory, C is not larger than R.

Theorem 17 The sets C and R have the same cardinality.

Proof:

Since we constructed an injective mapping Π : R → C we have card(R) =  ≤
card(C). On the other hand, every element of C is uniquely determined by
a sequence of support points and two sequences of function values (for the

real and imaginary parts respectively). So C can be mapped injectively to a
subset of the set of functions N → R3 (where we agree to append triplets of

zeroes if the set of support points is finite). Thus by the laws for cardinal

number arithmetic, it follows that

card(C) ≤ (3)ℵ0 = ℵ0 =  = card(R)

and altogether we obtain card(R)=card(C).

The only nontrivial step towards the proof that R and C are fields is the
existence of multiplicative inverses of nonzero elements. For this purpose,

we prove a central theorem that will be of key importance for a variety of

proofs.
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Lemma 18 (Fixed Point Theorem) Let  ∈ Q be given. Define ⊂ R
( ⊂ C) to be the set of all elements  of R (C) such that () ≥  . Let

 :  → C satisfy () ⊂ . Suppose there exists  ∈ Q    0 such that

for all 1, 2 ∈ and all  ∈ Q  we have
1 = 2 ⇒ (1) =+ (2)

Then there is a unique solution  ∈ of the fixed point equation

 = ()

Remark 19 Without further knowledge about R and C, the requirements
and meaning of the fixed point theorem are not very intuitive. However, as we

will see later, the assumption about  means that  is a contracting function

with an infinitely small contraction factor. Furthermore, the sequence ()

that is constructed in the proof is indeed a Cauchy sequence, which is assured

convergence because of the Cauchy completeness of our fields with respect to

the order topology, as discussed below. However, while making the situation

more transparent, the properties of ordering and Cauchy completeness are

not required to formulate and prove the fixed point theorem, and so we want

to refrain from invoking them here.

Proof:

We choose an arbitrary 0 ∈ and define recursively

 = (−1)  = 1 2 

Since  maps  into itself, this gives a sequence of elements of  . First we

note that

[] = −1[] for all   (− 1) ·  +  (∗)
Since 0 1 ∈  we have 1[] = 0 = 0[] for all    . So (∗) holds

for  = 1 and induction shows that it holds for all  ≥ 1.
Next we define a function  : Q →  in the following way: for  ∈ Q

choose  ∈ N such that (− 1) ·  +   . Set [] := []; note that, by

virtue of (*), this is independent of the choice of 

Furthermore, we have  = . So in particular  is an element of R or C,
respectively, since for every  ∈ Q  the set of its support points smaller than
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 agrees with the set of support points smaller than  of one of the  ∈ .

Also, since [] = 0 for all    ,  is contained in  .

Now we show that  defined as above is a solution of the fixed point

equation. For  ∈ Q choose again  ∈ N such that (− 1) · +   . Then

it follows that

 =  = +1

By the contraction property of  we thus get () =+ (), which in turn

gives

[] = +1[] = ()[] = ()[]

Since this holds for all  ∈ Q   is a fixed point of  .
It remains to show that  is a unique fixed point. Assume that  ∈

 is a fixed point of  . The contraction property of  is equivalent to

((1)− (2)) ≥ (1 − 2) +  for all 1 2 ∈ . This implies

(− ) = (()− ()) ≥ (− ) + 

which is possible only if  = .

Remark 20 It is worthwhile to point out that, in spite of the iterative char-

acter of the fixed point theorem, for every  ∈ Q  the value of the fixed point
 at  can be calculated in finitely many steps. Among others, this is of

significant importance for practical purposes.

Using the fixed point theorem, we can now easily show the existence of

multiplicative inverses.

Theorem 21 (R,+,·) and (C,+,·) are fields.
Proof:

We prove the theorem for R; the proof for C is completely analogous. It
remains to show the existence of multiplicative inverses of nonzero elements.

Let  ∈ R \ {0} be given. Set  = ()  = [] and ∗ = 1 · − · .
Then (∗) = 0 and ∗[0] = 1. If an inverse of ∗ exists then 1 · −(∗)−1
is an inverse of ; so without loss of generality, we may assume () = 0 and

[0] = 1.

If  = 1 there exists an inverse. Otherwise,  is of the form  = 1 + 

with 0   = ()  +∞. It suffices to find  ∈ R such that

(1 + ) · (1 + ) = 1
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This is equivalent to

 = − · − 

Setting () = − ·  −  the problem is thus reduced to finding a fixed

point of  . Let  = { ∈ R | () ≥ }, then () ⊂  . Let 1 2 ∈ 

satisfying 1 = 2 be given. Since the smallest support point of  is  we

get  · 1 =+  · 2 and hence
− · 1 −  =+ − · 2 − 

thus  satisfies the hypothesis of the fixed point theorem (18), and conse-

quently a fixed point of  exists.

Now we examine the existence of roots inR and C and find that, regarding
this important property, the new fields behave just like R and C respectively:

Theorem 22 Let  ∈ R be nonzero and set  = (). If  ∈ N is even and

[] is positive,  has two -th roots in R. If  is even and [] is negative,

 has no -th roots in R. If  is odd,  has a unique -th root in R.
Let  ∈ C be nonzero. Then  has  distinct -th roots in C.

Proof:

Let  be a nonzero number and write  =  · · (1+), where  ∈ C ,  ∈ Q ,
and ()  0. Assume that  is an -th root of . Since  = () = () =

 · (), we can write  =  ·  · (1 + ), where  ∈ C , ()  0. Raising
to the -th power, we see that  =  and (1 + ) = 1 +  have to hold

simultaneously. The first of these equations has a solution if and only if the

corresponding roots exist in R or C. So it suffices to show that the equation

(1 + ) = 1 + 

has a unique solution with ()  0. But this equation is equivalent to

+ 2 ·  () = 

where  () is a polynomial with integer coefficients. Because ()  0, also

( ()) ≥ 0, and hence (2 · ()) = 2()+( ())  ()  0; so finally

we have () = () for all such . The equation can be rewritten as a fixed

point problem  = () where

() =



− 2 ·  ()
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Now let be the set of all numbers in C (or inR if  ∈ R) whose smallest
support point does not lie below  = (). Then as we just concluded,

any solution of the fixed point equation must lie in  . We further have

() ⊂  ; for if  ∈  , then (2 ·  ()) ≥ 2 ·   . Hence it follows

that () =  − 2 ·  () has  as smallest support point, and thus
() ∈ .

Let 1 2 ∈ satisfying 1 = 2 be given. Then (1) ≥ , (2) ≥ ,

and the definition of multiplication shows that we get 21 =+ 22. By

induction on , we get 1 =+ 

2 for all  ∈ N ,   1.

In particular, this gives 21 · (1) =+ 
2
2 · (2) and finally (1) =+

(2). So  and  satisfy the hypothesis of the fixed point theorem (18)

which provides a unique solution of (1+) = 1+  in  and hence in R.
We remark that a crucial point to the proof was the existence of roots of

the numbers ; so we could not have chosen anything smaller than Q as the

domain of the functions which are the elements of our new fields.

We will end the section on the algebraic properties ofR and C by showing
that C is algebraically closed. Although a rather deep result, it is obtained
with limited effort using the fixed point theorem as well as the algebraic

completeness of C.

Theorem 23 (Fundamental Theorem of Algebra for C) Every polyno-
mial of positive degree with coefficients in C has a root in C.
Proof:

Let the polynomial  () =
P

=0  ·  of degree   0 be given. We

can assume 0 6= 0 because otherwise 0 is a root of  (). Furthermore,

multiplying the polynomial by a nonzero factor does not change the roots.

Hence we can assume (0) = 0. Set  = min≥1(()), and let  be an
index where this minimum is assumed. Replacing  by − ·  changes the
coefficient  into ̄ =  · −·  and, by the choice of  we have (̄) ≥ 0
and (̄) = 0. Since it suffices to find a root of the new polynomial, we

can assume () ≥ 0 (0) = () = 0 for the coefficients of the original

polynomial.

Write  =  + , where  =  [0] ∈ C , and form the polynomial

C () =
P

=0  ·  over C. Because  6= 0, C is nonconstant. Hence by
the fundamental theorem of algebra, C has a root C ∈ C .
Set  = min(()) C =  (C ) =

P
=0  · 

C . If C = 0 we have

found a root of  (). Otherwise, we have (C ) ≥ . If (C ) =  we
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simply set  = C and obtain ( ()) = . If (C )  , we define  in a

different way. Since C is nonconstant, not all of the formal derivatives of C
can vanish atC . Let  denote the smallest number such that 

()
C (C ) 6= 0.

We define  = C + . Taylor’s theorem for polynomials then gives

 () =  (C ) +  ·  0(C ) + 2 · 
00(C )

2
+ +  · 

()(C )

!


We have ( (C ))   and ( · ()(C )) ≥ +   for 1 ≤  

 by definition of  and . Furthermore, we have (· ()(C ) ≥   

for   . Hence we conclude that ( ()) =  = ( ()(C )).

Now we set  =  () and obtain () = .

After these preparations, we can apply the fixed point theorem. Like we

did in search for multiplicative inverses and -th roots, we look for roots of

the polynomial near the classical solution C , or to be precise, near . We

are looking for  such that  ( + ) = 0. For this we write

 ( + ) =  () +  ·  0() + 2 · 
00()
2

+ +  · 
()()

!


according to Taylor’s theorem for polynomials (which is a merely algebraic

consequence). Since the complex parts of  () and  (C ) agree, we still

have  ()()[0] 6= 0; and  is the smallest number with this property.

Now let  denote a -th root of −! ·  ()() which exists by theorem
(22). Set () = 1() + 2(), where

1() =
1


[
 0()
1!

+  · 
00()
2!

+ + −2 · 
(−1)()
( − 1)! ]

2() =



· [

(+1)()

( + 1)!
+  · 

(+2)()

( + 2)!
+ + (−−1) · 

()()

!
]

Then it suffices to find a solution of the fixed point equation

 = () =  · 

q
1 +  · ()

which can be seen by raising both sides of the equation to the -th power

and performing a few calculations. Here the -th root is to be interpreted as

the unique -th root with complex part equal to 1.
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We have () = ()  0. Set  = { ∈ C | () ≥ ()}.
Since ( ()()) = 0 and ( ()()) ≥  = () for all   , we get

(1()) ≥ 0 for  ∈ . Since furthermore, () ≥ () = () for  ∈ ,

we conclude that () ≥ 0 holds. Thus we obtain (2()) ≥ 0 and

(()) ≥ 0 and hence (()) ≥ () for all  ∈  , giving () ⊂ 

as needed. Now let 1 2 ∈  satisfying 1 = 2 be given. Then we

have 1 + 1 · (1) = 1 + 2 · (2) and we show that 

q
1 + 1 · (1) =



q
1 + 2 · (2) holds. For let  = 

q
1 + 2 · (2) − 

q
1 + 1 · (1); since



q
1 + 1(1) ≈ 1 ≈ 

q
1 + 2(2), it follows first that ()  0. We write



q
1 + 2(2) =



q
1 + 1(1)+; raising this equation to the -th power, we

obtain 1+2 ·(2) = 1+1 ·(1)+ ·  · 

q
1 + 1 · (1)(−1)+(). Here

 is a polynomial in  with neither constant nor linear parts, the coefficients

of which are at most finite. Hence it follows that (()) ≥ 2()  ().

We write  = −1(1 + 1 · (1))(1−)[2(2) − 1(1) − ()]. Then

(2(2)−1(1))   and (−1(1+1(1))
(1−)) = 0 imply ()  ,

so we conclude that 

q
1 + 1 · (1) =



q
1 + 2 · (2) holds.

But this means  · 

q
1 + 1 · (1) =+()  · 

q
1 + 2 · (2). Since () 

0 the requirements of the fixed point theorem are satisfied, assuring the

existence of a fixed point and in turn a root of the polynomial  ().

As in the case with the determination of inverses and -th roots, the roots

of polynomials can be calculated to a given depth in finitely many steps.

Since the roots of polynomials over R which lie in C always appear in
conjugate pairs, we obtain:

Corollary 24 (R is Real Closed) Every Polynomial over R with odd de-

gree has a root in R.

Alternative proof of the fundamental theorem of algebra for C:

Theorem 25 The field C is algebraically closed.

Proof:

First we introduce some terminology which will be used only in this proof: a

polynomial  () = 
+−1−1+· · ·+1+0 over C is called normalized

if () ≥ 0 for all  = 0     , if (0) = 0 and there exists  ∈ {1     }
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such that () = 0. A number  ∈ C is called a quasi-root of a normalized

polynomial  () if ( ())  0. If furthermore there exists  ∈ {1     −1}
such that ( ()()) = 0,  will be called a good quasi-root of  () and 

will be called an index of .

We note that every polynomial  () of positive degree with 0 6= 0 can be
normalized without changing its degree nor the number of its roots: set  =

min{(()− (0)) |  = 1     } and consider ̄ () = −(0) · (−)
instead of  (). Also note that every normalized polynomial  () of positive

degree possesses a quasi-root: form the polynomial C () = [0]
 + · · ·+

1[0] + 0[0] which is a nonconstant polynomial over C. Hence by the fun-

damental theorem of algebra, C () has a root in C which is a quasi-root of

 (). Note that quasi-roots of normalized polynomials are nonzero because

(0) = 0.

Now let a polynomial  () = 
+−1−1+ · · ·+1+0 with degree

  0 be given.  () has a root in C if  = 1. From this we can assume

 ≥ 2 and do induction on the degree of  (). If 0 = 0, then zero is a root.
Otherwise, by the above remark we can assume  () to be normalized and

we distinguish two cases:

Case 1:  () has a good quasi-root 0 with index j. We inductively

construct a sequence () such that

( ()) ≥
µ



− 1
¶
·  and

(+1 − ) ≥
µ



− 1
¶
· 

− 1
where  = ( (0))  0. Note that this implies  =0 0.

Assume that  is already constructed and has the above properties.

Form the polynomial

() =  () +  0()+ · · ·+  ()()

!


Since we have  =0 0, we get (
()()) = ( ()(0)) = 0. So ()

is a nonconstant polynomial of degree  less than . hence by induction

hypothesis, () has  roots 1      (not necessarily distinct) in C. Since
() =

 ()()

!

Q
=1(− ), we get

 ()·!
 ()()

= (−1) Q
=1 . So there exists
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 ∈ {1     } such that

() ≥ 1



Ã
 () · !
 ()()

!
=

( ())




We set +1 =  +  and obtain

(+1 − ) = () ≥ ( ())

− 1 ≥
µ



− 1
¶ 

− 1 

Also we have

 (+1) =  ( + ) = () +
 (+1)()

( + 1)!

+1
 + · · ·+  ()()

!
 

Since () = 0 and ( ()()) ≥ 0 for all  =  + 1     , we thus get

( (+1)) ≥ ( + 1)() ≥  + 1


( ()) ≥

µ


− 1
¶+1

· 

Similar as in the fixed point theorem, the constructed sequence ()

defines a number that turns out to be a root of  (): for  ∈ Q we choose

 ∈ N large enough to satisfy ( 
−1)

+1 · 

−1   and put [] := [],

which is independent of the choice of . Since below every given rational

number the function  agrees with an element of C,  itself has left-finite

support and is thus an element of C. For every  ∈ N we have (−) ≥
( 
−1)

 · 

−1 by definition of . Since

 () =  () +  0()( − ) + · · ·+  ()()

!
( − )



we obtain ( ()) ≥ min(( ()) ( − )) ≥ ( 
−1)

 · 

−1 for every
 ∈ N . This implies ( ()) = +∞. Thus we have found a root of  ().
Case 2: None of the quasi-roots of  () is good. Nevertheless  () has

a quasi-root 0 ∈ C ∗. Let  be the largest index such that () = 0. Then
( ()(0)) = 0, so we conclude that  =  because otherwise 0 would be

good. But this means that () = 0.

Now we repeatedly perform a certain process until we either find a root of

 () or we eventually construct sequences () of elements in C
∗ and ()
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of elements of Q with certain properties. Setting 0 = 0 and  =
P

=0 
,

these properties are

( (+1))  ( ()) +1 = ( ())

and ( (−1)())  

Note that this implies that the sequence () is strictly increasing.

Assume that 0     −1 and 0    −1 have already been constructed
without revealing a root of  (). We consider the polynomial

̄ () :=  (+ −1) =  (−1) +  0(−1)+ · · ·+  ()(−1)
!



If  (−1) = 0, we have found a root; otherwise we normalize ̄ () and

obtain

() := −( (−1)) (+ −1)

where  = −min{(( ()(−1)) − ( (−1))) |  = 1     }. ()

has a quasi-root  ∈ C ∗. If () possesses a good quasi-root case 1 gives
us a root of () which in turn leads to a root of  (). So we assume

that () has no good quasi-roots either. As was noted at the beginning of

this case, this implies that the leading coefficient of () has lambda equal

to 0. On the other hand the lambda of that leading coefficient is equal to

 ·  + () − ( (−1)); thus we obtain  = ( (−1)) because
() = 0.

We have  () =  ( + −1) = ( (−1))(), which implies

( ()) = ( (−1)) + (())  ( (−1))

Since  is not a good quasi-root of (), we have ((−1)())  0.

But

(−1)() = (−1)−( (−1)) ·  (−1)( + −1) = − (−1)()

So we also obtain

( (−1)()) =  + ((−1)())  

22



If the sequences () and () are constructed as above and we have not

yet found a root, we now show that  := −−1
· is a root of  (). For all

 ∈  we have

(! ·  + (− 1)! · −1) = ( (−1)())  

which means  = . Since  =
P

=0 
 the set of support points of

 contains all the . But the sequence () is strictly increasing and the

support points of  form a left-finite set. Hence the sequence () can not be

bounded.

We have

 () =  () +  0()(− ) + · · ·+  ()()

!
(− )



and since ( − )   as well as ( ()) =  · +1   we get

( ())   for all  ∈ N . Since () is unbounded we conclude that
( ()) = +∞ and we detected a root of  ().

2.2 Order Structure

In the last section we have shown that R and C do not differ significantly
from R and C respectively as far as their algebraic properties are concerned.

In this section we will discuss the ordering.

The simplest way of introducing an order is to define a set of ‘positive’

numbers:

Definition 26 (The Set R+) Let R+ be the set of all non-vanishing ele-

ments  of R which satisfy [()]  0:

Lemma 27 (Properties of R+) The set R+ has the following properties:

R+ ∩ (−R+) = ∅, R+ ∩ {0} = ∅
R+ ∪ {0} ∪ (−R+) = R
  ∈ R+ ⇒ +  ∈ R+

  ∈ R+ ⇒  ·  ∈ R+

The proofs follow rather directly from the respective definitions.

Having defined R+ we can now easily introduce an order in R:
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Definition 28 (Ordering in R). Let ,  be elements of R. We say   ,

if and only if −  ∈ R+. Furthermore, we say   , iff   .

With this definition of the order relation, R is a totally ordered field:

Theorem 29 (Properties of the Order)

With the order relation defined in (28), (R,+,·) becomes a totally ordered
field, i.e.

For any   exactly one of the following holds:   ,  = ,   .

For any    with   ,   , we have   .

Furthermore, the order is compatible with the algebraic structure of R, i.e.
For any    we have:    ⇒ +    + .

For any   ;   0 we have:    ⇒  ·    · .

Proof:

The first statement directly follows from theorem (27).

To prove the second statement we write − = (−)+(−). According
to the requirements, we have − ∈ R+, − ∈ R+, and thus the statement

follows by theorem (27).

The third statement is obtained because (+ )− (+ ) = −  ∈ R+.

The fourth statement follows analogously to the second because ( · )−
( · ) =  · ( − ). Since, according to the requirements,  ∈ R+ and

(− ) ∈ R+, the proof follows from theorem (27).

We immediately obtain:

Corollary 30 The embedding Π from theorem (10) is compatible with the

order, i.e.    ⇒ Π()  Π()

Remark 31 Note that C cannot be ordered since it contains  which cannot
be ordered.

Thus R, like C, is a proper field extension of R. Note that this is not a
contradiction to the well-known uniqueness of C as a field extension of R.

The respective theorem of Frobenius asserts only the non-existence of any

(commutative) field on R for   2. However, regarded as an R-vector

space, R is infinite dimensional.

Besides the usual order relations, some other notations are convenient:

24



Definition 32 (¿À ) Let ,  be positive. We say  is infinitely smaller

than  (and write ¿ ), iff  ·    for all natural ; we say  is infinitely

larger than  (and write  À ) iff  ¿ . If || ¿ 1 we say  is infinitely

small; if 1 ¿ || we say  is infinitely large. Infinitely small numbers are

also called infinitesimals or differentials. Infinitely large numbers are also

called infinite. Numbers that are neither infinitely small nor infinitely large

are also called finite.

Corollary 33 For all    ∈ R, we have
¿  ⇒   

¿  ¿  ⇒ ¿ 

We observe  ¿ 1 iff   0,  À 1 iff   0

Corollary 34 The field R is nonarchimedian, i.e there are elements which

are not exceeded by any natural number.

Proof:

For example we have   −1 ∀  ∈ N .
One of the consequences of R being nonarchimedian is that the idea of

Dedekind cuts and the existence of suprema are no longer valid:

Example 35 (Dedekind Cuts and Suprema) Let ,  be defined as

follows:

 = { ∈ R |  0 and || is not infinitely small}
 = R \ 

Then we obviously have  ∪ = R,    and  6= ∅ 6= .

Nevertheless, there is no cut  satisfying  ≤  ≤: Assume  was such

a cut.

If  is positive or zero we have  ∈, but − also is an element of 

and it is smaller than . Thus  6≤.

If  is negative and || not infinitely small, we have  ∈ . But then

2 also is negative and |2| not infinitely small, and therefore 2 is an

element of . From 2   we infer  6≤ .

Finally, if  is negative and || infinitely small, we have  ∈. But 2 · 
also is an element of  and 2 ·   . Thus,  6≤.

Hence such a cut  cannot exist. Furthermore,  also does not have a

supremum:  is bounded above by any element of , but it is impossible

to select one least of these upper bounds.
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Remark 36 It is apparent that the nonexistence of suprema is a consequence

of the nonarchimedicity and is not specific to R. Obviously, the same argu-
ment holds for any nonarchimedian totally ordered field if  is chosen to be

any positive infinitely small quantity.

It is a crucial property of the field R that the differentials, especially

the formerly defined number  correspond with Leibnitz’ intuitive idea of

derivatives as differential quotients. This will be discussed in great details

below, but here we want to give a simple example.

Example 37 (Calculation of Derivatives with Differentials)Let us

consider the function () = 2 − 2.  is differentiable on R, and we

have  0() = 2− 2. As we know, we can get certain approximations to the
derivative at the position  by calculating the difference quotient

(+∆)− ()

∆

at the position . Roughly speaking, the accuracy increases if ∆ gets smaller.

In our enlarged field R infinitely small quantities are available, and thus it is
natural to calculate the difference quotient for such infinitely small numbers.

For example let ∆ = ; we obtain

(+ )− ()


=
(2 + 2+ 2 − 2− 2)− (2 − 2)


= 2− 2 + 

We realize that the difference quotient differs from the exact value of the

derivative by only an infinitely small error. If all we are interested in is the

usual real derivative of the real function  : R → R then this is given exactly

by the ‘real part’ of the difference quotient.

This observation is of great fundamental and practical importance. It

enables us to replace differentiation by algebraic operations.

As we will show later, all algebraic operations on R can be implemented

directly on a computer. Thus we are now able to determine exact deriva-

tives numerically. This is a drastic improvement compared to all numerical

methods operating with differences.
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2.3 Topological Structure

In this section we will examine the topological structures ofR and the related
sets. We will see that on R, in contrast to R, several different non-trivial
topologies can be defined, all of which have certain advantages.

We begin with the introduction of an absolute value; this is done as in

any totally ordered field:

Definition 38 (Absolute Value on R) Let  ∈ R. We define the absolute
value of  as follows:

If  ≥ 0, we say || = .

If   0, we say || = −.

Lemma 39 (Properties of the Absolute Value)

The mapping ”| |” : R→ R has the following properties:

|| = 0 iff  = 0

|| = |− |
| · | = || · ||
|+ | ≤ ||+ ||
|||− ||| ≤ |− |

Proof:

The first two properties are obvious. For the third one, it suffices to consider

the different cases which are given by the signs of  and  respectively.

To show the triangle inequality, we first note that, for any  we have

−|| ≤  ≤ ||. Adding this inequality applied to  and  we obtain

−(||+ ||) ≤ +  ≤ (||+ ||), that is |+ | ≤ ||+ ||.
The last property directly follows from the triangle inequality, because

|| ≤ | − | + ||, that is || − || ≤ | − |; analogously, we obtain
|− | = | − | ≥ ||− || = −(||− ||) and the statement is shown.

Definition 40 (Absolute Value on C and R) On C and R we define

absolute values as follows: Any element  ∈ C can be written  = +  with

  ∈ R, and this representation is unique. We then define
|+ | = √2 + 2

Furthermore, for any (1  ) ∈ R we define

|(1  )| =
q
21 + + 2
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The roots exist according to theorem (22).

Just like in any totally ordered set, we can now introduce the so-called

order topology:

Definition 41 (Order Topology) We call a subset  of R, C or R open

iff for any 0 ∈  exists an   0 ;  ∈ R such that (0 ), the set of

points  with |− 0|  , is a subset of  .

Thus all -balls form a basis of the topology. We obtain:

Lemma 42 (Properties of the Order Topology) With the above topol-

ogy, R, C and R become non connected topological spaces. They are Haus-

dorff. There are no countable bases. The topology induced to R is the discrete

topology. The topology is not locally compact.

Proof:

We first observe that the balls (0 ) and the whole space are open. Fur-

thermore, all unions and finite intersections of open sets are obviously open.

Since 1 = { ≤ 0 or (  0  ¿ 1)} and 2 = {  0 and  6¿ 1}
are disjoint and open, but R = 1 ∪2, R is non connected. Let ,  be

different elements. Then ( |− |2) and ( |− |2) are disjoint and
open and contain  and  respectively. Thus R, C and R are Hausdorff.

There cannot be any countable basis because the uncountably many open

sets  = ( ),  ∈ RC or R are disjoint. Obviously, the open sets

induced on R, C or R respectively by the sets are just the single points.

Thus, in the induced topology, all sets are open and the topology is therefore

discrete.

To prove that the space is not locally compact, consider  ∈ R and let 

be a neighbourhood of . Let  ∈ R be such that ( ) ⊂  . We have to

show that the closure − of  is not compact. Let the sets  be defined as

follows:

−1 = {| − À  · } ∪ {|  }
 = (+ (− 1) ·  ·  + (+ 1) ·  · ) for  = 0 1 2 .
Then the sets  cover R and, in particular, the closure − of any

neighbourhood of :

If   , we have  ∈−1.
 =  ∈0
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If    and  − ¿  ·  we obtain  ∈1

If    and  − À  ·  we obtain  ∈−1
Otherwise,  is contained in one of the ,  = 1 2 .

Furthermore, the sets are open: the ,  = 0 1 2  are open intervals.

The set {|−À ·} is open because, with any  it also contains ( ·).
Obviously, {|  } is also open. Thus −1 is a union of open sets and
hence itself open.

But it is impossible to select finitely many sets of the which cover 
−,

because each of the infinitely many numbers +  ·  ∈  is contained only

in the set .

Remark 43 A detailed study of the proof reveals that it can be executed in

the same way on any other nonarchimedean structure, and thus the above

unusual properties are not specific to R

Besides the absolute value, it is useful to introduce a semi norm which is

not based on the order. For this purpose, we regard C as a space of functions
like in the beginning, and define the semi norm as a mapping from C into R.

Definition 44 (Semi Norm on C) We introduce the semi norm ”|| ||” as
a function from C into R as follows:

|||| = sup
≤
{|[]|}

The supremum is finite and it is even a maximum since for any  only

finitely many of the [] considered do not vanish. Thus the semi-norm is

similar to the supremum norm for continuous functions. Its properties also

are quite similar.

Lemma 45 (Properties of the Semi Norm) For an arbitrary  the map-

ping ”|| ||” : R→ R satisfies the following:

||0|| = 0
|||| ≥ 0
|||| = ||− ||
||+ || ≤ |||| + ||||
| |||| − |||| | ≤ ||− ||
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Using the family of these semi norms, we can now define another topology:

Definition 46 (Semi Norm Topology]) We call a subset  of R, C or
R open with respect to the semi norm topology iff for any 0 ∈  there is

a real   0, such that (0 ) = {| ||− 0||1  } ⊂ .

We will see that the semi norm topology is the most useful topology for

considering convergence in general. Moreover, it is of great importance for

the implementation of the calculus on R and C on computers.
Lemma 47 (Properties of the Semi Norm Topology) With the above

definition of the semi norm topology, R, C and R are topological spaces.

They are Hausdorff with countable bases. The topology induced on R by the

semi norm topology is the usual order topology on R.

Proof:

We can easily check that the balls (0 ) are open: If  ∈ (0 ) we

also have (  − || − 0||1) ⊂ (0 ). Furthermore, the whole space is

open, and unions as well as finite intersections of open sets are also open.

The balls ( ) with   rational form a basis of the topology. We obtain

a Hausdorff space: Let  6=  be given; let  = ( − ). We define  =

min(|( − )[]|2 12||). Then ( ) and ( ) are disjoint and open,

and contain  and  respectively.

Considering elements of R, their supports can only consist of zero. There-

fore, the open subsets of R correspond to the open subsets of R.

In addition to the topologies discussed, there is another topology which

takes into account that, in any practical scenario, it will not be possible to

detect infinitely small errors, nor will it be possible to measure infinitely large

quantities. We obtain this topology by a suitable continuation of the order

topology on R.

Definition 48 (Measure Topology) Given any open subset of R, C or

R we form a subset of R, C or R containing the elements of the original

set as well as all the elements infinitely close to them. To the family of sets

we obtain in this way, we add one more set, namely the one containing every

element with infinitely large absolute values.

Thus a basis of this topology would be all -balls with real  and the set

of numbers with infinitely large absolute value.
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Lemma 49 (Properties of the Measure Topology)With the above top-

ology, R, C and R are connected topological spaces. They are not Hausdorff.

The topology is locally compact and induces the usual order topology on R, C

and R respectively.

Proof:

We can directly show that the whole space is open and that unions and finite

intersections of open sets are also open. Obviously, elements with an infinitely

small difference cannot be separated; they always are simultaneously inside

or outside of any open set. The rest directly follows by transferring the

properties of the order topology on R.

Lemma 50 (Comparison of the Topologies) The order topology is a

refinement of both the semi norm topology and the measure topology.

3 Sequences and Series

3.1 Convergence and Completeness

In this section, we will discuss convergence with respect to the topologies

introduced in the last chapter. We begin by introducing a special property

of sequences:

Definition 51 (Regularity of a Sequence) A sequence () in C is called
regular iff the union of the supports of all members of the sequence is a left-

finite set, i.e. iff ∪∞=0supp() ∈ F .

This property is not automatically assured, as it becomes apparent from

considering the sequence (−).
As the next theorem shows, the property of regularity is compatible with

the common operations of sequences:

Lemma 52 (Properties of Regularity) Let (), () be regular sequences.

Then the sequence of the sums, the sequence of the products, any rearrange-

ment, as well as any subsequence of one of the sequences, and the merged

sequence 2 = , 2+1 =  are regular.
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Proof:

Let  = ∪∞=0supp(),  = ∪∞=0supp() be the unions of the support points
of all members of the sequences. According to the requirements, we have

 ∈ F and  ∈ F .
Every support point of the sequence of the sums is a support point of

either one of the  or one of the  and is thus contained in (∪) ∈ F . Every
support point of the sequence of the products is contained in (+) ∈ F .
The support points of any subsequence of () are contained in  , and

the support points of the joined sequence () are contained in  ∪.

Definition 53 (Strong Convergence) We call the sequence () in R or

C strongly convergent to the limit  ∈ R or C respectively iff it converges to 
with respect to the order topology, i.e. iff for every   0,  ∈ R there exists

 ∈ N such that | − |   ∀   .

Using the idea of strong convergence allows a simple representation of the

elements of R and C:

Theorem 54 (Expansion in Powers of Differentials) Let

(() ([])) be the table of  ∈ R or C (cf. 5). Then the sequence

 =
X
=1

[] · 

converges strongly to the limit . Hence we can write

 =
∞X
=1

[] · 

Proof:

Without loss of generality, let the set {} be infinite. Let   0 in R be

given. Choose  ∈ N such that   . Since  diverges strictly according

to lemma (2), there is  ∈ N such that    ∀   . Hence we have

( − )[] = 0 for all  ≤  and for all   . Thus | − |   for all

  . Therefore, () converges strongly to .

As it turns out, there is a very clear criterion describing the sequences

and series that converge strongly:
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Theorem 55 (Convergence Criterion for Strong Convergence) Let

() be a sequence in R or C. Then () converges strongly iff for all  ∈ Q
there exists  ∈ N such that 1 = 2 for all 1 2  .

The series
P∞

=0  converges strongly iff the sequence () is a null se-

quence.

Proof:

The first property is obvious. The limit is an element of R or C since its
support below any bound is equal to the support of a certain member of the

sequence.

To prove the second statement, assume the series converges strongly. Ac-

cording to the first property, this means that, for any  ∈ Q  there exists
 ∈ N such that 0 = (

P+1
=0 −

P
=0 ) =  for all  ≥ . But then, again

according to the first statement, the sequence is a null sequence. The other

direction follows analogously.

Lemma 56 Every strongly convergent sequence is regular.

Proof:

Let  ∈ Q be given. Use the convergence criterion (55) to choose  ∈ N
such that the values of the members of the sequence do not change any more

below . Then we have that all the elements of ∪∞=0supp() smaller than 

do already occur in ∪=0supp(). This finite union, however, is contained in
F ; and thus there are only finitely many elements of ∪∞=0supp() below .

We will now prove that R and C are complete with respect to strong
convergence.

Theorem 57 (Cauchy Completeness of R and C) () is a Cauchy se-
quence in R or C (for any positive  ∈ R exists  ∈ N such that |1−2 | ≤ 

for all 1 2 ≥ ), if and only if () converges strongly (there is  ∈ R or C
respectively such that for any positive  ∈ R ∃  ∈ N : |− |   ∀   ).

Proof:

Let () be a Cauchy sequence in R. Write  = +1 − . Then () is

a null sequence. Since we have  = 0 +
P−1

=0 , () converges strongly

according to the convergence criterion (55) for series.
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The other direction is proved analogously as in R: Let () converge

strongly to the limit . Let   0 be given. Choose  ∈ N such that

|−|  
2
∀   . Let now 1 2   be given. Then we have |1−2 | ≤

|1 − |+ |2 − |  
2
+ 

2
= . The proof for C is analogous.

As we see, the concept of strong convergence provides very nice proper-

ties, and moreover strong convergence can be checked easily by virtue of the

convergence criterion. However, for some applications it is not sufficient; and

we have to introduce another kind of convergence:

Definition 58 (Weak Convergence) We call the sequence () weakly

convergent if there is an  ∈ C such that () converges to  with respect

to the semi norm topology, i.e. for any   0;  ∈ R there exists  ∈ N such

that || − ||1   ∀   . In this case, we call  the weak limit of ()

Theorem 59 (Convergence Criterion for Weak Convergence) Let

the sequence () converge weakly to the limit . Then the sequence ([])

converges pointwise to [] and the convergence is uniform on every subset

of Q bounded above.

Let on the other hand () be regular, and let the sequence ([]) converge

pointwise to []. Then () converges weakly to .

Proof:

Let () converge weakly to . Let  ∈ Q and   0;  ∈ R be given. Choose
1  min( 1(1 + ||)) such that, for all rational  ≤  we have   11.

Choose  ∈ N such that |( − )[]|  1 ∀      11. Then we obtain

|( − )[]|   ∀    and ∀  , and uniform convergence is proved.

Let on the other hand the sequence be regular and pointwise conver-

gent. Since every support point of the limit function agrees at least with

one support point of one member of the sequence, and therefore is contained

in  = ∪supp() ∈ F , the limit function  is an element of C. Let now
  0;  ∈ R be given. Let   1. We show first that the sequence of

functions () converges uniformly on { ∈ Q | ≤ }: Any point at which
the limit function  can differ from any  has to be in . Thus there are

only finitely many points to be studied below . So for any such  find 

such that |[] − []|   for all   , and let  = max(). Then we

have |[]−[]|   for all    and for all  ≤ . In particular, we obtain

|| − ||1   for all    .

34



Whereas R is complete with respect to strong convergence, it is not with

respect to weak convergence, as we see in the following example:

Example 60 (Weak Convergence and Completeness) Let

 =
P

=1 
−. Then the sequence () is Cauchy with respect to weak con-

vergence (i.e. the semi norm topology) and locally converges to the function

which assumes the value 1 at - ∈ Z− and vanishes elsewhere. But this
limit function is not an element of C.

Example 61 (Unbounded Null Sequence) Let  = −. Then ()
is obviously unbounded, but converges weakly to zero.

The relationship between strong convergence and weak convergence is

provided by the following theorem:

Theorem 62 Strong convergence implies weak convergence to the same limit.

Proof:

Let () converge strongly to the limit . According to lemma (56), the

sequence is regular. Furthermore, according to (55), for any  ∈ Q  there
exists  ∈ N such that [] does not differ any more from [] for all   

and for all   . In particular, this implies that [] → [] for all .

According to the convergence criterion for weak convergence (59), we obtain

weak convergence to the limit .

The theorem also follows directly from the fact that the order topology

is a refinement of the semi norm topology. The converse is not true, as

exemplified by the unbounded null sequence above.

It is worthwhile to study sequences of purely complex numbers in the

light of the two concepts of convergence in C:

Theorem 63 Let () be a purely complex sequence in C converging to the

limit . Then, regarded as a sequence in C, () converges weakly to the same
limit. On the other hand, let () be a sequence in C with purely complex
members converging weakly to the limit . Then  is purely complex, and the

sequence () converges to  in the complex sense.
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Proof:

Note that for   ∈ C  we have that |−| (as real absolute value) is equal
to || − || for every  ≥ 0;  ∈ Q .
The statement is not valid for strong convergence: Obviously complex se-

quences converge strongly if and only if they are ultimately constant. Thus

the idea of weak convergence provides a relation between the “natural” con-

vergence on C, i.e. the strong convergence, and the usual convergence on C.
Moreover, it is the most useful tool for the examination of power series as we

will see in the next paragraph.

To finish this section about the convergence of sequences, we will show

that the field R is indeed the smallest nonarchimedean extension of  sat-

isfying the basic requirements demanded in the beginning, which gives it a

unique position among all other field extensions.

Theorem 64 (Uniqueness of R) The field R is the smallest totally order-

ed non archimedian field extension of R that is complete with respect to the

order topology, in which every positive number has an -th root, and in which

there is a positive infinitely small element  such that () is a null sequence

with respect to the order topology.

Proof:

Obviously, R satisfies the mentioned conditions. We now show thatR can be
embedded in any other field extension of R that is equipped with the above

properties. So let S be such a field.
Let  ∈ S be positive and infinitely small such that () is a null sequence.

Let 1 be an -th root of . Such a root exists according to the requirements.

Now observe that (1) = (1·)· ∀  ∈ N . So let  = 

∈ Q , and let

 = (1). This element is unique. Furthermore,  is still infinitely small

for   0. Let 1  2. Then we clearly have 
1  2. Now let  ∈ R. Since

S is an extension of R, we also have  ∈ S and thus  ·  ∈ S.
Now let (() ([])) be the table of an element  of R. Consider the

sequence

 =
X
=1

[]


Then in fact this sequence converges in S: Let   0 be given. Since,

according to the requirements, () converges to zero, there exists  ∈ N
such that ||   ∀  ≥ . Since the sequence () strictly diverges, there
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is  ∈ N such that    + 1 ∀   . But then we have for arbitrary

1  2  :

|1 − 2 | = |
1X

=2+1

[]
| ≤

1X
=2+1

|[]|

≤
⎛⎝ 1X
=2+1

|[]|
⎞⎠ 2+1 ≤

⎛⎝ 1X
=2+1

|[]|
⎞⎠ +1

   

and thus the sequence converges because of the Cauchy completeness of S.
We now assign to every element

P∞
=1 [] · of R the element

P∞
=1 [] ·

of S. This mapping is injective. Furthermore, we immediately verify that it
is compatible with the algebraic operations and the order on R.

Remark 65 We note that a field with the properties of R could also be

obtained by successively extending a simpler non archimedian field, e.g. the

well known field of rational functions. To do this, we first would have to

Cauchy complete the field. After that, the algebraic closure had to be done, for

example by the method of Kronecker-Steinitz. This method, however, is non-

constructive, whereas the direct path followed here is entirely constructive.

Remark 66 In the proof of the uniqueness, we noted that  was only required

to be positive and infinitely small and such that () is a null sequence. But

besides that, its actual magnitude was irrelevant. Thus, none of the infinitely

small quantities is significantly different from the others. In particular, there

is an isomorphism of R onto itself given by the mapping  7→ 0 where
0[] = [ · ];  ∈ Q,  ∈     0 fixed. This remarkable property has

no analogy in R.

3.2 Power Series

In this section we discuss a very important class of sequences, namely that

of power series. Transcendental functions are very important, especially for

application, and one of the nice properties of the structures at hand here is

that power series can be introduced in much the same way as in  and .
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Furthermore, power series will prove important for the understanding of

other topics of analysis on R, especially for the problem of continuation of

arbitrary real functions.

We start our discussion of power series with an observation

Lemma 67 Let  ∈ F , i. e. a left finite set. For  define

Σ = {1 + + | ∈ N and 1   ∈}

then Σ is left finite if and only if min() ≥ 0.

Proof:

First let min() =   0. Clearly, all multiples of  are in Σ, i.e. Σ

contains infinitely many elements smaller than zero and is therefore not left

finite.

Let on the other hand min() ≥ 0. For min() = 0, we start the

discussion by considering ̄ = \ {0} which has a minimum greater than

zero. But since differs from ̄ only by containing zero, and since inclusion

of zero does not change a sum, we obviously have ̄Σ = Σ. It therefore

suffices to consider sets with a positive minimum. Let now  ∈ ; we show

that there are only finitely many elements in Σ that are smaller than .

Since all elements in Σ are greater than or equal to the minimum , the

property holds for   . Let now  ≥ , and let  = [] be the greatest

integer less than or equal to . Let    in Σ. Then at most  terms

can sum up to , since any sum with more than  terms exceeds  and thus

. Furthermore, the sum can contain only finitely many different elements of

 , namely those below . But this means that there are only finitely many

ways of forming sums, and thus only finitely many results of summations

below .

Corollary 68 A sequence  =  is regular iff  is at most finite.

A sequence  =  ·  or  = P
=0  · is regular if  is at most finite

and  is regular.

Proof:

First observe that the set ∪∞=1supp() is identical with the set Σ in the

previous lemma if we set  = supp(), and is thus left finite iff supp() has
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a minimum greater than or equal to zero; this is the case iff  is at most

finite.

To prove the second part, we employ corollary (52) which asserts that the

product of regular sequences is regular.

Theorem 69 (Power Series with Purely Complex Coefficients) LetP∞
=0 

,  ∈ C be a power series with radius of convergence equal to .

Let  ∈ C, and let () =
P

=0 
 ∈ C. Then, for ||   and || 6≈ 

the sequence is weakly convergent, and for any  ∈ , the sequence ()[]

converges absolutely. We define the limit to be the continuation of the power

series on C.

Proof:

First note that the sequence is regular for any at most finite z, which follows

from corollary (68), as the sequence  has only purely complex terms and is

therefore regular.

Now we have to show that the sequence () converges for any fixed 

with ||   and || 6≈ . Write  as a sum of a purely complex  and an

at most infinitely small . For  = 0 we are done. Otherwise, let  ∈ Q be

given. Choose  ∈ N with  ·()  . Then (+) evaluated at  gives:

(( + ))[] = (
X

=0

 · !

(− )!!
·(−))[]

=

()X
=0

[] · !

(− )!!
·(−)

For the last equality, we use that  vanishes at  for   . So we get

the following chain of inequalities for any 2  1  :

2X
=1

|( + )[]|

=
2X

=1

|| · |
min()X

=0

[] · !

(− )!!
·(−)|

≤
2X

=1

X
=0

|||[]| !

(− )!!
||(−)
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≤
⎛⎝ X
=0

|[]|||−
!

⎞⎠ · Ã 2X
=1

|| ·  · ||−
!

Note that the right hand sum contains only real terms. As || is within the
radius of convergence, the series converges (note that the additional factor

 does not influence this since lim→∞

√
 = 1). As the left hand term

does not depend on , we therefore obtain absolute convergence at .

A prominent result of the Cauchy theory of analytic functions is that an

analytic function is completely determined by the values it takes on a closed

path. Our theory guarantees the uniqueness of a function even from the

knowledge of only its value at one suitable point, as the following theorem

shows.

Theorem 70 (Pointformula à la Cauchy) Let () =
P∞

=0 ( − 0)


be the continuation of a complex power series on C. Then the function is
completely determined by its value at 0+, where  is an arbitrary nonzero

infinitely small number.

Proof:

Evaluating the power series gives:

(0 + ) =
∞X
=0




Let  = (), 0 = [()]. Then we obtain:

0 = ((0 + ))[0]

1 = ((0 + ))[]0,

2 = ((0 + )− 1)[2]
2
0,

3 = ((0 + )− 1− 2
2)[3]30,



Choosing  =  we obtain the even simpler result  = ((0 + ))[].

We will see that power series on C find a useful application in discussion
of so called formal power series. As we will see in the following theorem, any

power series with purely complex coefficients converges for infinitely small

arguments; furthermore, multiplication can be done term by term in the usual

formal power series sense, and convergence is always assured. Therefore,

formal power series form a natural part of the theory of power series.
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Theorem 71 (Formal Power Series) Any Power series with purely com-

plex coefficients converges strongly on any infinitely small ball, even if the

classical radius of convergence is zero. Furthermore, on any infinitely small

ball we have, again independently of the radius of convergence, that

(
∞X
=0


) · (

∞X
=0


) = (

∞X
=0


)

where  =
P

=0  · −

Proof:

Note that for infinitely small  and any  ∈ Q  we find an with [] = 0 for

any   . Hence for a fixed , the above summation includes only finitely

many terms, which may be resorted according to the distributive law.

In the following, it will prove extremely useful that any power series with

purely complex coefficients converges for infinitely small arguments since it

will allow us to find continuations of real functions in a natural way.

Above we discussed power series with purely complex coefficients only.

This allows us to define functions on R as continuations of important tran-

scendental functions on R like the sine and exponential functions. We will

finish this section with a discussion of power series in which the coefficients

are not restricted to .

Theorem 72 (General Convergence Criterion for Power Series) De-

fine  =
P∞

=0  ·  as a sequence in C. Let

 = − lim inf(0

)

Let  ∈C with  ≈ 0 ·. Then the power series P∞
=1 

 converges strongly

for    and diverges for   .

For  = , we obtain:

If −0   for infinitely many , the series diverges.

If −0 ≤  for only finitely many , the series converges.

If −0   for only finitely many , and −0 =  for infinitely

many , the series diverges if () is not regular; if () is regular, let  =

1 lim sup{|0=}(0) (convention 10 =∞,1∞ = 0). Then the sequence

converges if |0|   and diverges if |0|  .
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4 Calculus on R
4.1 Continuity and Differentiability

We will introduce the concepts of continuity and differentiability on R and

C in this section. This is done as in R via the − - method. Unlike in R, 

and  may be of a completely different order of magnitude.

Definition 73 (Continuity and Equicontinuity) The Function  :  ⊂
R → R is called continuous at the point 0 ∈ , if for any positive  ∈ R
there is a positive  ∈ R such that

|()− (0)|   for any  ∈  with |− 0|  

The function is called equicontinuous at the point 0, if for any  it is possible

to choose the  in such a way that  ∼ .

Analogously, we define continuity on C or R by use of absolute values.

We note that the stronger condition of equicontinuity is automatically

satisfied in R, since there we always have  ∼ . Besides the concept of

equicontinuity, we also introduce a connected concept.

Definition 74 (Equicontinuity of Order ) The Function  :  ⊂ R→
R is called order  equicontinuous at the point 0 ∈ , if for any positive

 ∈ R, there is a positive  ∈ R satisfying  ∼  ·  such that

|()− (0)|   for any  ∈  with |− 0|  

Remark 75 While technically more general, conceptually the order  equicon-

tinuity is not very different from plain equicontinuity since by a mere scaling

of function values by a factor of , an order  equicontinuous function can

be transformed to an equicontinuous function. This allows to almost directly

generalize statements involving equicontinuity to order  equicontinuity. For

the sake of convenience of notation, in the following we restrict ourselves

mostly to the study of equicontinuity.
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Theorem 76 (Rules about Continuity) Let   :  ⊂ R → R be

(equi)continuous at the point  ∈  (and there ∼ 1). Then  +  and

 ·  are (equi)continuous at the point . Let  be (equi)continuous at the
point (), then  ◦  is (equi)continuous at the point .
Proof:

The proof is analogous to the case of R.

Definition 77 (Differentiability, Equidifferentiability) The function  :

 ⊂ R→ R is called differentiable with derivative  at the point 0 ∈ , if

for any positive  ∈ R we can find a positive  ∈ R such that¯̄̄̄
¯()− (0)

− 0
− 

¯̄̄̄
¯   for any  ∈ \{0} with |− 0|  

If this is the case, we write  =  0(0). The function is called equidifferen-
tiable at the point 0 if for any at most finite  it is possible to choose  such

that  ∼ .

Analogously, we define differentiability on C using absolute values. Similar
to the case of continuity, the concept of equidifferentiability can be general-

ized formally without significant conceptual consequences.

Definition 78 (Order  Equidifferentiability) The function  :  ⊂
R → R is called order  equidifferentiable with derivative  at the point

0 ∈ , if for any positive  ∈ R we can find a positive  ∈ R satisfying

 ∼  ·  such that¯̄̄̄
¯()− (0)

− 0
− 

¯̄̄̄
¯   for any  ∈ \{0} with |− 0|  

Theorem 79 (Rules about Differentiability) Let   :  → R be

(equi)differentiable at the point  ∈  (and not infinitely large there). Then

 +  and  ·  are (equi)differentiable at the point , and the derivatives are
given by ( + )0() =  0() + 0() and ( · )0() =  0()() + ()0().
If () 6= 0 (() ∼ 1), the function 1 is (equi)differentiable at the point 
with derivative (1)0() = − 0()2(). Let  be differentiable at the point
() then ◦  is differentiable at the point , and the derivative is given by
( ◦ )0() = 0(()) ·  0().
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Proof:

The proofs are done as in the case of R. For equidifferentiability we also get

 ∼ .

Functions that are produced by a finite number of arithmetic operations

from constants and the identity have therefore the same properties of smooth-

ness as in  and C. In particular, we obtain

Corollary 80 (Differentiability of Rational Functions) A rational func-

tion (with purely complex coefficients) is (equi)differentiable at any (finite)

point where the denominator does not vanish (is ∼ 1) .
One of the most important concepts of conventional analysis is that of

power series. As we will show in our next theorem, even power series have

analogous properties of smoothness as in conventional analysis; they are in-

finitely often differentiable.

Theorem 81 (Equidifferentiability of Power Series) Let () =
P∞

=0 (−
0)

 be a power series with purely complex coefficients on C with real radius
of convergence   0. Then the series

() =
∞X
=

 · (− 1) ·  · (−  + 1)( − 0)
−

converges weakly for any  ≥ 1 and for any  with |−0|   and |−0| 6≈ .

Furthermore, the function  is infinitely often equidifferentiable for such ,

with derivatives  () = . In particular, for  ≥ 0, we have  =  ()(0)!.

For  ∈ C the derivatives agree with the corresponding ones of the complex

power series.

Proof:

Observing that lim→∞ 
√
 = 1 and using induction on  the first part is

clear.

For the proof of the second part, let |− |  , |− 0| 6≈ . Let us first

state two intermediate results concerning the term |(( + ) − ()) −
1()|. First let  be not infinitely small. Let  ∈ C and  ∈ C be the

purely complex parts of  and , therefore  =0 ,  =0 . Evidently, we

get 1() =0 1() and () =0 (). As  6= 0, we obtain¯̄̄̄
¯( + )− ()


− 1()

¯̄̄̄
¯ =0

¯̄̄̄
¯( + )− ()


− 1()

¯̄̄̄
¯ ()
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Let on the other hand  be infinitely small. Write  = 0 ·  · (1 + 1) with

0 ∈ C , 0   ∈ Q , 1 infinitely small. Then we obtain for any  ≤ 2:

( + )[] =
∞X
=0

( + − 0)
[]

=
∞X
=0

 ·
X

=0

(( − 0)
− !

!(− )!
)[]

=
∞X
=0

(( − 0)
)[] +

∞X
=1

( ·  · ( − 0)
−1)[]

+
∞X
=2

(2
 · (− 1)

2
( − 0)

−2)[]

Other terms are not relevant as the corresponding powers of  are much

smaller than  in absolute value. Therefore we get

( + )− ()


− 1() = 0


∞X
=2

 · (− 1)
2

( − 0)
−2 ()

Let now   0 in R be given. First consider the case of  ∼ 1. As f is

differentiable in C, for any  ∈ , we may choose a   0 in  such that

|((+)− ())− 1()|  2 for all nonzero  ∈  with ||  2.
Let now  ∈ C, ||  . As a first subcase, we consider  ∼ 1; choose 

as the purely complex part of , i.e.  =0   ∈ C , and ||  2. Then

we get using (i):¯̄̄̄
¯( + )− ()


− 1()

¯̄̄̄
¯ 

¯̄̄̄
¯( + )− ()


− 1()

¯̄̄̄
¯+ 

2
  ∀ with ||  

In the second subcase, we consider || ¿ 1; Write  = 0 · (1 + 1), with

0 purely complex,  ∈ Q and positive, and 1 infinitely small, to get from

(ii) ¯̄̄̄
¯( + )− ()


− 1()

¯̄̄̄
¯  2  

For infinitely small  we write  = 0 ·(1+1), with  ∈ Q positive, 0 ∈ R,
and 1 infinitely small. Choose now  = |(P∞

=2
·(−1)
2

(−0)−2)[0]| if the
sum does not vanish,  =  otherwise. Obviously, we reach  ∼  in both
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cases. Consider now  with ||   and write  = 0 · (1 + 1) with

0 ∈ C ,  ≥  in Q, and 1 infinitely small. Then we obtain, again from

(ii):

( + )− ()


− 1() = 0



∞X
=2

 · (− 1)
2

( − 0)
−2

For    we have |(( + )− ())−1()| = 0 and thus |(( + )− ())−
1()|  . Consider therefore  =  = . For vanishing sum

P∞
=2

·(−1)
2

(−
0)

−2 we have (( + )− ()) − 1() = 0 and therefore less than 

in magnitude. Otherwise, we get¯̄̄̄
¯( + )− ()


− 1()

¯̄̄̄
¯  2|0||

∞X
=2

 · (− 1)
2

( − 0)
−2|  

and the proof is completed.

We complete this section with a theorem that in a sense reduces the calcu-

lation of derivatives to arithmetic operations and is therefore of importance

for practical purposes.

Theorem 82 (Derivatives are Differential Quotients) Let  :  → R
be a function that is equidifferentiable at the point  ∈ . Let || ¿ , and

+  ∈ . Then the derivative of  satisfies

 0() =

(+ )− ()



In particular, the real part of the derivative can be calculated exactly from the

differential quotient for any infinitely small .

Proof:

Let  be as in the requirement,  = 0 · (1 + 1), with 0 ∈ R, 1 as
before, and therefore   . Choose now  = (+)2; since  is equidiffer-

entiable, we can find a positive  ∼  such that for any ∆ with |∆|  

the differential quotient differs less than  from the derivative and hence¯̄̄
(+∆)−()

∆
−  0()

¯̄̄
is infinitely smaller than . But apparently, the above

 satisfies ||  .

This is a central theorem, because it allows the calculation of derivatives

of functions on R by simple arithmetic on R, as we mentioned before and
saw in a special example in (37).

The following consequence is often important for practical purposes.
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Corollary 83 (Remainder Formula) Let  be a function equidifferen-

tiable at , let || ¿ 1. Then we obtain:

(+ ) = () +  ·  0() + ( ) · 2

with an at most finite remainder ( ).

Proof:

Let  = (). Then we have by the above theorem

 0() =

(+ )− ()


∀   

from which we get by multiplication with  and rearrangement of terms

(+ ) =+ () +  0() ·  ∀   

Let  be the difference between the left and the right hand side. Clearly

[] = 0 ∀   2. Let ( ) = 2. Then we have ( )[] = 0 ∀   0,
and therefore the expected result

(+ ) = () +  0() · + ( ) · 2

as claimed.

For functions that are extensions of real functions, i.e. assume real values

at real points, the concept of derivatives as differential quotients can also be

expressed in a rather concise form using the differential algebraic structure

of R:

Theorem 84 (Differential Algebraic Computation of Derivatives)

Let  be a function that is equidifferentiable at the real point  and assumes

real value and derivative there. Then,

 0() =0  [(+ )] 

Proof:

Use the remainder formula of the last theorem and observe that (()) =

( 0()) = 0  = 1.
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4.2 Continuation of Real and Complex Functions

In this section we will discuss under what circumstances an arbitrary real

function can be extended, or continued, from  to R. For two important
classes of functions, rational functions and power series, we have already

found such continuations via corollary (80) and theorem (81). In both of

these cases, this continuation could be done in a rather natural way, as both

algebraic operations and the calculations of limits transfer directly to our

new field.

However, for functions that cannot be expressed only in terms of algebraic

operations and limits, this method is not applicable, and other methods to

define continuations are needed. In particular, we are interested in preserving

as many of the original smoothnesss properties as possible. It turns out that

this is possible in a rather general fashion, and thus allows to increase the

pool of functions on the new set drastically.

Definition 85 (Normal Continuation on R) Let  be a real function
on the real interval [ ] ⊂ R, ( = −∞ or  = +∞ permitted), and
let  be  times differentiable there, ( = 0 or  = ∞ permitted). Let

  ∈ R be infinitely close to  To the function  , we then define the

order  continuation ̄ on [ ] ⊂ R as follows: Let ̄ ∈ [ ] ⊂ R. Write
̄ =  + , with  ∈ R and || at most infinitely small, and set ̄(̄) as:

̄(̄) =
X
=0

 ()() · 


!

A function on R is called an order  normal function if it is the order 

normal continuation of a real function.

Note that for  =∞, the above sum is strongly convergent independent

of the size of the derivatives  () according to theorem (71) and thus well

defined.

Clearly, the restriction of ̄ to  is just  . Furthermore, in any infinitely

small neighborhood of a real number, the function is given by its Taylor

series. Analogously, functions defined on regions of C may be continued.

Of particular interest is the case of analytic functions, which automatically

posses order ∞ continuations.

48



Definition 86 (Analytic Continuation on C) Let  be an analytic func-
tion on the region  ∈ . To the function  , we construct an analytic

continuation ̄∞ on  ⊂ C as follows: Let ̄ ∈ ( ) ⊂ C. Write ̄ =  + ,

with  ∈ C, || at most infinitely small, and define ̄∞(̄) as:

̄∞(̄) =
∞X
=0

 ()() · 


!

Theorem 87 (Uniqueness of Continuation) Let 1 and 2 be two order

 continuations that agree on all real or complex points of their domain.

Then 1 = 2

Proof:

The condition implies that the underlying real or complex functions agree,

and so do their derivatives, entailing that their continuations agree.

We observe that the normal continuation of a function has the same

properties of smoothness as the original function.

Theorem 88 (Continuation of Continuous Functions) Let  be a con-

tinuous function on [ ] ⊂ , and at least  times differentiable. Then

the order  continuation ̄ on [ ] ⊂ R is equicontinuous.

Proof:

Let  ∈ [ ]   0 in R be given. In case  is finite, choose  such that in ,
|(+)− ()|  2 for all real  with ||  2, which is possible because
of the continuity of  . But since for continued functions, function values of

infinitely close points differ by at most infinitely small quantities, for  ∈ R
we have |(+ )− ()|   for all  with ||   as needed. On the other

hand, for infinitely small , as  has to be chosen with  ∼ , it is sufficient

to study only the points that are infinitely close to , in which region the

function is given by a power series, which is known to be equicontinuous.

Theorem 89 (Continuation of Differentiable Functions) Let  be a

function on [ ] ⊂ R,  times differentiable ( = 0 or  =∞ permitted).

Then the continued function ̄ on [ ] ⊂ R is  times equidifferentiable on

[ ] ⊂ R, and for real points in [ ] the derivatives of  and ̄ agree.
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Proof:

Let  ∈ [ ]. We will first consider the case of finite . We choose a  such
that for all real  with ||  2 the difference quotient ((() + ) −
(())) does not differ from the derivative by more than 2. Let now

 ∈ R be positive with ||  , and let  be its real part. For  = 0

the difference between the derivative and the difference quotient is infinitely

small, and therefore certainly smaller than the finite . Otherwise, since

||  2, we infer that the difference quotient does not disagree with the

derivative by more than .

On the other hand, for ¿ 1, observe that since  has to be chosen with

 ∼ , it is sufficient to study only the points that are infinitely near to ;

but for those points, the function ̄ is given by a power series, which is

differentiable to the advertised values.

As mentioned before, functions defined by algebraic operations and limits,

especially rational functions and power series, can also be continued directly

by virtue of their algebraic and convergence properties. However, in this case

the same result is obtained.

Theorem 90 (Continuation of Rational Functions and Power Se-

ries) The order ∞ continuations of a rational function or a power series

agree with the results obtained from the algebraic and limiting procedures,

respectively.

To close, let us study order 0 continuations of real functions:

Example 91 (Non-Constant Functions with Vanishing Derivative)

An interesting case is the order 0 continuation of real functions. According

to the definition of the continuation, such functions are constant in every

interval of infinitely small width. By choosing  = , we immediately verify

that they are differentiable for any inner point within their domain, and their

derivative vanishes.

4.3 Improper Functions

Clearly the class of normal functions, which are built as continuations of

real functions, is rather small compared to the class of all possible smooth

functions on R or C. Furthermore, we are also interested in certain functions
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that cannot be obtained by continuation from  or , like Delta Functions.

Finally, when developing a theory of smooth functions, we want the class of

functions to be as large as possible. So it is desirable to discuss functions

that go beyond what can be obtained by continuations of functions on .

We begin by extending the concept of normal functions.

Definition 92 (Scaled Normal Functions) Let  be a function on  in

R or C. Then we will call  a scaled normal function if  can be written as

 = 1 ◦  ◦ 2

where 1() = 1 + 1 ·  and 2() = 2 + 2 ·  are linear functions with
coefficients from R or C and where  is a normal function of order .

We will see that while enhancing our pool of interesting functions substan-

tially, the above introduced scaled normal functions behave very similarly to

the normal functions.

Another interesting class of improper functions are the delta functions:

Definition 93 (Delta Functions) Let ̄: →  be continuous,  times

differentiable with
R∞
−∞ ̄ ()  = 1 Let  be the order  continuation of

̄, and let À 1 Then the function  with

 () =

(
0 for || À 1

 · ( · ) else

is called a delta function.

Lemma 94 Delta Functions vanish for all arguments with finite or infinitely

large absolute value, and there are points infinitely close to the origin where

they assume infinitely large values.

So apparently the definition of delta functions just follows the intuitive

concept. We will later see that they can be integrated, and we will also prove

the famous integral projection property.

Example 95 (Some Delta Functions) The following functions are delta

functions:
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1() =

(
1 for  ∈ [−2 2]
0 else

2() =

(
(1− ||) for  ∈ [− ]
0 else

3() =

⎧⎪⎨⎪⎩
(1− 222)2 for  ∈ [− ]
(||− 2)243 for   || ≤ 2
0 else

4() =

(
exp[−22]√2 for || not infinite
0 else

The second example is continuous on R, the third and fourth even differen-
tiable on R.

4.4 Intermediate Values and Extrema

In this section we will discuss certain fundamental and important concepts

of analysis, namely those of intermediate values and of extrema of functions.

In the case of real functions, continuity is sufficient for the function to as-

sume intermediate values and extrema. However, in R, somewhat stronger
conditions are required. We begin by demonstrating that in R, continuity is
not enough to guarantee that intermediate values be assumed.

Example 96 (Continuous Functions and Intermediate Values) Let

us consider two functions, defined on the interval [−1+1]:
1() =

(
−1 if  ≤ 0 or (  0 and ¿ 1)

1 else

2() = ()

we refer to 2 as the Micro Gauss bracket, as it determines the (unique)

real part of .

Both 1 and 2 are continuous; for any  just choose  =  and utilize

that both functions are constant on the  neighborhood around  for any

 ∈ [−1+1] ⊂ R. The function 2 is even equicontinuous: for any   0 in

R choose  = 2.

But the function 1 does not assume the value 0 which certainly lies

between 1(−1) and 1(+1).The values of the function 2 are purely real,
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which implies that  will not be assumed, while it is obviously an interme-

diate value. On the other hand, 2 at least comes infinitely close to any

intermediate value.

The next theorem will show that intermediate values are assumed when-

ever the function is equidifferentiable and its derivative does not vanish.

Theorem 97 (Intermediate Value Theorem) Let  be a function defined

on the finite interval [ ], and let  be equidifferentiable there. Furthermore,

assume () is finite,  0() ∼ 1 in [ ]. Then  assumes every intermediate

value between () and ().

Proof:

Let  be an intermediate value between () and (). We begin by deter-

mining an  ∈ [ ] such that | − ()| is infinitely small.
In case  lies infinitely near (), choose  = ; otherwise, if  lies

infinitely near (), choose  = . Otherwise, let , ,  be the real

parts of , , , respectively. Define a real function  : [ ] →  as

follows:

() =

⎧⎪⎨⎪⎩
(()) if  ∈ ( )
(()) if  = 
(()) if  = 



where ”” denotes the real part. Then as a real function,  is contin-

uous on [ ]. Since  is not infinitely near () or (), we infer that 
lies between () and (), and hence there is a real  ∈ ( ) such
that () = . Because      and all three numbers are real, we

have  ∈ [ ]. Furthermore, | − ()| ≤ | − | + |() − ()| is
infinitely small as desired.

Now let  =  − (). We try to find an infinitely small  such that

+ ∈ [ ] and  = (+) Because of equidifferentiability of  , we get

according to (83):

 = ( + ) = () +  0() · + () · 2
where () is at most finite, and by assumption  0() is finite as well.

Transforming the condition on  to a fixed point problem, we obtain
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 =


 0()
− ()

 0()
· 2 =  ()

Choose now  = {|() ≥ ()  +  ∈ [ ]}. Then () and

hence  are defined on  . And we have  () ⊂  : Clearly on  ,

( ()) = (). Furthermore, if  = ,  has the same sign as  0(), and
hence  is positive, entailing  +  ∈ [ ]; if  = ,  and  0 have opposite
signs, and hence  is negative, entailing  +  ∈ [ ]; and otherwise,  is

finitely far away from both  and , entailing  +  ∈ [ ] Thus there is a
fixed point of  , and the intermediate value is assumed.

Remark 98 The proof shows that, at the expense of clarity, the requirements

of the theorem can be reduced to asking that the derivative not vanish at the

real intermediate value. For the most important application of the intermedi-

ate value theorem in practice, namely the construction of inverse functions,

this however does not represent a major restriction, since inverses are usually

needed over extended ranges.

As pointed out before, mere continuity of the function is not sufficient to

assert the existence of intermediate values. It turns out that for the more

special class of normal functions, an intermediate value theorem can also be

obtained for vanishing first derivative as long as at each point one of the

higher derivatives does not vanish.

Theorem 99 (Intermediate Value Theorem for Normal Functions)

Let  be an order  normal function defined on the interval [ ], and let at

every point of the interval at least one of the derivatives not vanish. Then 

assumes every intermediate value between () and ().

Proof:

Let  ∈ R be between () and () and let  be the real part of  and 
the underlying real function. Then  is between (()) and (()),

and since  is continuous on [ ], there exists a real  ∈ [ ] such that
 () = . Let  =  − () =  − () =  − ; then  is infinitely

small. Since  is normal, we have

( + ) = () +
X
=1


()
 ()



!
;
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let now  be the index of the first nonvanishing derivative, which exists

by assumption. Then

( + ) = () +

()
 ()

!
·  + ( ) · +1

where (( )) ≥ 0, i.e. ( ) is at most finite. Note that for every

infinitely small , we have (+1)  (), and thus

( + )− () ≈ 
()
 ()

!
· 

In particular, if  is even, we infer that (+)−()  0 if and only

if 
()
 ()  0 (*). Now we try to find an infinitely small  ∈ R such that

 = ( + ), which is equivalent to

 =

()
 ()

!
·  + () · +1

Since according to (*), if  is even then ! ()()  0 Therefore,

() =

Ã
!

 ()()
− !()

 ()()
· +1

!1
exists in R whether  is odd or even. The proof is now reduced to finding

a solution of the fixed point problem  = (). Let  = { ∈ R|() ≥
()}, and let  ∈  be given; then (+1)  ()  () Hence

(()) = (), and thus () ∈  . Let 1 2 in  be given such that

1 = 2. Then 21 =+() 
2
2, and by induction on  we obtain

1 =+(−1)() 

2 for all  ≥ 1

In particular, +11 =+() +12  Hence [(1)]
 =+() [(2)]

 Since

(1) ≈
µ

!


()


()

¶1
≈ (2), we have [(1) − (2)]  (). Let  =

(2)− (1); then

[(2)]
 − [(1)] =  ·  · [(1)]−1 +()
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where () is a polynomial in  with neither constant nor linear terms.

Since ()  () = ((1)), we obtain (())  [ · ((1))−1].
Therefore,

( · ((1))−1) = 
³
((2))

 − ((1))
´
  + ()

Hence, ()   + ()− ( − 1) · ((1)) =  + ()− ( − 1) · ().
So ()   + (), which implies

(1) =+() (2) where ()  0

Therefore,  and  satisfy the requirements of the fixed point theorem.

This provides a solution of the fixed point problem and hence completes the

proof.

While the restrictions of the intermediate value theorem regarding finite-

ness of functions and derivatives may appear somewhat stringent, it is obvi-

ous that the theorem can be utilized in a much more general way by subject-

ing the function under consideration to suitable coordinate transformations

that bring it into the proper form. In particular, using linear transformations,

we obtain the intermediate value theorem for scaled normal functions:

Corollary 100 (Intermediate Value Theorem for Scaled Normal Func-

tions) Let  be a scaled normal function, and let the underlying normal

function satisfy the requirements of the intermediate value theorem for nor-

mal functions. Then  takes any intermediate value between () and ().

Example 101 (Intermediate Values of Delta Functions) The delta

function  defined as

() =

(
exp[−22]√2 for || not infinite
0 else

assumes every positive real number in an infinitely small neighborhood of the

origin.

The proof is obvious.

Remark 102 We note that the existence of roots can now be shown similarly

to the real case by use of the intermediate value theorem.
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Similar to the question of intermediate values, we find that continuity is

also not sufficient for the existence of extrema:

Example 103 (Continuous and Differentiable Functions and Ex-

trema) We define 1 and 2 on [−1+1] as follows:
1() = −()

2() = (−())2

where ”()” denotes the real part of . Then 1 is equicontinuous on

[−1 1], as the choice  =  reveals. The function 2 is even equidifferentiable

on [−1 1] with  02 = 21, as the choice  =  reveals. But neither of the func-

tions assumes a maximum: all positive infinitely small numbers are exceeded,

while no positive finite number is reached.

Theorem 104 (Maximum Theorem for Normal Functions) Let  be

a continuous order  normal function on the interval [ ] ⊂ R, and let , 
be real. Then  assumes a maximum inside the interval.

Proof:

Like in the case of the intermediate value theorem, consider first the real

function  obtained by restricting  to . Since this function is continuous,

it assumes a maximum ; let  be the set of points where this happens.

We will show that  is also a maximum for  Apparently it is assumed for

all points in  and we will see that each point at which the maximum is

assumed is infinitely close to an element in  .

First let  be not infinitely close to a point in  ; then  = () ∈ ,

and therefore ()  . But since |() − ()| ≤ |() − ()| +
|()) − ()| is infinitely small and both () and  are real, we even

have ()  

On the other hand, let  be infinitely close to an element of  i.e.

 = () ∈  . If all  derivatives of  vanish at , the continued

function is constant on any infinitely small neighborhood of , and hence

() =  Otherwise, let  ≤  be the number of the first non-vanishing

derivative. Then according to the Taylor formula with remainder for ,

 must be even because otherwise  could not yield a local maximum of

 in ; furthermore, 
()
 () is negative. But since in the infinitely small

neighborhood of , the dominating term of the continuation is 
()
 () · (−

) we infer that ()  
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4.5 Mean Value Theorem and Taylor Theorem

Like in conventional calculus, we obtain the general mean value theorem from

a special case of it, the theorem of Rolle. Similar to before, slightly stronger

smoothness conditions than in  are required, and we present two versions

of Rolle’s theorem.

Theorem 105 (Rolle’s Theorem) Let  be a function on the finite in-

terval [ ] Let  be equidifferentiable twice, and let  00 ∼ 1 on [ ] Then
there exists  ∈ [ ] with  0() = 0
Proof:

Consider the function  0 and apply the intermediate value theorem.

Theorem 106 (Rolle’s Theorem for Normal Functions) Let  be an

order  normal function on [ ] with  ≥ 1, and let () = () = 0. Then

there is a  ∈ [ ] with  0() = 0.

Proof:

Let  be a point in [ ] where  assumes a maximum, and let  = ().

Then according to the last theorem, the real restriction  of  assumes a

maximum at , and thus  0() = 0 But since for real points, the derivatives
of  and  agree, we even have 

0() = 0, as desired.
As mentioned before, Rolle’s theorem conveniently allows to prove the

mean value theorem. Because for the case of twice equidifferentiable func-

tions, the conditions on the second derivative are somewhat cumbersome to

phrase, we restrict ourselves here to the case of normal functions.

Theorem 107 (Mean Value Theorem for Normal Functions) Let  ,

 be order  normal functions on the interval [ ] with  ≥ 1 and let () 6=
(), 0 nonzero on [ ]. Then there is a  ∈ [ ] such that

()− ()

()− ()
=  0()0()

Proof:

Define the function  on [ ] as follows:

() = ()− ()− ()− ()

()− ()
· (()− ())
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Then clearly  is order  normal on [ ] with  ≥ 1; also () = () = 0

and therefore there is a  ∈ ( ) with 0() = 0. Differentiating  and

dividing by 0() give the desired result.
Again as in conventional analysis, we obtain the Taylor theorem from the

mean value theorem:

Theorem 108 (Taylor Theorem) Let  be an order  normal function on

the interval [0 0 + ] and let  ≤  − 1. Let  be an order  ≥ 1 normal
function in the same interval with nowhere vanishing derivative. Then we

obtain:

(0 + ) =
X

=0

 ()(0)

!
·  + (0 + )− (0)

0(0 + )
· (1− )

!
 (+1)(0 + )

Proof:

Use the mean value theorem and substitute 1 − 0 =  and  = 0 +  to

obtain:

(0 + ) = (0) +
(0 + )− (0)

0(0 + )
·  0(0 + )

Use this formula on the function

 () =
X

=0

 ()()

!
(0 + − )

Then we obtain for  = 0 and  = 0 + :

 (0) =
X

=0

 ()()

!


 (0 + ) = (0 + )

By differentiation, we obtain

 0() =
X

=0

 (+1)()

!
(0 + − ) −

X
=1

 ()()

( − 1)!(0 + − )−1

=
 (+1)()

!
· (0 + − )

59



and finally

(0 + ) =  (0 + ) =  (0) +
(0 + )− (0)

0(0 + )
 0(0 + )

=
X

=0

 ()(0)

!
 +

(0 + )− (0)

0(0 + )
· (1− )

!
 (+1)(0 + )

For different choices of () one obtains various forms of the remainder,

similar to the situation in R

4.6 Integration on R
In this section we will define an integral extending the concept of the Riemann

integral on . In the theory of integration in , in particular in connection

with the fundamental theorem, it proved important that primitives to func-

tions are unique up to constants. This is connected to the fact that if the

derivative of a differentiable function vanishes everywhere, the function must

be constant. In , this is a direct consequence of the mean value theorem,

and here we will proceed in the same way. In a previous example, we showed

that continuity is not enough for this condition; but even equidifferentiability

is not sufficient, as the next example shows.

Example 109 (Non-Constant Equidifferentiable Function with Van-

ishing Derivative) Let  ∈ [−1 1]. Write  = 0+
P∞

=1  · , and define
 : [−1 1]→ R via

() =
∞X
=1

 · 3

Then  is equidifferentiable on [−1 1] with  0() = 0 there. To see this,
note first that for all   ∈ [−1 1] with + ∈ [−1 1] we have that (+) =

()+ (). Let now  = 0+
P∞

=1  ·  6= 0 in [−1 1] be given. Then for
any  ∈ [−1 1], we have¯̄̄̄

¯(+ )− ()



¯̄̄̄
¯ =

¯̄̄̄
¯()

¯̄̄̄
¯ =

¯̄̄̄
¯
P∞

=1  · 3
0+

P∞
=1  · 

¯̄̄̄
¯ 

Let now   0 be given, and choose  =   Let ||   be nonzero. If

 is finite, observe that the difference quotient is always infinitely small and
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hence less than ; if  is infinitely small, observe that the difference quotient

is of the same magnitude as 2, which is infinitely much smaller than . So

in both cases, the difference quotient does not differ from 0 by more than ,

implying  0() = 0

Remark 110 We note that the situation is not specific to R, but holds sim-
ilarly in other nonarchimedean ordered fields because of the existence of non-

trivial field automorphisms on all such fields.

Definition 111 (Primitive for Order  Normal Functions) Let  be

piecewise an order  normal function on the finite interval [ ] ∈ R We
say the function  is a primitive to  on [ ] if  is piecewise order (+1)

normal and satisfies

 0() = () for all  ∈ [ ]

Theorem 112 (Existence and Uniqueness of Primitives) Let  be

piecewise continuous order normal function on the interval [ ] ∈ R. Then
 has a primitive  on [ ]. Furthermore, if 1 and 2 are two primitives

to  on [ ], then

1 − 2 = const. on [ ]

Proof:

Let  be as stated,  a real function having  as piecewise continua-

tion. Then  is piecewise continuous and  times differentiable. Define

 () =
R 
() (

0)0; then  is piecewise ( + 1) times differentiable

with derivative . Let  be its piecewise order (+ 1) continuation. Then

on all real points  ∈ [ ]  0() = () Because of the uniqueness theorem

for continuations (87),  and  0 agree on [ ].
On the other hand, let  = 1−2 on [ ]. Let  be the restriction of

Re({) to . Then on , we have  0
 = 0 on [() ()] and thus  is

constant there. But then also 
()
 = 0, implying that its order  continuation

 is constant on [ ]

After these preparations, we are ready to introduce an integral for the

class of piecewise continuous normal functions:

Definition 113 (Integral for Piecewise Continuous Normal Func-

tions) Let  be a piecewise continuous order  normal function on the finite
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interval [ ] Let  be a primitive of  on [ ]. We define the integral of 

over the interval [ ] as follows:Z 


  =  ()−  ()

We also say
R 
   = − R   .

We note that the definition is unique, independent of the particular choice

of the primitive according to the uniqueness theorem for primitives.

Besides integrals over finite ranges, we also define those over infinite

ranges similar to how it is done in :

Definition 114 (Infinite Integrals) Let  be a piecewise continuous or-

der  normal function on the interval [∞] Let  be a primitive, and for

real  let ̄ = lim→∞  () exist. Let  be positive and infinitely large in

magnitude. Then we define the two integralsZ ∞


  =

Z 


  = ̄−  ()

Similarly, let  be a piecewise continuous order  normal function on the

interval [−∞ ] let  be its primitive, and for real  let  = lim→−∞  ()

exist; let  be negative with infinitely large magnitude, and defineZ 

−∞
  =

Z 


  =  ()− 

Furthermore, if both of the above conditions are satisfied, defineZ ∞
−∞

  =

Z 


  = ̄− 

We obtain the following simple properties of the integral of a normal

function:

Theorem 115 (Properties of the Integral) Let   be piecewise contin-

uous order  normal functions on the interval [ ] ∈ R, let  ∈ [ ] let
1 2  ∈ R Then
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Z 


(1 ·  + 2 · )  = 1 ·

Z 


  + 2 ·

Z 


 

Z 


  =

Z 


  +

Z 


 

Z 


  =  · (− ) (area of rectangle)

If () ≤  () on [ ]

Z 


() ≤

Z 


()

The proof follows directly from the definition of the integral. Similar to

the situation in , also here the integral as a function of the right boundary

is a primitive:

Theorem 116 (Fundamental Theorem for Normal Functions) Let 

be a piecewise continuous order  normal function on the finite interval

[ ] ∈ R,  ∈ R with  ≤  ≤ . For  ∈ [ ] we define a function 

as

() =

Z 


() 

Then  is a primitive of  .

The integral can readily be extended to scaled normal functions:

Definition 117 (Integral for Scaled Normal Functions) Let  = 1 ◦
 ◦ 2 be a scaled piecewise normal function on the interval [ ] with linear
transformations 1() = 1 + 1 ·  and 2() = 2 + 2 ·  and a piecewise
normal function  as in the definition (92). Then we define the integral of

the function  as :Z 


()  = (− ) · 1 + 1

2
·
Z 2()

2()
 

Apparently the integral for scaled normal functions is particularly useful

for studying delta functions and other improper functions. One obtains:
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Theorem 118 (Integral of Delta Functions) Let  be a delta function.

Then for any at least finite , we haveZ 

−
() = 1

Proof:

Since  is a delta function, there is an order  normal function  such that

() = () if || is not infinitely large, zero else. Using the rules about
integration of scaled normal functions and infinite integrals, we haveZ 

−
()  =

Z 

−
() 

=




Z 

−
()  =

Z ∞
−∞

()  = 1

In a similar way, we obtain the fundamental theorem of delta functions:

Theorem 119 (Fundamental Theorem of Delta Functions) Let  be

an order  delta function and  a continuous order  normal function on

[− ] with  ∈ R. Then if the integral exists, we haveZ 

−
() · () =0 (0)

i.e. the integral agrees with (0) up to at most infinitely small error. Fur-

thermore, if  = 0, the integral always exists, and exactly equals (0)

Proof:

Since  is a continuous order  normal function, for any infinitely small ,

we have () = (0)+
P

=1 
()(0) ·! Since  is a delta function, there is

an order  normal function  such that () = () if || is not infinitely
large, zero else. Using the rules about integration of scaled normal functions

and infinite integrals, we obtainZ 

−
() · ()  =

Z 

−
() · () 

=




Z 

−
(




) · ()  =

Z ∞
−∞

(



) · () 
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=

Z ∞
−∞

"
(0) +

X
=1

 () · 


!

#
· () 

Since all the  () are finite, we have (0)+
P

=1 
() · 

!
=0 (0), and the

statement follows. In the special case of  = 0, the integral exactly equals

(0)
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Comments
1. Applications

2. Implementation of R on Computers

3. Exact calculation of derivatives

4. Fix FTA

5. Stronger intermediate value theorem, especially for normal functions

6. Check Maximum Theorem

7. Check Integration

8. Other Citation Scheme

9. Check Size in Book Format

10. Enter section about Skeleton Group, etc, Hahn’s Theorem

11. Continuability: Requires Archimedicity of Skeleton Group; Weak Cauchy:

requires Completeness of ”ribs”. Connection to Uniqueness of R.
12. Uniqueness of Analytic Continuation

13. Make stronger Maximum Theorem

14. Comment on similarity to decimal expansion and use of carry operation

15. Refer to p-adic numbers

16. Faust’s discourse with Mephisto about Infinitesimals
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