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Abstract. It is shown how the Taylor Model approach allows the rigorous description of functional
dependencies with far-reaching control of the dependency problem. The amount of overestimation
decreases with ahigh power of theinterval over which theinformation isrequired, at acomputational
expense that increases rather moderately with the dimensionality of the problem. This leads to the
possibility of treating even cases with a very significant dependency problem that are intractable
using conventional methods.

1. Introduction

A common task in the use of modern verified methods is the determination of
rigorous upper and lower bounds of a function; one example is the range bound-
ing subproblem of globa optimization. The commonly used interval approach has
excelled in solving this problem elegantly from both aformal and an implementa-
tional viewpoint. However, there are situations where the method has limitations for
extended or complicated calculations because of the dependency problem, which
is characterized by a cancellation of various sub-parts of the function that cannot
be detected by direct use of interval methods. This effect often leads to pessimism
and sometimes even drastic overestimation of range enclosure. Furthermore, the
sharpness of intervals resulting from calculations typically scales linearly with the
sharpness of the initia discretization intervals. For complicated problems, and in
particular higher dimensions, this sometimes significantly limits the sharpness of
the resulting answer that can be obtained.

In the following, we study some applications of the Taylor model approach that
alows us to obtain fully mathematically rigorous range enclosures while largely
avoiding many of thelimitations of the conventional interval method. Themethod is
based on the inductive local modelling of functional dependencies by a polynomial
with arigorous remainder bound, and as such represents a hybrid between formula
manipulation, interval methods, and methods of computational differentiation [6],
[9]. In dll cases, the computational expense scales only linearly with the expense of
the underlying function, resulting in the ability to treat rather large and complicated
computational problems.
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2. Propertiesof the Taylor Model Method

In [7], [10], a method has been introduced that allows the rigorous modeling of
functional dependencies by alocal inclusion into a Taylor polynomial with floating
point coefficients plus an interval. Specifically, let f be C™*Y on D; O RY, and
B =[a;,bi] x--- x[a,b] O D¢ aninterval box containing the point Xo. Let T be
the Taylor polynomial of f around the point Xo. We call theinterval | an n-th order
remainder bound of f on B if

f(X) - T(X) Ol fordl X OB.

In this case, we call the pair (T, 1) an n-th order Taylor Model of f on B. It is clear
that a given function f can have many different Taylor models, as with (T, 1), aso
(T,D) withT O 1 isaTaylor model. Furthermore, we see that low-order polynomials
have trivia remainder bounds; since every polynomia of order not exceeding n
agrees with its n-th order Taylor polynomial, the interval [0,Q] is a remainder
bound. For practical purposes, it is important that if the origina interval box B
decreases in size, then according to the various formulas of the Taylor remainder,
the remainder bounds can decrease in size with a power of n+ 1 and hence become
small quickly.

The strategy of both the interval method and the methods of computational dif-
ferentiation isto extract information for complicated functional dependencies from
those of simpler functional dependencies, and rules to combine them. In practice,
one begins with the identity function, and derives rules how to extract bounds or
derivatives of sums, products, and intrinsics from those of the arguments.

In [7], [10], it has been shown how it is possible to build up Taylor models
of complicated functions from the known Taylor model of their pieces, starting
from the identity function which has zero remainder bound, and then proceeding
inductively. For this purpose, it is necessary to study to what extent it is possible
to define arithmetic operations U, ®, and others on Taylor models that preserve the
respective operations in the underlying function spaces. Thusit is necessary to craft
new adjoint operations on Taylor models that make the diagram

f,gocn*t 0 (Tnlp(Tgly)
O ® (21)
f*g O (Thlp@aTgly
commute.

For practical purposes, it is worthwhile to assess the computational expense of
operations on Taylor models, since their datatypes are obviously more complicated
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Table 1. The number of coefficients N(n, V) of a polynomial of order ninv

variables.
Variables

Order 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9

2 3 6 10 15 21 28 36 45

3 4 10 20 35 56 84 120 165

4 5 15 35 70 126 210 330 495

5 6 21 56 126 252 462 792 1,287

6 7 28 84 210 462 924 1,716 3,003

7 8 36 120 330 792 1716 3432 6,435

8 9 45 165 495 1,287 3,003 6,435 12,870

9 10 55 220 715 2,002 5,005 11,440 24,310
10 11 66 286 1,001 3,003 8,008 19,448 43757

than mere intervals. Specifically, it has been shown in [8] that the number of
coefficients of a polynomial of order ninv variables is given by

n+v) :(n+v)! 22)

N(n,v) = ( v o

Ascan be seen from Table 1, for values of n and vin the middle of those shown,
an increase of the order by one results in roughly a doubling of the number of
coefficients. Likewise, anincrease in the dimensionality by one a so results roughly
in a doubling of the number of coefficients. This is in stark contrast to common
scanning techniques, where each new dimension entails a multiplication of the
previous effort by the number of support points used per dimension.

From the aspect of implementation, besides the use of elementary interval tools,
the method requires efficient tools for high-order multivariate Taylor operations
[1], [4]. In our implementation, we use the approach outlined in [3], which has a
particularly sophisticated addressing scheme that reduces the amount of effort for
bookkeeping to asmall fraction of what is needed for floating point operations and
fully supports sparsity of the polynomials. It has been used for more than a decade
in Beam Physics [2] by hundreds of users of the code COSY INFINITY.

Altogether, the Taylor model approach has the following important proper-
ties:

« Thewidth of theremainder term, and hence the sharpness of the range enclosure,
scaleswith the (n+1)-st order of thedomain interval and hence decreases quickly
with order. Any dependency problem of the task manifests itself only in the
remainder term, where its significance is substantially suppressed according to
the overal size of the remainder term.
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« The computational expense increases only moderately with order, allowing
the computation of sharp range enclosures even for complicated functional
dependencies with significant dependency problem.

« The computational expense of higher dimensions increases only very moderate-
ly, significantly reducing the " curse of dimensionality.”

In the following sections, we present some examples and applications to show
the practical use and power of the method.

3. A Multidimensional Function

As a first example addressing the dependency problem, we study a somewhat
randomly chosen function of three variables

4tan(3
31 + X L
N e -9

2
— 7x3(1 + 2x2) — sinh <0_5 + 6x2 > N (3% +13)

8o +7 3X3
5x; tanh(0.9x3)
vV 5X2

There are nine terms contributing to the result, each of which consists of not fully
trivial arithmetic. Since each variable appears severa times, terms depend on one
another. Hence, a certain amount of blow up due to the dependency problem isto
be expected in conventional interval arithmetic.

To study the effect, we ask for the range enclosure of the function over a three
dimensiona box centered around (2, 1, 1) with width of 0.1 in each dimension, so
that x; 0[1.95,2.05], x, 0[0.95,1.05], and x3 0[0.95, 1.05].

The non-verified range enclosure estimate of the function obtained by scanning
inreal numbersat 11 x 11 x 11 equidistant pointsis

[ -2.31165715, 1.78168226].

— 20x3(2x3 — 5) + — 202 Sin(3x3).

When the function is evaluated with the above domain intervalsin naive interval
arithmetic, the range enclosure is

[-16. 36393303, 16.09747985],

which is amost ten times wider than the range enclosure estimated via naive
scanning.

We now evaluate the function in Taylor model arithmetic around the reference
point Xo = (2,1,1). Table 2 provides asummary of the range enclosure intervals of
the function obtained through interval methods with various numbers of equidistant
subdivisions of the interval box as well as with Taylor model computation as a
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Table 2. Range enclosure of the three dimensional function.

Real Number Rastering

Sampling Points Range Enclosure
11x11x11 [-2.31165, 1.78168]

Interval Method

Sub- Width in Subdivisions Total Range Enclosure
divison  Maximum Minimum Average

13 32.46141 32.46141 32.46141 -16. 36393, 16. 09747]

[
23 16. 63312 15.81953 16.22488 [ -9.22796, 9.04085]
43 8. 42057 7.80824 8.11117 [ -5.73777, 5.43391]
g3 4. 23647 3.87888 4.05529 [ -4.01617, 3.61282]
163 2.12481 1.93314 2.02757 [ -3.16171, 2.69842]
323 1. 06405 0. 96500 1.01377 [ -2.73613, 2.24033]
643 0.53243 0. 48222 0.50688 [ -2.52387, 2.01107]
Taylor Model Method
Order Terms Remainder Bound Total Range Enclosure
1 4 [-.39140 ,0.72524 ] [-2.80268, 2.35080]
2 10 [-.33950E-01, 0. 33940E-01] [-2.48316, 1.84826]
3 20 [-.10202E-02, 0. 16096E-02] [-2.47884, 1.84454]
4 35 [-.84132E-04,0.84028E-04] [-2.47871, 1.84429]
5 56 [-.24107E-05,0.43833E-05] [-2.47866, 1.84424]
6 84 [-.33555E-06,0.33431E-06] [-2.47866, 1.84424]
7 120 [-.16319E-07,0.20518E-07] [-2.47866, 1.84424]
8 165 [-.24246E-08, 0. 24107E-08] [-2.47866, 1.84424]
9 220 [-.17219E-09,0.17367E-09] [-2.47866, 1.84424]
10 286 [-.23138E-10,0.22986E-10] [-2.47866, 1.84424]
11 364 [-.19280E-11,0.18210E-11] [-2.47866, 1.84424]
12 455  [-.24243E-12,0.24077E-12] [-2.47866, 1.84424]
13 560 [-.21634E-13,0.20126E-13] [-2.47866, 1.84424]
14 680 [-.26147E-14,0.25966E-14] [-2.47866, 1.84424]
15 816 [-.24172E-15,0.22428E-15] [-2.47866, 1.84424]

function of the order. Table 2 also lists the number of coefficients of the polynomial
in the given order, which can serve as an estimate of the computational expense for
the computation of the range enclosure. While the number of terms of polynomial
increases moderately with order, the width of remainder range enclosure interval
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Table 3. Output of the fifth order Taylor model of the three dimensional function, which
consists of the Taylor coefficients, the domain information and the remainder bound.

RDA VARI ABLE: NO= 5, Nv= 3

I CCEFFI CI ENT EXPONENTS | COEFFI Cl ENT EXPONENTS
1 -.3928616701165386 00 24 -3.675895416398908 04

2 -.3539134581708554 25 0.3674633576464710

3 15. 04043477798914 26 -.6124389294107850

4 -24.97397896319208 27 0.3158558645500195

5 -.2240287293503141E-01 28 2.526216203174971

6 -1.754174272159207 29 0.1426707720152316

7 3. 585368696366333 30 -121.2419954660553

8 0.9799022870572560 31 75.96490653676481

9 12.41964750896948
10 56. 77071060052130
11 0.1132471389197260E- 01
12 0.4810657908262914
13 1. 008315244119392
14  4.453227097958014
15 -.4899511435286280
16 -2.265073284707058
17 -.6317117291000389
18  45.33251245448809
19 -174.1473164833430
20 -.5693089033022302E-02
21 -.2431800805245985

32 0.2858741733383875E-02
33 0.1222499625765752
34 0.1039934394699180
35 1.531172592862926
36 2.958604600578060
37 20.81296131572292
38 -.3062194647053925
39 0.5358840632344369
40 -.2368918984125146
41 0.3948198306875244
42 -.7133538600761581E-01
43 -2.892996920988576
44 0.7858687373626551E- 01
22 -.2057227964207444 45 22.39581258222270
23 -3.534855720652786 46 -45.38843038572212

PNWPMNOORFRPRORFRPROFRPRNWOOFRPRORLRNOOPR
WNPFPOOFRPRONRPFPWNRFPOORFRPONREFPOORO
OO O0OOWNNRPPFPOOOONRPRPPFRPLPOOORFROOO
OOFrRPRORFRPROFRPROFRPORPNWMNIUIOORLOROLPR
OFRPONRFPFWNAMWOADMWNRPOORFRPRONRPEPWN
AR WWNNRPPOOOOOOMWWNNERERLO

VAR REFERENCE PO NT DOVAI N | NTERVAL
1 2.000000000000000 [ 1.950000000000000 , 2.050000000000000 ]
2 1.000000000000000 [ 0. 9500000000000000 , 1.050000000000000 ]
3 1.000000000000000 [ 0. 9500000000000000 , 1.050000000000000 ]
REMAI NDER BOUND | NTERVAL
R [-.2410738165297327E- 05, 0. 4383393685666131E- 05]

R R R S R R S R S S S R R R R R R R R T R R R Sk ko

drops down sharply as expected, reaching ten digits of accuracy with fewer than
300 polynomia coefficients.

Toillustrate the Taylor model method in more detail, in Table 3 welist the actual
fifth order Taylor model obtained with the code COSY, providing all expansion
coefficients as well as the domain information and the bound for the remainder.

4. A Highly Complicated Six-Dimensional Function

The next example is a range enclosure of a normal form invariant function [5]
of adynamica system. Specificaly, the function is asix dimensiona polynomial
of degree roughly 200 that is always rather near to zero in value, while having a
large number of local minimaand maxima Because of the many cancellations and
the dimensionality, it thus represents a substantial challenge for verified bounding
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tools. We study the determination of a range enclosure of the function on the six
dimensiona box

B = [0.04,0.06] x [0.04,0.06] x [0.04, 0.06] x [0.04, 0.06]
x [0.04,0.06] x [0.04, 0.06],

which has width of 0.02 in each dimension and center point Xp = 0.05. The value
of the function at the reference point is

f(Xo) = 0.6976700784514303 x 107>,

and a non-verified range enclosure is obtained by scanning in real numbers at a
total of 1729 points in the whole domain, which consist of 3¢ equidistant points
including boundary points, and 1000 randomly chosen points, as

[-0.31211856E- 05, 0.42124293E-04].

Using naive interval arithmetic covering the whole domain by one interval box
gives amathematically rigorous range enclosure of

[ -4.47134 , 4.80774 ],

which exhibits a blow-up of about six orders of magnitude due to the dependency
problem of the function.

Dividing the domain in question into smaller interval boxes, we expect to obtain
a narrower range enclosure. Table 4 shows range enclosures using successively
smaller domain interval boxes at various locations. Only the smallest boxes yield
arange enclosure of a size comparable to those obtained by the scanning estimate.
However, to cover the entire domain in this fashion would requires 10* small
interval boxes, showing the practical limitations of the interval approach for this
problem.

We next study the bounding problem for the normal form invariant function
with the Taylor model approach. The entire domain interval is covered with one
Taylor model without subdivision. To obtain the required sharpness, the order of
the Taylor model is increased. Table 5 shows the range enclosure computed with
various orders. Already at order six, the total range enclosure is within a factor of
two of the non-verified range enclosure obtained by scanning.

Table 5 also shows the number of terms of the occurring polynomials, which
are very moderate compared to the number of divisions necessary for acomparable
interval evaluation. Indeed, the naive interval method would require roughly 10%°
more computational effort than the Taylor model approach.
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Table 4. Range enclosures of anormal form invariant function viainterval methods.

Interval Method

Domain Interval Box Range Enclosure Width

[ 0. 040000, 0.060000] 6 [-4.47134 , 4.80774 ] 9. 27908

[0.040000, 0.042000]°% [-0.281964E-02, 0.424588E-02] 0.70655E- 02
[ 0. 040000, 0.040200] 6 [-0.311303E-03, 0.327498E-03] 0. 63880E- 03
[ 0. 040000, 0.040020] 6 [-0.304618E- 04, 0.329529E-04] 0. 63414E- 04
[ 0. 040000, 0.040002] 6 [-0.199253E- 05, 0.434435E-05] 0. 63368E- 05
[0.049000, 0.051000]°% [-0.544365E-02, 0.100332E-01] 0.15476E-01
[ 0. 049900, 0.050100] 6 [-0.697752E-03, 0.762484E-03] 0. 14602E- 02
[ 0. 049990, 0.050010] 6 [-0.657704E- 04, 0.802314E-04] 0. 14600E- 03
[ 0. 049999, 0.050001] 6 [-0.320844E-06, 0.142793E-04] 0. 14600E- 04
[ 0. 058000, 0.060000] 6 [-0.133070E-01, 0.265293E-01] 0. 39836E-01
[ 0. 059800, 0.060000] 6 [-0.160977E-02, 0.188511E-02] 0. 34948E- 02
[ 0. 059980, 0.060000] 6 [-0.144312E-03, 0.207897E-03] 0. 35220E- 03
[0.059998, 0.060000]° [ 0.131290E-04, 0.483782E-04] 0. 35249E- 04

Table 5. Range enclosures of anormal form invariant function via Taylor model methods.

Taylor Model Method

Order Terms Remainder Bound Total Range Enclosure

6 924  [-0.53585E- 05, 0. 53588E-05] [ - 0. 3466E- 04, 0. 5358E- 04]
7 1716  [-0.83873E- 06, 0. 83884E-06] [ - 0. 3016E- 04, 0. 4902E- 04]
8 3003 [-0.12321E-06, 0. 12321E-06] [ - 0. 2945E- 04, 0. 4831E- 04]

5. Many Body Dynamics

As the fina example, we study the problem of many body dynamics, in which
an ensemble of particles interact via two-body forces. The many body dynamics
problem occurs in many disciplines including plasma physics, beam physics, and
galaxy dynamics (see Figure 1). For the specific case of Coulomb fields, the force
on atest particle is given by

where X, and g; are position and charge of thei-th particle of the ensemble. The study
of the dynamics requires the solution of the equations of motion for the particles,
which in principle can be done with a variety of verified integration methods. A
necessary part of such calculationsisthe computation of the force at the position x;.
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Figure 1. Test particle in many particle system.

Using verified methods after some time evaluation, the X; themselves will be given
by interval boxes. Hence it is desirable to determine arigorous and tight enclosure
of the force F over thisinterval box.

We now study this computation of forces using interval arithmetic and Taylor
model arithmetic for many body systems. To assess the quality of the enclosures,
we choose randomly distributed % 0[—1,1]% and ¢y O{—1/N, 1/ N} for different
values of N, which correspond to the simulation of a plasma or beam by more and
more sub-particles.

In this situation, if X is chosen to be a box around the origin, as N increases,
the force at X; decreases with N, as the forces have a tendency to cancel each other
moreand more. Specifically, wechoose x; 0[—0.001, 0.001] 3 and determinearange
enclosure for the resulting force on the box. Figure 2 shows the range enclosure of
the force for the values of X in thisinterval, using non-verified rastering, interval
computation, and computation using Taylor models. The rastering clearly shows
the effect of a decrease of the force as the number of particles increases. On the
other hand, the interval estimate of the force shows no decrease with the number
of particles, but instead asymptotically approaches a constant, non-zero value. The
Taylor model bounding avoids the dependency problem arising from the repeated
occurrence of x; in each term and yields range enclosure with the proper asymptotics
that in fact have a tightness very similar to that of the non-verified bounding.
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Figure2. Range enclosure estimate of force on test particle within interval box.
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