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Abstract

While conventional computational differentiation based on the forward or reverse
modes allows highly accurate computation of derivatives, there are situations where
these modes fail to produce the values of derivatives, although the underlying function
is differentiable. Typical examples of this phenomenon are connected to the occurrence
of branch points in coding as in IF-ELSE structures as well as the occurrence of some
non-differentiable parts that do not affect the differentiability of the end result.
We show that based on ideas of nonarchimedean calculus on Levi-Civita fields,

these problems can be avoided. It is possible to rigorously decide whether a function is
differentiable or not at any given point, and if it is, to determine its derivatives to any
order, even if the coding exhibits branch points or non-differentiable pieces.
We give details of an implementation of the method and examples for its use for

typical pathological problems.
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1 Introduction

The goal of computational differentiation is the fast and accurate computation of derivatives
of complicated functions of one or many variables in a computer environment. However, the
conventional approaches based on the forward or reverse mode fail to find the derivatives
of certain functions at given points, even though the functions are differentiable at the
respective points. For example, the functions

f1(x) =

(
(sinx)/x if x 6= 0
1 if x = 0

and f2(x) = x2
q
|x|+ exp(x)(1)

are both differentiable at 0; but the attempt to compute their derivatives using automatic
differentiation (AD) fails. This is particularly unsatisfying since conventional numerical
differentiation based on divided differences is able to find approximate values for the
derivatives. On the other hand, depending on the implementation of the precompiler,
sometimes automated code conversion fails to recognize points where the function under
consideration is in fact not differentiable. As an example, consider the piece of code

If(cos(x)=1) ; f = cos(x) ; else ; f = 0 ; endif ;
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which in order to recognize non-differentiability at x = 0 requires a careful treatment of the
appearance of variables in If statements, which can become even much more subtle than in
our simple example.

In this paper, we show that implementation of the nonarchimedean field R on a
computer provides a remedy to the defects of computational differentiation concerning
functions of one variable; see [Berz1992b], [Berz1994a], [Berz1996a] for a detailed study of
the field R. Using the calculus on R, we formulate a necessary and sufficient condition for
the derivatives of functions from R into R representable on a computer to exist, and show
how to find these derivatives whenever they exist.

We start with a study of computer environment functions of one variable, and their
properties of smoothness. This class of functions includes all intrinsic functions and the
Heaviside function, which is the tool to account for branching in a computer code, as well
as any finite combination thereof.

2 Computer Environment Functions

At the machine level, a function f : R → R is characterized by what it does to the
original set of memory locations. So f induces a function �F (f) : Rm → Rm, where m
is the number of memory locations affected in the process of computing f . We note here
that, without optimization, �F (f) is unique up to flipping of the memory locations. On
the other hand, with optimization, �F (f) is unique in the subspace describing the true
variables. Moreover, at the machine level, any code constitutes solely of intrinsic functions,
arithmetic operations, and branches. In the following, we formally define the machine level
representations of intrinsic functions, the Heaviside function, and the arithmetic operations.

Definition 2.1. Let I= {H, sin, cos, tan, exp, . . .} be the set consisting of the Heaviside
function H and all intrinsic functions on a computer, which for the sake of convenience
are assumed to include the reciprocal function; and let O= {+, ·}.

Definition 2.2. For f ∈ I, define �Fi,k,f : R
m → Rm by

�Fi,k,f (x1, x2, . . . , xm) = (x1, . . . , xk−1, f(xi)| {z }
k

, xk+1, . . . , xm);

so the kth memory location is replaced by f(xi). Then �Fi,k,f is the machine level

representation of f . For ⊗ ∈ O, define �Fi,j,k,⊗ : Rm → Rm by

�Fi,j,k,⊗(x1, x2, . . . , xm) = (x1, . . . , xk−1, xi ⊗ xj| {z }
k

, xk+1, . . . , xm),

so the kth memory location is replaced by xi ⊗ xj. Then �Fi,j,k,⊗ is the machine level
representation of ⊗. Finally, let

F = {�Fi,k,f : f ∈ I} ∪ {�Fi,j,k,⊗ : ⊗ ∈ O}.

Definition 2.3. A function f : R → R is called a computer function if it can be
obtained from intrinsic functions and the Heaviside function through a finite number of
arithmetic operations and compositions. In this case, there are some �F1, �F2, . . . , �FM ∈ F
such that �F (f) = �FM ◦ �FM−1◦ · · ·◦ �F2◦ �F1, and we call �F (f) : Rm → Rm, already mentioned
above, the machine level representation of f .
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3 Smoothness Properties of Computer Functions

In this section, we show that within the bounds of the real numbers that can be represented
on a computer, the domain of definition as well as the domain of continuity of a computer
function is a finite union of intervals. We also show that, for any fixed n ∈ N and any
computer function f , the domain of definition (continuity) of the nth derivative f (n) is
again a finite union of intervals.

Definition 3.1. Let l and L denote, respectively, the lower and upper bounds of the
positive real numbers that can be represented on a computer. It follows that the domain of
the computer numbers is Dc = [−L,−l] ∪ [l, L].

Lemma 3.1. Let f ∈ I be given. Let D be the domain of definition (continuity) of f in
Dc. Then D is a finite union of intervals. Furthermore, the system {f(x) ∈ I; x ∈ Dc},
where I ⊂ Dc is an interval, has as a solution a finite union of intervals in Dc.

Proof. We check the statement for each function f ∈ I, and the arguments are quite
straightforward. For reasons of space, we will refrain from writing down the details. As the
example of f(x) = sin(x) and the interval I = [0, 1] shows, the existence of bounds for the
real numbers representable on a computer is essential for this lemma to hold.

We will show that the result of the previous lemma is indeed true for any computer
function.

Lemma 3.2. Let f1 and f2 be two computer functions with domains of definition
(continuity) D1 and D2 in Dc, respectively. Assume that, for j = 1, 2, Dj is a finite
union of intervals, and the system {fj(x) ∈ Ij ; x ∈ Dc}, where Ij ⊂ Dc is an interval,
has as a solution a finite union of intervals in Dc. If F = f2 ◦ f1 and D is the domain of
definition (continuity) of F in Dc, then D is a finite union of intervals. Furthermore, the
system {F (x) ∈ I; x ∈ Dc}, where I ⊂ Dc is an interval, has as a solution a finite union
of intervals in Dc.

Proof. F is defined (continuous) at x whenever x ∈ D1 and f1(x) ∈ D2. Moreover,
F could possibly be continuous at only finitely many points {x1, x2, . . . , xM} where, for
k = 1, 2, . . . ,M , f1 is not continuous at xk or f2 is not continuous at f1(xk). This is so
because the domains of continuity of f1 and f2 are both finite unions of intervals. By
assumption, D2 is a finite union of intervals; so D2 =

SN2
i=1 I2,i, where the I2,i’s are intervals

in Dc. But for each i, f1(x) ∈ I2,i ⇔ x ∈ Sji
j=1 Ji,j , where the Ji,j ’s are again intervals in

Dc. Altogether, we have that

D = D1 ∩

⎛⎝N2[
i=1

ji[
j=1

Ji,j

⎞⎠ (∪{x1, . . . , xM}) = N2[
i=1

ji[
j=1

(D1 ∩ Ji,j) (∪{x1, . . . , xM}).

Since D1 is a finite union of intervals by assumption, each (D1 ∩ Ji,j) with 1 ≤ i ≤ N2, 1 ≤
j ≤ ji, is a finite union of intervals. Hence D itself is a finite union of intervals.

To prove the second statement in the lemma, we note that F (x) ∈ I is equivalent to
f2(f1(x)) ∈ I. By the assumption of the lemma, f2(X) ∈ I has as a solution a finite union
of intervals

SM2
i=1A2,i in Dc. Thus, F (x) ∈ I ⇔ f2(f1(x)) ∈ I ⇔ f1(x) ∈

SM2
i=1A2,i. But for

each i, f1(x) ∈ A2,i ⇔ x ∈ Ski
k=1Bi,k, where the Bi,k’s are again intervals in Dc. Altogether,

we have that

F (x) ∈ I ⇔ x ∈
M2[
i=1

ki[
k=1

Bi,k,

a finite union of intervals in Dc.
Lemma 3.3. Let f1 and f2 be two computer functions with domains of definition

(continuity) D1 and D2 in Dc, respectively. Assume that, for j = 1, 2, Dj is a finite
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union of intervals, and the system {fj(x) ∈ Ij ; x ∈ Dc}, where Ij ⊂ Dc is an interval, has
as a solution a finite union of intervals in Dc. If ⊗ ∈ O, F = f2⊗f1, and D is the domain
of definition (continuity) of F in Dc, then D is a finite union of intervals. Furthermore,
the system {F (x) ∈ I; x ∈ Dc}, where I ⊂ Dc is an interval, has as a solution a finite
union of intervals in Dc.

Proof. First we note that F is defined (continuous) at a point x whenever f1 and f2 are
both defined (continuous) at x. Moreover, F could possibly be continuous at only finitely
many points {x1, x2, . . . , xM} where, for k = 1, 2, . . . ,M , f1 is not continuous at xk or f2
is not continuous at xk. Thus F is defined (continuous) at x if and only if x ∈ D1 and
x ∈ D2 (or x ∈ {x1, x2, . . . , xM}). By assumption, D1 and D2 are finite unions of intervals;
so D1 =

SN1
i=1 I1,i and D2 =

SN2
j=1 I2,j , where the I1,i’s and the I2,j ’s are intervals in Dc.

Altogether, we have that F is defined (continuous) at x if and only if

x ∈
N1[
i=1

I1,i ∩
N2[
j=1

I2,j(∪{x1, x2, . . . , xM}) =
N1[
i=1

N2[
j=1

(I1,i ∩ I2,j) (∪{x1, x2, . . . , xM}),

a finite union of intervals in Dc.
To prove the second statement in the lemma, we note that F (x) ∈ I ⇔ f1(x) ∈

I1 and f2(x) ∈ I2, where I1 and I2 are both intervals in Dc. Hence, the solution of F (x) ∈ I
is the intersection of two finite unions of intervals inDc and is itself a finite union of intervals
in Dc.

Theorem 3.1. Let f be a computer function, and let D be the domain of definition
(continuity) of f in Dc. Then D is a finite union of intervals. Furthermore, the system
{f(x) ∈ I; x ∈ Dc}, where I ⊂ Dc is an interval, has as a solution a finite union of
intervals in Dc.

Proof. Since f is a computer function, f is obtained in finitely many steps from functions
in I via compositions and arithmetic operations. Since functions in I satisfy the statement
of the theorem and are themselves computer functions, we can apply the previous two
lemmas to assert that at each step of “constructing” f from the functions in I, we obtain a
computer function that satisfies the statement of the theorem. Hence, f itself satisfies the
statement of the theorem.

The last theorem can immediately be extended to all derivatives of computer functions.
Applying the rules of differentiation to the formula describing the function simply yields
another (usually more complicated) formula that is obviously again a computer function.
Hence, the theorem we have just proved holds as well for derivatives of computer functions:

Corollary 3.1. Let f be a computer function. Then, for a fixed n ∈ N , the domain of
definition (continuity) of f (n) in Dc is a finite union of intervals. Furthermore, the system
{f (n)(x) ∈ I; x ∈ Dc}, where I ⊂ Dc is an interval, has as a solution a finite union of
intervals in Dc.

In the following, we derive a standard representation of any computer function f around
any fixed point x0 of its domain of definition.

Lemma 3.4. Let f ∈ I be given. Then there exist mutually disjoint intervals I1, . . . , IM
in D, the domain of definition of f in Dc, such that

SM
k=1 Ik = D, and if x0 is an interior

point of Ik then there exists a positive real number σ such that, for 0 < x < σ,

f(x0 + x) = A+0 (x) +

i+kX
i=1

xq
+
i A+i (x) and(2)
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f(x0 − x) = A−0 (x) +

i−kX
i=1

xq
−
i A−i (x),(3)

where A±i (x), 0 ≤ i ≤ i±k , is a power series in x with positive radius of convergence,
A±i (0) 6= 0 for i = 1, . . . , i±k ; and where the q±i ’s are nonzero rational numbers that are
not positive integers.

Proof. The statement of the lemma can easily be verified for each f ∈ I.
Remark 3.1. Noninteger rational powers may appear in Eqs. (2) or (3) as a result of

the root function.
Remark 3.2. If in the above lemma x0 were a lower bound of Ik, then f(x0 + x) =

A0(x) +
Pir

i=1 x
qiAi(x) for 0 < x < σr, where σr is a fixed positive real number.

On the other hand, if in the above lemma x0 were an upper bound of Ik, then
f(x0− x) = B0(x)+

Pil
i=1 x

tiBi(x) for 0 < x < σl, where σl is a fixed positive real number.
Lemma 3.5. Let f1 and f2 be two computer functions that satisfy the requirements of

the previous lemma; then so do F⊗ = f2 ⊗ f1, where ⊗ ∈ {+, ·}; and F◦ = f2 ◦ f1.
Proof. Let D1, D2, and D be the domains of definition of f1, f2, and F⊗ in Dc,

respectively. Without loss of generality, we may assume that D = D1 ∩ D2. By the
assumption of the lemma, there exist mutually disjoint intervals I1, . . . , IM1 in D1, and
mutually disjoint intervals J1, . . . , JM2 in D2 such that

M1[
k=1

Ik = D1,
M2[
m=1

Jm = D2,

f1(x0 ± x) = A±0 (x) +

i±kX
i=1

xq
±
i A±i (x) for x0 inside Ik, and 0 < x < σ1(4)

f2(y0 ± y) = B±0 (y) +
j±mX
j=1

yt
±
j B±j (y) for y0 inside Jm, and 0 < y < σ2;

where σ1 and σ2 are both positive real numbers; A
±
i (x), 0 ≤ i ≤ i±k , and B

±
j (y), 0 ≤ j ≤ j±m,

are power series in x and y with positive radii of convergence; A±i (0) 6= 0 for i ∈ {1, . . . , i±k }
and B±j (0) 6= 0 for j ∈ {1, . . . , j±m}; and the q±i ’s and the t±j ’s are nonzero rational numbers
that are not positive integers. As a reminder, we note that σ1, the A±i ’s, and the q±i ’s
depend on x0. Similarly, σ2, the B

±
j ’s, and the t

±
j ’s depend on y0.

For 1 ≤ k ≤M1 and 1 ≤ m ≤M2, let Ek,m = Ik∩Jm. Then Ek1,m1∩Ek2,m2 = ∅ if k1 6=
k2 or m1 6= m2; so {Ek,m; 1 ≤ k ≤ M1, 1 ≤ m ≤ M2} are mutually disjoint intervals in
D = D1 ∩D2. Moreover,

[
1 ≤ k ≤ M1
1 ≤ m ≤ M2

Ek,m =
[

1 ≤ k ≤ M1
1 ≤ m ≤ M2

(Ik ∩ Jm) =
M1[
k=1

⎛⎝Ik ∩ M2[
m=1

Jm

⎞⎠

=

⎛⎝M1[
k=1

Ik

⎞⎠ ∩
⎛⎝ M2[
m=1

Jm

⎞⎠ = D1 ∩D2 = D.



42 Shamseddine and Berz

Now let x0 be a point inside Ek,m. Then x0 is simultaneously inside Ik and Jm; hence
for x smaller than the minimum of σ1 and σ2 in (4), we have that

F⊗(x0 ± x) = f2(x0 ± x)⊗ f1(x0 ± x) =

⎛⎜⎝ i±kX
i=0

xq
±
i A±i (x)

⎞⎟⎠⊗
⎛⎝ j±mX
j=0

xt
±
j B±j (x)

⎞⎠ ,

where q±0 = t±0 = 0. It is easy to check that the sum or product of two expressions of the
form (2) or (3) will again yield an expression of the same form. This finishes the proof of
the first part of the lemma.

The proof of the second part of the lemma is more involved, and we will only include
a sketch of the proof here. Let x0 be an interior point of the domain of definition of F◦.
Then

f1(x0 ± x) = A±0 (x) +

i±kX
i=1

xq
±
i A±i (x) for 0 < x < σ1

f2(A
+
0 (0)± y) = B±0 (y) +

j±mX
j=1

yt
±
j B±j (y) for 0 < y < σ2

f2(A
−
0 (0)± y) = C±0 (y) +

j±nX
j=1

yp
±
j C±j (y) for 0 < y < σ3,

where σ1, σ2 and σ3 are all positive real numbers; A
±
i (x), 0 ≤ i ≤ i±k , B

±
j (y), 0 ≤ j ≤ j±m, and

C±j (y), 0 ≤ j ≤ j±n , are power series in x and y with positive radii of convergence; A
±
i (0) 6= 0

for i ∈ {1, . . . , i±k }, B
±
j (0) 6= 0 for j ∈ {1, . . . , j±m}, and C±j (0) 6= 0 for j ∈ {1, . . . , j±n };

and the q±i ’s, the t±j ’s and the p±j ’s are nonzero rational numbers that are not positive

integers. Let A±00(x) = A±0 (x) − A±0 (0). Then A±00(x) has no constant term, and we have,

for 0 < x < σ1, that f1(x0±x) = A±0 (0)+A±00(x)+
Pi±

k
i=1 x

q±i A±i (x). Since x0 is an interior

point of the domain of definition of F◦ = f2◦f1 and A±00(x)+
Pi±

k
i=1 x

q±i A±i (x) has no constant

term, there exists a real σ, 0 < σ ≤ σ1, such that |A±00(x) +
Pi±k

i=1 x
q±i A±i (x)| < min(σ2, σ3)

and A±00(x) +
Pi±

k
i=1 x

q±i A±i (x) has the same sign for all x satisfying 0 < x < σ. Therefore,
for 0 < x < σ, we have that

F◦(x0 ± x) = f2 (f1(x0 ± x)) = f2

⎛⎜⎝A±0 (0) +A±00(x) +

i±
kX

i=1

xq
±
i A±i (x)

⎞⎟⎠
= E0

⎛⎜⎝A±00(x) + i±kX
i=1

xq
±
i A±i (x)

⎞⎟⎠(5)

+
JX

j=1

¯̄̄̄
¯̄̄A±00(x) + i±

kX
i=1

xq
±
i A±i (x)

¯̄̄̄
¯̄̄
sj

Ej

⎛⎜⎝A±00(x) + i±
kX

i=1

xq
±
i A±i (x)

⎞⎟⎠ ,

where Ej , 0 ≤ j ≤ J, are power series; Ej(0) 6= 0 for 1 ≤ j ≤ J ; and the sj ’s are nonzero
rational numbers that are not positive integers.
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Note that for 0 ≤ j ≤ J , we could factor the leading term αqx
q in¯̄̄̄

A±00(x) +
Pi±k

i=1 x
q±i A±i (x)

¯̄̄̄sj
and obtain αqx

q multiplied by a power series of an expression

of the form (2) or (3). Using an argument similar to that of the treatment of series of series in

[Osgood1938a, pages 205-208], we obtain that Ej

µ
A±00(x) +

Pi±
k
i=1 x

q±i A±i (x)
¶
, 0 ≤ j ≤ J ,

and

¯̄̄̄
A±00(x) +

Pi±k
i=1 x

q±i A±i (x)

¯̄̄̄sj
, 1 ≤ j ≤ J , are all of the form (2) or (3). Hence, F◦(x0±x)

in (5) is itself of the form (2) or (3).
Theorem 3.2. Let f be a computer function. Then there exist mutually disjoint

intervals I1, . . . , IM in D, the domain of definition of f in Dc = [−L,−l] ∪ [l, L], such
that

SM
k=1 Ik = D, and if x0 is an interior point of Ik then there exists a positive real

number σ such that, for 0 < x < σ,

f(x0 ± x) = A±0 (x) +

i±kX
i=1

xq
±
i A±i (x),

where A±i (x), 0 ≤ i ≤ i±k , is a power series in x with a positive radius of convergence,
A±i (0) 6= 0 for i = 1, . . . , i±k , and the q±i ’s are nonzero rational numbers that are not
positive integers.

Proof. Since f is a computer function, f is obtained in finitely many steps from functions
in I via compositions and arithmetic operations. Using induction, we obtain the result
immediately from Lemmas (3.4) and (3.5).

Since the family of computer functions is closed under differentiation to any order n,
the theorem we have just proved holds as well for derivatives of computer functions.

In the following sections, we extend real computer functions to the nonarchimedean field
R and study the calculus of the resulting class of functions. We show how implementing this
calculus on a computer can be used to accurately compute the derivatives of the original
real functions at given real points whenever the derivatives exist.

4 Theoretical Tools about R
In this section, we discuss some new theoretical results about R, which will prove useful
for computing derivatives of real computer functions.

Definition 4.1. (k-Equidifferentiable Functions on R) Let k > 0 in Q be given. A
function f : D ⊂ R → R is said to be k-equidifferentiable with derivative g at the point
x0 ∈ D if, for any at most finite positive � ∈ R, we can find a positive δ ∈ R satisfying
δk ∼ � such that¯̄̄̄

f(x)− f(x0)

x− x0
− g

¯̄̄̄
< � for any x ∈ D\{x0} with |x− x0| < δ.

If this is the case, we write g = f 0(x0).
Remark 4.1. If k = 1, we simply say that f is equidifferentiable at x0.
Theorem 4.1. (Derivatives are Differential Quotients) Let f : D ⊂ R→ R be a

function that is k-equidifferentiable at the point x0 ∈ D for some k > 0 in Q. Let h be such
that |h| ¿ dr, and x0 + h ∈ D, where d is the positive infinitely small number introduced
in [Berz1992b], [Berz1994a], [Berz1996a], and r is a given rational number. Then the
derivative of f satisfies

f 0(x0) =k·r
f(x0 + h)− f(x0)

h
,
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which means that the difference between the derivative and the differential quotient is at most
infinitely smaller in absolute value than dk·r. In particular, the real part of the derivative
can be calculated exactly from the differential quotient for any infinitely small h.

Proof. Let h be as in the requirements, then h = h0d
rh(1 + h1), where h0 ∈ R,

|h1| at most infinitely small, and rh > r. Choose now � = dk·(r+rh)/2; since f is k-
equidifferentiable at x0, we can find a positive δ ∼ �1/k = d(r+rh)/2 such that for any
∆x with |∆x| < δ, the differential quotient differs by less than � from the derivative, and
hence | {f(x0 +∆x)− f(x0)} /∆x− f 0(x0)| is infinitely smaller than dk·r. But the above h
clearly satisfies |h| < δ.

Definition 4.2. (Continuation of Real Computer Functions) Let f be a real computer
function. Then f is given around any given real point of its domain of definition in Dc by
a finite combination of roots and power series. Since roots and power series have already
been extended to R [Berz1992b], [Berz1994a], [Berz1996a], f is extended to R in a natural
way similar to that of the extension of power series from R to C.

Theorem 4.2. Let f be a computer function that is differentiable at the point x0 ∈ Dc.
Then the continued function f̄ is k-equidifferentiable at x0 for some positive rational number
k; and the derivatives of f and f̄ at x0 agree.

Proof. Since f is differentiable at x0, there exists a positive real number σ such that,

for x ∈ R and 0 < x < σ, f(x0 ± x) = f(x0) ± f 0(x0)x +
P∞

i=2 α
±
i x

i +
PJ±

j=1 x
q±j A±j (x);

where q±1 , . . . , q
±
J± are noninteger rational numbers greater than 1, and A±0 , A

±
1 , . . . , A

±
J±

are power series in x. Let

q± =

(
min{q±j ; 1 ≤ j ≤ J±} if {q±j ; 1 ≤ j ≤ J±} 6= ∅
∞ if {q±j ; 1 ≤ j ≤ J±} = ∅ ,

let q = min(q+, q−), and let k = min{1, q − 1}. Then 0 < k ≤ 1. We show that the
continued function f̄ is k-equidifferentiable at x0, with derivative f̄

0(x0) = f 0(x0).
Let x ∈ R satisfy 0 < x < σ and x 6≈ σ. Then f̄(x0±x) = f(x0)±f 0(x0)x+

P∞
i=2 α

±
i x

i+PJ±
j=1 x

q±j A±j (x). We have that¯̄̄̄
¯ f̄(x0 ± x)− f(x0)

(±x) − f 0(x0)

¯̄̄̄
¯ =

¯̄̄̄
¯̄± ∞X

i=2

α±i x
i−1 ±

J±X
j=1

xq
±
j −1A±j (x)

¯̄̄̄
¯̄ .

Let � ∈ R be positive and at most finite. As a first case, assume � is finite, and let �r = <(�),
the real part of �. Since the limit of

¯̄̄
±P∞

i=2 α
±
i y

i−1 ±PJ±
j=1 y

q±j −1A±j (y)
¯̄̄
, as y → 0+, y ∈ R,

is equal to zero, there exists a real δ, 0 < δ < σ/2, such that¯̄̄̄
f(x0 ± y)− f(x0)

(±y) − f 0(x0)

¯̄̄̄
<

�r
2
whenever y ∈ R and 0 < y < 2δ.

Now let x ∈ R be such that 0 < x < δ, and let xr = <(x). If xr = 0, then x is infinitely
small. Thus

¯̄
{f̄(x0 ± x)− f(x0)}/(±x)− f 0(x0)

¯̄
is infinitely small, and hence smaller than

the finite �. If xr 6= 0, then 0 < xr < 2δ. Therefore,¯̄̄̄
¯ f̄(x0 ± x)− f(x0)

(±x) − f 0(x0)

¯̄̄̄
¯ =0

¯̄̄̄
f(x0 ± xr)− f(x0)

(±xr)
− f 0(x0)

¯̄̄̄
<

�r
2
.

Hence,
¯̄
{f̄(x0 + x)− f(x0)}/x− f 0(x0)

¯̄
< � whenever 0 < |x| < δ. Note that, since � and

δ are both finite, δk ∼ �.
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As a second case, assume � is infinitely small. Let

m± =

(
min{i ≥ 2 : α±i 6= 0} if {i ≥ 2 : α±i 6= 0} 6= ∅
∞ if {i ≥ 2 : α±i 6= 0} = ∅

.

If m± =∞, let α±m± = 0. With the convention 1/0 =∞, let

δ = min

½³
�/|A+1 (0)|

´1/k
,
³
�/|A−1 (0)|

´1/k
,
³
�/|α+m+ |

´1/k
,
³
�/|α−m− |

´1/k¾
.

Then δk ∼ �, and if 0 < |x| < δ, then |{f̄(x0 + x) − f(x0)}/x − f 0(x0)| < �. Thus f̄ is
k-equidifferentiable at 0, and f̄ 0(x0) = f 0(x0).

Corollary 4.1. Let f be a real computer function that is differentiable at x0 ∈ Dc,
and let f̄ be the continued function . Then we have that

f 0(x0) =0
f̄(x0 + d)− f(x0)

d
.

Having built the necessary theoretical tools, we next try to use the results of this section
to compute derivatives of real functions. In the rest of this paper, we will use f instead of
f̄ to represent the continuation of a real computer function f .

5 Computation of Derivatives

In this section, we develop a criterion that will allow us not only to check the continuity
and the differentiability of a real computer function f at a real point x0, but also to obtain
all existing derivatives of f at x0.

Lemma 5.1. Let f be a computer function. Then f is defined at x0 if and only if f(x0)
can be computed on a computer.
This lemma hinges on a careful implementation of the intrinsic functions and operations,
in particular in the sense that they should be executable for any floating point number in
the domain of definition that produces a result within the range of allowed floating point
numbers.

Lemma 5.2. Let f be a computer function, and let x0 be such that f(x0 − d), f(x0),
and f(x0 + d) are all defined. Then f is continuous at x0 if and only if

f(x0 − d) =0 f(x0) =0 f(x0 + d).

If f(x0) and f(x0 + d) are defined, but f(x0 − d) is not, then f is continuous at x0 if
and only if f(x0 + d) =0 f(x0).

Finally, if f(x0) and f(x0 − d) are defined, but f(x0 + d) is not, then f is continuous
at x0 if and only if f(x0 − d) =0 f(x0).

Proof. We prove the first part of the lemma; the proofs of the two other parts follow
similar arguments. Since f is a computer function and f(x0−d) and f(x0+d) are defined,
we have that

f(x0 + x) = A0(x) +
JrX
j=1

xqjAj(x) and f(x0 − x) = B0(x) +
JlX
j=1

xtjBj(x)

for 0 < x < σ, where σ is a positive real number; where the Aj ’s and the Bj ’s are power
series in x, where Aj(0) 6= 0 for 1 ≤ j ≤ Jr and Bj(0) 6= 0 for 1 ≤ j ≤ Jl; and where
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the qj ’s and the tj ’s are nonzero rational numbers that are not positive integers. Let
A0(x) =

P∞
i=0 αix

i and B0(x) =
P∞

i=0 βix
i. Then f is continuous at x0 if and only if qj > 0

for all j ∈ {1, . . . , Jr}, tj > 0 for all j ∈ {1, . . . , Jl}, and α0 = β0 = f(x0); that is, if and
only if f(x0 + d) =0 f(x0) =0 f(x0 − d).

Theorem 5.1. Let f be a computer function that is continuous at x0, and let f(x0−d)
and f(x0 + d) be both defined. Then f is differentiable at x0 if and only if

f(x0 + d)− f(x0)

d
and

f(x0)− f(x0 − d)

d

are both at most finite in absolute value, and their real parts agree. In this case,

f(x0 + d)− f(x0)

d
=0 f

0(x0) =0
f(x0)− f(x0 − d)

d
.

If f is differentiable at x0, then f is twice differentiable at x0 if and only if

f(x0 + 2d)− 2f(x0 + d) + f(x0)

d2
and

f(x0)− 2f(x0 − d) + f(x0 − 2d)
d2

are both at most finite in absolute value, and their real parts agree. In this case

f(x0 + 2d)− 2f(x0 + d) + f(x0)

d2
=0 f

(2)(x0) =0
f(x0)− 2f(x0 − d) + f(x0 − 2d)

d2
.

In general, if f is (n − 1) times differentiable at x0, then f is n times differentiable at x0
if and only if

d−n

⎛⎝ nX
j=0

(−1)n−j
Ã

n
j

!
f (x0 + jd)

⎞⎠ and d−n

⎛⎝ nX
j=0

(−1)j
Ã

n
j

!
f (x0 − jd)

⎞⎠
are both at most finite in absolute value, and their real parts agree. In this case,

d−n

⎛⎝ nX
j=0

(−1)n−j
Ã

n
j

!
f (x0 + jd)

⎞⎠ =0 f (n)(x0) =0 d−n
⎛⎝ nX
j=0

(−1)j
Ã

n
j

!
f (x0 − jd)

⎞⎠ .

Proof. Since f is continuous at x0, we have that

f(x0 + x) = f(x0) +
∞X
i=1

αix
i +

JrX
j=1

xqjAj(x)

f(x0 − x) = f(x0) +
∞X
i=1

βix
i +

JlX
j=1

xtjBj(x)(6)

for 0 < x < σ, where σ is a positive real number, where the Aj ’s and the Bj ’s are power
series in x that do not vanish at x = 0, and where the qj ’s and the tj ’s are noninteger
positive rational numbers. Observe that f is n times differentiable at x0 if and only if

qj > n for 1 ≤ j ≤ Jr, tj > n for 1 ≤ j ≤ Jl, and αj = (−1)jβj for 1 ≤ j ≤ n.(7)

Assume f is differentiable at x0. Then, using (7), we have that

qj > 1 ∀ j ∈ {1, . . . , Jr}, tj > 1 ∀ j ∈ {1, . . . , Jl}, and α1 = −β1 = f 0(x0).
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Hence,

f(x0 + d)− f(x0)

d
=

∞X
i=1

αid
i−1 +

JrX
j=1

dqj−1Aj(d) =0 α1 = f 0(x0).

Similarly,

f(x0)− f(x0 − d)

d
= −

∞X
i=1

βid
i−1 −

JlX
j=1

dtj−1Bj(d) =0 −β1 = f 0(x0).

Combining the above two equations, we obtain that

f(x0 + d)− f(x0)

d
=0 f

0(x0) =0
f(x0)− f(x0 − d)

d
.

Now assume that (f(x0+d)−f(x0))/d and (f(x0)−f(x0−d))/d are both at most finite in
absolute value, and their real parts agree. Then, using (6), |P∞

i=1 αid
i−1+

PJr
j=1 d

qj−1Aj(d)|
and |−P∞

i=1 βid
i−1 −PJl

j=1 d
tj−1Bj(d)| are both at most finite, and

∞X
i=1

αid
i−1 +

JrX
j=1

dqj−1Aj(d) =0 −
∞X
i=1

βid
i−1 −

JlX
j=1

dtj−1Bj(d).

Hence,
qj > 1 ∀ j ∈ {1, . . . , Jr}, tj > 1 ∀ j ∈ {1, . . . , Jl}, and α1 = −β1,

from which we infer, using (7), that f is differentiable at x0 with

f 0(x0) = α1 = −β1 =0
f(x0 + d)− f(x0)

d
=0

f(x0)− f(x0 − d)

d
.

This finishes the proof of the first part of the theorem.
Since the second part of the theorem is only a special case of the last one, with n = 2,

we will go directly to proving the last part of the theorem. Note that since f is (n − 1)
times differentiable at x0,

f(x0 + x) =
n−1X
i=0

f (i)(x0)

i!
xi +

∞X
i=n

αix
i +

JrX
j=1

xqjAj(x)

f(x0 − x) =
n−1X
i=0

(−1)i f
(i)(x0)

i!
xi +

∞X
i=n

βix
i +

JlX
j=1

xtjBj(x)

for 0 < x < σ, where σ is a positive real number, where the Aj ’s and the Bj ’s are as before,
and where the qj ’s and the tj ’s are noninteger rational numbers greater than n− 1.

Assume f is n times differentiable at x0. Then

qj > n ∀ j ∈ {1, . . . , Jr}, tj > n ∀ j ∈ {1, . . . , Jl}, n! αn = (−1)nn! βn = f (n)(x0).

It can be shown by induction on n that

d−n

⎛⎝ nX
j=0

(−1)n−j
Ã

n
j

!
f (x0 + jd)

⎞⎠ =0 n! αn, and

d−n

⎛⎝ nX
j=0

(−1)j
Ã

n
j

!
f (x0 − jd)

⎞⎠ =0 (−1)nn! βn.
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Therefore,

d−n

⎛⎝ nX
j=0

(−1)n−j
Ã

n
j

!
f (x0 + jd)

⎞⎠ =0 f (n)(x0)

=0 d−n

⎛⎝ nX
j=0

(−1)j
Ã

n
j

!
f (x0 − jd)

⎞⎠ .

Now assume that

d−n

⎛⎝ nX
j=0

(−1)n−j
Ã

n
j

!
f (x0 + jd)

⎞⎠ and

d−n

⎛⎝ nX
j=0

(−1)j
Ã

n
j

!
f (x0 − jd)

⎞⎠
are both at most finite in absolute value, and their real parts agree. Then

qj > n ∀ j ∈ {1, . . . , Jr}, tj > n ∀ j ∈ {1, . . . , Jl}, and n! αn = (−1)nn! βn,

from which we infer, again using (7), that f is n times differentiable at x0 with

f (n)(x0) = n! αn = (−1)nn! βn =0 d−n

⎛⎝ nX
j=0

(−1)n−j
Ã

n
j

!
f (x0 + jd)

⎞⎠
=0 d−n

⎛⎝ nX
j=0

(−1)j
Ã

n
j

!
f (x0 − jd)

⎞⎠ .

This finishes the proof of the theorem.
Since knowledge of f(x0−d) and f(x0+d) gives us all the information about a computer

function f in a real positive radius σ around x0, we have the following result which states
that, from the mere knowledge of f(x0− d) and f(x0+ d), we can find at once the order of
differentiability of f at x0 and the accurate values of all existing derivatives.

Theorem 5.2. Let f be a computer function that is continuous at x0. Then f is n
times differentiable at x0 if and only if f(x0− d) and f(x0+ d) are both defined and can be
written as

f(x0 − d) =n f(x0) +
nX

j=1

(−1)jαjdj and f(x0 + d) =n f(x0) +
nX

j=1

αjd
j ,

where the αj’s are real numbers. Moreover, in this case f
(j)(x0) = j! αj for 1 ≤ j ≤ n.

Remark 5.1. The theorem above is similar in flavor to the Pointformula à la Cauchy
[Berz1992b], [Berz1994a], [Berz1996a], which holds for the continuations of power series
around a real point x0. In the latter case, the continued function is completely determined
by its value at x0 + h for any arbitrary nonzero h infinitely small in absolute value.

In the following section, we apply our theory to find the order of differentiability and
all existing derivatives (at zero) of two functions for which the traditional methods of AD
fail.
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6 Examples

As a first example, we consider a function mentioned in the introduction and study its
differentiability at 0.

Example 1: Consider the function f(x) = x2
p
|x|+ exp(x). It is easy to show that f

is twice differentiable at 0 with f(0) = f 0(0) = f (2)(0) = 1 and that f is not three times
differentiable at 0. We will show now how using the result of Theorem (5.1) will lead us to
the same conclusion. First we note that f(−d), f(0), and f(d) are all defined.

It is useful to look at what goes on inside the computer for this simple example.
Altogether, we need seven memory locations to store the variable, the intermediate values,
and the function value. These seven memory locations are

x, S1 = abs(x), S2 = sqrt(S1), S3 = x ∗ x,
S4 = S2 ∗ S3, S5 = exp(x), a = S4 + S5.

Hence, we can look at �F (f) as a function from R7 into R7. Let⎧⎪⎪⎪⎨⎪⎪⎪⎩
�E : R→ R7; �E(x) = (x, 0, 0, 0, 0, 0, 0)
�F : R7 → R7; �F (x, p2, p3, p4, p5, p6, p7) = (x, S1, S2, S3, S4, S5, a)
P : R7 → R; P (x, S1, S2, S3, S4, S5, a) = a

G : R→ R; G(x) = P ◦ �F ◦ �E(x).

Then G(x) = a =M f(x), where M is an upper bound of the support points that can be
obtained on the computer.

If we enter the value x = −d, then the seven memory locations will be filled as follows:

x = −d, S1 = d, S2 = d1/2, S3 = d2,

S4 = d5/2, S5 =
PM

j=0(−1)jdj/j!, a = d5/2 +
PM

j=0(−1)jdj/j!.

Hence, the output is G(−d) = 1− d+ d2/2! + d5/2 +
PM

j=3(−1)jdj/j! =M f(−d).
Similarly, we find that G(0) = 1 = f(0), and

G(d) = 1 + d+ d2/2! + d5/2 +
MX
j=3

dj/j! =M f(d)

G(−2d) = 1− 2d+ 2d2 + 25/2d5/2 +
MX
j=3

(−2)jdj/j! =M f(−2d)

G(2d) = 1 + 2d+ 2d2 + 25/2d5/2 +
MX
j=3

2jdj/j! =M f(2d)

G(−3d) = 1− 3d+ 9d2/2 + 35/2d5/2 +
MX
j=3

(−3)jdj/j! =M f(−3d)

G(3d) = 1 + 3d+ 9d2/2 + 35/2d5/2 +
MX
j=3

3jdj/j! =M f(3d).

Since f(d) =0 1 = f(0) =0 f(−d), f is continuous at 0. A simple computation shows that

f(d)− f(0)

d
=0 1 =0

f(0)− f(−d)
d

,
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from which we infer that f is differentiable at 0, with f 0(0) = 1. Also

f(2d)− 2f(d) + f(0)

d2
=0 1 =0

f(0)− 2f(−d) + f(−2d)
d2

,

from which we conclude that f is twice differentiable at 0, with f (2)(0) = 1. On the other
hand,

f(3d)− 3f(2d) + 3f(d)− f(0)

d3
=0 d

−1/2
³
35/2 − 25/23 + 3

´
+ 1,

from which we readily obtain that |(f(3d) − 3f(2d) + 3f(d)− f(0))/d3| is infinitely large.
Hence, f is not three times differentiable at 0.

In the following example, we study a function which appears in many physics problems
and which is infinitely often differentiable everywhere, including at 0.

Example 2: The electric field of a spherical Gaussian charge is given, up to a
normalizing constant, by

f(x) =

(
{1− exp (−x2)}/x if x 6= 0
0 if x = 0

,(8)

where x is the radial distance from the origin of the charge.
It is easy to check that f(x) =

P∞
j=0(−1)jx2j+1/(j+1)! for all x ∈ R, where the infinite

series converges for all x ∈ R. Hence, f is infinitely often differentiable at 0.
Next we show that application of Theorem (5.2) to the function in (8) not only proves

the differentiability of f at 0 up to a very high order, but also allows us to obtain all
derivatives at once. Evaluating f(−d) and f(d) on the computer yields

f(−d) =M

[(M−1)/2]X
j=0

(−1)j+1 d2j+1

(j + 1)!
and f(d) =M

[(M−1)/2]X
j=0

(−1)j d2j+1

(j + 1)!
,

where [(M−1)/2] is the largest integer that does not exceed (M−1)/2. Applying Theorem
(5.2), we obtain for all k, 0 ≤ k ≤ [(M − 1)/2], that

f (2k)(0) = 0 and f (2k+1)(0) = (−1)k (2k + 1)!
(k + 1)!

.

The two methods discussed above for computing derivatives of real computer functions
can be of practical use only if we can implement the R numbers on a computer. We do have
a first version of the implementation using COSY INFINITY [Berz1995a], [Berz1996b], and
in the following section we show briefly how this is done.

7 Implementation

Besides allowing illuminating theoretical conclusions, the strength of the R numbers is
that they can be used in practice, and even in a computer environment. In this respect,
they differ from the non-constructive structures in Non-Standard Analysis [Laugwitz1973a],
[Robinson1974a].

An implementation of the R numbers is not as direct as one of the Differential Algebras
[Berz1989a] since R is infinite dimensional. However, as we shall see now, it is still possible
to implement the structure in a very useful way. Since there are only finitely many support
points below every bound, it is possible to pick any such bound and store all the values of
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a function to the left of it. Hence, each R number is represented by these values as well as
the value of the bound.

The sum of two such numbers can then be computed for all values to the left of the
minimum of the two bounds. Hence, the minimum of the bounds is the bound of the sum.
In a similar way, it is possible to find a bound below which the product of two such numbers
can be computed from the bounds of the two numbers. Altogether, the bound to which
each individual number is known is carried along through all arithmetic.

8 Computer Functions of Many Variables

Since we know now how to compute the nth order derivative of a real computer function of
one variable at a given real point x0 whenever the nth order derivative exists, the following
lemma shows how to find all nth order partial derivatives at a given real point �p0 of a
function f : Rm → R which can be represented on a computer whenever all the nth order
partial derivatives exist and are continuous in a neighborhood of �p0.

Lemma 8.1. Let f : Rm → R be a function representable on a computer whose
nth order partial derivatives exist and are continuous in the neighborhood of the point
�p0 = (x01, x02, . . . , x0m). Then the nth order partial derivatives of f at �p0 can always
be computed in terms of nth order derivatives of real computer functions of one variable.

Proof. Let l be the number of nth order partial derivatives of f . We note in passing that
it can be shown [Berz1989a] by induction on n and m that l = (n+m− 1)!/(n! (m− 1)!).
Let k = l ·m, and let p1, p2, . . . , pk denote the first k prime numbers. For j = 1, . . . , k, let
αj = n+1

√
pj . For i = 1, . . . , l, let

fi(x) = f(x01 + α(i−1)m+1x, x02 + α(i−1)m+2x, . . . , x0m + αimx).

Then fi, i = 1, . . . , l, are l real computer functions of x, n times differentiable at 0.
Evaluating (dnfi/dx

n)|x=0 for i = 1, . . . , l yields l equations in the l unknowns

∂nf

∂xn11 ∂xn22 . . . ∂xnmm

¯̄̄̄
�p=�p0

, with

(
n1, n2, . . . , nm ∈ {0, 1, . . . , n}, and
n1 + n2 + · · ·+ nm = n

.

The matrix cM of the coefficients has as entries products of integers with the different
α’s raised to exponents between 0 and n. In the ith row, we have only products of the
form cn;n1,n2,...,nmα

n1
(i−1)m+1α

n2
(i−1)m+2, . . . , α

nm
im , where cn;n1,n2,...,nm is a positive integer. The

determinant of cM is the sum of l! terms, each of which is the product of a positive integer
and the α’s raised to exponents less than or equal to n, and such that not all the exponents
in any one term agree with those in any of the remaining (l!− 1) terms. By our choice of
the α’s, no cancellation in the evaluation of the determinant can occur. Hence, det cM 6= 0.

It is worth noting that the choice of the α’s above is far from being the only one possible.
Let α1, α2, . . . , αk be any set of k real numbers. We look at det cM as a function from Rk

into R. A purely statistical argument shows that it is very unlikely that det cM be zero for
a given choice of numbers. We are led to believe that there exist even uncountably many
choices of (α1, α2, . . . , αk) ∈ Rk that give a nonvanishing determinant. Here we provide
simpler choices of the α’s only in the case m = 2: For m = 2, we have that l = n+ 1 and
k = 2(n + 1). For i = 1, 2, . . . , n + 1, let α2i−1 = 1 and α2i = βi−1, where β0 = 0 and
βj1 6= βj2 if j1 6= j2 in {0, 1, . . . , n}.
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