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Abstract

The formal process of the evaluation of derivatives using some of the various modern
methods of computational differentiation can be recognized as an example for the
application of conventional “approximate” numerical techniques on a non-archimedean
extension of the real numbers. In many cases, the application of “infinitely small”
numbers instead of “small but finite” numbers allows the use of the old numerical
algorithm, but now with an error that in a rigorous way can be shown to become
infinitely small (and hence irrelevant).
While intuitive ideas in this direction have accompanied analysis from the early days

of Newton and Leibniz, the first rigorous work goes back to Levi-Civita, who introduced
a number field that in the past few years turned out to be particularly suitable for
numerical problems. While Levi-Civita’s field appears to be of fundamental importance
and simplicity, efforts to introduce advanced concepts of calculus on it are only very
new. In this paper, we address several of the basic questions providing a foundation
for such a calculus. After addressing questions of algebra and convergence, we study
questions of differentiability, in particular with an eye to usefulness for practical work.

Keywords: Levi-Civita, non-standard analysis, non-Archimedean analysis, analysis
with infinitesimals, differentials, infinitesimals, derivatives as differential quotients,
computer functions, differential quotients, computation of derivatives, R.

1 Introduction

The real numbers owe their fundamental role in mathematics and the sciences to certain
special properties. To begin, like all fields, they allow arithmetic calculation. Furthermore,
they allow measurement; any result of even the finest measurement can be expressed as a
real number. Additionally, they allow expression of geometric concepts, which (for example
because of Pythagoras) requires the existence of roots—a property that at the same time is
beneficial for algebra. Furthermore, they allow the introduction of certain transcendental
functions such as exp, which are important in the sciences and arise from the concept of
power series. In addition, they allow the formulation of an analysis involving differentiation
and integration, a requirement for the expression of even simple laws of nature.

While the first two properties are readily satisfied by the rational numbers, the geometric
requirements demand using at least the set of algebraic numbers. Transcendental functions,
being the result of limiting processes, require Cauchy completeness, and it is easily shown
that the real numbers are the smallest ordered field having this property. Because it
is at such a basic level of our scientific language, hardly any thought is spent on the
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fundamental question of whether there may be other useful number systems having the
required properties.

This question is perhaps even more intriguing in light of the observation that, while
the real numbers R and their algebraic completion C as well as the vector space Rn

have certainly proven extremely successful for the expression and rigorous mathematical
formulation of many physical concepts, they have two shortcomings in interpreting intuitive
scientific concepts. First, they do not permit a direct representation of improper functions
such as those used for the description of point charges; of course, within the framework of
distributions, these concepts can be accounted for in a rigorous fashion, but at the expense
of the intuitive interpretation. Second, another intuitive concept of the fathers of analysis,
and for that matter quite a number of modern scientists sacrificing rigor for intuition,
the idea of derivatives as “differential quotients” as slopes of secants with infinitely small
abscissa and ordinate differences cannot be formulated rigorously within the real numbers.
Especially for our purposes of computational differentiation, the concept of “derivatives
are differential quotients” would of course be a remedy to many a problem, since it would
replace any attempted limiting process involving the unavoidable cancellation of digits by
computer-friendly algebra in a new number system.

The problems mentioned in the preceding paragraphs might be solved if, in addition to
the real numbers, there were also “infinitely small” and “infinitely large” numbers; that is
if the number system were non-archimedean. Since any archimedean Cauchy complete field
is isomorphic to R, it is indeed the absence of such numbers that makes the real numbers
unique. However, since the “fine structure” of the continuum is not observable by means of
science, archimedicity is not required by nature, and leaving it behind would possibly allow
the treatment of the above two concepts. So it appears on the one hand legitimate and on
the other hand intriguing to study such number systems, as long as the above mentioned
essential properties of the real numbers are preserved.

There are simple ways to construct non-archimedean extensions of the real numbers
(see for example the books of Rudin [Rudin1987a], Hewitt and Stromberg [Hewitt1969a],
or Stromberg [Stromberg1981a], or at a deeper level the works of Fuchs [Fuchs1963a],
Ebbinghaus et al.[Ebbinghaus1992a] or Lightstone and Robinson [Lightstone1975a]), but
such extensions usually quickly fail to satisfy one or several of the above criteria of a “useful”
field, often already regarding the universal existence of roots.

An important idea for the problem of the infinite came from Schmieden and Laug-
witz [Schmieden1958a], which was then quickly applied to delta functions [Laugwitz1959a]
[Laugwitz1961b] and Distributions [Laugwitz1961a]. Certain equivalence classes of se-
quences of real numbers become the new number set, and, perhaps most interesting, logical
statements are considered proved if they hold for “most” of the elements of the sequences.
This approach lends itself to the introduction of a general scheme that allows the transfer of
many properties of the real numbers to the new structure. This method supplies an elegant
tool that, in particular, permits the determination of derivatives as differential quotients.

Unfortunately, the resulting structure has two shortcomings. On the one hand, while
very large, it is not a field; there are zero divisors, and the ring is also not totally ordered.
On the other hand, the structure is already so large that individual numbers can never
be represented by only a finite amount of information and are thus out of reach for
computational problems. Robinson [Robinson1961a] recognized that the intuitive method
can be generalized [Laugwitz1973a] by a nonconstructive process based on model theory
to obtain a totally ordered field, and initiated the branch of non-standard analysis. Some
of the standard works (pun certainly intended!) describing this field are from Robinson
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[Robinson1974a], Stroyan and Luxemburg [Stroyan1976a], and Davis [Davis1977a]. In this
discipline, the transfer of theorems about real numbers is extremely simple, although at the
expense of a nonconstructive process invoking the axiom of choice, leading to an exceedingly
large structure of numbers and theorems. The nonconstructiveness makes practical use
difficult and leads to several oddities, for example, the fact that the sign of certain elements,
although assured to be either positive or negative, cannot be decided.

Another approach to a theory of infinitely small numbers originated in game theory,
of all places, and was pioneered by John Conway in his marvel “On Numbers and
Games” [Conway1976a]. A humorous and totally non-standard (pun again intended)
yet at the same time very insightful account of these numbers can also be found in
Donald Knuth’s mathematical novelette “Surreal Numbers: How Two Ex-Students Turned
to Pure Mathematics and Found Total Happiness” [Knuth1974a]. (We wonder about
the applicability of the method to social problems of a larger scale, and as editors
of these proceedings gladly acknowledge another work of Knuth, namely his fabulous
TEX typesetting system.) Other important accounts on surreal numbers are by Alling
[Alling1987a] and Gonshor [Gonshor1986a].

In this paper, analysis on a different non-archimedean extension of the real numbers
is discussed. The numbers R were first discovered by the brilliant young Levi-Civita
[Levi-Civita1892a], [Levi-Civita1898a], who succeeded in showing that they form a totally
ordered field that is Cauchy complete. He concluded by showing that any power series
with real or complex coefficients converges for infinitely small arguments and used this to
extend real differentiable functions to the field. His number system has subsequently been
rediscovered independently by a handful of people, including the author, and the subject
appeared in the work of Ostrowski [Ostrowski1935a], Neder [Neder1943a], and later in the
work of Laugwitz [Laugwitz1968a]. Two modern and rather complete accounts of Levi-
Civita’s work can be found in the book by Lightstone and Robinson [Lightstone1975a],
which ends with the proof of Cauchy completeness, and in Laugwitz’s account on Levi-
Civita’s work [Laugwitz1975a], which also contains a summary of properties of Levi-Civita
fields.

In this paper, we extend the previous work and formulate the basis of a workable
analysis on the Levi-Civita fieldR. More extensive treatments of the matter can be found in
[Berz1994a] and [Berz1990c], and a summary of some of the important concepts is contained
in [Berz1992b]. We begin with questions about the structure of the field and show that R
admits nth roots of positive elements; more so, the field obtained by adjoining the imaginary
unit is algebraically closed. We also introduce a new topology, complementing the order
topology, that is useful for a novel study of power series, which can be shown to converge not
only for infinitely small arguments, but even within the conventional radius of convergence.
This fact allows for the direct use of a large class of functions, in particular all the functional
dependencies that can be formulated on a von Neuman computer. A differential calculus
on R is developed, culminating in the proof of the theorem that derivatives are differential
quotients after all, and that this offers a pretty way of doing computational differentiation.

2 Algebraic Properties of R
We begin the discussion by introducing a specific family of sets.

Definition 1. (The Family of Left-Finite Sets) A subsetM of the rational numbers
Q is called left-finite iff for every number r ∈ Q there are only finitely many elements of
M that are smaller than r. The set of all left-finite subsets of Q will be denoted by F .
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The next lemma gives some insight into the structure of left-finite sets:
Lemma 2.1. Let M ∈ F. If M 6= ∅, the elements of M can be arranged in ascending

order, and there exists a minimum of M . If M is infinite, the resulting strictly monotonic
sequence is divergent.
Proof: A finite totally ordered set can always be arranged in ascending order; hence, we
may assume that M is infinite.

For n ∈ N , set Mn = {x ∈ M | x ≤ n}. Then Mn is finite by the definition of left-
finiteness and we have M =

S
nMn.Hence, we first arrange the finitely many elements of

M0 in ascending order, append the finitely many elements of M1 not in M0 in ascending
order, and continue inductively.

If the resulting strictly monotonic sequence were bounded, there would also be a
rational bound below which there would be infinitely many elements of M, contrary to the
assumption that M be left-finite. Therefore, we conclude that the sequence is divergent.

Lemma 2.2. Let M,N ∈ F . Then we have X ⊂ M ⇒ X ∈ F , M ∪ N ∈ F ,and
M ∩N ∈ F . We also have M +N = {x+y | x ∈M,y ∈ N} ∈ F ,and for every x ∈M +N,
there are only finitely many pairs (a, b) ∈M ×N such that x = a+ b.
Proof: The first three statements follow directly from the definition. For the proof of the
fourth statement, let xM , xN denote the smallest elements inM,N respectively; these exist
by the preceding lemma. Let r in Q be given. Set

Mu = {x ∈M |x < r − xN}, Nu = {x ∈ N |x < r − xM}

Mo =M \Mu, No = N \Nu.

Then we haveM +N = (Mu∪Mo)+(Nu∪No) = (Mu+Nu)∪ (Mo+Nu)∪ (Mu+No)∪
(Mo+No) = (Mu+Nu)∪ (Mo+N)∪ (M +No). By definition of Mo and No, (Mo+N)
and (M + No) do not contain any elements smaller than r. Thus all elements of M + N
that are smaller than r must actually be contained in Mu +Nu. Since both Mu and Nu

are finite because of the left-finiteness of M and N , Mu+Nu is also finite. Thus there are
only finitely many elements in M +N that are smaller than r.

To show the last statement, let x ∈M +N be given. Set r = x+1 and define Mu, Nu

as in the preceding paragraph. Then we have x /∈ (Mo + N), x /∈ (M + No). Hence all
pairs (a, b) ∈M ×N that satisfy x = a+ b lie in the finite set Mu ×Nu.

Having discussed the family of left-finite sets, we introduce two sets of functions from
the rational numbers into R and C.

Definition 2. (The Sets R and C) We define

R = {f : Q → R | {x|f(x) 6= 0} ∈ F} and C = {f : Q → C | {x|f(x) 6= 0} ∈ F}.

Hence, the elements of R and C are those real or complex-valued functions on Q that
are nonzero only on a left-finite set, that is, they have left-finite support.

Obviously, we have R ⊂ C. In the following, we denote elements of R and C by x, y,
etc. and identify their values at q ∈ Q with brackets, like in x[q]. This avoids confusion
when we later consider functions on R and C. Since the elements of R and C are functions
with left-finite support, it is convenient to use the properties of left-finite sets (2.1) for their
description.

Definition 3. (Notation for Elements of R and C) An element x of R or C is
uniquely characterized by an ascending (finite or infinite) sequence (qn) of support points
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and a corresponding sequence (x[qn]) of function values. We refer to the pair of sequences
((qn), (x[qn])) as the table of x.

Already at this point it is worth noting that for questions of implementation, it is
usually sufficient to store only the first few of the support point and remember carefully up
to what “depth” a given number in R is known.

For subsequent discussion, it is convenient to introduce the following terminology.
Definition 4. (supp, λ, ∼, ≈, =r,∂) For x, y ∈ C, we define
supp(x) = {q ∈ Q | x[q] 6= 0} and call it the support of x.
λ(x) = min(supp(x)) for x 6= 0 (which exists because of left-finiteness) and λ(0) = +∞.
Comparing two elements, we say
x ∼ y iff λ(x) = λ(y);
x ≈ y iff λ(x) = λ(y) and x[λ(x)] = y[λ(y)];
x =r y iff x[q] = y[q] for all q ≤ r;
Furthermore, we define an operation ∂ : C → C via (∂x)[q] = (q + 1) · x[q + 1].
At this point, these definitions may feel somewhat arbitrary; but after having introduced

the concept of ordering on R, we will see that λ describes “orders of infinite largeness or
smallness,” the relation “≈ ” corresponds to agreement up to infinitely small relative error,
while “∼ ” corresponds to agreement of order of magnitude. The operation “∂” will prove
to be a derivation that, among other things, is useful for the concept of differentiation on
R.

Lemma 2.3. The relations ∼, ≈ and =r are equivalence relations. They satisfy

x ≈ y ⇒ x ∼ y; and if a, b ∈ Q , a > b, then x =a y ⇒ x =b y.

Furthermore, we have λ(∂x) ≤ λ(x); and if λ(x) 6= 0,∞, even λ(∂x) = λ(x)− 1.

We now define arithmetic on R and C:
Definition 5. (Addition and Multiplication on R and C) We define addition on

R and C componentwise:
(x+ y)[q] = x[q] + y[q].

Multiplication is defined as follows. For q ∈ Q we set

(x · y)[q] =
X

qx, qy ∈ Q ,
qx + qy = q

x[qx] · y[qy].

We remark thatR and C are closed under addition since supp(x+y) ⊆ supp(x)∪supp(y),
so by Lemma (2.2), with x and y having left-finite support, so does x+y. Lemma (2.2) also
shows that only finitely many terms contribute to the sum in the definition of the product.

Furthermore, the product defined above is itself an element ofR or C, respectively, since
the sets of support points satisfy supp(x · y) ⊆ supp(x) + supp(y); application of Lemma
(2.2) shows that supp(x · y) ∈ F .

It turns out that the operations + and · we just defined on R and C make (R,+,·) and
(C,+,·) into fields. We begin by showing the ring structure. Theorem 2.1. (R,+,·) and
(C,+,·) are commutative rings with units.

As it turns out, R and C can be viewed as extensions of R and C, respectively.
Theorem 2.2. (Embeddings of R into R and C into C) R and C can be embedded

into R and C under preservation of their arithmetic structures.
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Proof: Let x ∈ C . Define Π by

Π(x)[q] =

(
x if q = 0
0 else

.

Then Π(x) ∈ C, and if x ∈ R, Π(x) is contained in R. Π is injective, and direct calculation
shows that Π(x+ y) = Π(x) +Π(y) and Π(x · y) = Π(x) ·Π(y). So R and C are embedded
as subfields in the rings R and C respectively. However, the embedding is not surjective,
since only elements with support {0} are actually reached.

Remark 2.1. In the following, we identify an element x ∈ C with its image Π(x) ∈ C
under the embedding. We recall that the sum of a complex number and an element of C has
to be distinguished from the componentwise addition of a constant to a function.

Furthermore, we note that every element in C has a unique representation as a+ b · i,
where i denotes the imaginary unit in C and where a, b ∈ R.

We also make the following observation. Remark 2.2. Let z1 and z2 be complex
numbers. Then if both z1 and z2 are nonzero, we have z1 ∼ z2. Furthermore, z1 ≈ z2
is equivalent to z1 = z2.

The only nontrivial step toward the proof that R and C are fields is the existence of
multiplicative inverses of nonzero elements. For this purpose, we prove a new theorem that
will be of key importance for a variety of proofs and applications.

Lemma 2.4. (Fixed Point Theorem) Let qM ∈ Q be given. Define M ⊂ R (M ⊂ C)
to be the set of all elements x of R (C) such that λ(x) ≥ qM . Let f : M → C satisfy
f(M) ⊂M . Suppose there exists k ∈ Q , k > 0 such that for all x1, x2 ∈M and all q ∈ Q ,
we have

x1 =q x2 ⇒ f(x1) =q+k f(x2).

Then there is a unique solution x ∈M of the fixed point equation

x = f(x).

Remark 2.3.Without further knowledge about R and C, the requirements and meaning
of the fixed point theorem are not very intuitive. However, as we will see later, the
assumption about f means that f is a contracting function with an infinitely small
contraction factor. Furthermore, the sequence (ai) that is constructed in the proof is indeed
a Cauchy sequence, which is assured convergence because of the Cauchy completeness of
our fields with respect to the order topology, as discussed below. However, while making
the situation more transparent, the properties of ordering and Cauchy completeness are not
required to formulate and prove the fixed point theorem, and so we refrain from invoking
them here.
Proof: We choose an arbitrary a0 ∈M and define recursively

ai = f(ai−1), i = 1, 2, ....

Since f maps M into itself, this generates a sequence of elements of M . First we note that

ai[p] = ai−1[p] for all p < (i− 1) · k + qM (∗).

Since a0, a1 ∈M, we have a1[p] = 0 = a0[p] for all p < qM . So (∗) holds for i = 1, and
induction shows that it holds for all i ≥ 1.
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Next we define a function x : Q → C in the following way: for q ∈ Q choose i ∈ N such
that (i− 1) · k + qM > q. Set x[q] := ai[q]; note that, by virtue of (*), this is independent
of the choice of i.

Furthermore, we have x =q ai. So in particular x is an element of R or C, respectively,
since for every q ∈ Q , the set of its support points smaller than q agrees with the set of
support points smaller than q of one of the ai ∈ M . Also, since x[p] = 0 for all p < qM , x
is contained in M .

Now we show that x defined as above is a solution of the fixed point equation. For q ∈ Q
choose again i ∈ N such that (i− 1) · k+ qM > q. Then it follows that x =q ai =q ai+1. By
the contraction property of f, we thus obtain f(x) =q+k f(ai), which in turn implies

x[q] = ai+1[q] = f(ai)[q] = f(x)[q].

Since this holds for all q ∈ Q , x is a fixed point of f .
It remains to show that x is a unique fixed point. Assume that y ∈M is a fixed point

of f . The contraction property of f is equivalent to λ(f(x1)− f(x2)) ≥ λ(x1 − x2) + k for
all x1, x2 ∈M . This implies

λ(x− y) = λ(f(x)− f(y)) ≥ λ(x− y) + k,

which is possible only if y = x.
Remark 2.4. It is worthwhile to point out that, in spite of the iterative character of

the fixed point theorem, for every q ∈ Q , the value of the fixed point x at q can be calculated
in finitely many steps. This is of significant importance especially for practical purposes.

Using the fixed point theorem, we can now easily show the existence of multiplicative
inverses.

Theorem 2.3. (R,+,·) and (C,+,·) are fields.
Proof: We prove the theorem for R; the proof for C is completely analogous. It remains
to show the existence of multiplicative inverses of nonzero elements.

Let z ∈ R\ {0} be given. Set q = λ(z), a = z[q] and z∗ = 1/a · d−q · z. Then λ(z∗) = 0
and z∗[0] = 1. If an inverse of z∗ exists, then 1/a · d−q(z∗)−1 is an inverse of z; so without
loss of generality, we may assume λ(z) = 0 and z[0] = 1.

If z = 1, there exists an inverse. Otherwise, z is of the form z = 1 + y with
0 < k = λ(y) < +∞. It suffices to find x ∈ R such that (1 + x) · (1 + y) = 1. This
is equivalent to

x = −y · x− y

Setting f(x) = −y · x − y reduces the problem to finding a fixed point of f . Let
M = {x ∈ R | λ(x) ≥ k}, then f(M) ⊂ M . Let x1, x2 ∈ M satisfying x1 =q x2 be
given. Since the smallest support point of y is k, we obtain y · x1 =q+k y · x2, and hence

−y · x1 − y =q+k −y · x2 − y.

Thus f satisfies the hypothesis of the fixed point theorem (2.4), and consequently a fixed
point of f exists.

Now we examine the existence of roots in R and C. Using the fixed point theorem, we
find the new result that, regarding this important property, the new fields behave just like
R and C, respectively. Theorem 2.4. Let z ∈ R be nonzero, and set q = λ(z). If n ∈ N
is even and z[q] is positive, z has two nth roots in R. If n is even and z[q] is negative, z
has no nth roots in R. If n is odd, z has a unique nth root in R.

Let z ∈ C be nonzero. Then z has n distinct nth roots in C.
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Proof: Let z be a nonzero number and write z = a · dq · (1 + y), where a ∈ C , q ∈ Q , and
λ(y) > 0. Assume that w is an nth root of z. Since q = λ(z) = λ(wn) = n · λ(w), we can
write w = b · dq/n · (1 + x), where b ∈ C , λ(x) > 0. Raising to the nth power, we see that
bn = a and (1 + x)n = 1 + y have to hold simultaneously. The first of these equations has
a solution if and only if the corresponding roots exist in R or C. So it suffices to show that
the equation

(1 + x)n = 1 + y

has a unique solution with λ(x) > 0. But this equation is equivalent to nx+ x2 ·P (x) = y,
where P (x) is a polynomial with integer coefficients. Because λ(x) > 0, also λ(P (x)) ≥ 0,
and hence λ(x2 · P (x)) = 2λ(x) + λ(P (x)) > λ(x) > 0; so finally we have λ(x) = λ(y) for
all such x. The equation can be rewritten as a fixed point problem x = f(x), where

f(x) =
y

n
− x2 · P (x)

n
.

Now let M be the set of all numbers in C (or in R if z ∈ R) whose smallest support
point does not lie below ky = λ(y). Then as we just concluded, any solution of the
fixed point equation must lie in M . We further have f(M) ⊂ M ; for if x ∈ M , then
λ(x2 ·P (x)) ≥ 2 ·ky > ky. Hence it follows that f(x) = y/n−x2 ·P (x)/n has ky as smallest
support point, and thus f(x) ∈M .

Let x1, x2 ∈ M satisfying x1 =q x2 be given. Then λ(x1) ≥ ky, λ(x2) ≥ ky, and the
definition of multiplication shows that we obtain x21 =q+ky x22. By induction on m, we
obtain xm1 =q+ky x

m
2 for all m ∈ N , m > 1.

In particular, this implies x21 ·P (x1) =q+ky x
2
2 ·P (x2) and finally f(x1) =q+ky f(x2). So

f and M satisfy the hypothesis of the fixed point theorem (2.4) which provides a unique
solution of (1 + x)n = 1 + y in M and hence in R.

We remark that a crucial point to the proof was the existence of roots of the numbers
dq; hence we could not have chosen anything smaller than Q as the domain of the functions
that are the elements of our new fields.

We end the section on the algebraic properties of R and C by remarking that C is
algebraically closed. Although a rather deep result, it is obtained with limited effort using
the fixed point theorem as well as the algebraic completeness of C.

Theorem 2.5. (Fundamental Theorem of Algebra for C) Every polynomial of
positive degree with coefficients in C has a root in C.

The proof is omitted for reasons of space; for details, see [Berz1994a]

3 Order Structure

In the previous section we showed that R and C do not differ significantly from R and C,
respectively, as far as their algebraic properties are concerned. In this section we discuss
the ordering.

The simplest way of introducing an order is to define a set of “positive” numbers.
Definition 6. (The Set R+) Let R+ be the set of all nonvanishing elements x of R

that satisfy x[λ(x)] > 0.
Lemma 3.1. (Properties of R+) The set R+ has the following properties:
R+ ∩ (−R+) = ∅, R+ ∩ {0} = ∅, and R+ ∪ {0} ∪ (−R+) = R
x, y ∈ R+ ⇒ x+ y ∈ R+ and x, y ∈ R+ ⇒ x · y ∈ R+
The proofs follow rather directly from the respective definitions.
Having defined R+, we can now easily introduce an order in R.
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Definition 7. (Ordering in R). Let x, y be elements of R. We say x > y iff
x− y ∈ R+. Furthermore, we say x < y iff y > x.

With this definition of the order relation, R is a totally ordered field.
Theorem 3.1. (Properties of the Order). With the order relation defined in (7),

(R,+,·) becomes a totally ordered field.
Furthermore, the order is compatible with the algebraic structure of R, that is

For any x, y, z, we have: x > y ⇒ x+z > y+z; and if z > 0, we have x > y ⇒ x·z > y·z.
Since the proof follows the same arguments as the corresponding one for R, the details

are omitted here. We immediately obtain that the embedding Π is compatible with the
ordering, that is x < y ⇒ Π(x) < Π(y). Furthermore C, like C, cannot be ordered.

Thus R, like C, is a proper field extension of R. Note that this is not a contradiction
of the well-known uniqueness of C as a field extension of R. The respective theorem
of Frobenius asserts only the nonexistence of any (commutative) field on Rnfor n > 2.
However, regarded as an R-vector space, R is infinite dimensional.

Besides the usual order relations, some other notations are convenient.
Definition 8. (The Number d) We define the number d ∈ R as follows:

d[q] =

(
1 x = 1
0 else

.

Apparently, the number d admits roots, and we have dm/n[q] = 1 for x = m/n, zero
otherwise. As we shall see, it plays the role of an infinitesimal and thus satisfies what Rall
suspected about the number (0, 1) in his arithmetic of differentiation [Rall1986a].

Definition 9. (¿,À ) Let a, b be positive. We say a is infinitely smaller than b (and
write a ¿ b), iff n · a < b for all natural n; we say a is infinitely larger than b (and write
a À b) iff b ¿ a. If a ¿ 1, we say a is infinitely small; if 1 ¿ a, we say a is infinitely
large. Infinitely small numbers are also called infinitesimals or differentials. Infinitely large
numbers are also called infinite. Numbers that are neither infinitely small nor infinitely
large are also called finite.

Corollary 3.1. For all a, b, c ∈ R+, we have
a¿ b ⇒ a < b and a¿ b, b¿ c ⇒ a¿ c.
We observe dq ¿ 1 iff q > 0, dq À 1 iff q < 0.
Corollary 3.2. The field R is non-archimedean, that is, there are elements that are

not exceeded by any natural number.
Proof: For example, we have n < d−1 ∀ n ∈ N .

It is a crucial property of the field R that the differentials, especially the formerly
defined number d, satisfy Leibniz’s intuitive idea of derivatives as differential quotients.
This will be discussed in great detail below; but already here we want to give a simple
example.

Example 1. (Calculation of Derivatives with Differentials) Let us consider the
function f(x) = x2 − 2x. Obviously, f is differentiable on R, and we have f 0(x) = 2x− 2.
As we know, we can obtain certain approximations to the derivative at the position x by
calculating the difference quotient

f(x+∆x)− f(x)

∆x

at the position x. Roughly speaking, the accuracy increases if ∆x gets smaller. In our
enlarged field R, infinitely small quantities are available, and thus it is natural to calculate
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the difference quotient for such infinitely small numbers. For example, let ∆x = d; we
obtain

f(x+ d)− f(x)

d
=
(x2 + 2xd+ d2 − 2x− 2d)− (x2 − 2x)

d
= 2x− 2 + d.

We realize that the difference quotient differs from the exact value of the derivative by only
an infinitely small error. If all we are interested in is the usual real derivative of the real
function f : R → R, this is given exactly by the “real part” of the difference quotient.

This phenomenon will be studied in a fully rigorous way below.

4 Topology, Convergence, and Cauchy-Completeness

In this section we examine the topological structures of R and the related sets. We will
see that on R, in contrast to R, several different nontrivial topologies can be defined, all of
which have certain advantages.

We begin with the introduction of an absolute value; this is done as in any totally
ordered field.

Definition 10. (Absolute Value on R) Let x ∈ R. We define the absolute value of
x as follows:

If x ≥ 0, we set |x| = x; and if x < 0, we set |x| = −x.
Lemma 4.1. (Properties of the Absolute Value) The mapping “| |” : R→ R has

the following properties:
|x| = 0 iff x = 0; |x · y| = |x| · |y| ; and |x+ y| ≤ |x|+ |y|.
The proof follows the same lines as the counterpart in R.
Definition 11. (Absolute Value on C and Rn) On C and Rn, we define absolute

values as follows: Any element z ∈ C can be written z = a + bi with a, b ∈ R, and this
representation is unique. We then define |a+ bi| =

√
a2 + b2.

Furthermore, for any (x1, ..., xn) ∈ Rn, we define |(x1, ..., xn)| =
q
x21 + ...+ x2n

The roots exist according to theorem (2.4).
Just as in any totally ordered set, we can now introduce the so-called order topology:
Definition 12. (Order Topology) We call a subset M of R, C or Rn open iff for

any x0 ∈ M there exists an � > 0 ; � ∈ R such that O(x0, �), the set of points x with
|x− x0| < �, is a subset of M .

Thus all �-balls form a basis of the topology. We obtain the following theorem.
Theorem 4.1. (Properties of the Order Topology) With the above topology, R,

C and Rn become nonconnected topological spaces. They are Hausdorff. There are no
countable bases. The topology induced to R is the discrete topology. The topology is not
locally compact.

The proof is omitted for reasons of space. We remark that a detailed study of
the properties reveals that they hold in an identical way on any other non-archimedean
structure, and thus the above unusual properties are not specific to R.

Besides the absolute value, it is useful to introduce a semi-norm that is not based on
the order. For this purpose, we regard C as a space of functions as in the beginning, and
define the semi-norm as a mapping from C into R.

Definition 13. (Semi-Norm on C)We introduce the semi-norm “|| ||r” as a function
from C into R as follows:

||x||r = sup
q≤r
{|x[q]|}.
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Note that the supremum is finite and even a maximum, since for any r, only finitely
many of the x[q] under consideration do not vanish; thus the semi-norm has a certain
similarity to the supremum norm for continuous functions. Its properties also are quite
similar.

Lemma 4.2. (Properties of the Semi Norm) For arbitrary r, the map “|| ||r”
: R→ R satisfies the following:

||x||r ≥ 0; ||a · x||r = |a| · ||x||r for all a ∈ R; and ||x+ y||r ≤ ||x||r + ||y||r.
Thus || ||r is a semi-norm in the usual sense. Using the family of these semi-norms, we

can now define another topology.
Definition 14. (Semi-Norm Topology) We call a subset M of R, C, or Rn open

with respect to the semi-norm topology iff for any x0 ∈ M there is a real � > 0 such that
S(x0, �) = {x| ||x− x0||1/� < �} ⊂M .

We will see that the semi-norm topology is the most useful topology for considering
convergence in general. Moreover, it is of great importance for the implementation of the
calculus on R and C on computers.

Theorem 4.2. (Properties of the Semi-Norm Topology) With the above
definition of the semi norm topology, R, C, and Rn are topological spaces. They are
Hausdorff with countable bases. The topology induced on R by the semi norm topology
is the usual order topology on R.

Proof omitted.
We now discuss convergence with respect to the topologies just introduced. We begin

by studying a special property of sequences.
Definition 15. (Regularity of a Sequence) A sequence (ai) in C is called regular

iff the union of the supports of all members of the sequence is a left-finite set, that is iff
∪∞i=0supp(ai) ∈ F .

This property is not automatically assured, as becomes apparent from considering the
sequence (d−i). As the next theorem shows, the property of regularity is compatible with
the common operations of sequences:

Lemma 4.3. (Properties of Regularity) Let (ai), (bi) be regular sequences. Then
the sequence of the sums, the sequence of the products, any rearrangement, as well as any
subsequence of one of the sequences, and the merged sequence c2i = ai, c2i+1 = bi are
regular.
Proof: Let A = ∪∞i=0supp(ai), B = ∪∞i=0supp(bi) be the unions of the support points of all
members of the sequences. According to the requirements, we have A ∈ F and B ∈ F .

Every support point of the sequence of the sums is a support point of either one of
the ai or one of the bi and is thus contained in (A ∪ B) ∈ F . Every support point of the
sequence of the products is contained in (A+B) ∈ F .

The support points of any subsequence of (ai) are contained in A , and the support
points of the joined sequence (ci) are contained in A ∪B.

Definition 16. (Strong Convergence) We call the sequence (ai) in R or C strongly
convergent to the limit a ∈ R or C respectively iff it converges to a with respect to the order
topology, that is, iff for every � > 0, � ∈ R there exists n ∈ N such that |ai−a| < � ∀ i > n.

Using the idea of strong convergence allows a simple representation of the elements of
R and C that is indeed strongly reminiscent of the familiar expansion of real numbers in
powers of ten, and that enjoys a similar usefulness for practical calculations.

Theorem 4.3. (Expansion in Powers of Differentials) Let ((qi), (x[qi])) be the
table of x ∈ R or C (cf. 3). Then the sequence xn =

Pn
i=1 x[qi] · dqi converges strongly to
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the limit x. Hence we can write

x =
∞X
i=1

x[qi] · dqi .

Proof: Without loss of generality, let the set {qi} be infinite. Let � > 0 in R be given.
Choose n ∈ N such that dn < �. Since qi diverges strictly according to Lemma 2.1, there
is m ∈ N such that qν > n ∀ ν > m. Hence we have (xν − x)[i] = 0 for all i ≤ n and for all
ν > m. Thus |xν − x| < � for all ν > m. Therefore, (xn) converges strongly to x.

A convenient criterion describes the sequences and series that converge strongly.
Theorem 4.4. (Convergence Criterion for Strong Convergence) Let (ai) be a

sequence in R or C. Then (ai) converges strongly iff for all r ∈ Q there exists n ∈ N such
that ai1 =r ai2 for all i1, i2 > n. The series

P∞
i=0 ai converges strongly iff the sequence (ai)

is a null sequence.
The proof is straightforward.
Lemma 4.4. Every strongly convergent sequence is regular.

Proof: Let r ∈ Q be given. Use the convergence criterion (4.4) to choose n ∈ N such that
the values of the members of the sequence do not change any more below r. Then we have
that all the elements of ∪∞i=0supp(ai) smaller than r do already occur in ∪ni=0supp(ai). This
finite union, however, is contained in F ; and thus there are only finitely many elements of
∪∞i=0supp(ai) below r.

We will now prove that R and C are complete with respect to strong convergence.
Theorem 4.5. (Cauchy Completeness of R and C) (an) is a Cauchy sequence in

R or C (for any positive � ∈ R exists n ∈ N such that |an1 − an2 | ≤ � for all n1, n2 ≥ n),
if and only if (an) converges strongly (there is a ∈ R or C, respectively, such that for any
positive � ∈ R ∃ n ∈ N : |a− aν | < � ∀ ν > n).
Proof: Let (an) be a Cauchy sequence in R. Write bn = an+1 − an. Then (bn) is a
null sequence. Since we have an = a0 +

Pn−1
i=0 bi, (an) converges strongly according to the

convergence criterion (4.4) for series. The other direction is proved analogously as in R.
As we see, the concept of strong convergence provides very nice properties, and moreover

strong convergence can be checked easily by virtue of the convergence criterion. However,
for some applications it is not sufficient, and it is advantageous to study a new kind of
convergence.

Definition 17. (Weak Convergence) We call the sequence (ai) weakly convergent
if there is an a ∈ C such that (ai) converges to a with respect to the semi-norm topology,
that is, for any � > 0; � ∈ R there exists n ∈ N such that ||ai − a||1/� < � ∀ i > n. In this
case, we call a the weak limit of (ai).

Theorem 4.6. (Convergence Criterion for Weak Convergence) Let the sequence
(ai) converge weakly to the limit a. Then the sequence (ai[q]) converges pointwise to a[q],
and the convergence is uniform on every subset of Q bounded above.

On the other hand, let (ai) be regular, and let the sequence (ai[q]) converge pointwise to
a[q]. Then (ai) converges weakly to a.
Proof: Let (ai) converge weakly to a. Let r ∈ Q and � > 0; � ∈ R be given. Choose
�1 < min(�, 1/(1 + |r|)) such that, for all rational q ≤ r, we have q < 1/�1. Choose n ∈ N
such that |(ai − a)[q]| < �1 ∀ i > n, q < 1/�1. Then we obtain |(ai − a)[q]| < � ∀ q < r and
∀i > n, and uniform convergence is proved.

Let on the other hand the sequence be regular and pointwise convergent. Since every
support point of the limit function agrees at least with one support point of one member
of the sequence, and therefore is contained in A = ∪isupp(ai) ∈ F , the limit function a
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is an element of C. Let now � > 0; � ∈ R be given. Let r > 1/�. We show first that the
sequence of functions (ai) converges uniformly on {q ∈ Q |q ≤ r}: Any point at which the
limit function a can differ from any ai has to be in A. Thus there are only finitely many
points to be studied below r. For any such q, find Nq such that |ai[q] − a[q]| < � for all
i > Nq, and let N = max(Nq). Then we have |ai[q] − a[q]| < � for all i > N and for all
q ≤ r. In particular, we obtain ||ai − a||1/� < � for all i > N .

Whereas R is complete with respect to strong convergence, it is not with respect to
weak convergence, as we see in the following example.

Example. (Weak Convergence and Completeness) Let an =
Pn

i=1 d
−i/i. Then the

sequence (an) is Cauchy with respect to weak convergence (that is, the semi-norm topology)
and locally converges to the function that assumes the value 1/n at -n ∈ Z− and vanishes
elsewhere. But this limit function is not an element of C.

Example. (Unbounded Null Sequence) Let an = d−n/n. Then (an) is obviously
unbounded, but converges weakly to zero.

The relationship between strong convergence and weak convergence is provided by the
following theorem, which follows rather directly from the convergence criterion:

Theorem 4.7. Strong convergence implies weak convergence to the same limit.
The proof is straightforward.
Theorem 4.8. (Uniqueness of R) The field R is the smallest totally ordered non

archimedean field extension of R that is complete with respect to the order topology, in
which every positive number has an nth root, and in which there is a positive infinitely
small element a such that (an) is a null sequence with respect to the order topology.

We now discuss a very important class of sequences, namely, the power series. Once their
convergence properties are established, they will allow the extension of many important real
functions, and they will also provide the key for an exhaustive study of differentiability of
all functions that can be represented on a computer [Shamseddine1996a]. We begin our
discussion of power series with an observation.

Lemma 4.5. Let M ∈ F , that is, a left finite set. For M define

MΣ = {x1 + ...+ xn|n ∈ N and x1, ..., xn ∈M};

then MΣ is left finite if and only if min(M) ≥ 0.
Proof: First let min(M) = g < 0. Clearly, all multiples of g are in MΣ. In other words,
MΣ contains infinitely many elements smaller than zero and is therefore not left finite.

On the other hand. let min(M) ≥ 0. For min(M) = 0, we start the discussion by
considering M̄ = M \ {0}, which has a minimum greater than zero. But since M differs
from M̄ only by containing zero, and since inclusion of zero does not change a sum, we
obviously have M̄Σ = MΣ. It therefore suffices to consider sets with a positive minimum.
Now let ow r ∈ Q; we show that there are only finitely many elements in MΣ that are
smaller than r. Since all elements in MΣ are greater than or equal to the minimum g, the
property holds for r < g. Now let r ≥ g, and let n = [r/g] be the greatest integer less
than or equal to r/g. Let x < r in MΣ. Then at most n terms can sum up to x, since
any sum with more than n terms exceeds r and thus x. Furthermore, the sum can contain
only finitely many different elements of M , namely those below r. But this means that
there are only finitely many ways of forming sums, and thus only finitely many results of
summations below r.

Corollary 4.1. A sequence xi = xi is regular iff x is at most finite.
A sequence xi = ai · xi or xi =

Pi
j=0 aj · xjis regular if x is at most finite and ai is

regular.
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Proof: First observe that the set ∪∞i=1supp(xi) is identical with the setMΣ in the previous
lemma if we set M = supp(x). This it is left finite iff supp(x) has a minimum greater than
or equal to zero; this is the case iff x is at most finite.

To prove the second part, we employ Corollary 4.3, which asserts that the product of
regular sequences is regular.

Theorem 4.9. (Power Series with Purely Complex Coefficients) Let
P∞

n=0 anz
n,

an ∈ C be a complex power series with radius of convergence η. Let z ∈ C, and let
An(z) =

Pn
i=0 aiz

i ∈ C. Then, for |z| < η and |z| 6 ≈η, the sequence is weakly convergent,
and for any q ∈ Q, the sequence An(z)[q] converges absolutely. We define the limit to be
the continuation of the power series on C.
Proof: First note that the sequence is regular for any at most finite z, which follows from
Corollary 4.1. Since the sequence ai has only purely complex terms and is therefore regular.

Now we have to show that the sequence An(z) converges for any fixed z with |z| < η
and |z| 6 ≈η. Write z as a sum of a purely complex X and an at most infinitely small x.
For x = 0, we are done. Otherwise, let r ∈ Q be given. Choose m ∈ N with m · λ(x) > r.
Then (X + x)n evaluated at r yields

((X + x)n)[r] = (
nX

j=0

xj · n!

(n− j)!j!
·Xn−j)[r] =

min(m,n)X
j=0

xj [r] · n!

(n− j)!j!
·Xn−j .

For the last equality, we use that xj vanishes at r for j > m. We obtain the following
chain of inequalities for any ν2 > ν1 > m:

ν2X
n=ν1

|an(X + x)n[r]| =
ν2X

n=ν1

|an| · |
min(m,n)X

j=0

xj [r] · n!

(n− j)!j!
·Xn−j |

≤
ν2X

n=ν1

mX
j=0

|an||xj [r]|
n!

(n− j)!j!
|X|n−j

≤

⎛⎝ mX
j=0

|xj [r]||X|m−j
j!

⎞⎠ · Ã ν2X
n=ν1

|an| · nm · |X|n−m
!
.(1)

Note that the righthand sum contains only real terms. Since |X| is within the radius of
convergence, the series converges; the additional factor nm does not influence this since
limn→∞

n
√
nm = 1. Since the lefthand term does not depend on ν, we obtain absolute

convergence at r.
A prominent result of the Cauchy theory of analytic functions is that an analytic

function is completely determined by the values it takes on a closed path. Our theory
guarantees the uniqueness of a function even from the knowledge of only its value at one
suitable point, as the following theorem shows.

Theorem 4.10. (Point Formula à la Cauchy) Let f(z) =
P∞

i=0 ai(z − z0)
i be the

continuation of a complex power series on C. Then the function is completely determined
by its value at z0 + h, where h is an arbitrary nonzero infinitely small number.
Proof: Evaluating the power series yields

f(z0 + h) =
∞X
i=0

aih
i.
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Let r = λ(h), h0 = h[λ(h)]. Then we obtain
a0 = (f(z0 + h))[0]
a1 = (f(z0 + h))[r]/h0,
a2 = (f(z0 + h)− a1h)[2r]/h

2
0,

a3 = (f(z0 + h)− a1h− a2h
2)[3r]/h30,

....
Choosing h = d, we obtain the even simpler result ai = (f(z0 + d))[i].

5 Continuity and Differentiability

In this section we introduce the concepts of continuity and differentiability on R and C; we
do so, as in R, via the �− δ- method. Unlike in R, however, � and δ may be of a completely
different order of magnitude.

Definition 18. (Continuity and Equicontinuity) The function f : D ⊂ R→ R is
called continuous at the point x0 ∈ D, if for any positive � ∈ R there is a positive δ ∈ R
such that

|f(x)− f(x0)| < � for any x ∈ D with |x− x0| < δ.

The function is called equicontinuous at the point x0 if for any � it is possible to choose the
δ in such a way that δ ∼ �.

Analogously, we define continuity on C or Rn by use of absolute values.
Theorem 5.1. (Rules about Continuity) Let f, g : D ⊂ R→ R be (equi)continuous

at the point x ∈ D (and there ∼ 1). Then f + g and f · g are (equi)continuous at the point
x. Let h be (equi)continuous at the point f(x), then h ◦ f is (equi)continuous at the point
x.
The proof is analogous to the case of R.

Definition 19. (Differentiability, Equidifferentiability) The function f : D ⊂
R → R is called differentiable with derivative g at the point x0 ∈ D if, for any positive
� ∈ R, we can find a positive δ ∈ R such that¯̄̄̄

f(x)− f(x0)

x− x0
− g

¯̄̄̄
< � for any x ∈ D\{x0} with |x− x0| < δ.

If this is the case, we write g = f 0(x0). The function is called equidifferentiable at the point
x0, if for any at most finite � it is possible to choose δ such that δ ∼ �. The function is
called k-equidifferentiable at the point x0 if, for any at most finite �, it is possible to choose
� ∼ dk · δ.

Analogously, we define differentiability on C using absolute values.
Theorem 5.2. (Rules about Differentiability) Let f, g : D → R be

(equi)differentiable at the point x ∈ D (and not infinitely large there). Then f+g and f ·g are
(equi)differentiable at the point x, and the derivatives are given by (f+g)0(x) = f 0(x)+g0(x)
and (f · g)0(x) = f 0(x)g(x) + f(x)g0(x). If f(x) 6= 0 (f(x) ∼ 1), the function 1/f is
(equi)differentiable at the point x with derivative (1/f)0(x) = −f 0(x)/f2(x). Let h be dif-
ferentiable at the point f(x), then h ◦ f is differentiable at the point x, and the derivative
is given by (h ◦ f)0(x) = h0(f(x)) · f 0(x).
The proofs are analogous to the case of R. For equidifferentiability we also obtain � ∼ δ as
required.

Functions that are produced by a finite number of arithmetic operations from constants
and the identity have therefore the same properties of smoothness as in R and C.

The following consequence is often important for practical purposes.
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Theorem 5.3. (Equidifferentiability of Power Series) Let f(z) =
P∞

i=0 ai(z−z0)i
be a power series with purely complex coefficients on C with radius of convergence η > 0. If
η is finite, the series

gk(z) =
∞X
i=k

i · (i− 1) · ... · (i− k + 1)ai(z − z0)
i−k

converges weakly for any k ≥ 1 and for any z with |z − z0| < η and |z − z0| 6 ≈η; if η =∞,
the series converges for any k ≥ 1 and for any z for which |z − z0| is finite. Furthermore,
the function f is infinitely often equidifferentiable for such z, with derivatives f (k) = gk.
In particular, for i ≥ 0, we have ai = f (i)(z0)/i!. For z ∈ C the derivatives agree with the
corresponding ones of the complex power series.
Proof: Observe that limn→∞ n

√
n = 1 and use induction on k, the first part is clear.

For the proof of the second part, let |z − zo| < η, |z − z0| 6 ≈η. Let us first state two
intermediate results concerning the term |(f(z + h) − f(z))/h− g1(z)|. First let h be not
infinitely small. Let zc ∈ C and hc ∈ C be the purely complex parts of z and h, therefore
zc =0 z, hc =0 h. Evidently, we obtain g1(zc) =0 g1(z) and f(zc) =0 f(z). As hc 6= 0, we
obtain ¯̄̄̄

f(z + h)− f(z)

h
− g1(z)

¯̄̄̄
=0

¯̄̄̄
f(zc + hc)− f(zc)

hc
− g1(zc)

¯̄̄̄
. (i)

On the other hand, let h be infinitely small. Write h = h0 · dr · (1 + h1) with h0 ∈ C ,
0 < r ∈ Q , h1 infinitely small. Then we obtain for any s ≤ 2r

f(z + h)[s] =
∞X
i=0

ai(z + h− z0)
i[s] =

∞X
i=0

ai ·
iX

ν=0

((z − z0)
i−ν i!

ν!(i− ν)!
hν)[s]

=
∞X
i=0

ai((z − z0)
i)[s] +

∞X
i=1

(h · i · ai(z − z0)
i−1)[s] +

∞X
i=2

(h2
i · (i− 1)

2
ai(z − z0)

i−2)[s].

Other terms are not relevant, since the corresponding powers of h are much smaller
than ds in absolute value. Therefore we obtain

f(z + h)− f(z)

h
− g1(z) =r h0d

r
∞X
i=2

i · (i− 1)
2

ai(z − z0)
i−2 . (ii)

Let now � > 0 in R be given. First consider the case of � ∼ 1. Since f is differentiable in C,
for any zc ∈ C, we may choose a δ > 0 in R such that |(f(zc+hc)−f(zc))/hc−g1(zc)| < �/2
for all nonzero hc ∈ C with |hc| < 2δ.

Let now h ∈ C, |h| < δ. As a first subcase, we consider h ∼ 1; choose hc as the purely
complex part of h, namely, hc =0 h, hc ∈ C , and |hc| < 2δ. Then, using (i), we obtain¯̄̄̄

f(z + h)− f(z)

h
− g1(z)

¯̄̄̄
<

¯̄̄̄
f(zc + hc)− f(zc)

hc
− g1(zc)

¯̄̄̄
+

�

2
< � ∀h with |h| < δ.

In the second subcase, we consider |h| ¿ 1. We write h = h0 · dr(1 + h1), with h0 purely
complex, r ∈ Q and positive, and h1 infinitely small, to obtain from (ii)¯̄̄̄

f(z + h)− f(z)

h
− g1(z)

¯̄̄̄
< dr/2 < �.

For infinitely small �, we write � = �0 · dr�(1 + �1), with r� ∈ Q positive, �0 ∈ R, and
�1 infinitely small. Choose now δ = �/4|(P∞

i=2
i·(i−1)
2 ai(z − z0)

i−2)[0]| if the sum does not
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vanish, δ = � otherwise. Obviously, δ ∼ � in both cases. Consider now h with |h| < δ, and
write h = h0 · drh(1 + h1) with h0 ∈ C , rh ≥ r� in Q, and h1 infinitely small. Then we
obtain, again fro (ii),

f(z + h)− f(z)

h
− g1(z) =rh h0d

rh
∞X
i=2

i · (i− 1)
2

ai(z − z0)
i−2.

For rh > r�, we have |(f(z + h)− f(z))/h − g1(z)| =r� 0, and hence it follows that
|(f(z + h)− f(z))/h − g1(z)| < �. Consider therefore rh = r� = r. For vanishing sumP∞

i=2
i·(i−1)
2 ai(z− z0)

i−2, we have (f(z + h)− f(z))/h− g1(z) =r 0, and therefore less than
� in magnitude. Otherwise, we obtain¯̄̄̄

f(z + h)− f(z)

h
− g1(z)

¯̄̄̄
< 2|h0|dr|

∞X
i=2

i · (i− 1)
2

ai(z − z0)
i−2| < �,

which concludes the proof.
We complete our discussion with a key theorem that indeed reduces the calculation

of derivatives to mere arithmetic operations and that represents the key for a rigorous
computational study of differentiability, which is described in [Shamseddine1996a].

Theorem 5.4. (Derivatives Are Differential Quotients, After All!) Let f : D→
R be a function that is equidifferentiable at the point x ∈ D. Let |h| ¿ dr, and x+ h ∈ D.
Then the derivative of f satisfies

f 0(x) =r
f(x+ h)− f(x)

h
.

In particular, the real part of the derivative can be calculated exactly from the differential
quotient for any infinitely small h.
Proof: Let h be as in the requirement, h = h0 · drh(1 + h1), with h0 ∈ R, h1 as before,
and therefore rh > r. Choose now � = d(r+rh)/2. Since f is equidifferentiable, we can find
a positive δ ∼ � such that for any ∆x with |∆x| < δ, the differential quotient differs less

than � from the derivative, and hence
¯̄̄
f(x+∆x)−f(x)

∆x − f 0(x)
¯̄̄
is infinitely smaller than dr.

But apparently, the above h satisfies |h| < δ.
For reasons of space, our treatment of calculus onR concludes with this central theorem,

which is the key to performing computational differentiation with R. A detailed study of
the practical issues, including methods to rigorously decide differentiability of computer
functions, is given in [Shamseddine1996a]. There is a wealth of other calculus on R,
including versions of intermediate value theorem, Rolle’s theorem, and Taylor’s theorem,
and a theory of integration that allows the treatment of delta functions in the expected
manner; for details, the reader is referred to [Berz1994a].
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