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ABSTRACT

The precise understanding of the properties of large acceptance devices like modern nuclear spectrographs often
requires the calculation of high-order aberrations. In many practical cases, it is necessary to treat all details of the
fields of the elements, and instead of utilizing more or less simple field models, one has to rely on measured data. It
is shown how aberrations of in principle unlimited orders can be obtained from measured field data; moreover, for
the remaining aberrations of yet higher order, rigorous upper bounds of their influence on the motion can be found.
The methods are used for the analysis and correction of the high-resolution S800 spectrograph at MSU.
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1. INTRODUCTION

The approach of transfer maps has been widespread in the design and study particle optical systems such as acceler-
ators, spectrometers, beamlines, electron microscopes as well as glass optical system. Combined with the differential
algebraic (DA) techniques,’™ computation of Taylor maps to high order have been performed extensively. The
higher-order aberrations obtained in this approach offer a more efficient analysis of the particle optical systems, and
hence often simplify the design of a system.

One of the crucial particle optical systems which require the knowledge of high order aberrations are modern high
resolution spectrographs for nuclear physics. Their large phase space acceptance sometimes turns out to demand
a careful study of higher order aberrations up to seventh order.® To this end, the most critical question is that
the simulation treats the field as precisely as possible. Since such spectrographs use large aperture magnets, a
careful consideration of the fringe fields is indispensable. Some efficient methods to take account of the fringe field
were discussed in Refs. 6,7 in detail. In this paper, we will discuss the technique to compute transfer maps for
measured fields in the framework of DA methods. The technique supplies more precise information of the system,
which cannot be obtained otherwise. The method has been implemented in the DA-based code COSY INFINITY 2°
and has been used for the simulations of various spectrographs, including the S800 Spectrograph'® at the National
Superconducting Cyclotron Laboratory at Michigan State University and the spectrographs at Jefferson Laboratory.
Figure 1 shows the measured field data of a bending magnet of the S800 Spectrograph,!! and these field data are
used for the computation of the transfer map of the system.

Another important question is how to treat errors unavoidably associated to measurement and computation. A
new technique, the method of Remainder-enhanced Differential Algebras (RDA), enables to express a function by a
Taylor polynomial and an interval error bound of the Taylor remainder. The error bounds are usually rather sharp
especially at higher orders.'?"16 A verified integration scheme!”'¢ in the framework of RDA makes it possible to
obtain Taylor transfer maps with rigorous remainder error bound for any arbitrary element including a measured
field element. The RDA method also has been implemented in COSY INFINITY.
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Figure 1. The measured field of a bending magnet of the S800 Spectrograph. The measured data is supplied at
328 x 370 points. The above picture shows the field at 65 x 74 points.

2. WAVELET REPRESENTATION

For the purpose of including measured field data as a part of a particle optical system, a good interpolation method is
required to obtain a field value from the limited information contained in the measured field data. The interpolation
method has to fit to the DA technique, and in particular the result of the interpolation has to be differentiable as
often as needed. Also the capability of localization by the approach of wavelets'® is very useful for our purpose.
Since our target data is more or less smooth as shown in Figure 1, we chose the method of Gaussian wavelets, which
assures the required differentiability.

Assume a set of data Y; is given at N equi-distant points z; for ¢ = 1,..., N. Then, the interpolated value at a
point z is expressed as

N 1 T — i2
V) =Y Vi e a2,

where Az is the distance of two neighbouring points x; and z;11, and S is the factor to control the width of Gaussian

wavelets.
Table 1. Accuracy of the Gaussian wavelets representation for one dimensional functions.

Test Number of Average Maximum

Function Gaussian Error Error

Wavelets N
1 10 26x1071% [ 26 x 10714
z+1 10 1.5x 107 [ 2.6 x 1014
cos(z) + 1 400 6.3x107° [ 1.0x 107*
exp(—z?) 600 46x10~° | 1.6x107*
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Figure 2. The Gaussian wavelets representation for f(z) =1 (top left), f(z) = z + 1 (top right), f(z) = cosz +1
(bottom left) and f(z) = exp(—z?) (bottom right).

Figure 2 shows how the Gaussian interpolation as a sum of Gaussian wavelets works for several one dimensional
functions, including linear functions, a trigonometric function and a Gaussian function. The data values Y; are
supplied by taking their function values at each point z; to simulate the function. Proportional to each height of the
data Y;, a Gaussian wavelet exp[—(z — #;)?/Az?S?] is placed at z;. The resulting interpolated function is shown
in each picture, which represents the original function very well. S is chosen to be 1.8 for all the cases. Table 1
summarizes the accuracy of the method for those functions. Note that in this approach, the main emphasis is not
necessarily to model the function as accurately as possible, but the scaling of the height with function values provides
a method that also allows smoothing of potentially noisy data for larger values of S. Figure 3 shows the behavior of
derivatives of interpolated functions up to third order. As an example, the Gaussian function f(z) = exp(—=?) is
chosen to be the original function shape.

The advantage of the Gaussian function and many other wavelets is that it falls off quickly. Thus the potentially
time consuming summation over all wavelets can be replaced by the summation of only the neighboring Gaussian
wavelets in the range of £5S, which is in the vein of other wavelet transforms and greatly improves efficiency.

3. ELEMENTS CHARACTERIZED BY MEASURED FIELDS

The Gaussian wavelets representation discussed above is utilized to represent fields which are specified by measured
data. Because of the favorable features of the Gaussian function, the method allows the computation of the transfer
map of such a magnetic field element. In fact, because it is possible to determine the field everywhere from just the
knowledge of the field in the midplane,'® it is sufficient to supply only two dimensional midplane measured data.

Similar to the procedure discussed in the previous section, the measured field data is given at equi-distant grid
points in two dimensional cartesian coordinates. Figure 4 shows how the data grid is specified and the cartesian
coordinate corresponding to the data grid. Assume a set of data BY (i,%,) is given at equi-distant N, x N, points

223

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/06/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



oraer: o PT—

..........

ordesz: 2

N N

ordexs 3

~1.0%

Figure 3. The derivatives of the function f(z) = exp(—z?) when represented by an ensemble of Gaussian wavelets.
The top left shows the interpolated function, the top right shows the first order derivative of the interpolated function,
the bottom left is the second order derivative and the bottom right is the third order derivative.

(mi,,2i,) for iz =1,...,Ng, i, = 1,..., N,. Then, the interpolated value at a point (z, z) is expressed as

N: N T | (z—z:,)° (2—2,)*
By(a:,z)=ZZBY(7fzﬂz)'7r—sieXP BN N

te=11,=1

where Az and Az are the grid spacing in z and z directions, respectively, and S is the control factor of the width of
Gaussian wavelets.

A suitable choice of the control factor S depends on the behaviour of the original supplied data. If S is too small,
the mountain structure of individual Gaussian wavelets is observed. On the other hand, if S is too large, the original
value supplied by the data is washed out, which can also be used effectively for purposes of smoothing. For constant
fields, the suitable S is about 1.8. For quickly varying fields, it should be about 1.0. Larger values of S usually
provide more accurate evaluation of the derivatives.

The code COSY INFINITY?® contains a particle optical element to compute the transfer map from measured
field data. For the purpose to specify the position of the particle in the element, the starting point (S, S,) and the
direction Sy of the trajectory of reference particle have to be given as shown in Figure 4.

4. EXAMPLE - THE S800 SPECTROGRAPH

The element discussed above is used especially often to study and design spectrographs. In this section, we will use
the S800 Spectrograph'® at the National Superconducting Cyclotron Laboratory at Michigan State University as an
example. The system parameters of the S800 Spectrograph are listed in Table 2.

For the purpose of comparison, we made several computations using the code COSY INFINITY. They are based
on
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Figure 4. The specification of measured field data for a particle optical element.
Table 2. The layout of the S800 Spectrograph.
Drift 1 =60 cm
Quad [=40cm Gz =21T/m r=01m
Drift =20 cm
Quad [=40cm Gmaz =68T/m r=02m
Drift 1 =50 cm
Dipole p=2675m Bpe=15T ¢ =T75° € =0° € =30°
Drift =140 cm
Dipole p=2.675m Bpe=15T ¢ =T5° €1 =30° e =0°
Drift 1 =257.5cm

Homogeneous dipoles without fringe field consideration.

Inhomogeneous dipoles that take into account the slight inhomogeneities extracted from measurements, but
have no fringe field consideration.

Inhomogeneous dipoles with fringe field consideration using a model based on Enge functions.®

Utilizing actual measured field data for the first of the dipoles.

7

The initial design of the system listed in Table 2 was made without using the measured field data element. The
computation of the transfer maps show differences between the model with the measured field data element and the
others. As shown in Figure 5, the off-energy rays in the idealized S800 system focus on the final plane, while the S800
system in which one dipole magnet was replaced by the measured field data element does not quite produce a focus
at the end any more. Table 3 shows several characteristic aberrations computed in the various ways as mentioned
above.

In order to obtain a fully accurate model of the S800 spectrograph, also measurements of the second dipole will
be utilized once they will be available. Furthermore, it is expected that subsequent measurements will have less
noise than the currently available data, which should be able to improve the overall field representation, require less
smoothing, and allows to utilize narrower Gaussian wavelets. For the process of obtaining bounds for the Taylor

remainders, the verified integrators discussed in'"!6
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Figure 5. The off-energy rays of the S800 system without (left) and with (right) the measured field data element.

Table 3. Some characteristic aberrations of the S800 Spectrograph.

Aberrations || Homogeneous | Inhomogeneous | Inhomogeneous | Measured Field
Dipoles Dipoles Dipoles Dipole and
without without with Inhomogeneous

fringe field fringe field fringe field dipole with

fringe field
(z,z) 0.8322 0.8322 0.8322 0.7103
(z,a) -0.0213 -0.0213 -0.0207 -0.1616
(z,9) 4.9266 4.9266 4.9222 4.9252
(z,aa) -3.7328 -4.9459 -4.9316 -3.3508
(z,ad) -4.7288 -3.5688 -3.5818 -3.9811
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