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Abstract. A new method for computing verified enclosures of the inverses of given functions over
large domains is presented. The approach is based on Taylor Model methods, and the sharpness of the
enclosures scales with a high order of the domain. These methods have applications in the solution of
implicit equations and the Taylor Model based integration of Differential Algebraic Equations (DAE)
as well as other tasks where obtaining verified high-order models of inverse functions is required.

The accuracy of Taylor model methods has been shown to scale with the (n + 1)-st order of the
underlying domain, and as a consequence, they are particularly well suited to model functions over
relatively large domains. Moreover, since Taylor models can control the cancellation and dependency
problems (see Makino, K. and Berz, M.: Efficient Control of the Dependency Problem Based on Taylor
Model Methods, Reliable Computing 5 (1) (1999)) that often affect regular interval techniques, the
new method can successfully deal with complicated multidimensional problems. As an application
of these new methods, a high-order extension of the standard Interval Newton method that converges
approximately with the (n + 1)-st order of the underlying domain is developed.

Several examples showing various aspects of the practical behavior of the methods are given.

1. Introduction

In the following we will develop methods for inclusion of inverses of general
functions. As a prerequisite it is necessary to prove invertibility over the domain
in question, and there are a variety of methods for this purpose. Recently, Taylor
model methods based on high-order multivariate floating point polynomials with
interval remainder bounds have been derived that allow the efficient and accurate
determination of whether a given function can be guaranteed to be invertible [9]. The
Taylor model methods allow verification of invertibility over domains that are often
larger than the ones over which other methods succeed. Moreover, Taylor models
are significantly less susceptible to blow up due to the complexity of the problem and
the linear algebra in the inversion. In general, Taylor model methods provide sharp
guaranteed inclusion of functional dependencies with an accuracy that scales with
the (n+1)-st order of the domain over which the functional dependence is evaluated
[4], [5], [13], and it has been shown [12] that Taylor models can often substantially
alleviate the following problems inherent in naive interval arithmetic:

• Sharpness for large domain intervals,
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• Cancellation and dependency problem,

• Dimensionality curse.

They have recently been used for a variety of applications, including verified
bounding of highly complex functions [3], [6], solution of ODEs under avoidance
of the wrapping effect [8], and high-dimensional verified quadrature [7].

This paper demonstrates how these techniques can be combined with the recently
developed methods for the verification of invertibility [9] to derive a new method
that allows the computation of Taylor models containing the inverses of given
invertible functions, modeled by Taylor models. As an immediate application of
this, a superconvergent high-order extension of the regular Interval Newton method
will be presented.

2. Invertibility

Before inclusion of inverse functions is possible, invertibility of the function under
consideration has to be guaranteed over the whole domain of interest. Invertibility,
by virtue of the following theorem, is a local property.

THEOREM 2.1 Inverse Mapping Theorem. Let ƒ : U ⊂ R
v → R

w be of class Cn,
n ≥ 1, x0 ∈ U, and suppose that the derivative (Dƒ)(x0) of ƒ at x0 is a linear
isomorphism. Then ƒ is a Cn diffeomorphism of some neighborhood of x0 onto
some neighborhood of ƒ(x0). Moreover, (Dƒ−1)(y) = ((Dƒ)(ƒ−1(y)))−1 for y in this
neighborhood of ƒ(x0).

It should be noted that this is a purely local theorem that does not give any
estimates on the size of the neighborhood over which the function ƒ is invertible,
nor can such an estimate be deduced from it. The following, semi-local extension
of Theorem 2.1 on the other hand can determine invertibility over a whole domain
box B.

THEOREM 2.2 Invertibility from First Derivatives. Let B ⊂ R
v be a box and ƒ :

B → R
v a C1 function. Assume that the matrix

M =




∂ƒ1

∂x1
(χ1) · · · ∂ƒ1

∂xv
(χ1)

...
...

∂ƒv

∂x1
(χv) · · · ∂ƒv

∂xv
(χv)




is invertible for every choice of χ1, …, χv ∈ B. Then ƒ has a C1-inverse defined on
all of the range of ƒ over the domain B.

This theorem is proven in [9], and it has been shown how a practical appli-
cation can benefit from the utilization of Taylor models. While intervals cannot
adequately model the fact that individual rows of the matrix M can be evaluated at
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the same point, Taylor models can model and use this inherent structural property
of M. Moreover, the resulting Taylor model based algorithm scales better to high-
er dimensional problems, more complicated functional dependencies, and larger
domain boxes than corresponding interval methods.

Finally, it should be noted that the computational complexity of a practical
implementation of Theorem 2.2 can be significantly reduced, since the utilization
of Taylor model methods allows all computations to be performed using a single set
of v variables as opposed to the v2 variables Theorem 2.2 seems to require [9].

3. Polynomial Inverses

As a first step to the computation of Taylor models of inverses, we develop methods
to determine the multivariate polynomial part of the inverse. To automate this
process, we utilize a particular fixed point theorem. For purposes of notation,
we consider the set Cn(R v, R w) and equip it with following relation: for ƒ, g ∈
Cn(R v, R w) we say ƒ =n g (ƒ equals g up to order n) if ƒ(0) = g(0) and all partial
derivatives of orders up to n agree at the origin. This gives an equivalence relation
on Cn(R v, R w). The resulting equivalence classes are called DA vectors and the class
containing ƒ ∈ Cn(R v, R w) is denoted by [ƒ]. The collection of these equivalence
classes is called nDv [2], [4]. It should be noted that ƒ ∈ Cn(R v, R w) lies in the same
equivalence class as its Taylor polynomial Tƒ of order n around the origin.

Elementary operations can be defined on nDv such that it becomes an algebra
and, with the appropriate definitions of the derivative operation, it can even be
shown to be a differential algebra [4]. Efficient methods of using DA vectors have
been implemented in the arbitrary order code COSY Infinity [1].

DEFINITION 3.1. For [ƒ] ∈ nDv, the depth λ ([ƒ]) is defined by

λ ([ƒ]) =

{
order of first non-vanishing derivative of ƒ, if [ƒ] �= 0,

n + 1, else.

The function λ resembles a valuation on nDv. Using it, it becomes possible to
define the notion of contracting operators on nDv.

DEFINITION 3.2. Let O be an operator on M ⊂ nDv. O is contracting on M, if for
any [ƒ], [g] ∈ M

λ
(O([ƒ]) −O([g])

) ≥ λ ([ƒ] − [g])

and equality iff [ƒ] = [g].

This definition has a striking similarity to the corresponding definitions on
regular function spaces and as it turns out, a theorem that resembles the Banach
Fixed Point Theorem can be established on nDv. But, unlike in the case of the
Banach Fixed Point theorem, it will be guaranteed to converge in at most n + 1
steps, which makes it very well suited for practical applications.
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THEOREM 3.1 DA Fixed Point Theorem. Let O be a contracting operator and
self-map on M ⊂ nDv. Then O has a unique fixed point a ∈ M. Moreover, for any
a0 ∈ M the sequence

ak = O(ak−1)

converges in at most n + 1 steps to a.

Proof. We have

λ (ak +2 − ak +1) = λ
(O(ak +1) −O(ak)

)
> λ (ak +1 − ak).

Because λ is integer-valued, one gets λ (ak +2 − ak +1) ≥ λ (ak +1 − ak) + 1 and by
induction it follows that

λ (an+2 − an+1) ≥ λ (an+1 − an) + 1

≥ …
≥ λ (a1 − a0) + n ≥ n + 1

By definition of λ it follows that an+2 = an+1 and hence

an+1 = O(an+1).

Thus, the fixed point is reached after at most n + 1 steps. Moreover, it is unique,
because assume that there were two distinct fixed points a and ā. Then λ (a − ā) =
λ (O(a) −O(ā)) > λ (a − ā) which would be a contradiction. �

We will now utilize the fixed point theorem to calculate the n-th order polynomial
part of the inverse. Assume that ƒ ∈ Cn(R v, R v) is an origin-preserving map (i.e.
ƒ(0) = 0). If the derivative M of ƒ at 0 is a linear isomorphism, then Theorem 2.1
guarantees that there is a neighborhood V of 0, such that ƒ−1 is also of class Cn

on V . Once the linearization of ƒ has been shown to be invertible, using the DA
framework, it becomes possible to compute a representative of the equivalence
class of [ƒ−1]n from one representative M of the equivalence class [ƒ]n using the
following steps:

Split the map M as

M = M + NM

where NM denotes the purely non-linear part of M. Composing from the right
with the (locally existing) inverse results in

I = M◦M−1 = M ◦M−1 + NM ◦M−1

⇒ M−1 = M−1 ◦ (I − NM ◦M−1) = O(M−1),
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where I is the identity map. The last equation is actually a fixed point relation for
the map M−1. Viewing this equation as a relation on equivalence classes, it turns
out that O is contracting because(O([A]n) −O([B]n)

)
= M−1 ◦ ([NM]n ◦ [B]n − [NM]n ◦ [A]n)

implies that with [A]n and [B]n agreeing up to order k, it follows that [NM]n ◦ [B]n

and [NM]n ◦ [A]n agree up to order k + 1.
Thus, according to Theorem 3.1, this assures the existence of a unique fixed

point of the operator O, which can be reached in at most n + 1 iterations. Moreover,
this method generates all derivatives of up to order n of ƒ−1 at the origin in finitely
many steps through mere iteration. Because it only requires the iteration of a rather
simple operator, it is particularly useful for computational applications.

The presented method by itself allows only the computation of inverse poly-
nomials for origin-preserving maps. But, as will be shown in Section 5, it can
nevertheless be used for the computation of general inverse Taylor models.

4. Taylor Models

Taylor models are a combination of high-order Taylor polynomials and interval
arithmetic [4], [5], [13]. Their fundamental properties are given by the following
definition.

DEFINITION 4.1 Taylor Model. Let D ⊂ R
v be a box with x0 ∈ D. Let Pn : D →

R
w be a polynomial of order n (n, v, w ∈ N ) and R ⊂ R

w be an open non-empty
set. Then (Pn, x0, D, R) is called a Taylor model of order n with reference point x0

over D.

In general, we will view Taylor models as subsets of function spaces by virtue
of the following definition.

DEFINITION 4.2 Taylor Models as Sets of Functions. Let T = (Pn, x0, D, R) be a
Taylor model of n-th order. Then, identify T with the set of functions ƒ ∈ Cn(D, R w)
such that Pn(x)− ƒ(x) ∈ R for all x ∈ D, and the n-th order Taylor series of ƒ around
x0 equals Pn.

Furthermore, if a Cn function ƒ is contained in a Taylor model T , we call T a
Taylor model for ƒ.

Methods have been developed that allow mathematical operations on Taylor
models that preserve the inclusion relationships. I.e. for two given Taylor models
T1 and T2 methods have been developed that compute Taylor models for the sum
S, and product P, of T1 and T2, i.e.

ƒ1 ∈ T1, ƒ2 ∈ T2 ⇒ (ƒ1 + ƒ2) ∈ S,
ƒ1 ∈ T1, ƒ2 ∈ T2 ⇒ (ƒ1 ⋅ ƒ2) ∈ P.
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More information on arithmetic and intrinsic functions on Taylor models can be
found in [4], [5], [12], [13].

The accuracy of the enclosures obtained by Taylor models scales with the
(n + 1)-st order of the domain size. This makes Taylor models particularly well
suited for high-dimensional problems over large domains, since it reduces the
number of domain splittings.

THEOREM 4.1. Let ƒ be a function that is represented by a finite number of
elementary operations and intrinsic functions, and assume that B is an inclusion
monotone polynomial bounder that scales at least linear with the size of the domain.
If T = (Pn, x0, D, R) is a Taylor model obtained by evaluating the code list repre-
senting ƒ, then the remainder bound R scales with the (n + 1)-st order of the size
of D.

Proof. The proof follows by induction over the elementary operations and
intrinsic functions that make up the code list for ƒ. Firstly, the assertion is correct
for the constant Taylor models and for the identity, since the respective reference
polynomials can be bound with an arbitrary precision.

Since, for two Taylor models A and B, we have RA +B = RA + RB, the assertion
also holds for the sum of Taylor models. Denoting all terms of a polynomial P that
are at least of order n + 1 by P(n+1), the remainder bound of the product A ⋅ B is
given by

RA ⋅B = RA ⋅ RB + RA ⋅ B(PB) + B(PA)RB + B
(
(PA ⋅ PB)(n+1)).

Since each of the terms scales with at least order n + 1, so does the sum. Thus, the
assertion holds for all elementary operations.

Finally, the computation of remainder bounds of intrinsic functions is exempli-
fied by the exponential function. According to [11], we have

Rexp(A) =
(

B
(
PA − PA(0)

)
+ RA

)n+1
⋅ exp

(
[0, 1] ⋅

(
B
(
PA − PA(0)

)
+ RA

))
.

By inclusion monotonicity, the second term never increases with a decreasing
domain size and thus, the product scales with the (n + 1)-st order of the domain
size.

Using the complete definitions [11], [13], similar arguments can be made for
all the intrinsic functions of Taylor models. Thus, the remainder bound of any
finite Taylor model computation does indeed scale with the (n + 1)-st order of the
domain. �

5. Verified Inverses

The computation of verified inverses begins by modeling the functional dependence
of interest by a Taylor model by evaluating its code in Taylor model arithmetic.
Once this enclosure of the function has been obtained, the next step is the “in
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principle” determination of invertibility, for example via recently developed Taylor
model based techniques [9]. With the knowledge that the function contained in the
Taylor model is actually invertible, the computation of an enclosure of the inverse
will follow the steps outlined in this section.

First, it should be clarified what exactly constitutes an inverse Taylor model.
In fact, due to compatibility requirements of the underlying domains, one has to
consider two kinds of inverse Taylor models as given by the next definition. We
denote by fu(D) the range of the the function ƒ over the domain D. Moreover, we
denote by B(T) an inclusion of the range of all functions in the Taylor model T and
by I the Taylor model (x, 0, D, [0, 0]) of the identity function over the domain D.
Finally, for a polynomial P and a Taylor model T , P(T) denotes the result of the
formal evaluation of the polynomial P with the argument T . This is well defined
since it requires only additions and multiplications of Taylor models with Taylor
models and real numbers.

DEFINITION 5.1. Let T = (Pn, x0, D, R) and S = (Gn, y0,∆, Ω) be two Taylor
models. S is called a left-inverse Taylor model for T if Gn ◦ Pn =n I , Pn(x0) = y0,
ƒ ∈ T ⇒ fu(D) ⊂ ∆, and B(Gn(T) − I) ⊂ Ω. Similarly, S is called a right-inverse
Taylor model for T if T is a left-inverse Taylor model for S.

It turns out that the rather general definition of left-inverse Taylor models is
already sufficient for the verified enclosure of left-inverses for all invertible func-
tions contained in T . And, it should be noted that the computation of left-inverse
Taylor models is often sufficient for practical applications because they do not
require a modification of the original domains of definition and their domains are
easily computed.

THEOREM 5.1. Let T = (Pn, x0, D, R) and S = (Gn, y0,∆, Ω) be given Taylor
models such that S is a left-inverse Taylor model for T. Assume that ƒ ∈ T is
invertible over D. Then there is g ∈ S such that g = ƒ−1 on fu(D).

Proof. Define δƒ : D → R
v by δƒ(x) := Gn(ƒ(x)) − x. Note that the Taylor

expansion of δƒ around x0 ∈ D vanishes up to order n since the expansion of ƒ
around x0 agrees with Pn up to order n and by assumption Gn(Pn(x)) =n x.

Since ƒ is invertible over D, ∀ y ∈ fu(D) there is a unique xy ∈ D such that
ƒ(xy) = y. Then, for y ∈ fu(D) define the function

g̃(y) = Gn(y) − δƒ(xy) = Gn(y) − δƒ
(
ƒ−1(y)

)
.

Then, for any x ∈ D we have

g̃
(
ƒ(x)

)
= Gn

(
ƒ(x)

)− δƒ

(
ƒ−1(ƒ(x)

))
= x + δƒ(x) − δƒ

(
ƒ−1(ƒ(x)

))
= x.

Thus g̃ is the unique inverse to ƒ on fu(D). Since |g̃(y)−Gn(y)| = |δƒ(ƒ−1(y))| ∈ Ω,
it follows that g̃ is contained in the Taylor model Sƒ := (Gn, y0, fu(D), Ω).
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y0
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Y

Z

X

Figure 1. Domains in the definitions of inverse Taylor models.

As the continuous image of a compact set, fu(D) itself is compact and hence
the function g̃ can be n-times continuously differentiably extended to a function g
on the whole set ∆. Moreover, since Ω is open and g̃u(fu(D)) ⊂ Ω, it is possible
to satisfy g − Gn ⊂ Ω over ∆. Since the n-th order Taylor expansion of g around
y0 = ƒ(x0) ∈ D equals the n-th order expansion of g̃, which in turn equals Gn, it
follows that g ∈ S. Finally, for x ∈ D it is g(ƒ(x)) = g̃(ƒ(x)) = x. �

The first step in translating the previous theorem into a practicable algorithm
lies in the efficient computation of the inverse polynomial Gn. To this end, let
T = (Pn, x0, D, R) be a given Taylor model and assume that Pn is (locally) invertible
around x0. Now we consider the polynomial

P̃(x) = P(x + x0) − P(x0).

We apparently have P̃(0) = 0, and hence according to Section 3 it is possible to
calculate [P̃−1] in n + 1 steps. With y0 = P(x0) we then obtain Gn(y) as

Gn(y) = x0 + P̃−1(y − y0).

Once the reference polynomial of the inverse Taylor model has been computed,
the next step is the determination of an appropriate domain ∆ such that either
ƒ ∈ T ⇒ fu(D) ⊂ ∆ or g ∈ S ⇒ gu(∆) ⊂ D.
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Figure 1 illustrates the various domains involved in this and their relationships;
we have X =

⋃
ƒ ∈T

fu(D) and Y =
⋂

ƒ ∈T
fu(D), and hence X and Y are the smallest

and largest sets that could be used as domains for left- and right-inverse Taylor
models, respectively. Since a general computation and representation of X and Y
is impossible, a practical application strives to find a good overestimation W for
X and underestimation Z for Y such that Z ⊂ Y ⊂ X ⊂ W. An implementation of
this method chooses ∆ = Tu(D) as the domain for the left-inverse Taylor model.
Computation of the latter consists of bounding the range of the reference polynomial
Pn over D and adding the remainder bound R. While the bound on the polynomial
does not have to be accurate to obtain an inverse Taylor model, the practical
application of left-inverse Taylor models benefits from a small overestimation to
remain accurate.

6. A High-Order Newton Method

In this section we apply the methods derived in the previous section to a higher
order version of the interval Newton method. We use this approach to illustrate
that convergence does indeed happen with the order used for the Taylor model, and
that the domain in which convergence occurs is sometimes enlarged. For practical
root-finding problems, the new method offers a larger domain of convergence, and
is more robust for complicated functions because of the decrease of the dependency
problem. For standard cases, the conventional method may often be suffient, because
different from the problem of charting of contstraint manifolds and the verified
inclusion of the inverse over large domains necessary for DAE integrators, good
approximations of the inverse are only needed in a very small domain near the
previous guess for the root. Since the method converges with an order higher than
two, it is also called superconvergent.

Denoting the centerpoint of an interval X by m(X), the algorithm for the Taylor
model based computation of zeros is elegant and straightforward. Moreover, it can
be easily implemented using the COSY Infinity [1] language environment:

1. Set k = 0 and let D(0) be a box that contains a zero of ƒ and assume that ƒ is
invertible over D(0).

2. Model the functional dependence of ƒ over D(k) by an n-th order Taylor model
T with the reference point m(D(k)).

3. Compute a left-inverse Taylor model S for T .

4. Compute the intersection D(k +1) = D(k) ∩ (m(D(k))+S(m(D(k)))). If the enclosure
D(k +1) of the zero is not accurate enough, replace k by k + 1 and go back to 2.

Obviously, for n = 1 this method is equivalent to the traditional Interval Newton
method [14], [15].

This algorithm allows for fast and accurate determination of guaranteed enclo-
sures of the zeros of a given function. Since the accuracy of Taylor models scales
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with the (n+1)-st order of the domain size, this method converges very rapidly once
the domain size has become sufficiently small. This fact will be illustrated further
in Section 7.2.4.

Using the notation of the previous algorithmic description, the following is an
obvious consequence.

COROLLARY 6.1. Given a Taylor model T for ƒ as before. Assume that ƒ is
invertible over fu(D), has a zero x∗ ∈ D and that D ∩ (m(D) + S(m(D))) ⊂ D.
Then, for D(0) = D we have x∗ ∈ D(k) for each k ∈ N 0.

It is important to note that it is generally not possible to give rigorous estimates on
the speed of convergence of this method. But once the requirements of Corollary 6.1
have been satisfied, it will usually converge with the (n + 1)-st order of the size of
the inclusion D (see also Section 7.2.4). It should also be pointed out that unlike
the extended Interval Newton method, the presented algorithm cannot handle local
extrema of ƒ within the domain. However, this can be circumvented by performing
extended Interval Newton preconditioning steps that split the original domain until
the Taylor models on the smaller boxes satisfy the requirements of Corollary 6.1.

7. Examples

In the following we demonstrate the presented methods in examples. All compu-
tations have been performed using the Taylor model object in the arbitrary order
code COSY Infinity [1].

7.1. INVERSION

The first two examples illustrate the verified inversion itself. Although not presented
here, all computations are based on initially proving invertibility by the recently
presented Taylor model methods in [9].

7.1.1. Sine Function

As a first example, consider the one-dimensional sine function over the domain
[−0.5, 0.5]. The functional dependence is modeled by a 19-th order Taylor model
over that domain, and the result is presented in Table 1. As can be seen, the 19-th
order Taylor model encloses the sine function with an accuracy that is rather close
to machine epsilon.

Invertibility of the sine function can be verified easily. The next step is the
computation of a polynomial approximation of the inverse of the reference function.
Not surprisingly, the methods introduced in Section 5 obtain the 19-th order Taylor
expansion of the arcsine function up to machine epsilon. Proper computation of
the remainder bounds and the domain gives the left-inverse Taylor model shown in
Table 2.
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Table 1. Example 7.1.1: Taylor model of the one-dimensional sine function as
computed by COSY Infinity. Shown are Taylor coefficients, reference point, domain
information and remainder bound.

RDA VARIABLE: NO= 19, NV= 1

I COEFFICIENT ORDER EXPONENTS

1 1.000000000000000 1 1 0 0

2 -.1666666666666667 3 3 0 0

3 0.8333333333333333E-02 5 5 0 0

4 -.1984126984126984E-03 7 7 0 0

5 0.2755731922398589E-05 9 9 0 0

6 -.2505210838544172E-07 11 11 0 0

7 0.1605904383682162E-09 13 13 0 0

8 -.7647163731819817E-12 15 15 0 0

9 0.2811457254345521E-14 17 17 0 0

--------------------------------------

VAR REFERENCE POINT DOMAIN INTERVAL

1 0.000000000000000 [-.5000000000000000,0.5000000000000000]

REMAINDER BOUND INTERVAL

R [-.1085432243394823E-014,0.1085432243394823E-014]

*********************************************************

Table 2. Example 7.1.1: Left-inverse Taylor model for the Taylor model shown
in Table 1. Shown are Taylor coefficients, reference point, domain information and
remainder bound.

RDA VARIABLE: NO= 19, NV= 1
I COEFFICIENT ORDER EXPONENTS
1 1.000000000000000 1 1 0 0
2 0.1666666666666667 3 3 0 0
3 0.7500000000000000E-01 5 5 0 0
4 0.4464285714285714E-01 7 7 0 0
5 0.3038194444444444E-01 9 9 0 0
6 0.2237215909090909E-01 11 11 0 0
7 0.1735276442307693E-01 13 13 0 0
8 0.1396484375000000E-01 15 15 0 0
9 0.1155180089613970E-01 17 17 0 0
10 0.9761609529194068E-02 19 19 0 0
---------------------------------------

VAR REFERENCE POINT DOMAIN INTERVAL
1 0.000000000000000 [-.5210953054937487,0.5210953054937487]

REMAINDER BOUND INTERVAL
R [-.7707363654262549E-008,0.7707363654262549E-008]

*********************************************************

Figure 2 shows the difference between the arcsine function and the reference
polynomial over the interval sin([−0.5, 0.5]) = [−0.479425…, 0.479425…]. As
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Remainder Bounds

Figure 2. Example 7.1.1: Difference between arcsine and the reference polynomial shown in
Table 2.

expected, the error stays within the remainder bounds (illustrated by the horizontal
lines), and the remainder bounds represent an overestimation of only around a
factor of 4. It should be noted, however, that the arcsine function as such is not
contained in the resulting left-inverse Taylor model. But, as outlined earlier, the part
of the arcsine function necessary to act as a left-inverse of the sine function over
the domain sin([−0.5, 0.5]) is contained and can be extended such that the resulting
function is defined over the whole domain of the left-inverse Taylor model.

7.1.2. Exponential Function

The following example involves a 6 dimensional exponential function that has a
dense 8-th order Taylor polynomial (each of the 6 reference polynomials consists
of 3003 non-vanishing coefficients).

Let A = (aij) be an invertible 6 × 6 matrix and consider ƒ = (ƒ1, …, ƒ6) : R 6 → R
6

defined by

ƒi(x1, …, x6) = exp


 6∑

j= 1

aijxj


− 1.

If B = (bij) is the inverse matrix of A, the inverse function g = (g1, …, g6) of ƒ is
given by

gi(y1, …, y6) =
6∑

j= 1

bij log(yj + 1).
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Table 3. Example 7.1.2: Remainder Bounds of the left-inverse Taylor model for
a 6 dimensional exponential function.

Component Remainder Bound

1 [−0.4190638646976846E−011, 0.4184087823912867E−011]
2 [−0.2791908825275360E−011, 0.2791908821988238E−011]
3 [−0.2791908824574486E−011, 0.2791908821987869E−011]
4 [−0.1396454411975411E−011, 0.1396454410994258E−011]
5 [−0.1396454411909750E−011, 0.1396454410994186E−011]
6 [−0.1396454411225902E−011, 0.1396454410994267E−011]

Using the matrix A given below, the 8-th order Taylor model method for
verified inversion has been applied to the function ƒ over the domain box D =
[−0.01, 0.01]6:

A =




1 1 1 1 1 1
1 −1 1 −1 1 −1
1 1 −1 −1 1 1
1 1 1 −1 −1 −1
1 1 1 1 −1 −1
1 1 1 1 1 −1




.

The resulting left-inverse Taylor model is defined over the domain
[−0.061686…, 0.061686…]6, and it has been verified that it contains the true
inverse function g. The remainder bounds of the individual components of the left-
inverse Taylor model are listed in Table 3. It should be noted that the range of the
exponential function and its inverse are in the order of 10−1. Thus, the relative
accuracy of the remainder bounds is about 10−10.

7.1.3. Computational Complexity of Verified Inversion

The computational complexity of individual Taylor model operations exceeds the
cost of the corresponding standard interval arithmetic by a wide margin. For exam-
ple, the size of an n-th order Taylor model in v variables scales approximately
as (

n + v
v

)
=

(n + v)!
v! n!

.

However, since Taylor models can often avoid domain splitting, their real strength
lies in high-dimensional problems with large domains. As an example, consider
enclosing the inverse of a one-dimensional function as illustrated in Figure 3.
Using only intervals, this requires domains of the size of the desired accuracy (i.e.
the number of sub-intervals scales with the inverse of the desired accuracy).

As another example, consider the six-dimensional exponential function present-
ed in Section 7.1.2. The computational cost of the eighth order Taylor models is
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Figure 3. Example 7.1.3: Illustration of verified inversion with intervals. The accuracy scales
with the size of the domain sub-intervals.

about 1500 times higher than that of intervals. But to achieve a uniform inclusion
accuracy of 10−11 with intervals, as is needed for example for verified DAE inte-
grators [10], one would need approximately 109 sub-intervals in each dimension,
resulting in 1054 separate interval evaluations. Thus, the advantages of Taylor mod-
els outweigh their additional costs if enclosures of high precision are desired.

As a general rule of thumb, if simple interval methods and Taylor models
compete over the same domain and box-splitting is not required to achieve the
necessary sharpness, the simple interval methods will almost always win. But if
using intervals requires splitting of the domains, the use of Taylor models will
generally become favorable.

7.2. NEWTON METHOD

The following examples demonstrate the Taylor model based high-order extension
of the Interval Newton method. In particular, they show that the method converges
extremely fast over relatively large domains.

7.2.1. One-Dimensional Function

This example compares the presented DA and Taylor model high-order extensions
of the Newton method and the floating point and interval versions of that algorithm
in a one-dimensional setting. It shows how the high-order methods can indeed
outperform the traditional algorithms by a wide margin.

The floating depth h of a cylindrical trunk of density ρ = 0.66 and radius r in
water is given by

h = r
(
1 − cos(α0 / 2)

)
,

where α0 = 3.655403079564624… is the (unique) fixed point of

α = sin(α) + 2πρ.

This fixed-point relation for α0 can readily be transformed into a root finding
problem and the resulting function is shown in Figure 4.
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Figure 4. Example 7.2.1: Transformed Fixed-Point relation for the root finding of a one-
dimensional problem. α0 is the intersection point of the two graphs.

Table 4. Example 7.2.1: Comparison of different Newton methods for the determination
of α 0.

Newton Method Result Steps Time

Floating Point 3.655403079564624 4 0.0000166s
DA 3.655403079564624 1 0.0016249s

Interval [3.655403079564622, 3.655403079564625] 4 0.0000390s
Taylor model [3.655403079564619, 3.655403079564628] 1 0.0048408s

The various Newton methods have been used to determine the fixed point by
solving the corresponding root-finding problem. The initial enclosure of the zero
has been [3.3, 4.3] (and the corresponding midpoint has been used as a starting
value for the non-verified methods). The computations have been performed in
19-th order and the accuracy goal was 10−14. The final enclosures of α0 are shown
in Table 4.

It should be noted that the high-order methods reach the desired accuracy after
just one step. The traditional algorithms on the other hand need four iterations to
achieve the desired precision for this rather simple function. However, since the
computational complexity of Taylor models exceeds the one of intervals, and since
all methods work without domain splitting, the traditional algorithms are still more
efficient.
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Figure 5. Example 7.2.2: 25-th order Taylor-Approximation of the sine function over the
interval [0, 12].

7.2.2. Determining π

The following one-dimensional example uses the verified Newton methods to
enclose the value of π to almost machine epsilon—in fact the desired accuracy
goal has been set to 10−12. To that end, the sine function has been approximated by
its 25-th order Taylor polynomial P, and the two Newton methods have been used
to determine the unique zero of P in the interval [1.8, 4]. Note that the order of the
approximation has been chosen in such a way that the value of that unique zero and
π agree up to machine epsilon.

P(x) =
12∑

k = 0

(−1)k x2k +1

(2k + 1)!
.

Due to the alternating sign of the terms, the naive implementation and evaluation
of P exhibits strong cancellation. While it is clear that more efficient methods for
the approximation of the sine function exist, this particular setup is typical for
applications where the functional dependence is often given by complicated and
redundant expressions that exhibit strong cancellation. While interval methods are
known to have problems with this, the Taylor model approach can successfully
avoid these problems.

Figure 5 shows the sine function and its 25-th order approximation between 0
and 12. In the region around 3 that is most interesting for this problem, the two
functions agree to a very high degree.

This example illustrates how Taylor models can successfully control cancel-
lation, and how the high-order methods converge much faster than the regular
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Table 5. Example 7.2.2: Enclosures of π, as obtained by the interval
Newton and Taylor model methods.

Method Step Enclosures of π

Interval Newton 0 [1.800000000000000, 4.000000000000000]

1 [2.919077672711509, 4.000000000000001]

2 [2.919077672711509, 3.427717355896160]

3 [2.919077672711508, 3.165511666111006]

4 [3.085798724266786, 3.165511666111007]

5 [3.136629538119056, 3.154844930481172]

6 [3.141102949424404, 3.141988434766514]

7 [3.141592414707353, 3.141592894936869]

8 [3.141592653589790, 3.141592653589801]

Taylor models 0 [1.800000000000000, 4.000000000000000]

1 [3.141592653589765, 3.141592653589826]

first-order Newton methods. Over the same initial domain, it takes the regular inter-
val Newton method 8 iterations to enclose the zero with the desired accuracy. The
Taylor model method on the other hand, achieves a comparable accuracy in just
a single step (Table 5). Moreover, the interval Newton method had to resort to
extended interval divisions and subsequent domain splitting in the first four of the
eight steps.

7.2.3. Multidimensional Example

This example illustrates the ability of the Taylor model based Newton method to
easily extend to higher dimensional problems. The example shows the determina-
tion of the zeros of the previously introduced 6 dimensional exponential function
(c.f. Section 7.1.2), with an initial enclosure of the zeros given by the domains
[−0.25, 0.25]6 (Taylor model) and [−0.02, 0.02]6 (Gauss-Seidel). The computation
has been performed with 8-th order Taylor models and the desired accuracy has
been set to 10−12. The enclosures returned after each step of the iteration are listed
in Table 6.

First, it should be noted that the Taylor model based Newton method generalizes
easily from the one-dimensional case to higher dimensional problems. Furthermore,
the rapid convergence of the method over a relatively large domain demonstrates
the power of the high-order approach. It converges in only two steps to an extremely
accurate enclosure of the zero. But even more striking, the second step improves
the sharpness by about 11 orders of magnitude. Once again, this is a vivid example
of how the accuracy of Taylor models scales with the (n + 1)-st order of the domain
size.
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Table 6. Example 7.2.3: Enclosures of the zero for the six-dimensional exponential
function, as given by a Gauss-Seidel and the Taylor model method.

Method Step Magnitude of Enclosures of Zero

Interval Newton 0 [−0.20000000000000E−001, 0.20000000000000E−001]
1 [−0.20000000000000E−001, 0.20000000000000E−001]
2 [−0.20000000000000E−001, 0.20000000000000E−001]
3 [−0.20000000000000E−001, 0.20000000000000E−001]
4 [−0.87410175378563E−002, 0.87410175378563E−002]
5 [−0.96852367808498E−003, 0.96852367808498E−003]
6 [−0.54933148362165E−005, 0.54933148362165E−005]
7 [−0.82475281503554E−010, 0.82475281503554E−010]
8 [−0.94355649697386E−014, 0.94355649697386E−014]

Taylor models 0 [−0.25000000000000E−000, 0.25000000000000E−000]
1 [−0.47478831445046E−003, 0.47478831445046E−003]
2 [−0.60171167482408E−014, 0.60171167482408E−014]

The interval Gauss-Seidel, on the other hand, reached the desired accuracy in
eight steps; and since the computational complexity of the Taylor models is about
three orders higher than that of intervals, this improvement does not yet justify the
use of Taylor models. However, the interval Gauss-Seidel required a much smaller
initial enclosure of the zero to converge. Combining this with the dimensionality of
the problem and assuming that the domain has to be split uniformly in each coor-
dinate direction, the Taylor model method turns out to be two orders of magnitude
more efficient than the Gauss-Seidel.

7.2.4. Order-Dependence of the Newton Method

This final example illustrates how the accuracy of Taylor model approach scales
with the (n + 1)-st order of the domain. For the 6-dimensional exponential function
from Section 7.1.2, Figure 6 shows the magnitude of D(1) after just one iteration of
the 6-th order Taylor model Newton method as a function of D(0).

The data show how that accuracy of the method does indeed scale with the 7-th
order of the initial domain D(0). For purposes of illustration, a line of slope 7 has
been fitted to the data points. Deviations from that theoretical line for small domains
are due to limits imposed on the verified computations by the machine epsilon. For
large initial domains on the other hand, D(1) is bigger than the theoretical line would
imply. This is caused by a decreasing accuracy of the 6-th order Taylor polynomial
approximations over the initial domain. Because of that, the Taylor models operate
in a region where the rules of (n + 1)-st order convergence fail to apply.
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Figure 6. Example 7.2.3: Double-logarithmic plot of the accuracy of the first Newton step as
a function of initial domain size; results for 6-th order Taylor models.

8. Conclusion

A new method for computing verified inverses of arbitrary complicated multidimen-
sional functions has been presented. It has been demonstrated in the computation of
verified enclosures of the inverse function for given invertible functions. The method
combines Taylor models, a recently developed method for proving invertibility [9],
and efficient differential algebra (DA) algorithms that allow the determination of
exact n-th order polynomial inverses in finitely many steps.

The accuracy of the resulting enclosures scales with the (n + 1)-st order of the
original domain and the resulting models of the inverse functions are extremely
accurate. Moreover, the method can handle complicated functions by using Taylor
models. These have been shown to control the dependency [12] and cancellation
problems inherent in regular interval arithmetic. The latter cancellation is especially
important in the establishment of invertibility that precedes the computation of the
inverse Taylor model [9].

As an immediate application of the new method, an extension of the Interval
Newton method has been presented. It has been demonstrated to converge much
faster than the regular interval based version of that algorithm. Future applications
of the new method will be in the computation of charts of constraint manifolds,
used for verified Taylor model based DAE integration. Other applications are in the
computation of verified solutions to non-linear equations. These will be used in a
Taylor model based integrator for implicit Differential Equations, where the verified
inversion is used to transform the given implicit equation to an explicit differential
equation that can be solved using existing verified integration techniques [8].
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