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CAUCHY THEORY ON LEVI-CIVITA FIELDS

MARTIN BERZ

ABSTRACT. We develop the basic elements of a Cauchy theory on the com-
plex Levi-Civita field, which constitutes the smallest algebraically closed non-
Archimedean extension of the complex numbers. We introduce a concept of
analyticity based on differentiation, and show that it leads to local expand-
ability in power series. We show that analytic functions can be integrated
over suitable piecewise smooths paths in the sense of integrals developed in an
accompanying paper. It is then shown that the resulting path integrals allow
the formulation of a workable Cauchy theory in a rather similar way as in the
conventional case. In particular, we obtain a Cauchy theorem and the Cauchy
formula for analytic functions.

1. INTRODUCTION

‘We begin the discussion with an introduction of terminology and a review of some
properties of totally ordered fields. Let K be a totally ordered non-Archimedean
field extension of the real numbers R, and < its order, which induces the K-valued
absolute value | |. We use the following notation common to the study of non-
Archimedean structures.

Definition 1.1. (~, =,<, [], H) For z,y € K, we say
z ~ y if there are n,m € N such that n - [z] > |y| and m - |y| > ||
z<<yifforallneN, n-|z| <|y|, and z & y if £ < y does not hold
zxyifz~yand (z-y) Kz
We also set
[z] = {y € K|y ~ z} as well as H = {[z}|z € K} and A(z) = [z].
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Apparently the relation ”~” is an equivalence relation; the set of classes H of all
nonzero elements of K is naturally endowed with an addition via [z] + [y] = [z - y]
and an order via {z] > [y] if z < y, both of which are readily checked to be well-
defined. The class [1] is a neutral element, and for = # 0, [1/z] is an additive inverse
of [z]; thus H forms a totally ordered group, often referred to as the Hahn group
or skeleton group. The projection A from K to H satisfies A(z - y) = Mz) + A(y)
and is a valuation.

We say z is infinitely larger than y if  >> y, z is infinitely small or large if z <« 1
or x > 1, respectively, and we say  is finite if z ~ 1. For r € H, we say z =, y if
Az — y) > r; apparently, ” =, ” is an equivalence relation.

The fundamental theorem of Hahn [10] (for more easily readable and modern
versions see [11] as well as [6](7][8][9][24], and also the overview in [21]) provides
a classification of any non-Archimedean extension K of R in terms of its skeleton
group H. In fact, invoking the axiom of choice it is shown that the elements of
K can be written as generalized formal power series over the group H with real
coeflicients, and the set of appearing ”exponents” forms a well-ordered subset of H.

Particular examples of the large variety of such fields are the quotients of polyno-
mials as the smallest totally ordered non-Archimedean field, and the formal Laurent
series as the smallest non-Archimedean field that is Cauchy-complete, both of which
have the integers Z as Hahn group. The rationals Q form the Hahn group of the
quotients of polynomials with rational exponents, as well as the Puiseux series,
which form the smallest algebraically closed non-Archimedean field; see for exam-
ple [5][22][23][12][26]. In general, the algebraic properties of fields of formal power
series have been rather extensively studied (see for example [25]), and there are var-
ious general theorems pertaining to algebraic closure and other properties[18][23]
which mainly rest on divisibility of the Hahn group.

In this paper, we set out to study aspects of calculus on such fields, and for this
purpose, additional requirements are desirable. In particular, for the study of series
of sequences, we demand that the structure be Cauchy complete. This entails that
convergence of sequences and series has some unusual properties; in fact, the series
> oo2 o an converges if and only if its associated sequence (a,) is null; and in this
case, the series even converges absolutely. In particular, it follows that power series
Yoo o ant™ with real coefficients converge if and only if the geometric sequence 1™
converges. Apparently for this to happen it is not sufficient that x be less than 1 in
magnitude; in fact, the geometric sequence diverges for any finite or infinitely large
z.

However, for many of the further arguments, in particular pertaining to the
continuation of real and complex analytic functions, we would like to assure that
the sequence converges as long as z is infinitely small; using that A(z") = nA(z),
this is apparently the case if the Hahn group H is Archimedean. We summarize
this in the following definition.

Definition 1.2. (Levi-Civita Field)
We call the non-Archimedean field K a Levi-Civita field and denote it by R if
it is Cauchy complete, and its Hahn group is Archimedean and divisible.

For the sake of simplicity, we also call the adjoint field of ” complex-like” numbers
R + iR, where 1 is the imaginary unit, a Levi-Civita field, and denote it by C. On
C, we set |a + ib] = |a| + |b| (without too much difficulty, one can see that also the
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more conventional norm based on the root of squares of real and imaginary parts
can be introduced), and A(a + ib) = A(|a + ib|).

The original definition of the field described by Levi-Civita [15][16], which we
shall briefly outline, is indeed more limited. However, as shown in {4], the original
Levi-Civita field represents the smallest example to our wider class of fields, and
has the distinction of being the only one that is computationally treatable [3](28].

Definition 1.3. (The Family of Left-Finite Sets) A subset M of the rational
numbers Q will be called left-finite if for every number r € Q there are only finitely
many elements of M that are smaller than . The set of all left-finite subsets of Q
will be denoted by F.

The next lemma gives some insight into the structure of left-finite sets.

Lemma 1.4. Let M € F. Then M is well-ordered. If M # @, the elements of
M can be arranged in ascending order, and there exists a minimum of M. If M
is infinite, the resulting strictly monotonic sequence is divergent. Furthermore, let
M,N € F, and < M > those rationals that can be written as a finite sum of
elements of M; we have
XcM=>XecF, MUNeF, M+NecF;, <M>cF ifmin(M)>0.
For x € M + N, there are only finitely many (a,b) € M x N withz =a+b.

The proofs are straightforward; in particular, the left-finite sets form a ”field
family” in the sense of [23].

The original Levi-Civita fields are the sets of functions from Q into R and C, re-
spectively, that have left-finite support. They are endowed with componentwise ad-
dition and a formal power series multiplication such that (zy)[g] = > _, . z[slyt];
where here, as in the following, we denote elements of R and C by z, y, etc., and
identify their values at ¢ € Q with brackets like z[g]. Many of the general properties
of Levi-Civita fields can be found in [1][2].

Levi-Civita himself succeeded to show that his structure forms a totally ordered
field that is Cauchy complete, and that any power series with real or complex
coefficients converges for infinitely small arguments. By doing so, he succeeded to
extend infinitely often differentiable functions into infinitely small neighborhoods
by virtue of their local Taylor expansion. He also succeeded to show that the
resulting extended functions are infinitely often differentiable in the sense of the
order topology, and on the original real points, their derivatives agree with those
of the underlying original function. 'The subject appeared again in the work by
Ostrowski [20], Neder [19], and later in the work of Laugwitz [13]. Two more
recent accounts of this work can be found in the book by Lightstone and Robinson
[17], which ends with the proof of Cauchy completeness, as well as in Laugwitz’
account on Levi-Civita's work [14], which also contains a summary of properties of
Levi-Civita fields.

From general valuation theory, and specifically for example the work of Rayner(23],
it follows that C is algebraically closed, and that R is real-closed. Compared to the
general Hahn fields, the Levi-Civita fields are characterized by well-ordered ex-
ponent sets that are particularly ”small”, and indeed minimally small to allow
simultaneously algebraic closure and the Cauchy completeness, as shown in [4].
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2. CONTINUITY AND DIFFERENTIABILITY

The fact that conventional continuity and differentiability do not allow to formu-
late natural calculus concepts for non-Archimedean fields has been one of the stum-
bling blocks of the attempt to formulate advanced analysis on non-Archimedean
fields. Specifically, the continuity based on the natural order turns out to be not
a very useful concept because of the total disconnectedness of the order topology.
This entails that on any non-Archimedean field, the indicator function of the set of
infinitely small numbers

1 if |z| infinitely small
0 else

aa)={

is continuous in the order topology; in fact, for any choice of positive e, merely
choose § to be any positive infinitely small number. However, the function obviously
does not satisfy an intermediate value theorem, as the value 1/2, which surely lies
between 0 and 1, is never assumed. On the other hand, the ”Micro Gauss bracket”
function f, defined for all at most finite numbers and which merely selects the
unique nearest real, the "real part” R of the number,

fa(z) = R(=)
is even continuous in the stricter equicontinuity sense introduced in [4]; however, it
does not assume any infinitely small number, although those apparently lie between
f2(—1) = —1 and f2(1) = 1. As another example, consider the function f; on the
interval [—1, 1] defined in terms of the support points g of the argument z via

f3()lgl = z[q/3].

Apparently the restriction of f3 to the real numbers R is merely the identity. It
also turns out that f is infinitely often differentiable, even equidifferentiable in
the sense of [4]; but its derivative, and hence also its higher derivatives, vanish
everywhere. But since f3 is not constant on any interval, it follows that f3 can not
be represented by its Taylor series even on an infinitely small neighborhood. This
behavior is connected to the existence of non-trivial field automorphisms on non-
Archimedean fields [27]. In particular, this entails that Levi-Civita’s continuation
of infinitely often differentiable functions mentioned above is not unique.

In the following, we will introduce a different approach to continuity and differ-
entiability that will allow to prove local expandability in Taylor series at least over
infinitely small domains and hence uniqueness of the Levi-Civita continuation, and
allows to naturally develop key elements of Cauchy theory.

Definition 2.1. (Continuity)
Let M be a bounded subset of R or C, f : M — R or C. We say f is continuous
on the set M if its difference quotients are bounded, i.e. there exists Iy € R such

that
f(z) =1 @)

<lgforallz #Z € M.
T—F

The number [ is called a Lipschitz constant of f on M.

Apparently continuity here is just the familiar Lipschitz continuity of real calcu-
lus, which however will become part of the wider derivate concept introduced below.
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Multiplying with (z — %), we see that continuity is characterized by a particular
local behavior.

Lemma 2.2. (Remainder Formula 0)

Let M be a bounded subset of R or C, f : M — R or C. Then f is continuous
with Lipschitz constant ly if and only if there is a function s(io)(z) with 15,(50) @] <l
such that

(2.) @)= §@ + 55 (2) - (z - 2).
In particular, for any r € Q, this entails
(2:2) £ (@) =riae) £ (@) for all [ - < d".

It immediately follows that if f is continuous on the bounded set M, then f
is bounded. Furthermore, the conventional sum and product rules of continuity
hold. In a similar way as in conventional analysis, it is possible to provide a unique
continuation for continuous functions defined over sets with isolated singularities.

Theorem 2.3. (Singularity of Continuous Functions)
Let BC M C R or C be an open ball, T € B, f defined and continuous on
M\ {z}. Then there is a unique continuous extension f of f to the full set M.

Proof. Let q be positive and infinitely small, s € R be such that the points of
the sequence z,, = & + s - g™, which by virtue of the Archimedicity of the Hahn
group apparently converges to Z, all lie in B; this can apparently be achieved by
choosing s sufficiently small and of proper sign. Then, by virtue of (2.1) we have
[ (2n — flzm)] < ]s:(co)nz,, ~ Zp| < lg}zn — ], and hence the sequence f(z,) is
Cauchy. Define f(Z) = lim f(z,); then by virtue of (2.1), f is continuous on [a, b].
Furthermore, no other choice of continuation is possible, since any other choice
would violate eq. (2.1). O

On the side we remark that this method also allows continuation from open to
closed intervals. We are now ready to introduce differentiability and several related
concepts.

Definition 2.4. (Differentiability, Derivate, Derivative)

Let M be a bounded subset of R or C, f : M — R or C. We say f is differentiable
at the point £ € M if the difference quotient [f(Z) — f(z)]/(Z — x), viewed as a
function of z, is continuous on M\{Z}. In this case, we call the unique continuation

of the difference quotient onto M the first derivate Dg) (z) of f. We call the value
(23) f9@) =D (@)
the derivative of the function f at z.

This definition generalizes the concept of equidifferentiability introduced in [4];
in particular it provides in a natural way that any linear scaling of a differentiable
function is again differentiable, a property not maintained by equidifferentiability.

Theorem 2.5. (Remainder Formula 1)
Let M be a bounded subset of R or C, f : M — R or C be differentiable on M.
Then we have

(2.4) f(@) = (@) + '@ (z - 2) + s (@) - (z — £)?
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where the function s3 m (z) is bounded in magnitude. If the bound is denoted by I,
then for any r € Q, this entails

(2.5) F (@) =2r4aqq) F(2) + £ (@) (2 - 2) if Mz — z[) > 7.

Proof. Observe that in eq. (2.1), the function s( ) is merely the difference quotient;
if the difference quotient is continuous, by deﬁmtlon it also satisfies a remainder
formula like eq. (2.1), but with a function s; )(a:) inserting the remainder formula
for s( ) into the remainder formula for f leads to (2.4). (]

In a natural way we obtain the following theorem.

Theorem 2.6. (Derivatives are Differential Quotients)

Let M be a bounded subset of R or C, f : M — R or C. Let f be differentiable
at the point T, and let I, be a Lipschitz constant of the derivate D( ) (Z). Letr € Q
be given, and let h € R be such that |h| < d" and T+ h € M. Then

(26) /@) =riray LEXR @),

In particular, for a function with finite Lipschitz constant for the derivate, we
obtain that e+ h) - f(2)
z+n)— flz
fl ( x) =g _________’7_
as long as h is infinitely small. Thus, if one is interested in merely calculating
the real value of the derivative of a real differentiable function that is differentiably
continued, then this real value can be obtained by merely evaluating the ” differential
quotient” for any infinitely small . This is the anchor point of the very general

methods for the practical computation of derivatives of complicated real functions
outlined in (3] and [28].

3. HIGHER DIFFERENTIABILITY

Using the derivate concept, we now introduce a different way to define higher
derivatives as follows.

Definition 3.1. (Higher Derivates and Derivatives)

Let M be a bounded subset of R or C, f: M — R or C differentiable on M. We
say f is twice differentiable at Z if the derivate Dg)(z), viewed as a function of z,
is differentiable at the point Z € M. In this case, we call the derivate of Dg)(a:) the

second derivate of f, and denote it by Déz) (z). Similarly, we say inductively that f
is n times differentiable if it is (n — 1) times differentiable, and its (n — 1)st derivate

D" V(z) is differentiable. We call the value

n)(= 1 =
(31 f™(@) = =D (@)
the nth derivative of f at Z.

Comparing this approach to the conventional one used in real analysis, for the
higher derivatives we here determine the derivate of the derivate function and take
the limit afterwards, instead of first taking the limit of the derivate function and
then differentiating again; hence we have essentially changed the order of ”limit”
and ”difference quotient”. One could of course follow the same venue in the case of
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conventional real analysis; however, having the tool of the next theorem available,
it becomes clear that in the real case not much can be gained; we will come back
to this question later.

Theorem 3.2. (Taylor Formula)
Let M be a bounded subset of R or C, f : M — R or C be n times differentiable
on M. Then we have

62 f@=r@+3L (’;,‘E) (2 -2 + (@) - (z - B+
=t T

where the function sé") (x) is bounded in magnitude. If the bound is denoted by l,,
then for any r € Q, this entails

(3.3) f (@) =gt1riaa,) FE + F @)z -2) + ... + —— (= —2)"

™ (@)

n!
if M|z — z|) > r.

The proof follows directly by induction along the same lines as the proof of the
remainder formula 1, eq. (2.4) by successively applying the remainder formula (2.1)
to s©@, s . (=1,

In the real case, we obtain the corresponding Taylor formula via other already
existing calculus concepts, in particular Rolle’s theorem; here the modified defi-
nition of differentiability allows us to obtain the Taylor formula directly without
invoking any other knowledge.

To conclude the discussion of what would happen if one were to introduce calcu-
lus on the reals via the derivates, by the time one has reached the Taylor formula as
above, one can make a direct connection with the conventional derivative concept
via differentiation of the Taylor formula. Conversely, based on the Taylor formula
of conventional calculus, one can show that a function that is repeatedly differen-
tiable in the conventional sense is also repeatedly differentiable in the derivate sense
by merely calculating derivates of the Taylor polynomial and remainder term. The
resulting approaches are virtually identical, with the small difference that in the
derivate sense, the continuity of the highest appearing difference quotient is even
Lipschitz. So in the reals, not much would be gained from this alternate approach,
while on the Levi-Civita numbers, we directly obtain information on local behav-
jor. For the sake of space and since we are primarily interested in non-Archimedean
calculus, we leave it at this rough sketch.

4. ELEMENTS OF A CAUCHY THEORY

As an important consequence of the Taylor formula, we obtain

Theorem 4.1. (Taylor Expansion)
Let M be a bounded subset of R or C, f : M — R or C infinitely often differ-
entiable on M. Let L, denote a Lipschitz constant of the nth dertvate, and let s be

defined by
8 = — lim inf (M—)) .
n
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Then for all z with Xz — &) > s, the Taylor series of f converges in the order
topology. Furthermore, for such z, we have

O (n)(=
(41) o) =3 e ar
Proof. Let a € R be such that A(a) = s. Define f = f(x/a). Then f is infinitely
often differentiable with Lipschitz constants [, = [, /a™, and hence for the function
f, we have that § = —1lim inf(A(l,)/n) = 0. Let now m be such that M) >0
for all n > m. Now let z be such that # = A(z — Z) > 0. Then according to the
remainder formula (3.3), we have for n > m that

f@) =3 L@ o 4 00 (o - 2y
v=0 ’

But since |5| < I, and thus AGM) > 0, the sequence 58(z) - (z — £)™*! is null,

and the series > .._ &'Z,Q(m — Z)¥ converges to f(z). O

As a consequence, it is now possible to understand the local behavior of infinitely
often differentiable functions, at least in sufficiently small neighborhoods given by
the quantity s, and hence we have achieved local analyticity. In particular, situa-
tions as with the example function f3 introduced above cannot happen anymore;
specifically, the first and higher derivates of f3 do not vanish.

We note that a deeper analysis of the convergence and divergence properties of
power series is provided in [27][29]; in particular, it is important that it is possible
to also study the case A(z — Z) = s, based on weaker topologies.

It is particularly important to study the situation of functions on finite domains
with finite derivatives, which can be thought of as comparable to conventional real
and complex functions. In this case, we obviously obtain that the quantity s satisfies
s = 0, and we have the following result.

Corollary 4.2. Let M be a bounded subset of R orC, f: M — R orC infinitely
often differentiable on M, and let all derivates of f be finite on M. Then the Taylor
series of f at T converges to f(x) in every infinitely small neighborhood around .

As mentioned above, already in his first papers [15][16], Levi-Civita realized that
there is a way to continue any real- or complex- analytic function to his original
fields R and C by virtue of the fact that the Taylor series with real or complex coef-
ficients converges for infinitely small arguments, and that these resulting continued
functions are infinitely often differentiable. However, as the example of f3 above
shows, this continuation is not unique. But in our stronger sense of differentiability,
we now obtain:

Corollary 4.3. (Local Identity Theorem) Let M be a finite subset of R or C,
and let f and g be infinitely often differentiable functions from M into R or C with
finite derivates. Let f and g agree on all purely real or complex points in M. Then
f =g on M. In particular, Levi-Civita’s analytic continuation is unique among the
infinitely often differentiable functions.

It is also worth mentioning that since it only affects infinitely small neighbor-
hoods, the convergence of the Taylor expansion is unrelated to the conventional
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real analysis result that real infinitely often differentiable functions are not nec-
essarily analytic, i.e. locally expandable. In fact, as alluded to before, restricted
to the real case, infinite differentiability in the new sense is exactly equivalent to
infinite differentiability in the old sense. However, the new method has the advan-
tage of determining the local behavior in infinitely small neighborhoods, which will
prove useful to overcome the problems of the total disconnectedness of the natural
topology on non-Archimedean fields.

‘We now focus our attention to the development of Cauchy’s theorem and Cauchy’s
formula. For the sake of notational simplicity, we limit ourselves to the case of func-
tions from finite subsets of C and with finite ranges in C. It will be apparent how
the results can be generalized.

Definition 4.4. (Analytic Functions) Let B(zo, h) C C be a ball of finite radius
h centered around z¢. We say f is C—analytic on B(zo, h) if it is infinitely often
differentiable with at most finite derivates, and it is purely complex on purely
complex points.

We immediately obtain the following observation.

Lemma 4.5. Let zo and h be finite, and let f be C—analytic on B(zo,h) C C. Then
its restriction f to the conventional complez numbers C in B(xzo, h) is analytic as a
complex function. Furthermore, in any infinitely small neighborhood of any purely
complex point x € B(zo, h), f can be represented by a power series with coefficients
an = f™ /nl.

Proof. From the definition of derivate differentiability, the conventional complex dif-
ferentiability and hence analyticity of f follows by considering only purely complex
values for & and Z. Now consider the Levi-Civita continuation F of f to C; specifi-
" cally, in every infinitely small neighborhood of a purely complex point z € B(zq, h),
the function F satisfies F(z + Az) = 3 o0 o 0 (z)(Az)"/n!. However, F agrees
with f on all purely complex points, and since it is infinitely often derivate differ-
entiable, according to the Local Identity Theorem, it must agree with f everywhere
on B(zg, h). 0

Lemma 4.6. The representation via a power series in the last lemma also holds
for finite domains in the sense of the theory of power series over finite domains
and weak convergence.

The proof follows readily from the arguments in [27][29] and will not be repeated
here. For the development of the Cauchy theory for analytic functions we need to
define paths and path integrals. For the latter, we capitalize on the measure and
integration theory developed in a companion paper [30].

Definition 4.7. (Smooth Paths in C, Path Integrals) Let v : [a,b] C R —
B C C be a mapping from the interval [a,b] in R into the complex Levi-Civita
numbers. Let a =t; < t3 < ... < t, = b be a subdivision of [a,b]. We call the path
~ smooth if it assumes purely complex values at purely real arguments, and if its
real and imaginary parts are infinitely often differentiable with finite derivates on
every [t;,ti+1]. Let f be a power series on every [ti, tis1], then we define

b
/ f (€)de = / FO®) @) dt
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componentwise for the real and imaginary parts in terms of the integral studied in

[30].

We note that the piecewise definedness entails that indeed the functions are
locally simple on a measurable set, as required. We now obtain.

Theorem 4.8. (Cauchy Theorem) Let v be a smooth closed path in C, and let
f be analytic at least in an (order) ball B enclosing all of v. Then we have

if@&=0

Proof. Let <y be the closed path on [a,b], with a subdivision a = t; < t3 < ... <
t, = b. We first define #; to be the purely real parts of t; for i = 1, ...,n. Then we
write

froe=Y [ io0noa

We observe that the function f(vy(t))4'(t) is a weakly converging power series and
hence a simple function in the sense of [30] over the sub-intervals [t;,;+1], and so
it also is simple on the subintervals [t;,?;]. We thus have

frow=Y [ raeros

i=1 vt

n—1 .z, n—1l .4,
+ 3 ["ro@mw e+ Y [ roon @
=1Vt i=1 YEi

it

-3 [ty va

n—1 t; n t;
+3 [ ro@p e+ Y [ raop o
i=1v"

i=2 Yt

n-l £,
-3 / FO@) (bt
i=1 Yt

4

+ ? frp e + [ st o

-3 [ s e

i==1 "%

Here we have first used the properties [ + [ = [ and [’ = — J;* from the the-
ory of integration of measurable functions [30], and the fact that ¢; = t, because
the path is closed by requirement. Now we observe that according to the previous
lemma and the fact that by requirement v maps purely real points into purely com-
plex points and f maps purely complex points into purely complex points, we have
that the coefficients of the power series representation of f(+(t)) are purely com-
plex. Also, since f and v map purely complex and purely real into purely complex
points, f(7(t)) agrees with f(%(t)) on all purely real points . Since the points £; are
purely real by construction, and considering that the integration of power series is
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merely componentwise, we observe that [;’ fi ¢ (y@®))Y (t)dt = t‘“ FA@)¥ (t)dt,

where f and 7 again denote the restrictions to the complex numbers Since accord-
ing to the above lemma, f is analytic as a conventional complex function, we thus
have

n-l g
$1@e=3 [ raem e

-5 [ Fawvon=§ 7 @0
Y

i=1
because of the conventional complex Cauchy theorem. a

As the next step, we turn our attention to the Cauchy formula, where the situ-
ation is more involved.

Theorem 4.9. (Cauchy Formula) Let v be a smooth closed path in C, and let f

be analytic at least in an (order) ball B enclosing all of v. Let z be inside the path
v, and let its distance to v not be infinitely small. Then f,y F&) /(€ — 2) d€ is well
defined, and we have

f&)

i § iy %=1

Proof. Let ~ be defined on [a,b]. Let c finite be chosen such that ¢ > 1|y(t) — 2|
for all ¢t € [0,1]. Let 2’ such that |2’ — z| > 2c. We first note that according to
the theory of power series [29][27], 1/(Z — z) can be written as a power series with
respect to Z around the point 2’ on B(2’, ¢). This also entails that a subdivision {¢;}
of [0,1] exists such that 1/(y(t) — z) can be written as a power series in ¢ on every
[ti,tis1). Since f is analytic by requirement, f(y(t)) - 7'(t)/(¥(t) — 2) is a power
series on every [t;,t;+1]. Thus the integral is well defined in the sense of {30].

We now first observe that if z is purely complex, so is the denominator for real
arguments of . Following a reasoning very similar to that of the proof of the Cauchy
theorem, we thus obtain in this case

10 4 T / FaEY® ,

§ -z pa ) -2
R 1070)040)) O
+Z O dt+Z/t‘+‘ () — 2z
RS W (C10) 0P B FOW
_;/ 2t) - 2 t—z/t At -z

=27i f(2) = 2mi f(2).

Let now z = Z + r, where Z is purely complex and r is infinitely small. Because
of the analyticity of f, the function f can be expanded in a strongly converging
Taylor series in any infinitely small neighborhood, and since r is infinitely small,
we thus have

ARG

n!

f2)=fz+71)= Z

n=0
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We also have

f(x(®) Y (t)dt = f F0(@®) -y (t)dt

¥ () — 2 A =2 1~/ =)
F0®) (™ ,
(’Y(t) - 2) (7;0 (’7(t) - 5)") =Y (t) dt

where use has been made of the fact that 1/(1—z) = 3> ; z" in strong convergence
for z infinitely small in magnitude. Using the fact that the integral is linear in the
scalar factor r (proposition 4.10 in [30]), and that [ anfn = Y. a, [ fn for at
most finite |f,| and strongly convergent sequence a, (corollary 4.12 in [30]) we
obtain

n=0

Now we observe that because Z is purely complex by definition, the expression under
the integral assumes purely complex values on purely complex points; thus accord-
ing to the argument in the beginning of the proof, the integral equals (™ (z)/n!.
Thus we finally conclude

fO®) R N A ) :

S y(t) dt = 2me rt.—t =27 f(z

b T > 7(2)

where in the last step we have used the Taylor expansion of f for the infinitely
small argument 7. 0

Remark 4.10. The approach presented here can be generalized in various ways.
First, it is possible to study infinitely often differentiable functions that map purely
complex numbers z into a set with left-finite support, i.e. |J,cosupp(f (2)) is left-
finite; so the function values at purely complex points need not be purely complex
anymore, and the range of f can be infinitely large or infinitely small. It also appears
possible to allow other curves -y that are locally given by power series, in particular
those that map the purely real numbers ¢ into a set with left-finite support. In this
case it appears possible to perform an expansion of the denominator not only in r,
but after writing v(t) = o(t)(1 + ¢(t)) with g infinitely small, also in powers of g,
and then to proceed along the same lines as described above.
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