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Abstract

Convergence under various topologies and analytical properties of power series
on Levi-Civita fields are studied. A radius of convergence is established that as-
serts convergence under a weak topology and reduces to the conventional radius
of convergence for real power series. It also asserts strong (order) convergence for
points the distance of which from the center is infinitely smaller than the radius of
convergence.

In addition to allowing the introduction of common transcendental functions,
power series are shown to behave similar to real power series. Besides being infinitely
often differentiable and re-expandable around other points, it is shown that power
series satisfy a general intermediate value theorem as well as a maximum theorem
and a mean value theorem.
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1 Introduction

It is a known fact that topological continuity or differentiability of a function on a closed
interval of any non-Archimedean field are not sufficient to guarantee that the function
assumes all the intermediate values nor a maximum nor a minimum on the interval.
These problems are common to all non-Archimedean sructures and are due to the total
disconnectedness of these structures in the order topology. It is shown in [1] that under
stronger definitions for continuity and differentiability and under mild conditions, the
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intermediate value theorem can be proven to hold for functions on finite-length intervals
of the Levi-Civita field R.

An alternative solution to the difficulties mentioned above is to try to extend the
real calculus to a large class of functions on the Levi-Civita field R, discussed in [1].
It turns out that power series on R have all the nice smoothness properties that real
power series have in R. In particular, they are infinitely often differentiable; they are
re-expandable around any point in their domain of convergence; and they satisfy all the
common theorems of real calculus.

Previous work on power series on the Levi-Civita field has been restricted to power
series with real coefficients. In [5, 6, 7, 4], they were studied for infinitely small arguments,
while in [2, 3], using the weak topology, also finite arguments were possible. In this paper,
we study the general case when the coefficients are Levi-Civita numbers. We will focus
here on the convergence criteria for power series and refer the reader to [10] for the details
on their analytical properties. After reviewing two concepts of convergence: strong con-
vergence and weak convergence [3], we show some new results concerning the convergence
of sums and products of infinite series. Then we enhance and prove convergence criteria
for power series, first stated in [2]. In particular, we derive a radius of weak convergence
n such that the power series converges weakly for all points the distance of which from
the center is finitely smaller than 7 and it converges strongly for all points the distance
of which from the center is infinitely smaller than 7.

Using the convergence properties of power series, we extend all the real transcendental
functions to R; this allows for the study of differentiability of real functions repesentable
on a computer and for the computation of existing derivatives to high orders up to machine
precision [9].

We start with a review of some basic and useful terminology and refer the reader to
[3, 8] for a more detailed study of the field.

Definition 1.1 (The set R) We define
R={f:Q—R|{z|f(x) # 0} is left-finite}.

So the elements of R are those real valued functions on Q that are non-zero only on a
left-finite set, i.e. below every rational number ¢ there are only finitely many points where
the given functions do not vanish.

We denote elements of R by x, y, etc. and identify their values at ¢ € Q with brackets
like z[g]. This avoids confusion when we consider functions on R.
For the further discussion, it is convenient to introduce the following terminology:

Definition 1.2 (supp, A, ~, =, =,) For z € R, we define
supp(z) = {q € Q | z[g] # 0} and call it the support of z;
A(z) = min(supp(z)) for  # 0 (which exists because of left-finiteness) and
A(0) = +o0.
Comparing two elements z and y in R, we say
x ~ y if and only if A(z) = A(y);
z = y if and only if A\(x) = A(y) and z[A(z)] = y[A (y)];
xr =, y if and only if x[q] = y[q] for all ¢ < r.
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At this point, these definitions may feel somewhat arbitrary; but after having in-
troduced the concept of ordering on R, we will see that A describes "orders of infinite
largeness or smallness", the relation "~" corresponds to agreement up to infinitely small
relative error, while "~" corresponds to agreement of order of magnitude.

Definition 1.3 (Addition and Multiplication on R) We define addition on R com-
ponentwise: (z + y)[q] = x[q] + y[g]. Multiplication is defined as follows: For ¢ € Q we
set

(@-yld = Y el yla). (1.1)

q9z,9y€Q,
9z +ay=9q
Since elements of R have left-finite supports, only finitely many terms contribute to
the sum in Equation (1.1). Thus, - is a well defined operation on R. It turns out that the
operations + and - make (R,+,:) into a field, in which we can isomorphically embed the
reals as a subfield via the map II: R — R defined by

_J oz ifg=0
nwi - { 5 5270 (12
Definition 1.4 (Ordering in R) Let z, y be distinct elements of R. We say = > y if
and only if (z — y)[A(z — y)] > 0. Furthermore, we say = < y if and only if y > z.

With this definition of the order relation, R is a totally ordered field. Moreover, the
embedding II in (1.2) is compatible with the order.
Besides the usual order relations, some other notations are convenient:

Definition 1.5 (<,> ) Let a, b be non-negative. We say « is infinitely smaller than b
(and write a < b) if and only if n-a < b for all natural n; we say a is infinitely larger
than b (and write a > b) if and only if b < a. If @ < 1, we say a is infinitely small; if
1 < a, we say a is infinitely large. Infinitely small numbers are also called infinitesimals
or differentials. Infinitely large numbers are also called infinite. Non-negative numbers
that are neither infinitely small nor infinitely large are also called finite.

Definition 1.6 (The Number d) Let d be the element of R given by d[1] = 1 and
dlq] =0 for g # 1.

It is easy to check that 0 < d? < 1 if and only if ¢ > 0 and d? > 1 if and only if ¢ < 0.
It follows that, altogether, the Levi-Civita R is a totally ordered non-Archimedean field
extension of the real numbers.

2 Strong Convergence and Weak Convergence
2.1 Strong Convergence
We begin this section by reviewing a special property of sequences.

Definition 2.1 (Regularity) A sequence (s,) in R is called regular if and only if the
union of the supports of all members of the sequence is a left-finite subset of Q.



286 Shamseddine, Berz

This property is not automatically assured, as becomes apparent from considering the
sequence (d~™). It is shown [3] that the property of regularity is compatible with the
common operations of sequences.

Definition 2.2 (Strong Convergence) Let (s,) be a sequence in R. We say that (s,,)
is strongly convergent to the limit s € R if and only if for every € > 0 in R there exists
N € N such that |s,, — s| < € for all n > N.

Like R, the field R is Cauchy complete with respect to the order topology. That is, a
sequence (S,,) in R converges strongly if and only if (s,,) is strongly Cauchy.

It is shown that every strongly convergent sequence in R is regular; moreover, we have
the following useful convergence criterion the proof of which can be found in [3].

Theorem 2.3 (Strong Convergence Criterion for sequences) Let (s,) be a sequence
in R. Then (s,) converges strongly in R if and only if for all r € Q there exists N € N
such that s,, =, s; for all m,l > N.

The following results: Theorem 2.4, Corollary 2.5, Corollary 2.6 and Corollary 2.7 do
not hold in R; the non-Archimedicity of R is the key to their proofs.

Theorem 2.4 Let (s,) be a sequence in R. Then (s,) is strongly Cauchy if and only if
(Snt1 — Sn) 1S a null sequence.

Proof. Let (s,) be a Cauchy sequence in R, and let ¢ > 0 in R be given. Then there
exists N € N such that |s; — s,,| < € for all [,m > N. In particular, |S;11 — Sm| < € for
all m > N. Hence, lim,, o0 (Sp41 — Sn) = 0.

Now assume that (s,+1 — s,) is a null sequence in R, and let € > 0 in R be given.
Then there exists N € N such that |Sy41 — sm| < de for all m > N. Let k,l > N be
given. Without loss of generality, we may assume that & > [. Then we have that

|sk — si |sk — Sk—1 + Sk—1 — Sk—2 + -+ + Si11 — 51
< |8k = Sk—1| + [Sk—1 — Sk—2| + -+ 51901 — s
<

(k—1)de < €
since (k — [)d is infinitely small. Thus, (s,) is strongly Cauchy in R. B

Corollary 2.5 Let (sy,) be a sequence in R. Then, (s,) converges strongly if and only if
(Snt1 — Sn) 18 a null sequence with respect to the order topology.

Corollary 2.6 The infinite series Y . ,an converges strongly in R if and only if the
sequence (ay) is a null sequence in R.

Corollary 2.7 The series ), a, converges strongly if and only if it converges absolutely
strongly, that is if and only if > - |a,| converges strongly.

Like in R, it is easy to show [8] that the sum and product of two strongly convergent
sequences converge strongly to the expected limits. Furthermore, the non-Archimedicity
of R gives us a nice result in Theorem 2.8, which does not hold in R without the additional
requirement that one of the series converge absolutely.
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Theorem 2.8 Let Y > a, and > . b, be two infinite series converging strongly in R
to a and b, respectively. Then, the series ) . cn, where ¢, = Z?:o a;b,_j, converges

strongly to a - b in R.

Proof. First, we show that Y~ ¢, converges strongly in R. By Corollary 2.6, it suffices
to show that lim, ,. ¢, = 0. Since Y - a, and > 2 b, converge strongly in R, the
sequences (a,) and (b,) are both strongly null in R. Hence (a,) and (b,) are both
bounded. Therefore, there exists B > 0 in R such that |a,| < B and |b,| < B for all
n > 0. Let ¢ > 0 in R be given. Then, there exists M € N such that |a,,| < de/B and
|br| < de/B for all m > M. Let N =2M. Then, for all m > N, we have that

|Cm| = |a0bm + a'lbm—l “+ -4 am—lbl + amb0|
S |a0bm| + |a1bm_1| + -+ |am_1bl| + |amb0|
= |aol|bm| + |a1|[bm 1| + - - -+ [@m_1]|b1] + [am|[bo]

de de de de
Bz +Bgp+-+5B+5B
(m+ 1)de < e.
So, for all € > 0 in R, we can find N € N such that |c,,| < € for all m > N. Hence,
lim, 00 ¢, = 0 and thus Y ° ¢, converges strongly in R. It remains to show that
Y o =a-b.
Consider the sequence of partial sums (ss,,), where
2n
Sm = Coteitodom= Y ab
i+§=0

= (ap+ar+ - +ay)(bo+ b+ -+0by)
+a0(bn+1 + -4 an) + a1(bn+1 + -4+ b2n71) + 4 anp 1bp
+bo(ani1 + -+ agn) + b1(aps1 + -+ agn1) + -+ bp_1an41.
Note that
lag(bpyr + -+ bon) +a1(bpyr + -+ bop1) + - + apn_1bp11|
< aol[bpsr + -+ bon| + |a1||brs1 + -+ -+ bop—1| + -+ + |an—1]|bns1]
< B(lbpg1 + -+ bon| + [bpga + -+ bonoa| + -+ |buga])-

Let € > 0 in R be given. Since (b,) is a null sequence, there exists N € N such that
|bn| < de/B for all n > N. Hence, for all n > N and for all p € N, we have that

b1 + -+ bngpl < bga] oo byl

de de € €
< §+"'+§—(Pd)'§—(pnd)n—3
€
< B’

where, in the last step, we made use of the fact that d is infinitely small and pn is an
integer, so that pnd < 1. Therefore, for all n > N, we have that

lag(bpy1 + -+ bon) +a1(bpyr + -+ bop1) + - + apn_1bp41|
<Bl=+—=+t—)

JES— —_— o .. — ) — €.

nB  nB nbB,

~—
n times
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Therefore,

lim (ag(bng1 + -+ bon) + a1 (b1 + -+ ban—1) + -+ + @n_1bpy1) = 0.

n—oo

Similarly, we can show that

lim (bo(@ps1 + -+ agn) + b1(ape1 + -+ agm_1) + -+ +by_10n41) = 0.

Hence
lim sy, = lim ((ag+a1+---+ay)(bp+b1+---+0b,)) +

)
hm(a(M4+~-+@w+adWH+~-+@WQ+~~+mFmHn+
lun.(bo(an+1-+ 4 agn) +b1(Ang1 + o+ Ao 1) o+ bp1Gny)

= lim ((ao—l—a1+ +an)(b0+b1 + - +bn))

n—oo

Let (A,) and (B,) denote the sequences of partial sums of > > ja, and Y >, by, respec-
tively. Then A, = a9+ a1 + -+ + ay, lim, o A, = a; B, = bg+b; +---+ b,, and
lim,, .o, B, = b. Therefore,

lim sg, = lim (A,B,) = (lim An> (lim Bn> =a-b.

n—oo n—oo n—0o0 n—o0

Since > 7 ¢, converges strongly, it has one and only one limit. Hence lim, o So =
lim,, .o Sopt1 = a - b =lim, . Sp; SO

|
The following lemma is a consequence of the fact that the topology induced on R by
the order topology in R is the discrete topology in R [3].

Lemma 2.9 Let (s,) be a sequence in R the members of which are purely real. Then
(sn) converges strongly if and only if there exists j € N such that s,, = s; for allm > j.

As we see, the concept of strong convergence provides very nice properties, and more-
over strong convergence can be checked easily by virtue of Theorem 2.3 and Corollary 2.6.
However, for some applications it is not sufficient, and it is advantageous to study a new
kind of convergence.

2.2 Weak Convergence

We start this section by defining a family of semi-norms on R, which induces on R a
topology weaker than the order topology and called weak topology [3].

Definition 2.10 Given r € Q, we define a mapping || - || : R — R as follows.

|zl = sup{|z[q]| : ¢ < 7}. (2.1)
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Remark 2.11 The supremum in Equation (2.1) is finite and it is even a maximum since,
for any r, only finitely many of the x[g|’s considered do not vanish.

Definition 2.12 A sequence (s,) in R is said to be weakly convergent if and only if
there exists s € R, called the weak limit of the sequence (s,), such that the sequence
([sn, — $||) converges to 0 in R for all r € Q.

One immediately concludes that if the weak limit exists, then it is unique.

A detailed study of the properties of weak convergence is found in [3, 8]. Here we will
give only the following three results which will prove useful for studying convergence of
power series in Section 3. For the proof of Theorem 2.13, we refer the reader to [3].

Theorem 2.13 (Convergence Criterion for Weak Convergence) Let the sequence
(sn) converge weakly to the limit s. Then, the sequence (s,[q]) converges to slq| in R, for
all ¢ € Q, and the convergence is uniform on every subset of Q bounded above. Let on
the other hand (s,) be regular, and let the sequence (s,[q]) converge in R to s|q| for all
q € Q. Then (sy) converges weakly in R to s.

Theorem 2.14 Let (s,) and (t,) be two regular sequences in R converging weakly to s
and t, respectively. Then the sequence (syt,) converges weakly to s - t.

Proof. Since (s,) and (t,) are both regular, so is (spt,). To show that (s,t,) converges
weakly to s - t, it remains to show that the sequence ((s,t,)[q]) converges in R to (s-t)[q]
for all ¢ € Q, using Theorem 2.13. Let A = US° jsupp(a,,) and B = U2 jsupp(b,). Then
A, B e F. Let g € Q be given. Then, for all n, we have that

(sntn)lq) = Z Snlq1]tn[qa]. (2.2)

q1 +92 =4
q1 € A,q2 € B

Since A and B are left-finite, only finitely many terms contribute to the sum in Equation
(2.2); and we have that

nh_)r(ralo (sntn)lg] = nh—golo Z Snlq1]tn]q2]
q1 +92 =4
91 €A, q2 €B
= Y (1 (salatale))
q1 +a92 =4

q1 € A,q2 € B
=S (i) ()

q Iq ]E 41_4??12:’5(13

= > (slaultlaz)) = (s t)[g).

This finishes the proof of the theorem. W

Theorem 2.15 If the series > - ja, and Y - b, are regular, Y > a, converges ab-
solutely weakly to a, and Y . b, converges weakly to b, then Y > c,, where ¢, =
Z?:o a;b,—;, converges weakly to a - b.
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Proof. Let (A,), (By), and (C,,) be the sequences of partial sums of Y 07 an, Y oo by, and
Y o o Cn, respectively. Then (A,) and (B,) are both regular, (A,) converges absolutely
weakly to a and (B,) converges weakly to b. Since (A,,) and (B,) are both regular, so is
(Cp). Tt remains to show that (Cy[g]) converges in R to (a - b)[q] for all ¢ € Q.

Since (A,) converges absolutely weakly to a, (A,[t]) converges absolutely in R to a[t]
for all ¢t € Q. Similarly, (B,[t]) converges in R to b[t] for all t € Q. Let A = U5 jsupp(an)
and B = U2 gsupp(by,), and let ¢ € Q be given. Then

Cldl = (;m) [q1=§cm[q]=z<(zam) )

m=0

_ Z( (ot ) ]>:zz > olalbafa

m=0 j=0 g1 +492=gq
q1 € A,q2 € B

- > (Z > ailalbm- [qﬂ) because of regularity

g1+ g2 =q m=0 j=0
q1 € A,q2 € B

q1 +92 =4
g1 € A,q2 € B

Since Y >, an[q1] converges absolutely to a[qi] and since Y oo b,[ga] converges to blgo],
we have that lim,, (anzo (Z;n:o a;jlqi)bm; [q2]>> exists in R and is equal to a[q1]b[ga].
Since the sum over the ¢’s is finite because of left-finiteness of A and B, we have also that

i X (5 (S )

q1 +492 =4 m=0
q1 € A,q2 €B

exists in R and is equal to

> ( Jim (Z (Zaj[q11bm_j[q2]>>>.

q1 € A, q2

Hence lim,, o, Cy,[q] exists in R and we have that

Im Gilg = Y elafble] = (a- b))

q1 € A,q2 € B

Since (C,,) is regular and since lim,, ., C,,[q] = (a - b)[q] for all ¢ € Q, (C,) converges
weakly in R to a - b. Therefore, > >~ ¢, converges weakly to a - b, and we can write

oo (T (Xn).
n=0 n=0 n=0
[ |
Finally, it is shown [3] that R is not Cauchy complete with respect to the weak topology
and that strong convergence implies weak convergence to the same limit.
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3 Power Series

We now discuss a very important class of sequences, namely, the power series. We first
study general criteria for power series to converge strongly or weakly. Once their con-
vergence properties are established, they will allow the extension of many important real
functions, and they will also provide the key for an exhaustive study of differentiability of
all functions that can be represented on a computer (see [9]). Also based on our knowledge
of the convergence properties of power series, we are able to study [10] a large class of
functions on R that have all the nice smoothness properties that real power series have
in R. We begin our discussion of power series with an observation [3].

Lemma 3.1 Let M C Q be left-finite. Define
Ms={qg+..+q¢g.:neN, and q1,...,q, € M};
then My, is left-finite if and only if min(M) > 0.

Corollary 3.2 The sequence (z") is reqular if and only if A(xz) > 0.
Let (an) be a sequence in R. Then the sequences (a,z™) and (3 7_oa;a?) are regular
if (an) is reqular and \(xz) > 0.

3.1 Convergence Criteria

Theorem 3.3 (Strong Convergence Criterion for Power Series) Let (a,) be a se-
quence in R, and let

Ao = — liminf <¥> = lim sup <¥> in RU{—o00,00}.

Let z9 € R be fived and let x € R be given. Then the power series Y -, an(x — o)™
converges strongly in R if A(x — zo) > Ao and is strongly divergent if A(x — xg) < Ao or
if Mx — x0) = Ao and —X\(an)/n > Ao for infinitely many n.

Proof. First assume that A(z—x0) > Ag. To show that ", a,(z—x0)™ converges strongly
in R, it suffices, using Corollary 2.6, to show that the sequence (a,(x — x¢)") is a null
sequence with respect to the order topology. Since A(x —xy) > Ao, there exists ¢ > 0 in Q
such that A\(x—x¢) —t > A¢. Hence there exists N € N such that \(x —x¢)—t > —A(a,)/n
for all n > N. Thus, A(a,(z — x0)") = A an) + nA(z — z9) > nt for all n > N. Since
t > 0, we obtain that (a,(x — zo)") is a null sequence with respect to the order topology.

Now assume that A(z—x¢) < Ag. To show that > >~ ja,(x —x¢)" is strongly divergent
in R, it suffices to show that the sequence (a,(z — x¢)") is not a null sequence with
respect to the order topology. Since A(x — xzg) < Ao, for all N € N there exists n > N
such that AM(z — z9) < —A(ay)/n. Hence, for all N € N, there exists n > N such that
AMan(x — x9)™) < 0, which entails that the sequence (a,(x — x¢)™) is not a null sequence
with respect to the order topology.

Finally, assume that A(z — z9) = A9 and —A(ay,)/n > A for infinitely many n. Then
for all N € N, there exists n > N such that —A(a,)/n > A = A(x — zp). Thus,
for each N € N, there exists n > N such that A(a,(z — z9)") < 0. Therefore, the
sequence (a,(x — xp)™) is not a null sequence with respect to the order topology; and
hence > 7 a,(x — x0)" is strongly divergent in R. W
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The following two examples show that for the case when A(z—xg) = A\g and —\(ay,,)/n >
Ao for only finitely many n, the series > °  a,(z — 2¢)"™ can either converge or diverge
strongly. For this case, Theorem 3.7 provides a test for weak convergence.

Example 3.4 For each n > 0, let a, = d; and let xp = 0 and x = 1. Then A\ =
limsup,, ., (—1/n) = 0 = A(z). Moreover, we have that —A(a,)/n = —1/n < X for all
n>0;and Y o2 a,z™ =Y o d is strongly divergent in R.

Example 3.5 For each n, let ¢, € Q be such that \/n/2 < g, < \/n, let a,, = d%*; and let
zg = 0 and z = 1. Then \g = limsup,,_,, (—¢,/n) = 0 = A(z). Moreover, we have that
—Xap)/n=—g,/n < 0= X foralln > 0;and > 7 ja,z™ = > -~  d¥ converges strongly
in R since the sequence (d?*) is a null sequence with respect to the order topology.

Remark 3.6 Let 2o and )¢ be as in Theorem 3.3, and let x € R be such that A\(x —x¢) =
Ao. Then Ag € QU {oo}. But if A\g = oo, then z = z and hence Y~ a,(z — )" = 0.
So it remains to discuss the case when A(z — zp) = A\ € Q.

Theorem 3.7 (Weak Convergence Criterion for Power Series) Let (a,) be a se-
quence in R, and let \g = limsup,,_,.. (—A(an)/n) € Q. Let xg € R be fixed, and letx € R
be such that \(x — x9) = X\g. For each n > 0, let b, = a,d™. Suppose that the sequence
(by,) is reqular and write U2 o supp(by) = {q1, q2, - . . }; with qj, < qj, if 51 < jo2. For eachn,
write by, = Y2 by;d%, where b,, = bylq;]. Let r = 1/sup {limsup,, b |2 > 1}
Then Y > o an(z—1x0)"™ converges absolutely weakly in R if |(z—xo)[Xo]| < r and is weakly
divergent in R if |(x — xo)[Ao]| > 7.

Proof. Letting y = d=*°(x — x¢), we obtain that

— (b,
Ay) = 0 = limsup < ( )> , and ay,(r — 29)" = bpy™ for all n > 0.
n—oo n
So without loss of generality, we may assume that o = 0; A\g = 0 = A(x); and b, = a,
for all n > 0. Let X = R(z); then X # 0. First assume that |X| < r.
First Claim: For all j > 1, we have that >~ an; X™ converges in R.
Proof of the first claim: Since | X| < r, we have that

= > sup {limsup|a, (Mg > 1}'
] e e T =
and hence | X| < 1/limsup,_,., |an,|"/™ for all j > 1. Hence Y o a,, X™ converges in R
for all j > 1.
Second claim: For all j > 1, >>° an; ™ converges weakly in K.

Proof of the second claim: Let j > 1 be given. For each n, let A, (z) = >"7 ja;;x’. So
we need to show that the sequence (A, (z))n>0 is weakly convergent. Using Corollary
3.2, the sequence is regular since A(x) > 0 and since the sequence (a;;) is purely real and
hence regular. Thus, it suffices to show that the sequence (A,;(x)[t]) converges in R for
all t € Q. Let s =x — X. If s =0, then we are done. So we may assume that s # 0. Let
t € Q be given; and choose m € N such that mA(s) > ¢. Then (X + s)" evaluated at ¢
yields:

min{m,n}

n! ol

=0

(X + )" [] = (Z sl(n_L!l)m)cnl) =
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For the last equality, we used the fact that s’ vanishes at ¢ for [ > m. So we get the
following chain of inequalities for any vs > 14 > m:

Vo Vo min{m,n}
n o ! Tl' n—I
;‘anj(X+S) [tH - T;‘a’nj‘ lz_; S[t](n—l)!l!X
< ZZ\%HS ,l,|X|" :
n=v1 [=0
X m—1 Vo
n=uvq

Note that the right sum contains only real terms. As |X| < r, the series converges; the
additional factor n™ does not influence convergence since lim,_,o, /n™ = 1. As the left
hand term does not depend on 14 and v, we therefore obtain absolute convergence at t.
This finishes the proof of the second claim.
Third claim: ) °  a,z™ converges weakly in R.

Proof of the third claim: By the result of the second claim, we have that > >° ;an, x"
converges weakly in R for all j > 1. For each j, let f;(x) = > > an,a"; then A (f;(x)) > 0
for all j > 1. Thus } 22, d% f;(z) converges strongly (and hence weakly) in R. Now let
t € Q be given. Then there exists m € N such that ¢; > ¢ for all j > m. Thus,

(Z dquj(w)> f=3 @ h) =3 ( 2 dltnlfie Wﬂ)

j=1 j=1 j=1 \ti+te=t

= Z( Z d% [t,] f;(x) ) Z Z A% [t,] (Za” )
j=1 \t1+to=t j=1 t1+to n=0

— Z > dvlt] Zanj [t] :ZZan]< > dqﬂ'[tl]x”[tQ])
j=1 t1+ia=t =0 j=1 t1+to=t

SO (B ST B 5 ST
n=0 j=1 t1+to=t n=0 j=1

= (go;anjd‘ljxn) [t] = (go (; aﬂjd‘b’) x”) [t] = (;0 CLn(L‘n) [t]

This is true for all ¢ € Q. Thus, > ° ; a,z™ converges weakly to > 7, d¥ f;(x).

Now assume that [X| > r. Then 1/|X| < sup {limsup,_,, |an,|"/™: j > 1}. Hence
there exists jo € N such that 1/|X| < limsup,,_,, [@n,, |'/?. Thus, | X| > 1/limsup,_, |, |1/m,
and hence 7 ) an, X" diverges in R. Tt follows that (3777, an2™) [g;,] diverges in R; and
hence Y 7 a,z" is weakly divergent in R. W

The following two examples show that when the sequence (b,,) in Theorem 3.7 is not
regular, the power series may converge or diverge weakly for a given x € R satisfying

1

— )\ _ .
0 <[z =)ol <7 sup {limsup,, ., |bx[q]|/" : q € Q}
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Example 3.8 For each n > 0, let a,, = d"/™*V; then

)\0 = limsup (_)\(an)) = 0,
n

n—oo

b, = ap,d™® = d"" for all n > 0, and
1

sup {limsup, o [balg][ /" g €Q}

We now show that even though r = oo, the power series Y a,z™ is weakly divergent
for all real points = # 0. So let z # 0 be given in R. Assume that Y .~ ja,z" converges
weakly in R and let s denote the weak limit. Then by Theorem 2.13, we have that

slq] = Z (anz™) [q] for all g € Q.

slq] = Z an[qlz™ for all ¢ € Q.

n=0
In particular, we obtain that
s[l/(m+1)] = Zdl/(n+l)[1/(m + 1)]z" = 2™ #0 for all m € N.
n=0

This means that 1/(m+1) € supp(s) for all m € N, which contradicts the fact that s € R
and that supp(s) is left-finite. Thus > >° ja,z™ is weakly divergent.

Example 3.9 For each k € N, let

1
J/(2k=1)
2k —1

Qok—1 = —A2k =

Then

A = limsup (w) =0,

n—oo

b, = ap,d™°® = a, for all n > 0, and
1

sup {lim sup,, . [balg][ /" : g € QF

.

Hence the sequence (b,,) is not regular since 1/(2k —1) € U2, supp(b,,) for all £k € N. We
will show that Y7 ja,2z" converges weakly to 0 in R for z = 1.
To show that >~  a, converges weakly to 0, let € > 0 be given in R and let N € N

be such that
{ 1}
N >maxq€e — .
€
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Then for all m > N, we have that

i 1 1
||Za'n||1/e§ ES N<€

n=0

Thus, > 7, a, converges weakly to 0 in R. On the other hand, it is easy to check (using
a similar argument as that in Example 3.8) that >~ a,2z™ is weakly divergent in R for
all z € R\ {0, 1}.

Corollary 3.10 (Power Series with Purely Real Coefficients) Let Y > a, X" be
a power series with purely real coefficients and with classical radius of convergence equal
ton. Let x € R, and let Ay(z) = Y1 ya;x’ € R. Then, for |z| < n and |z| % n, the
sequence (A, (x)) converges absolutely weakly. We define the limit to be the continuation
of the power series on R.

Using Corollary 3.10, we can now extend real functions representable by power series
to the Levi-Civita field R.

Definition 3.11 (The Functions Exp, Cos, Sin, Cosh, and Sinh) By Corollary 3.10,
the series
n 2n+1 2n 2n—|—1

Z |’Z(_ Z 2n+1)|’z l’andz (2n+1

n=0 n=0 n=0

2n

8

S

converge absolutely weakly in R for any = € R, at most finite in absolute value. For any
such x, define

ool — S
cos(a) = D(—1)" o

) no_o CC2n+1
sin(z) = ZO(—l)”m;
cosh(z) = z:; (gn)!;

2n+1

sinh(z) = Zm

3
I
=)

A detailed study of the transcendental functions introduced on R in Definition 3.11
can be found in [8]. In particular, using Theorem 2.15 and Definition 3.11, we show that
addition theorems similar to the real ones hold for these functions.
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Theorem 3.12 (Addition Theorem) Letxi,z2 € R be at most finite in absolute value.

Then
exp(z1 + z2) exp(z1) exp(z2), (3.1)
cos(ry £ x3) = cos(w)cos(xg) F sin(zy ) sin(ze), (3.2)
sin(xq £ x2) = sin(xq) cos(z2) £ cos(zy) sin(z2), (3.3)
cosh(z1 £ z2) = cosh(xy) cosh(xz) £ sinh(z1) sinh(xs), and (3.4)
sinh(zq £ z9) = sinh(z;) cosh(zy) & cosh(z) sinh(xs). (3.5)

Proof. We will prove that Equation (3.1) is true; the rest follows similarly. Using Defini-
tion 3.11, we have that

exp(z1) = Z —1, and exp(zs) = Z ﬁ»
n=0 n=0

where the series are both regular by Corollary 3.2, and they both converge absolutely
weakly in R. Thus, applying Theorem 2.15, we obtain that ) ° ¢, converges weakly in
R and

where, for all n > 0,

Hence,

ot (o) s (ot
exp(71) exp(rz) = (Z _l> (Z F) :Z< ﬁ(n—j)!>

n=0 n=0 n=0 j=0
1 (& n! , =1
— _ j .(n—3) _ — n
- an (Zjl(n_j)!xl 2 ) _an(xl—HUQ)
n=0 j:O n=0

= exp(z1 + ).
|

3.2 Calculus

It turns out that power series on R behave similarly to real power series. It is shown [10]
that within their radius of convergence, power series are infinitely often differentiable and
the derivatives to any order are obtained by differentiating the power series term by term.
Also, power series can be re-expanded around any point in their domain of convergence
and the radius of convergence of the new series is equal to the difference between the
radius of convergence of the original series and the distance between the original and
new centers of the series. Furthermore, it is shown [10] that power series satisfy all the
common theorems of real calculus on a closed interval of R, like the intermediate value
theorem, the maximum theorem and the mean value theorem. For lack of space, we will
only state the results here and refer the reader to [10] for the proofs.
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3.2.1 Differentiability and Re-expandability

Theorem 3.13 Let xg € R be given, let (ay,) be a sequence in R, let

Ao = limsup{%(an)} cQ;

n—oo

and for all n > 0 let b, = d"a,,. Suppose that the sequence (b,) is reqular; and write
U gsupp(by) = {q1, @2, - .. } with q;, < qj, if j1 < ja. Foralln >0, write b, = Z;’il bp; A%
where by; = by [q;]; and let
1 .
n= in RU {oo}, (3.6)

B Sup {hm Supn—>oo |bn]|1/n : j Z 1}

where n = oo if and only if sup {limsupn_,oo |bnj|1/” 1] > 1} = 0. Then, for allc € R
satisfying 0 < o < 1, the function f : [xg — 0d™, zg+ od*] — R, given by f(z) =
Sor o an(x — mo)™, is infinitely often differentiable on the interval [zg — od™, zo + od™],
and the derivatives are given by f®) (z) = g () = 30°, n(n—1) - - (n—k+1) ay (z—20)" "
for all x € [zg— 0d™, zg+ 0d™)] and for all k > 1. In particular, we have that aj, =
%) (z0) /E! for all k = 0,1,2,...; and hence for all x € [:vo — od™, 29+ adAO}, we have
that

)xO n
n(' )(x—:co) :

X r(n
fy =y I

Theorem 3.14 (Re-expansion of Power Series) Let zo € R be given, let (ay) be a
regular sequence in R, with A\g = limsup,, .. {—A (a,) /n} = 0; and letn € R be the radius
of weak convergence of f (z) =3 o0 s an (x — x0)", given by Equation (3.6). Let yo € R be
such that |R (yo — xo)| < n. Then, for allx € R satisfying | R (x — yo)| < n—|R (yo — zo)|,
we have that Y oo o f® (vo) / (K!) (x — yo)* converges weakly to f(z); i.e.

ka—gy(])(x_yo)k:f(x):Zan(az—xo)n.

k=0 ’ n=0

Moreover, the radius of weak convergence of > reo f® (o) / (K!) (z — yo)k is exactly n —
1R (yo — o).

3.2.2 Expandable Functions

In this section, we introduce a class of functions on R that are given locally by power
series and for which all the common theorems of real calculus hold.

Definition 3.15 Let a,b € R be such that 0 < b—a ~ 1, let f : [a,b] — R and let
xo € la,b]. Then we say that f is expandable at xq if and only if there exists § > 0,
finite in R, and there exists a regular sequence (a, (x¢)) in R such that, under weak
convergence, f(z) = 0" an (x0) (x — x0)" for all x € (xg — 6,20 + 6) N [a, b].

Definition 3.16 Let a,b € R be such that 0 < b—a ~ 1 and let f : [a,b] — R. Then
we say that f is expandable on [a, b] if and only if f is expandable at each z € [a, b].
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Definition 3.17 Let a < b in R be such that t = A\(b —a) # 0 and let f : [a,b] — R.
Then we say that f is expandable on [a, b] if and only if the function g : [d~*a,d 0] — R,
given by g(z) = f(d'z), is expandable on [d~ta,d'b).

Lemma 3.18 Leta < b be given in R, let f,g : [a,b] — R be expandable on [a,b] and let
a € R be given. Then f+ ag and f - g are expandable on [a,b].

Theorem 3.19 Let a < b and ¢ < e in R be given. Let f : [a,b] — R be expandable on
la,b], let g : [c,e] — R be expandable on [c,e], and let f([a,b]) C [c,e]. Then go f is
expandable on [a,b].

Theorem 3.20 (Intermediate Value Theorem) Let a < b in R be given and let f :

[a,b] — R be expandable on [a,b]. Then f assumes on [a,b] every intermediate value
between f (a) and f (b).

Using Theorem 3.13, we readily obtain the following result.

Theorem 3.21 Let a < b in R be given, and let f : [a,b] — R be expandable on [a,b].

Then f is infinitely often differentiable on [a,b], and for any positive integer m, we have

that £™ is expandable on [a,b]. Moreover, if f is given locally around xq € [a,b] by f (z) =

> o an (7o) (x — m9)", then f™ is given by fT™ (z) =320 n(n—1)---(n—m +1)a, (z) (x — 20)"
In particular, we have that a., (x¢) = f™ (xq) /m! for allm =0,1,2,....

Theorem 3.22 Let a < b in R be given and let f : [a,b] — R be expandable on [a,b].
Then f assumes a mazimum and a minimum on |a, b|.

Corollary 3.23 Let a < b in R be given and let f : [a,b] — R be expandable on [a,b].
Then there exist m, M € R such that f ([a,b]) = [m, M].

Theorem 3.24 (Rolle’s Theorem) Let a < b in R be given and let f : [a,b] — R be
expandable. Suppose f (a) = f(b). Then there exists ¢ € (a,b) such that f'(c) = 0.

Theorem 3.25 (Mean Value Theorem) Leta < b inR be given and let f : [a,b] — R
be expandable on [a,b]. Then there exists ¢ € (a,b) such that

Corollary 3.26 Let a < b in R be given, and let f : [a,b] — R be expandable on [a,].
Then the following are true.

(i) If f' (x) # 0 for all x € (a,b) then either f' (xz) > 0 for all x € (a,b) and f is strictly
increasing on [a,b], or f'(x) < 0 for all x € (a,b) and f is strictly decreasing on
[a, b].

(ii) If f' (x) =0 for all z € (a,b), then f is constant on [a,b].
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