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Abstract. It is shown how the Taylor Model approach allows the rigorous description of functional
dependencies with far-reaching control of the dependency problem. The amount of overestimation
decreases with a high power of the interval over which the information is required, at a computational
expense that increases rather moderately with the dimensionality of the problem. This leads to the
possibility of treating even cases with a very significant dependency problem that are intractable
using conventional methods.

1. Introduction

A common task in the use of modern verified methods is the determination of
rigorous upper and lower bounds of a function; one example is the range bound-
ing subproblem of global optimization. The commonly used interval approach has
excelled in solving this problem elegantly from both a formal and an implementa-
tional viewpoint. However, there are situations where the method has limitations for
extended or complicated calculations because of the dependency problem, which
is characterized by a cancellation of various sub-parts of the function that cannot
be detected by direct use of interval methods. This effect often leads to pessimism
and sometimes even drastic overestimation of range enclosure. Furthermore, the
sharpness of intervals resulting from calculations typically scales linearly with the
sharpness of the initial discretization intervals. For complicated problems, and in
particular higher dimensions, this sometimes significantly limits the sharpness of
the resulting answer that can be obtained.

In the following, we study some applications of the Taylor model approach that
allows us to obtain fully mathematically rigorous range enclosures while largely
avoiding many of the limitations of the conventional interval method. The method is
based on the inductive local modelling of functional dependencies by a polynomial
with a rigorous remainder bound, and as such represents a hybrid between formula
manipulation, interval methods, and methods of computational differentiation [6],
[9]. In all cases, the computational expense scales only linearly with the expense of
the underlying function, resulting in the ability to treat rather large and complicated
computational problems.
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2. Properties of the Taylor Model Method

In [7], [10], a method has been introduced that allows the rigorous modeling of
functional dependencies by a local inclusion into a Taylor polynomial with floating
point coefficients plus an interval. Specifically, let ƒ be C(n+1) on Dƒ ⊂ Rv, and
B
→

= [a1, b1] × · · · × [av, bv] ⊂ Dƒ an interval box containing the point x→0. Let T be
the Taylor polynomial of ƒ around the point x→0. We call the interval I an n-th order
remainder bound of ƒ on B

→
if

ƒ(x→) − T(x→) ∈ I for all x→ ∈ B
→

.

In this case, we call the pair (T , I) an n-th order Taylor Model of ƒ on B
→

. It is clear
that a given function ƒ can have many different Taylor models, as with (T , I), also
(T , I) with I ⊃ I is a Taylor model. Furthermore, we see that low-order polynomials
have trivial remainder bounds; since every polynomial of order not exceeding n
agrees with its n-th order Taylor polynomial, the interval [0, 0] is a remainder
bound. For practical purposes, it is important that if the original interval box B

→

decreases in size, then according to the various formulas of the Taylor remainder,
the remainder bounds can decrease in size with a power of n + 1 and hence become
small quickly.

The strategy of both the interval method and the methods of computational dif-
ferentiation is to extract information for complicated functional dependencies from
those of simpler functional dependencies, and rules to combine them. In practice,
one begins with the identity function, and derives rules how to extract bounds or
derivatives of sums, products, and intrinsics from those of the arguments.

In [7], [10], it has been shown how it is possible to build up Taylor models
of complicated functions from the known Taylor model of their pieces, starting
from the identity function which has zero remainder bound, and then proceeding
inductively. For this purpose, it is necessary to study to what extent it is possible
to define arithmetic operations ⊕, �, and others on Taylor models that preserve the
respective operations in the underlying function spaces. Thus it is necessary to craft
new adjoint operations on Taylor models that make the diagram

ƒ, g ∈ Cn+1 ⊂
−−−−−−−−−−−−→

(Tƒ, Iƒ), (Tg, Ig)

∗

|
|
|
|
|
↓

|
|
|
|
|
↓

�∗

ƒ ∗ g
−−−−−−−−−−−−→

⊂ (Tƒ, Iƒ) �∗ (Tg, Ig)

(2.1)

commute.
For practical purposes, it is worthwhile to assess the computational expense of

operations on Taylor models, since their data types are obviously more complicated
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Table 1. The number of coefficients N(n, v) of a polynomial of order n in v
variables.

Variables
Order 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9
2 3 6 10 15 21 28 36 45
3 4 10 20 35 56 84 120 165
4 5 15 35 70 126 210 330 495
5 6 21 56 126 252 462 792 1,287
6 7 28 84 210 462 924 1,716 3,003
7 8 36 120 330 792 1,716 3,432 6,435
8 9 45 165 495 1,287 3,003 6,435 12,870
9 10 55 220 715 2,002 5,005 11,440 24,310

10 11 66 286 1,001 3,003 8,008 19,448 43,757

than mere intervals. Specifically, it has been shown in [8] that the number of
coefficients of a polynomial of order n in v variables is given by

N(n, v) =
(

n + v
v

)

=
(n + v)!
n! ⋅ v!

. (2.2)

As can be seen from Table 1, for values of n and v in the middle of those shown,
an increase of the order by one results in roughly a doubling of the number of
coefficients. Likewise, an increase in the dimensionality by one also results roughly
in a doubling of the number of coefficients. This is in stark contrast to common
scanning techniques, where each new dimension entails a multiplication of the
previous effort by the number of support points used per dimension.

From the aspect of implementation, besides the use of elementary interval tools,
the method requires efficient tools for high-order multivariate Taylor operations
[1], [4]. In our implementation, we use the approach outlined in [3], which has a
particularly sophisticated addressing scheme that reduces the amount of effort for
bookkeeping to a small fraction of what is needed for floating point operations and
fully supports sparsity of the polynomials. It has been used for more than a decade
in Beam Physics [2] by hundreds of users of the code COSY INFINITY.

Altogether, the Taylor model approach has the following important proper-
ties:

• The width of the remainder term, and hence the sharpness of the range enclosure,
scales with the (n+1)-st order of the domain interval and hence decreases quickly
with order. Any dependency problem of the task manifests itself only in the
remainder term, where its significance is substantially suppressed according to
the overall size of the remainder term.



6 KYOKO MAKINO AND MARTIN BERZ

• The computational expense increases only moderately with order, allowing
the computation of sharp range enclosures even for complicated functional
dependencies with significant dependency problem.

• The computational expense of higher dimensions increases only very moderate-
ly, significantly reducing the “curse of dimensionality.”

In the following sections, we present some examples and applications to show
the practical use and power of the method.

3. A Multidimensional Function

As a first example addressing the dependency problem, we study a somewhat
randomly chosen function of three variables

ƒ(x1, x2, x3) =
4 tan(3x2)

3x1 + x1

√

6x1

−7(x1 − 8)

− 120 − 2x1

− 7x3(1 + 2x2) − sinh
(

0.5 +
6x2

8x2 + 7

)

+
(3x2 + 13)2

3x3

− 20x3(2x3 − 5) +
5x1 tanh(0.9x3)√

5x2
− 20x2 sin(3x3).

There are nine terms contributing to the result, each of which consists of not fully
trivial arithmetic. Since each variable appears several times, terms depend on one
another. Hence, a certain amount of blow up due to the dependency problem is to
be expected in conventional interval arithmetic.

To study the effect, we ask for the range enclosure of the function over a three
dimensional box centered around (2, 1, 1) with width of 0.1 in each dimension, so
that x1 ∈ [1.95, 2.05], x2 ∈ [0.95, 1.05], and x3 ∈ [0.95, 1.05].

The non-verified range enclosure estimate of the function obtained by scanning
in real numbers at 11 × 11 × 11 equidistant points is

[ -2.31165715, 1.78168226].

When the function is evaluated with the above domain intervals in naive interval
arithmetic, the range enclosure is

[-16.36393303, 16.09747985],

which is almost ten times wider than the range enclosure estimated via naive
scanning.

We now evaluate the function in Taylor model arithmetic around the reference
point x→0 = (2, 1, 1). Table 2 provides a summary of the range enclosure intervals of
the function obtained through interval methods with various numbers of equidistant
subdivisions of the interval box as well as with Taylor model computation as a
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Table 2. Range enclosure of the three dimensional function.

Real Number Rastering

Sampling Points Range Enclosure
11 × 11 × 11 [-2.31165, 1.78168]

Interval Method

Sub- Width in Subdivisions Total Range Enclosure
division Maximum Minimum Average

13 32.46141 32.46141 32.46141 [-16.36393,16.09747]

23 16.63312 15.81953 16.22488 [ -9.22796, 9.04085]

43 8.42057 7.80824 8.11117 [ -5.73777, 5.43391]

83 4.23647 3.87888 4.05529 [ -4.01617, 3.61282]

163 2.12481 1.93314 2.02757 [ -3.16171, 2.69842]

323 1.06405 0.96500 1.01377 [ -2.73613, 2.24033]

643 0.53243 0.48222 0.50688 [ -2.52387, 2.01107]

Taylor Model Method

Order Terms Remainder Bound Total Range Enclosure

1 4 [-.39140 ,0.72524 ] [-2.80268, 2.35080]

2 10 [-.33950E-01,0.33940E-01] [-2.48316, 1.84826]

3 20 [-.10202E-02,0.16096E-02] [-2.47884, 1.84454]

4 35 [-.84132E-04,0.84028E-04] [-2.47871, 1.84429]

5 56 [-.24107E-05,0.43833E-05] [-2.47866, 1.84424]

6 84 [-.33555E-06,0.33431E-06] [-2.47866, 1.84424]

7 120 [-.16319E-07,0.20518E-07] [-2.47866, 1.84424]

8 165 [-.24246E-08,0.24107E-08] [-2.47866, 1.84424]

9 220 [-.17219E-09,0.17367E-09] [-2.47866, 1.84424]

10 286 [-.23138E-10,0.22986E-10] [-2.47866, 1.84424]

11 364 [-.19280E-11,0.18210E-11] [-2.47866, 1.84424]

12 455 [-.24243E-12,0.24077E-12] [-2.47866, 1.84424]

13 560 [-.21634E-13,0.20126E-13] [-2.47866, 1.84424]

14 680 [-.26147E-14,0.25966E-14] [-2.47866, 1.84424]

15 816 [-.24172E-15,0.22428E-15] [-2.47866, 1.84424]

function of the order. Table 2 also lists the number of coefficients of the polynomial
in the given order, which can serve as an estimate of the computational expense for
the computation of the range enclosure. While the number of terms of polynomial
increases moderately with order, the width of remainder range enclosure interval
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Table 3. Output of the fifth order Taylor model of the three dimensional function, which
consists of the Taylor coefficients, the domain information and the remainder bound.

RDA VARIABLE: NO= 5, NV= 3
I COEFFICIENT EXPONENTS I COEFFICIENT EXPONENTS
1 -.3928616701165386 0 0 0 24 -3.675895416398908 0 4 0
2 -.3539134581708554 1 0 0 25 0.3674633576464710 1 2 1
3 15.04043477798914 0 1 0 26 -.6124389294107850 0 3 1
4 -24.97397896319208 0 0 1 27 0.3158558645500195 1 1 2
5 -.2240287293503141E-01 2 0 0 28 2.526216203174971 0 2 2
6 -1.754174272159207 1 1 0 29 0.1426707720152316 1 0 3
7 3.585368696366333 0 2 0 30 -121.2419954660553 0 1 3
8 0.9799022870572560 1 0 1 31 75.96490653676481 0 0 4
9 12.41964750896948 0 1 1 32 0.2858741733383875E-02 5 0 0

10 56.77071060052130 0 0 2 33 0.1222499625765752 4 1 0
11 0.1132471389197260E-01 3 0 0 34 0.1039934394699180 3 2 0
12 0.4810657908262914 2 1 0 35 1.531172592862926 2 3 0
13 1.008315244119392 1 2 0 36 2.958604600578060 1 4 0
14 4.453227097958014 0 3 0 37 20.81296131572292 0 5 0
15 -.4899511435286280 1 1 1 38 -.3062194647053925 1 3 1
16 -2.265073284707058 0 2 1 39 0.5358840632344369 0 4 1
17 -.6317117291000389 1 0 2 40 -.2368918984125146 1 2 2
18 45.33251245448809 0 1 2 41 0.3948198306875244 0 3 2
19 -174.1473164833430 0 0 3 42 -.7133538600761581E-01 1 1 3
20 -.5693089033022302E-02 4 0 0 43 -2.892996920988576 0 2 3
21 -.2431800805245985 3 1 0 44 0.7858687373626551E-01 1 0 4
22 -.2057227964207444 2 2 0 45 22.39581258222270 0 1 4
23 -3.534855720652786 1 3 0 46 -45.38843038572212 0 0 5
-------------------------------- --------------------------------

VAR REFERENCE POINT DOMAIN INTERVAL
1 2.000000000000000 [ 1.950000000000000 , 2.050000000000000 ]
2 1.000000000000000 [0.9500000000000000 , 1.050000000000000 ]
3 1.000000000000000 [0.9500000000000000 , 1.050000000000000 ]

REMAINDER BOUND INTERVAL
R [-.2410738165297327E-05,0.4383393685666131E-05]

*******************************************************

drops down sharply as expected, reaching ten digits of accuracy with fewer than
300 polynomial coefficients.

To illustrate the Taylor model method in more detail, in Table 3 we list the actual
fifth order Taylor model obtained with the code COSY, providing all expansion
coefficients as well as the domain information and the bound for the remainder.

4. A Highly Complicated Six-Dimensional Function

The next example is a range enclosure of a normal form invariant function [5]
of a dynamical system. Specifically, the function is a six dimensional polynomial
of degree roughly 200 that is always rather near to zero in value, while having a
large number of local minima and maxima. Because of the many cancellations and
the dimensionality, it thus represents a substantial challenge for verified bounding
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tools. We study the determination of a range enclosure of the function on the six
dimensional box

B
→

= [0.04, 0.06] × [0.04, 0.06] × [0.04, 0.06] × [0.04, 0.06]

× [0.04, 0.06] × [0.04, 0.06],

which has width of 0.02 in each dimension and center point x→0 = 0.05
−−−→

. The value
of the function at the reference point is

ƒ(x→0) = 0.6976700784514303 × 10−5,

and a non-verified range enclosure is obtained by scanning in real numbers at a
total of 1729 points in the whole domain, which consist of 36 equidistant points
including boundary points, and 1000 randomly chosen points, as

[-0.31211856E-05, 0.42124293E-04].

Using naive interval arithmetic covering the whole domain by one interval box
gives a mathematically rigorous range enclosure of

[ -4.47134 , 4.80774 ],

which exhibits a blow-up of about six orders of magnitude due to the dependency
problem of the function.

Dividing the domain in question into smaller interval boxes, we expect to obtain
a narrower range enclosure. Table 4 shows range enclosures using successively
smaller domain interval boxes at various locations. Only the smallest boxes yield
a range enclosure of a size comparable to those obtained by the scanning estimate.
However, to cover the entire domain in this fashion would requires 1024 small
interval boxes, showing the practical limitations of the interval approach for this
problem.

We next study the bounding problem for the normal form invariant function
with the Taylor model approach. The entire domain interval is covered with one
Taylor model without subdivision. To obtain the required sharpness, the order of
the Taylor model is increased. Table 5 shows the range enclosure computed with
various orders. Already at order six, the total range enclosure is within a factor of
two of the non-verified range enclosure obtained by scanning.

Table 5 also shows the number of terms of the occurring polynomials, which
are very moderate compared to the number of divisions necessary for a comparable
interval evaluation. Indeed, the naive interval method would require roughly 1020

more computational effort than the Taylor model approach.
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Table 4. Range enclosures of a normal form invariant function via interval methods.

Interval Method

Domain Interval Box Range Enclosure Width

[0.040000, 0.060000]6 [-4.47134 , 4.80774 ] 9.27908

[0.040000, 0.042000]6 [-0.281964E-02, 0.424588E-02] 0.70655E-02

[0.040000, 0.040200]6 [-0.311303E-03, 0.327498E-03] 0.63880E-03

[0.040000, 0.040020]6 [-0.304618E-04, 0.329529E-04] 0.63414E-04

[0.040000, 0.040002]6 [-0.199253E-05, 0.434435E-05] 0.63368E-05

[0.049000, 0.051000]6 [-0.544365E-02, 0.100332E-01] 0.15476E-01

[0.049900, 0.050100]6 [-0.697752E-03, 0.762484E-03] 0.14602E-02

[0.049990, 0.050010]6 [-0.657704E-04, 0.802314E-04] 0.14600E-03

[0.049999, 0.050001]6 [-0.320844E-06, 0.142793E-04] 0.14600E-04

[0.058000, 0.060000]6 [-0.133070E-01, 0.265293E-01] 0.39836E-01

[0.059800, 0.060000]6 [-0.160977E-02, 0.188511E-02] 0.34948E-02

[0.059980, 0.060000]6 [-0.144312E-03, 0.207897E-03] 0.35220E-03

[0.059998, 0.060000]6 [ 0.131290E-04, 0.483782E-04] 0.35249E-04

Table 5. Range enclosures of a normal form invariant function via Taylor model methods.

Taylor Model Method

Order Terms Remainder Bound Total Range Enclosure

6 924 [-0.53585E-05,0.53588E-05] [-0.3466E-04,0.5358E-04]

7 1716 [-0.83873E-06,0.83884E-06] [-0.3016E-04,0.4902E-04]

8 3003 [-0.12321E-06,0.12321E-06] [-0.2945E-04,0.4831E-04]

5. Many Body Dynamics

As the final example, we study the problem of many body dynamics, in which
an ensemble of particles interact via two-body forces. The many body dynamics
problem occurs in many disciplines including plasma physics, beam physics, and
galaxy dynamics (see Figure 1). For the specific case of Coulomb fields, the force
on a test particle is given by

F
→

(x→j) =
∑

i = 1, …, N
i 6= j

qjqi ⋅ (x→j − x→i)
|x→j − x→i|3

,

where x→i and qi are position and charge of the i-th particle of the ensemble. The study
of the dynamics requires the solution of the equations of motion for the particles,
which in principle can be done with a variety of verified integration methods. A
necessary part of such calculations is the computation of the force at the position x→j.
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Figure 1. Test particle in many particle system.

Using verified methods after some time evaluation, the x→j themselves will be given
by interval boxes. Hence it is desirable to determine a rigorous and tight enclosure
of the force F

→
over this interval box.

We now study this computation of forces using interval arithmetic and Taylor
model arithmetic for many body systems. To assess the quality of the enclosures,
we choose randomly distributed x→i ∈ [−1, 1]3 and qi ∈ {−1 / N, 1 / N} for different
values of N, which correspond to the simulation of a plasma or beam by more and
more sub-particles.

In this situation, if x→j is chosen to be a box around the origin, as N increases,
the force at x→j decreases with N, as the forces have a tendency to cancel each other
more and more. Specifically, we choose x→j ∈ [−0.001, 0.001]3 and determine a range
enclosure for the resulting force on the box. Figure 2 shows the range enclosure of
the force for the values of x→j in this interval, using non-verified rastering, interval
computation, and computation using Taylor models. The rastering clearly shows
the effect of a decrease of the force as the number of particles increases. On the
other hand, the interval estimate of the force shows no decrease with the number
of particles, but instead asymptotically approaches a constant, non-zero value. The
Taylor model bounding avoids the dependency problem arising from the repeated
occurrence of x→j in each term and yields range enclosure with the proper asymptotics
that in fact have a tightness very similar to that of the non-verified bounding.

Acknowledgements

This work was supported in part by the US Department of Energy and an Alfred P.
Sloan Fellowship. For several useful conversations, we would like to thank Ramon
Moore and George Corliss.



12 KYOKO MAKINO AND MARTIN BERZ

Taylor Models
Rastering
Intervals

0.0015

0.001

0.0005

0

1 10 100 1000 10000 100000 1e+06

Total number of particles

W
id

th
 o

f B
ou

nd
s

Figure 2. Range enclosure estimate of force on test particle within interval box.
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