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Abstract

In many practical problems in which derivatives are calculated, their basic purpose
is to be used in the modeling of a functional dependence, often based on a Taylor
expansion to first or higher orders. While the practical computation of such derivatives
is greatly facilitated and in many cases is possible only through the use of forward or
reverse computational differentiation, there is usually no direct information regarding
the accuracy of the functional model based on the Taylor expansion.
We show how, in parallel to the accumulation of derivatives, error bounds of all

functional dependencies can be carried along the computation. The additional effort is
minor, and the resulting bounds are usually rather sharp, in particular at higher orders.
This Remainder Differential Algebraic Method is more straightforward and can yield
tighter bounds than the mere interval bounding of the Taylor remainder’s (n + 1)st
order derivative obtained via forward differentiation.
The method can be applied to various numerical problems: Here we focus on global

optimization, where blow-up can often be substantially reduced compared with interval
methods, in particular for the cases of complicated functions or many variables. This
problem is at the core of many questions of nonlinear dynamics and can help facilitate
a detailed, quantitative understanding.

Keywords: Remainder differential algebras, differential algebras, error bound,
interval method, high-order derivatives, Taylor polynomial, Taylor remainder, beam
physics, COSY INFINITY, Fortran precompiler.

1 Introduction

The significant advances in computer hardware that we have experienced particularly
in the past decade allow the study of ever more complex problems. In many practical
problems, one must locally model nonlinear functional dependencies, for example to
study parameter sensitivity or to perform optimization. This is typically done through
the computation of derivatives, and the forward and reverse modes of computational
differentiation [Griewank1991e] have excelled in providing such derivatives accurately and
inexpensively.

While the derivatives themselves are accurate except for computational errors that
are typically very small, rigor is lost when the derivatives are used to model a functional
dependence, because of the lack of information about the size of remainder terms. The
method of interval arithmetic (see, for example, [Kulisch1981a]) often provides a means for
keeping the mathematical rigor in the computation of model functions. However, the naive
use of interval methods in large problems is prone to blow-up, which at times limits the
practical usefulness of such methods.
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In this paper, we discuss a combination of the techniques of computational differen-
tiation and interval methods, in a way that uses the advantages and diminishes the dis-
advantages of either of the two methods. The new technique, the method of Remainder
Differential Algebras, employs high-order computational differentiation [Berz1991a] to ex-
press the model function by a Taylor polynomial, and interval computation to evaluate the
Taylor remainder error bound.

For example, in beam physics and weakly nonlinear dynamics in general, the Differential
Algebraic technique [Berz1989a], [Berz1990e], [Berz1991d], [Berz1994b] has offered a
remarkably robust way to study the nonlinear behavior of beams and has evolved into one of
the essential tools. However, many difficult yet important questions remain, including the
long-term stability of beams in circular accelerators or other dynamical systems, such as the
planets in the solar system. In light of modern stability theories, this problem can be cast
as an optimization problem [Berz1994c], [Berz1996b], which from the computational point
of view is very complex. The method of Remainder Differential Algebras as an extension
of conventional Differential Algebraic techniques may shed light on this and many other
questions requiring verified computations of complicated problems [Berz1996b].

2 Remainder Differential Algebras

In this section, we provide an overview of the method of computing remainder terms along
with the original function. The Taylor theorem plays an important role in this endeavor,
and we briefly state it here.

Theorem 2.1 (Taylor’s Theorem). Suppose that a function f : [�a,�b] ⊂ Rv → R is
(n+ 1) times partially differentiable on [�a,�b]. Assume �x0 ∈ [�a,�b]. Then for each �x ∈ [�a,�b],
there is θ ∈ R with 0 < θ < 1 such that

f(�x) =
nX

ν=0

1

ν!

³
(�x− �x0) · �∇

´ν
f(�x0) +

1

(n+ 1)!

³
(�x− �x0) · �∇

´n+1
f (�x0 + (�x− �x0)θ) ,

where the partial differential operator
³
�h · �∇

´k
operates as

³
�h · �∇

´k
=

X
0 ≤ i1, · · · , iv ≤ k
i1 + · · ·+ iv = k

k!

i1! · · · iv!
hi11 · · ·hivv

∂k

∂xi11 · · · ∂xivv
.

Depending on the situation at hand, the remainder term also can be cast into a variety
of other forms. Taylor’s theorem allows a quantitative estimate of the error that is to be
expected when approximating a function by its Taylor polynomial. Furthermore, it even
offers a way to obtain bounds for the error in practice, based on bounding the (n + 1)st
derivative, a method that has been employed in interval calculations.

Roughly speaking, Taylor’s theorem suggests that in many cases the error decreases
with the order as the width of the interval raised to the order being considered, and its
practical use is often connected to this observation. However, certain examples illustrate
that this behavior does not have to occur; one such example is in the following section.

For notational convenience, we introduce a parameter α to describe the details of a
given Taylor expansion, namely, the order of the Taylor polynomial n, the reference point
of expansion �x0, and the domain interval [�a,�b] on which the function is to be considered as

α = (n, �x0, [�a,�b]).(1)
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With the help of Taylor’s theorem, any (n + 1) times partially differentiable function
f : [�a,�b] ⊂ Rv → R can be expressed by the Taylor polynomial Pα,f of nth order and
a remainder εα,f . We write it symbolically as

f(�x) = Pα,f (�x− �x0) + εα,f (�x− �x0),

where εα,f (�x−�x0) is continuous on the domain interval and thus bounded. Let the interval
Iα,f be such that for any �x ∈ [�a,�b], εα,f (�x− �x0) ∈ Iα,f . Then

∀�x ∈ [�a,�b], f(�x) ∈ Pα,f (�x− �x0) + Iα,f .(2)

Because of the special form of the Taylor remainder term εα,f , in practice the remainder
usually decreases as |�x− �x0|n+1. Hence, if |�x− �x0| is chosen to be small, the interval Iα,f ,
which from now on we refer to as the interval remainder bound, can become very small.
The set Pα,f (�x − �x0) + Iα,f containing f consists of the Taylor polynomial Pα,f (�x − �x0)
and the interval remainder bound Iα,f . We say a pair (Pα,f , Iα,f ) of a Taylor polynomial
Pα,f (�x− �x0) and an interval remainder bound Iα,f is a Taylor model of f if and only if (2)
is satisfied. In this case, we denote the Taylor model by

Tα,f = (Pα,f , Iα,f ).

We call n the order of the Taylor model, �x0 the reference point of the Taylor model, [�a,�b]
the domain interval of the Taylor model, and α the parameter of the Taylor model.

In the following, we develop tools that allow us to calculate Taylor models for all
functions representable on a computer.

2.1 Differential Algebras and Interval Arithmetic

In the preceding section, the concept of Remainder Differential Algebras and Taylor models
was introduced. While the computational idea of Taylor models is unique, the two
constituents of a Taylor model, namely, the Taylor polynomial and the bounding interval,
are familiar concepts.

While computational differentiation techniques focus mostly on first- or low-order
derivatives, some algorithms [Berz1991a] and codes allow the computation of very high-
order derivatives [Berz1990d], [Berz1990a], [Berz1994b], [Berz1995a]. This application has
received attention recently in the field of beam physics in a differential algebraic frame-
work suited for treatment of differential equations [Berz1992a], [Berz1993a], [Berz1995a],
[Berz1996b].

While these methods can provide the derivatives of the function to high orders, they
fail to provide rigorous information about the range of the function. A simple example that
dramatically illustrates this phenomenon is the function

f(x) =

(
exp(−1/x2) if x 6= 0
0 if x = 0.

The value of the function and all the derivatives at x = 0 are 0. Thus the Taylor polynomial
at the reference point x = 0 is just the constant 0. In particular, this also implies that the
Taylor series of f converges everywhere, but it fails to agree with f(x) everywhere but at
x = 0.

In a situation such as this one, the methods of interval arithmetic make a contrast.
Interval arithmetic carries the information of rigorous bounds of a function in computation,



66 Makino and Berz

and the computation time is usually reasonably fast. However, the potential problem of
blow-up always exists. To illustrate this phenomenon with a trivial example, we consider
the interval I = [a, b], which has the width b − a. We compute the addition of I to itself
and its subtraction from itself: I + I = [2a, 2b] and I − I = [a − b, b − a]. In both cases
the resulting width is 2(b − a) and is twice the original width, although we know that
regardless of what unknown quantity x is characterized by I, certainly x− x should equal
zero. Similar blow-up often poses a severe problem for interval methods, in particular
when the underlying functions become very complex. In the case of Remainder Differential
Algebras, however, the remainder bound intervals are kept so small that even the effect of
considerable blow-up is not detrimental.

2.2 Addition and Multiplication of Taylor Models

In this section, we discuss how a Taylor model of a sum or product of two functions can be
obtained from the Taylor models of the two individual functions. This represents the first
step toward the computation of Taylor models for any function that can be represented on
a computer.

Let the functions f, g : [�a,�b] ⊂ Rv → R have Taylor models

Tα,f = (Pα,f , Iα,f ) and Tα,g = (Pα,g, Iα,g),

which entails that

∀�x ∈ [�a,�b], f(�x) ∈ Pα,f (�x− �x0) + Iα,f and

g(�x) ∈ Pα,g(�x− �x0) + Iα,g.

Then it is straightforward to obtain a Taylor model for f + g; in fact, for any �x ∈ [�a,�b],

f(�x) + g(�x) ∈ (Pα,f (�x− �x0) + Iα,f ) + (Pα,g(�x− �x0) + Iα,g)

= (Pα,f (�x− �x0) + Pα,g(�x− �x0)) + (Iα,f + Iα,g),

so that a Taylor model Tα,f+g for f + g can be obtained via

Pα,f+g = Pα,f + Pα,g and Iα,f+g = Iα,f + Iα,g.(3)

Thus we define
Tα,f + Tα,g = (Pα,f + Pα,g, Iα,f + Iα,g),

and we obtain that Tα,f + Tα,g = (Pα,f+g, Iα,f+g) is a Taylor model for f + g. Note that
the above addition of Taylor models is both commutative and associative.

The goal in defining a multiplication of Taylor models is to determine a Taylor model
for f · g from the knowledge of the Taylor models Tα,f and Tα,g for f and g. Observe that

for any �x ∈ [�a,�b],

f(�x) · g(�x) ∈ (Pα,f (�x− �x0) + Iα,f ) · (Pα,g(�x− �x0) + Iα,g)

⊆ Pα,f (�x− �x0) · Pα,g(�x− �x0)

+Pα,f (�x− �x0) · Iα,g + Pα,g(�x− �x0) · Iα,f + Iα,f · Iα,g.

Note that Pα,f · Pα,g is a polynomial of (2n)th order. We split it into the part of up to
nth order, which agrees with the Taylor polynomial Pα,f ·g of order n of f · g, and the extra
polynomial Pe, so that we have

Pα,f (�x− �x0) · Pα,g(�x− �x0) = Pα,f ·g(�x− �x0) + Pe(�x− �x0).(4)
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A Taylor model for f · g can now be obtained by finding an interval bound for all the terms
except Pα,f ·g. For this purpose, let B(P ) be a bound of the polynomial P : [�a,�b] ⊂ Rv → R,
namely,

∀�x ∈ [�a,�b], P (�x) ∈ B(P ).

Apparently the efficient practical determination ofB(P ) is not completely trivial; depending
on the order and number of variables, different strategies may be employed, ranging from
analytical estimates to interval evaluations. However, thanks to the specific circumstances,
the occurring contributions are very small, and even moderate overestimation is not
immediately critical.

Altogether, an interval remainder bound for f · g can be found via

Iα,f ·g = B(Pe) +B(Pα,f ) · Iα,g +B(Pα,g) · Iα,f + Iα,f · Iα,g.(5)

Thus we define Tα,f · Tα,g = (Pα,f ·g, Iα,f ·g), and obtain that Tα,f · Tα,g is a Taylor model
for f · g. Note that commutativity of multiplication holds, Tα,f · Tα,g = Tα,g · Tα,f , while
multiplication is not generally associative, and also distributivity does not generally hold.

While the idea of Taylor models of constant functions is almost trivial, we mention it
for the sake of completeness. For a constant function f(�x) ≡ t, the Taylor model of f is

Tα,f ≡ Tα,t = (Pα,t, Iα,t) = (t, [0, 0]).

Having introduced addition and multiplication as well as scalar multiplication, we can
compute any polynomial of a Taylor model. Let Q(f) be a polynomial of a function f , that
is, Q(f) = t0+ t1f + t2f

2+ · · ·+ tkf
k. In practice it is useful to evaluate Q(f) via Horner’s

scheme,

Q(f) = t0 + f ·
µ
t1 + f ·

³
t2 + f · (· · · (tk−1 + f · tk) · · ·)

´¶
,

in order to minimize operations. Assume that we have already found the Taylor model
of the function f to be Tα,f = (Pα,f , Iα,f ). Then, using additions and multiplications of
Taylor models described above, we can compute a Taylor model for the function Q(f) via

Tα,Q(f) =
³
Pα,Q(f), Iα,Q(f)

´
.

2.3 Functions in Remainder Differential Algebras

In the preceding section, we showed how Taylor models for sums and products of functions
can be obtained from those of the individual functions. The computation led to the
definition of addition and multiplication of Taylor models. Here we study the computation
of Taylor models for intrinsic functions, including the reciprocal applied to a given function
f from the Taylor model of f .

The key idea is to employ Taylor’s theorem of the function under consideration:
However, in order to ensure that the resulting remainder term yields a small remainder
interval and does not contribute anything to the Taylor polynomial, some additional
manipulations are necessary.

Let us begin the study with the exponential function. Assume that we have already
found the Taylor model of the function f to be Tα,f = (Pα,f , Iα,f ). Write the constant
part of the function f around �x0 as cα,f , which agrees with the constant part of the Taylor
polynomial Pα,f , and write the remaining part as f̄ , that is,

f(�x) = cα,f + f̄(�x).
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A Taylor model of f̄ is then Tα,f̄ = (Pα,f̄ , Iα,f̄ ), where

Pα,f̄ (�x− �x0) = Pα,f (�x− �x0)− cα,f and Iα,f̄ = Iα,f .

Now we can write

exp(f(�x)) = exp
¡
cα,f + f̄(�x)

¢
= exp(cα,f ) · exp

¡
f̄(�x)

¢
= exp(cα,f ) ·

½
1 + f̄(�x) +

1

2!
(f̄(�x))2 + · · ·+ 1

k!
(f̄(�x))k

+
1

(k + 1)!
(f̄(�x))k+1 exp

¡
θ · f̄(�x)

¢¾
,

where 0 < θ < 1. Taking k ≥ n, where n is the order of Taylor model, the part

exp(cα,f ) ·
½
1 + f̄(�x) +

1

2!
(f̄(�x))2 + · · ·+ 1

n!
(f̄(�x))n

¾
is a polynomial of f̄ , of which we can obtain the Taylor model as outlined in the preceding
section. The remainder part of exp(f(�x)),

exp(cα,f ) ·
½

1

(n+ 1)!
(f̄(�x))n+1 + · · ·+ 1

(k + 1)!
(f̄(�x))k+1 exp

¡
θ · f̄(�x)

¢¾
,(6)

will be bounded by an interval. Since Pα,f̄ (�x − �x0) does not have a constant part,
(Pα,f̄ (�x − �x0))

m starts from mth order. Thus, in the Taylor model computation, the
remainder part (6) has vanishing polynomial part. The remainder bound interval for the
Lagrange remainder term

exp(cα,f )
1

(k + 1)!
(f̄(�x))k+1 exp

¡
θ · f̄(�x)

¢
can be estimated because, for any �x ∈ [�a,�b], Pα,f̄ (�x− �x0) ∈ B(Pα,f̄ ), and 0 < θ < 1, and so

(f̄(�x))k+1 exp
¡
θ · f̄(�x)

¢
∈
³
B(Pα,f̄ ) + Iα,f̄

´k+1
exp

³
[0, 1] · (B(Pα,f̄ ) + Iα,f̄ )

´
.

Since the exponential function is monotonically increasing, the estimation of the interval

bound of the part exp
³
[0, 1] · (B(Pα,f̄ ) + Iα,f̄ )

´
is achieved by inserting the upper and lower

bounds of the argument in the exponential.
A Taylor model for the logarithm of a function f can be computed in a similar manner

from the Taylor model of the function. In this case, there is the limitation that it has
to be ensured that the range of the function f lies entirely within the range of definition
of the logarithm, which will be the case if, for any �x ∈ [�a,�b], any element in the set
Pα,f (�x−�x0)+Iα,f is positive. For the actual computation, we again split the constant part
of the function f around �x0 from the rest f(�x) = cα,f + f̄(�x). Then we obtain

log(f(�x)) = log
¡
cα,f + f̄(�x)

¢
= log

(
cα,f ·

Ã
1 +

f̄(�x)

cα,f

!)

= log cα,f + log

Ã
1 +

f̄(�x)

cα,f

!

= log cα,f +
f̄(�x)

cα,f
− 1
2

(f̄(�x))2

c2α,f
+ · · ·+ (−1)k+1 1

k

(f̄(�x))k

ckα,f

+(−1)k+2 1

k + 1

(f̄(�x))k+1

ck+1α,f

1¡
1 + θ · f̄(�x)/cα,f

¢k+1 ,
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where 0 < θ < 1. Taking k ≥ n, the part

log cα,f +
f̄(�x)

cα,f
− 1
2

(f̄(�x))2

c2α,f
+ · · ·+ (−1)n+1 1

n

(f̄(�x))n

cnα,f

is again treated as a polynomial of f̄ in the Taylor model computation. The Lagrange
remainder part of log(f(�x)) becomes part of the remainder bound interval of the Taylor
model of log(f). The remainder term can be estimated as

(−1)k+2 1

k + 1

(B(Pα,f̄ ) + Iα,f̄ )
k+1

ck+1α,f

1³
1 + [0, 1] · (B(Pα,f̄ ) + Iα,f̄ )/cα,f

´k+1 .
In a rather similar fashion, it is possible to determine Taylor models of square roots

and trigonometric functions as soon as a Taylor model for the argument is known. As a
last example, we determine a Taylor model for the multiplicative inverse from that of the
function. This Taylor model can be computed if and only if, for any �x ∈ [�a,�b], any element
in the set Pα,f (�x − �x0) + Iα,f is nonzero. For the actual computation, we again split the
constant part of the function f around �x0 from the rest as before. Then we obtain

1

f(�x)
=

1

cα,f + f̄(�x)
=

1

cα,f
· 1

1 + f̄(�x)/cα,f
(7)

=
1

cα,f
·
(
1− f̄(�x)

cα,f
+
(f̄(�x))2

c2α,f
− · · ·+ (−1)k (f̄(�x))

k

ckα,f

)

+(−1)k+1 (f̄(�x))
k+1

ck+2α,f

1¡
1 + θ · f̄(�x)/cα,f

¢k+2 ,
where again 0 < θ < 1. By choosing k ≥ n, the Taylor model computation for the
multiplicative inverse function can be done as before.

Altogether, it is now possible to compute Taylor models for any function that can be
represented in a computer environment by simple operator overloading, in much the same
way as the mere computation of derivatives, Taylor polynomials, or interval bounds, along
with the mere evaluation of the function.

For many practical problems, in particular the efficient solution of differential equations,
it is actually important to complement the set of currently available operations by a
derivation ∂ that allows the computation of a Taylor model of the derivative of a function
from that of the original function. As in the case of the conventional Differential Algebraic
method, in order to prevent loss of order in the differentiation process, the derivation ∂ can
be evaluated only in the context of a Lie derivative Lg = g ·∂, where g(�x0) = 0. However, in
the case of Taylor models, an additional complication is connected to the fact that from the
Taylor model alone, it is impossible to determine a bound for the derivative, since nothing
is known about the rate of change of the function (f − Pα,f ) within the remainder bound
If . The situation can be remedied by a further extension of the Taylor model concept to
contain not only bounds for the remainder, but also a low-parameter bounding sequence for
all the higher derivatives that can occur. For reasons of space, we have to restrict ourselves
to this outlook as to what is necessary to complete the algebra of Taylor models into a
Remainder Differential Algebra.
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3 Examples

Remainder Differential Algebras have many applications, including global optimization,
quadrature, and solution of differential equations. We begin our discussion with the
determination of a sharp bound for a simple example function using Remainder Differential
Algebras. The sharpness of the resulting bound will be compared with the results that can
be obtained in other ways. The function under consideration is

f(x) =
1

x
+ x.(8)

For an actual computation, we set the parameter α of (1) to α = (n, x0, [a, b]) =
(3, 2, [1.9, 2.1]).

As in the case of conventional forward differentiation, the evaluation begins with the
representation of the identity function, expressed in terms of a Taylor polynomial expanded
at the reference point. This identity function i has the form

i(x) = x = x0 + (x− x0) = 2 + (x− 2).

Since this representation is exact, the remainder bound is [0, 0]. Hence, a Taylor model of
the identity function i is

Tα,i = (x0 + (x− x0), [0, 0]) = (2 + (x− 2), [0, 0]).

The constant part of i around x0 = 2 is cα,i = x0 = 2, and the nonconstant part of i is
ī(x) = x− x0 = x− 2. The Taylor model of ī is

Tα,̄i = ((x− x0), [0, 0]) = ((x− 2), [0, 0]) .

The computation of the inverse requires the knowledge of a bound of Pα,̄i, which here is
readily obtained: B(Pα,̄i) = B(x−x0) = [a−x0, b−x0] = [−0.1, 0.1]. We have furthermore
B(Pα,̄i) + Iα,̄i = [−0.1, 0.1] + [0, 0] = [−0.1, 0.1]. Using (4) and (5), we have for the Taylor
model of (̄i)2

Tα,(̄i)2 =
³
(x− 2)2, [0, 0]

´
.

The Taylor model of (̄i)3 is computed similarly: Tα,(̄i)3 =
¡
(x− 2)3, [0, 0]

¢
. As can be seen,

so far all remainder intervals are of zero size. The first nonzero remainder interval comes
from the evaluation of the Taylor remainder term, which is

(̄i(x))4

c5α,i

1

(1 + θ · ī(x)/cα,i)5
∈

(B(Pα,̄i) + Iα,̄i)
4

x50 ·
³
1 + [0, 1] · (B(Pα,̄i) + Iα,̄i)/x0

´5(9)

⊆ [0, 0.0001]

25 · ([0.95, 1.05])5 ⊆ [0, 4.038× 10
−6].

As expected, this remainder term is “small of order four”. According to (7), the Taylor
model of 1/i is then

Tα, 1
i
=

µ
1

2
− 1

22
(x− 2) + 1

23
(x− 2)2 − 1

24
(x− 2)3, [0, 4.038× 10−6]

¶
,
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Table 1

The remainder bound interval Iα,1/i+i for various orders; x0 = 2, [a, b] = [1.9, 2.1]

Order The remainder bound interval

1 [ 0 , 1.4579384× 10−3 ]

2 [ −7.6733603× 10−5 , 7.6733603× 10−5 ]

3 [ 0 , 4.0386107× 10−6 ]

4 [ −2.1255845× 10−7 , 2.1255845× 10−7 ]

5 [ 0 , 1.1187287× 10−8 ]

6 [ −5.8880459× 10−10 , 5.8880459× 10−10 ]
7 [ 0 , 3.0989715× 10−11 ]
8 [ −1.6310376× 10−12 , 1.6310376× 10−12 ]
9 [ 0 , 8.5844087× 10−14 ]
10 [ −4.5181098× 10−15 , 4.5181098× 10−15 ]
11 [ 0 , 2.3779525× 10−16 ]
12 [ −1.2515539× 10−17 , 1.2515539× 10−17 ]
13 [ 0 , 6.5871262× 10−19 ]
14 [ −3.4669085× 10−20 , 3.4669085× 10−20 ]
15 [ 0 , 1.8246887× 10−21 ]

and the remainder interval is indeed still very sharp. Using (3), we obtain as the final
Taylor model of 1/i+ i

Tα, 1
i
+i = Tα, 1

i
+ Tα,i =

³
Pα, 1

i
+i, Iα, 1

i
+i

´
(10)

=

µµ
2 +

1

2

¶
+

µ
1− 1

22

¶
(x− 2) + 1

23
(x− 2)2 − 1

24
(x− 2)3, [0, 4.038× 10−6]

¶
=

³
2.5 + 0.75(x− 2) + 0.125(x− 2)2 − 0.0625(x− 2)3, [0, 4.038× 10−6]

´
.

Since the polynomial Pα, 1
i
+i is monotonically increasing in the domain [a, b] = [1.9, 2.1],

the bound interval of the polynomial is

B
³
Pα, 1

i
+i

´
=
h
Pα, 1

i
+i(−0.1), Pα, 1

i
+i(0.1)

i
= [2.42631, 2.57618].

The width of the bound interval of the Taylor polynomial is 0.14987, and the width of the
interval of the remainder bound is 4.038×10−6 in the third-order Taylor model evaluation;
thus the remainder part is just a minor addition. The size of this remainder bound depends
strongly on the order and decreases quickly with order. Table 1 shows the remainder bound
interval for various orders in the Taylor model computation.

The Taylor model computation is assessed by noting the bound interval B of the original
function (8), which is

B

µ
1

x
+ x

¶
=

∙
1

a
+ a,

1

b
+ b

¸
= [2.42631, 2.57619].

It is illuminating to compare the sharpness of the bounding of the function with the
sharpness that can be obtained from conventional interval methods. Evaluating the function
with just one interval yields

1

[a, b]
+ [a, b] =

1

[1.9, 2.1]
+ [1.9, 2.1] ⊆ [2.37619, 2.62631].
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Table 2

The width of the bound interval of f(x) = 1/x+ x by various methods; x0 = 2, [a, b] = [1.9, 2.1]

Method Width of Bound Interval

Intervals nd = 1 0.25012531

nd = 10 0.15993589

nd = 10
2 0.15088206

nd = 10
3 0.14997543

nd = 10
4 0.14988476

nd = 10
5 0.14987569

nd = 10
6 0.14987478

nd = 10
7 0.14987469

nd = 10
8 0.14987468

Taylor models 1st order 0.15145793

2nd order 0.15015346

3rd order 0.14987903

4th order 0.14987542

5th order 0.14987469

6th order 0.14987468

Exact 0.14987468

The width of the bound interval obtained by interval arithmetic is 0.25012, and so this
simple example already shows a noticeable blow-up. By dividing the domain interval into
many subintervals, the blow-up can be suppressed substantially. However, to achieve
the sharpness of the third-order Taylor model, the domain has to be split into about
24, 000 subintervals. Table 2 shows a comparison of the widths of bound interval for the
exact value, the method of Taylor models, and the divided interval method, where nd
indicates the number of division of the domain interval. Of course, sophisticated interval
optimization methods [Hansen1979a], [Hansen1988a], [Ichida1979a], [Jansson1992a] can
find sharp bounds for the function using substantially fewer interval evaluations.

Practically more important are optimization problems in several variables, and in this
case, the situation becomes more dramatic. We wish first to illustrate the computational
effort necessary for an accurate calculation of the result by estimating the required number
of floating-point operations. We use a simple example function of six variables such as
f(�x) =

P
j(1/xj + xj) to get a rough idea of the computational expense in the case

of functions of many variables. In the one-dimensional case, one interval calculation
1/[a, b] + [a, b] requires two additions and two divisions. To compare with the third-
order Taylor model computation, we divide the domain into 104 subintervals, on which
additions and divisions total ∼105 floating-point operations. Thus, in the multidimensional
case with six independent variables, the number of floating-point operations explodes to
(104)6 × (∼10) = ∼1025. Again, sophisticated interval optimization methods will be more
favorable than these numbers suggest, but typically there is still a very noticeable growth
of complexity. In the next section, we will encounter a realistic example from the area of
nonlinear dynamics where all state-of-the-art interval optimization methods available to us
fail to give a satisfactory answer.

To estimate the performance of the Taylor model approach, we note that the one-
dimensional Taylor model in the third-order computation involves a total of about 35



5. Remainder Differential Algebras and Applications 73

Table 3

The total number of FP operations required to bound a simple function like f(�x) =
P

j(1/xj + xj)

One Dimensional Six Dimensional

Interval ∼ 10 ∼ 10
104 divided intervals ∼ 105 ∼ 1025
3rd order Taylor model ∼ 10 ∼ 104

additions, multiplications, and divisions, as counted in (9) and (10). As we use more
variables, however, the total number of terms in the polynomial grows only modestly. For
example, order three in six variables requires only a total of 84 terms. Thus in total, the
number of floating-point operations of the third-order Taylor model is ∼104. A summary
of the number of floating-point operations is given in Table 3.

4 Applications to Beam Physics

Any language environment with object-oriented features or one that supports operator
overloading can be utilized to implement the Remainder Differential Algebraic Method in
a conceptually similar way as conventional forward differentiation. An implementation
following the reverse approach to differentiation, on the other hand, appears to be
substantially more involved. We pursued an implementation in the program COSY
INFINITY [Berz1992a], [Berz1993a], [Berz1995a], [Berz1996b], which can be used both
as a precompiler [Berz1990a] for Fortran code and within its own language environment,
and which is a major vehicle for studies in beam physics.

Here and in many other practical applications, the problem of finding rigorous bounds
on the extrema of functions has contributed to the development of many methods in
numerical analysis. We have been working on the problem to estimate the long-term
stability of weakly nonlinear systems in connection with the design of large storage rings
in beam facilities [Berz1994c], [Hoffstätter1994a]. The problem involves rather complicated
functions of about 105 floating-point operations, which are multidimensional polynomials
with six variables and up to roughly 500th order. Many large terms cancel each other,
and very small fluctuations have to be estimated. While the sharpness of the bounds in
question is important in order to guarantee a large number of stable turns, in reality these
functions have a very large number of local maxima. Hence, an exact estimate of their
bounds requires careful treatment. To be useful, the maxima have to be sharp to about
10−6, and for some applications to 10−12.

We have tried the method of conventional interval optimization [Hansen1979a],
[Hansen1988a], [Ichida1979a], [Jansson1992a] and optimization based on Remainder Dif-
ferential Algebras. To get an idea about the quality of the upper bounds, we compared the
results with the approximations by a rather tight rastering in real arithmetic. Because of
the large number of local maxima, the method of rastering proved to be the most robust
noninterval approach to estimate the absolute maxima of the functions in question.

In the case of the conventional interval bound optimization, the suppression of blow-up
is the key issue. The whole domain is covered with many smaller subintervals. Then the
subintervals that do not give a better bound are excluded. Furthermore, the restructuring
of the evaluation of the function helps the situation, which involves a decrease in the number
of elementary operations and the introduction of new elementary operations such as x2.
Even with these simplifications, however, the resulting objective functions tend to exhibit
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Table 4

Comparison of the bound estimate in various methods (data from PhD thesis of Hoffstätter)

Conventional Remainder Conventional
Interval Bounding Differential Algebras Rastering

Example (optimistic,
(guaranteed (guaranteed nonguaranteed
lower bound) lower bound) upper bound)

1. Physical pendulum 11,306 432,158,877,713 636,501,641,854

2. Henon map 1,671 192,650,961 263,904,035

3. Los Alamos PSR II 171 1,004,387 2,248,621

interval blow-up because of the complexity. With the existence of many local maxima,
the exclusion of unnecessary subintervals becomes difficult and indeed, virtually impossible
unless in the order of 104 subintervals per dimension are used. However, this large number
makes it unrealistic to apply any refined method of local optimization in each remaining
subinterval in multidimensional cases like ours. For this reason, we restricted ourselves
to a simple scan of the objective function with a large number of subintervals of equal
size [Hoffstätter1994a]. The results were obtained by using 630 subintervals for examples
1 and 2, which are two dimensional, and 1,000,188 subintervals for example 3, which is
four dimensional [Hoffstätter1994a]. Several nonlinear systems were studied by using the
methods mentioned above. The results of bounds on the number of stable turns in three
examples are listed in Table 4 [Hoffstätter1994a]. In the case of the interval bounding and
the method of Remainder Differential Algebras, the numbers show lower bounds, while in
the case of the rastering, the numbers show upper bounds.

The first example is a one-dimensional physical pendulum with two independent
variables. This case offers a good test because the nonlinear motion is permanently stable as
a result of energy conservation. The second example is a Henon map with two independent
variables. This is a standard test case for the analysis of nonlinear motion because it shows
many of the phenomena encountered in nonlinear dynamics. These include stable and
unstable regions, chaotic motion, and periodic elliptic fixed points and can even serve as a
simplistic model of an accelerator in the presence of sextupoles for chromaticity correction.
The third example is a realistic accelerator, the Los Alamos PSR II storage ring for the
motion in a phase space of 100 mm mrad with four independent variables. To limit the
computation time, the subintervals used for the optimization in the last example were
five times as wide as the subintervals used for the other two examples. The suppression
in numbers of turns in the case of the conventional interval method is connected to the
unavoidable blow-up of intervals in the process of cancellation of large terms. The method of
Remainder Differential Algebras gives a satisfactory result close to the optimistic estimate
by the rastering in real arithmetic, thereby making this method far superior to interval
bounding.
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