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Motivated by the dynamical studies of particle motion in magnetic fields, we develop the method
of Differential Algebra (DA) based 3D magnetic field computation. It can be applied whenever an
analytical model of a magnet is given, which usually consist of line wire currents. Such a model exists
for most of the modern superconducting magnets. It is stressed that it is the only practically possible
way to extract the multipoles and its derivatives, and hence the map, analytically to high order. We
also elaborate on related topics like complexity of the problem, Maxwellification of fields, importance
of vanishing curl, etc., and its applications to very accurate fringe field map computations.

I. INTRODUCTION

The performance of the modern high energy accelerators, such as the Large Hadron Collider to be built at CERN,
depends critically on the field quality of the superconducting magnets employed to guide and focus the circulating
beam [1]. The nonlinearities of these magnets drive resonances, rendering the motion of particles at large amplitudes
unstable [2]. The shrinkage of the useful region in space, called the dynamic aperture, due to magnet nonlinearities
is very detrimental to the stringent high luminosity requirements, so a careful design of these magnets is in order.
The design is performed by sophisticated codes like ROXIE [3]. The accurate placement of the superconducting
wires, followed by extensive optimization produces an analytical model of the magnet. Using the Biot-Savart law,
the resulting magnetic field is computed on the surface of a coaxial cylinder with the optical axis, and subsequently
Fourier analyzed numerically to reveal its multipole content. Several iterations are necessary to obtain a magnet model
that satisfies the design specifications. However, once the magnet model is ready, the dynamical studies can use only
the multipole data output of the magnet design codes, usually organized in tables. These contain the integrated
values of the multipoles [4]. This is satisfactory for the dynamical studies of the so-called straight sections, where the
fields are independent of the arclength s, which is used as the independent variable. However, it is not necessarily
accurate enough for the end regions, the fringe fields, where the s dependence of the fields could result in unusual local
dynamics not revealed by the integrated values. In the present paper we develop the theory that solves this problem
by computing the magnetic fields based on Differential Algebraic methods. This method allows not just the extraction
of the multipole strengths, but also their full s-dependence, allowing analytical computation of s-derivatives, which
are necessary for “exact” fringe field map computations. The first steps in this direction have been done by Caspi [5].
Here we present the theory in its full generality. In section II we derive an improved, numerically stable version of the
Biot-Savart law for straight line current wires in 3D and explain the principle of DA based field computation. Section
IIT develops two methods for multipole extraction. The importance of enforcing Maxwell’s equations is presented
in Section IV. In fact, there are two methods to enforce Maxwell’s equations: a local (IVA) and a global (IV B)
approach. Finally, Section V contains examples of multipoles and applications to map computation.

II. BIOT-SAVART LAW AND FIELD COMPUTATION

The magnetic field computation is based on the Biot-Savart law. As will be shown in section III, to solve the
equations of the motion, and hence to get the map of a magnetic element it is necessary to compute not just the value
of the field at a certain point in space, but also its derivatives, that is its Taylor expansion. So, why do we want to
use Differential Algebraic methods [6,7] to achieve this? In principle, it is possible to get the derivatives analytically
and implement it in some code to evaluate them. We did it using Mathematica. The results are presented in Table
I. We mention that the calculations have been done in only one variable (z), for one field component (By), and one
single line current. On every computer we tried, Mathematica ran out of memory at the computation of the order 10
derivative. Therefore, it is clear that for realistic magnet models, consisting of several 10° line currents, in at least 2
variables up to high orders this way is practically intractable. As a comparison, Table II shows how fast is the DA
method, and at the same time preserves the accuracy of the computed derivatives. Technically, all we need to get the



Taylor expansion of the field components around a specified point in space is the evaluation in DA of the Biot-Savart
law.

While the exact form of the formula is not critical for the evaluation of the magnetic field value at a certain point
in the space, as long it is mathematically accurate, it does have a significant influence when it is used to compute
also the Taylor expansion of the field around a point. This is exactly what we attempt by evaluating it in DA. Some
of the shortcomings of a naive implementation have been pointed out by Caspi [5]. Another numerical instability has
been noticed by us when we utilized it at a point where some of the wire currents were exactly or almost colinear
with the point of expansion. Therefore, we made several modifications to the standard form of the Biot-Savart law,
and found a numerically stable version which has a good behavior in any situation.

As a consequence of Ampere’s law, the elementary magnetic flux density at a point 7 generated by a filamentary
current wire dl situated at 7 is given by the Biot-Savart formula
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To compute the magnetic field generated by an extended straight line current we parametrize the line by A € [0,1]
and define 7 (\) = 7, + M and 7, = 7, + [, where 7, 7, represent the starting and endpoint respectively of the line

current to the point 7.
Integrating over the line

. dix @ le(FﬁM N L )
B_kI/ i _kI/O Wd)\—kl(lxrs)/o m @)

" 2
with k = —puo/(4r). Introducing the shorthand notations a = |7|> , b =2/ -1 , ¢ = M , the integral gives the
result
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While mathematically accurate, this formula exhibits several severe numerical pitfalls that restrict its direct practical

use, in particular when high-order derivatives are to be computed. Indeed, first the formula apparently exhibits a
problem of cancellation of closeby numbers if b + ¢ < a. Introduction of the quantity € = (b + ¢) /a yields
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The first problem can be substantially alleviated now by observing that
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which yields the formula
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However, there is a second numerical difficulty if the line current and the observation point are lying exactly or almost
on the same line, because in this case b? and 4ac assume similar values, which makes the evaluation of b> — 4ac prone
to numerical inaccuracy. To avoid this effect we rewrite the formula in terms of the angle 6 between ["and 7,. The
relations among the angle and the products of vectors are
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This implies the relationships
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Finally, we obtain the magnetic field expressed in terms of 75 and [ as
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Denoting || cos? 6 + ‘f‘cos& = «a and | +l“ = [, we manage to eliminate the sin?f term in the denom-

inator with the help of the identity & — 8 = (a® — %) /(a+ ). Direct calculation shows that o® — 3% =
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s + 4 ) . Altogether we obtain the final result
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The only case where this is numerically unstable is when |7| cos? § + m cosf +
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and |75| < M, but this corresponds to a point in the close proximity of the wire.

The necessary ingredients for the DA field calculation are the above formula and the analytic model of the magnet,
consisting of line wire currents. To this end, the entire field in space is calculated by summing up the fields created
by wire currents. At each step, the evaluation of (10) in DA yields not only the value of the magnetic field at the
respective point, but also its derivatives, that is the Taylor expansion with respect to coordinates. The result for the
return end of the Large Hadron Collider’s High Gradient Quadrupole, up to order 3, is presented in Table III. The
correctness of our results have been checked against data obtained from Fermilab. The Fermilab data contains the
values of the components of the field on the surface of a coaxial cylinder with the optical axis, and have been supplied
by G. Sabbi.

To show that the Biot-Savart law implementation based on eq. (10) is much more stable then, for example, based
on eq. (6), we use as an indicator the s component of the curl of the field. From Table IV it is clear that the naive
implementation goes wrong as low as second order in the curl. Due to lack of space, we presented the result only up
to order 3, but our results show that the behavior of eq. (10) is good up to very high orders. Also, we mention that
probably this is the most straightforward and accurate way to compute the curl and hence verify whether Maxwell’s
equations are satisfied.

III. MULTIPOLE EXTRACTION ALGORITHMS
A. The direct method

Using the field computation of the preceding section, it is possible to extract the multipole content of magnetic
fields directly, in a very elegant way that is arbitrary in order. In the following we assume straight optical axis. In the
divergence-free, curl-free region of the magnets it is possible to derive the magnetic field components from a magnetic
scalar potential that satisfies the Laplace equation. The general solution expanded in normal and skew components
has the form
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Defining 6y ;(s) and My (s) by
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we have an equivalent form
Vg = ZMkl cos (I¢ + Oy,i(s)) r* (13)
k=0

which shows that any normal (skew) component can be obtained from the corresponding skew (normal) component
by an s-dependent rotation around the s axis. The link between the two forms in the other direction is

ka(S) = —Mk,l(s) sin 0k,l(s) (14)
ak,i(8) = My, (s) cos O, (s)

Inserting (11) in the Laplace equation in cylindrical coordinates
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using the convention that the coefficients vanish for negative indices. Due to the fact that the above equation must
hold for every r and ¢, and the sin and cos are linearly independent
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Furthermore, it can be shown that the following recurrence relations hold
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and the coefficients that cannot be obtained by these relations are zero. The by;(s), a;(s) are called normal and
skew (true) multipoles respectively, while the terms that contain s-derivatives are called pseudo-multipoles. It is
worth mentioning that, as one can see from eq. (12), the recurrence relations (18) do not hold in general for My ;(s).
However, when the 6y ;’s are s-independent, eq. (18) holds for My ;(s). Inserting relations (18) in (11), we get for the
potential
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The functions f;(r, s) and g;(r, s) represent the ”out of axis” expansion of the multipoles. The magnetic field compo-
nents in cylindrical coordinates can be calculated using the well known formulas
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resulting the expressions
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It can be seen that every multipole, except for I = 0, is multiplied by r/~!. For the special case [ = 0, we get
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In the DA picture, the field calculations are done locally, as a Taylor expansion of the field with respect to Cartesian
coordinates z,y, s. Hence, we need the equations relating the cylindrical and Cartesian components of the magnetic
field.

Bw(ra ¢78) = BT(Ta ¢7S) COS¢ - B¢(ra d)v 8) Sin¢ (25)
By(r,¢,s) = Br(r,$,s)sin ¢ + By(r,p,s) cos ¢
and By(r, ¢, s) is unchanged. Obviously, if we evaluate the above equations in the midplane (y = ¢ = 0), then

BT(T; =0, 3) |rr—>z: Bz(%y =0, 8) (26)
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So, all the information we need to extract the multipoles up to the order of calculation is in the Cartesian components
of the fields in the midplane
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This is possible due to the previously mentioned fact that any multipole strength of order I is multiplied by z!~!.

Starting at [ = 1, a1,1(s) is extracted as the z-independent part of B,, and analogously by 1(s) from B,. Evaluating
a1,1(s) and b1,1(s) at s = 0 yields the skew and normal dipole component. From aq1(s) and by,1(s) the functions
fi(z,s), g1(z, s) are generated up to the order of calculation and subtracted from B, (z,y = 0,s), and By(z,y =0, s)
respectively. This cancels the pseudo-multipoles generated by the s-dependence of a1 1(s) and by 1(s) (eq. (18)), which
otherwise would make the distinction between sextupole terms and pseudo-dipole terms impossible. The procedure
can be iterated for the higher order multipoles, up to the order of calculation. After the k-th step, the remainder of
the field components should contain just (k + 1)-th and higher order multipoles.

However, there is an additional problem in the case of solenoidal fields (case [ = 0). In this case we have an ag (s)
in the potential, but its contribution vanishes from the field components B, and B,, so the function go(z,s) cannot
be generated from the information available in B, and B,. Fortunately, it can be generated from the B, component,
which evaluated at z = y = 0 yields aé)’o(s). From this function we can calculate ag(s) up to a constant and generate
the I = 0 contribution to B, jo(z,s). Once this is subtracted from B,, the method works as previously described,
starting with { = 1.

Finally, two notes: the method relies on the fact that the magnetic field can be generated by a magnetic scalar
potential that satisfies the Laplace equation. Therefore, it is really important that the curl of the field vanishes. If
the fields are calculated from line currents by the Biot-Savart law, that means that the model should consist only
of closed circuits to ensure vanishing curl. Maxwellification of the field ensures a better numerical stability of the
algorithm. Secondly, only in the regions where the magnetic field is not s-dependent the functions f; and g; are equal
to the true multipoles, and I f; = fi, lg; = §;, an assumption that is sometimes made even for the s-dependent region
too.

B. Multipole extraction by analytical Fourier transform

There is an alternate way to extract the multipoles. The field computation being performed in COSY in Cartesian
coordinates (z,y, s), it is possible to perform an analytical pseudo-Fourier transform, meaning a series of coordinate
transformation in DA, keeping the r and s dependence. This is solved by our S-Dependent Differential Algebraic
Analytical Fourier Transform presented below.

Initially, the field components are in the form of eq. (Al). The first transformation is (z,y,s) +— (r,cos ¢,sin ¢, s)
by x = rcos¢ and y = rsin@. At the same time, using eq. (A2) we switch to cylindrical coordinates, obtaining the
field components in the form of eq. (A3). Note that we are going from a 3 variable representation to a 4 variable one,
therefore some of the information in the new representation will turn out to be redundant for our purpose. The next
transformation is (r, cos ¢, sin ¢, s) — (r,€!?, e~ s), that is the exponential, and obviously a complex representation,
using cos ¢ = (e’ + e~ ) /2 and sin¢ = (e’ — e~ ) / (2i).

We proved previously that it does not matter which field component is used for Fourier transformation, so assume
that we are working with B,.. Then, we have it at this stage in the form B, (r,e!?,e"%,s).

Now, in principle, it is possible to recombine various products of powers of € and e~ to trigonometric functions
involving multiple angles. However, the key point is to notice that we can obtain the true multipoles by setting
e’ = 0. This is true due to the fact that all the terms of the form e??e~¢  with ¢,p # 0, are responsible for the
pseudo-multipoles. This becomes clear if one takes a closer look at eq. (A5). By setting e*® to zero we get rid of all
the pseudo-multipole terms and we are going back to a 3 variable representation

n+1
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where z(s) are complex functions of s. By comparison with eq. (A12) it is obvious that one term of eq. (28) can
come only from [A;(s) cosl¢ + By(s)sinlg]r! 1, which also can be expressed as
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After setting e¥? to zero and comparison with eq. (28) we obtain the result B;(s) = 2Re(z(s)) and A;(s) =
2Im (z(s)). As a final step, we take the true multipoles as given by

ha(s) = 7 Re (a1(s) (30)
aa(s) = %Im (2(s))



IV. ENFORCING MAXWELL’S EQUATIONS
A. Local Maxwellification

Given a magnet model consisting of line currents, it is possible to compute the magnetic field generated by the
Biot-Savart law in the DA framework as a local Taylor expansion with respect to the Cartesian coordinates (z,y, s), as
has been demonstrated in section II. The magnetic field should be divergence and curl-free in the regions of interest,
as implied by the Maxwell equations in a source-free region: V - B =0and V x B = 0. This is the case only when the
magnet model consist of closed loops of current. Realistic magnet models, as for example the LHC HGQ end regions
as modeled by the code ROXIE and supplied by G. Sabbi of FNAL, are not closed due to presence of image currents,
“leads” and separate treatment of the two end regions (lead end and return end). One way to fix this problem is to
input as much physical intuition as possible to close the magnet model, compute the field generated by this model,
which should differ as little as possible from the original model. This is the first step of Maxwellification. Obviously,
the solution is not unique due to infinitely many ways of closing the model. The closing is important to guarantee
vanishing curl, as it is required by the Maxwell equations, and in this case the field is derivable from a scalar potential.
From the DA computational point of view it is also important, because it is enough to compute the field components
only in the midplane (see section III). The computer time needed for computing a magnet model of several 10° line
currents to high order in one end region of the LHC HGQ’s scales much worse with the increase of the number of
variables than with the increase of line currents, which should be linear. Besides computer time, the second step of
the Maxwellification provides a way to correct for small computational errors or magnet model imperfections. One
specific example is the method of the next section. Although the curl is already small, as shown in Table IV, the
numerical stability of the multipole extraction algorithm is improved by local Maxwellification of the field, which is
described below.

If we restrict ourselves to elements with straight optical axis for simplicity, the second step of Maxwellification
proceeds as follows. Given B,(z,0,s), By(x,0,s), Bs(x,0,s) (y = 0 representing the midplane) we can compute the
field components in the whole space. From a scalar potential V(z,y, s) that satisfies the Laplace equation

ox? oy? 0s?

=0 (31)

the field results from the well-known relation E(m, y,8) = VV(z,y,s) (we neglect the sign which is irrelevant in our
discussion). We transform the Laplace equation to a fixed point problem by isolating the y derivative term and
integrating with respect to y
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we obtain a fixed point problem for V(z,y,s). In the DA picture it converges to the exact solution in [n/2] steps,
where n is the order of computation [8]. Since the Laplace equation is a second order PDE, we need two initial
conditions. One is immediate from

Yy n
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0
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because by definition 0V/dy = B,. This is already known, and the other initial condition to be calculated is the
potential in the midplane V (z,0, s).

In the ideal case the potential in the midplane is computed by a path integral, along an arbitrary path. This is the
case when the curl of the initial field is exactly vanishing. Due to various causes previously mentioned this is almost
never true. Nevertheless, the curl it is usually small. Then, one should use a path along which the field is deemed
more accurately computed, yielding a potential, and subsequently field components that are close to the original, and
curl that is almost vanishing. Hence the name Maxwellification.

Most of the time it is not obvious where the fields are computed more accurately. Then one could try different
paths and choose the one giving the smallest curl. Convenient choices of paths are along the sides or diagonal of a
rectangle in the midplane with opposite corners at (0,0) and (z, s). In the midplane we have dV () = B (7) - d7, where
7 = (,0,s). Integrating, we get

V() = V(6 / B (7 (36)
We can neglect the immaterial constant V' (0), and integration along the sides in one direction gives
x s
V(z,0,s) = / B, (z',0,0)dz’ +/ By(z,0,s")ds' (37)
0 0
Integration along the sides in the other direction gives
s T
V(z,0,s) = / B,(0,0,s")ds’ +/ B, (z',0, s)dz’' (38)
0 0
For integration along the diagonal we set 7 = A7 with A € [0,1]. Then, di = 7dX and
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0 0

One can check by direct calculation that indeed B,(z,0,s) = W and B;(z,0,s) = w. This completes

the Maxwellification procedure. Once we have V(z,y, s) we can compute the field components satisfying Maxwell’s
equations in the whole region of interest.

In DA the field components are computed as local Taylor expansions, so the method provides a local Maxwelli-
fication. That’s why beside choosing the right path is might be useful to average over a certain region to decide
which approach is the best. Finally, it should be obvious how to extend all the equations in the case of full 3D
Maxwellification, if originally the field components are given in all 3 variables (z,y, s). For example, (37) is extended
as

Yy

V(z,y,s) :/ Bw(x',0,0)dm'-i-/ Bs(w,O,s')ds'+/ By(z,y',s)dy’ (40)
0 0 0

and in the same way in other cases. In this situation, of course, there are many more path choices and no fixed point
transformation of the Laplace equation is needed.

As an example, in Table V we present the s component of the curl of the Maxwellified field of Table ITI. We mention
that the now we present the results up to order 12 in the curl and the first non-vanishing element occurs at order 6.
Also, notice the improvement in comparison with the curl in Table IV.

B. Global Maxwellification

We saw that local Maxwellification is possible based on a closed magnet model consisting of line currents. One
might imagine cases when the magnet model is not closed, and for some reason it is practically impossible to close it,
or the actual closings change the original fields significantly. For such cases the S-Dependent Differential Algebraic
Analytical Fourier Transform (SDDAAFT) provides a way for global Maxwellification and minimal modification of
the original fields in a neighborhood of the optical axis. The only drawback compared to the previous method is that
we need the field computation of the unclosed model in all 3 variables (x,y, s), which implies increased computer
time.



We start with the magnetic field vector E(w,y, s) representing the field of an unclosed magnet model computed
using Biot-Savart law. Therefore, V - B=0and V x B # 0. Then, exist another vector fé(m,y,s), which stands
for the field generated by fictitious line currents representing the closings of the model. Obviously, R is not unique,
due to infinitely many possibilities of closing. It follows that V - R =10and V x (E + ﬁ) = 0. Taking the cross

product V x V x (E-l— é) =V (V . (E + fé)) - A (E-}— ﬁ) = 0, we obtain A (B; + R;) = 0, B; and R; being the

components in cylindrical coordinates of B and R. Now, we know from the direct method what is the structure of a
function in cylindrical coordinates that satisfies the Laplace equation. Hence, we get

’f’, ¢7 Z fl i\r,s Sln l¢ + 9i,l (T‘, S) CO8 l¢) rl - Bz ('f', ¢3 S) (41)
=0

Apparently, we get the smallest R; in the vicinity of the optical axis if we choose the free parameters in f;;(r,s)
and g;(r, s), the true multipoles, such that they cancel the corresponding terms in B;. This way we fix uniquely the
true multipoles, that are anyway the dominating part, and let R; to contribute only for the pseudo-multipole parts.
Here we define as being a true multipole of order I the s-dependent function that is the coefficient of r!~' cosl¢ or
r'~!sinl¢ respectively in the expression of B;. This definition makes sense, as this is the case in general when the
fields are derivable from a magnetic scalar potential.

Once the principle is understood, in practice we do not need to calculate explicitly R;. It is enough to have B;
and extract the relevant terms, the true multipoles, then the out of axis expansion is performed, the potential is
built up and the new fields are computed. The new fields will satisfy Maxwell’s equation, hence the name global
Maxwellification.

Still, one thing remains to be proved. The solution is really unique if we prove that the true multipoles are invariant
with respect to which component of the original field we choose, B, or By. This result is easily obtained in case we
impose the vanishing curl and divergence conditions, as has been shown in the direct method. It can be shown that
this is the case without imposing any constraints on the coefficients. This is the subject of Appendix A. Also, in the
same Appendix we stress the importance of the constraints imposed by the vanishing curl.

All the methods described have been implemented in the DA based code COSY INFINITY [9-11].

V. EXAMPLES AND COMPUTATION OF MAPS

Using the methods developed in the present paper, we computed the multipole strengths as a function of s for the
LHC interaction region’s High Gradient Quadrupoles. These quadrupoles have two end regions, the lead end and
the return end, where the fields are s-dependent. We computed the multipoles up to 28-poles for both ends. The
field computation has been performed up to order 13, at 1 cm equally spaced points along the optical axis. In the
following we restrict ourselves to present the results for the lead end only. Figure 1 shows the extracted normal and
skew quadrupole, duodecapole, and 20-pole components.

As previously mentioned, the map computation needs also the s-derivatives of the multipoles. These are easily
obtained as a by-product of the multipole extraction algorithms, because we always keep their s dependence. Derivative
computation in DA in an elementary operation. It yields very accurate results without the need to resort to numerical
differentiation. Some of the s derivatives of multipoles presented in Figure 1 are shown in Figure 2 and Figure 3. The
multipoles and their derivatives have been interpolated for plotting by a derivative preserving interpolation scheme.
Also, the two multipole extraction algorithms were checked against each other and found to be in complete agreement.

The importance of vanishing curl has been stressed at several points throughout the paper. To show the influence
on the extracted quadrupole strength and its derivatives of the effect of non-vanishing curl, we compare two cases:
multipole extracted from a magnet model that generates field with non-vanishing curl, and multipole extracted from
the same magnet model after all the open ended wires have been closed at “infinity” (meaning far away from the
observation points). The result is contained in Figure 4. It can be seen that although the agreement is still pretty
good for the multipoles, the differences are amplified for the derivatives.

As an application we describe very accurate high-order map computations of s-dependent fields. There are two ways
to calculate maps. In the first case the following three steps are needed: using the analytical magnet model, the field
expansions at selected support points along the optical axis are computed. In case it is necessary, the Maxwellification
is included in this step. Then follows the extraction of the multipoles. Finally, the multipoles are interpolated by
Gaussian interpolation [12], and using the integration algorithm of COSY described in [11], the map is generated.



The alternate way’s first step is the same. However, the scalar potential at support points is anyway computed in
the process of Maxwellification. We use this potential to integrate the equations of the motion, with an interpolation
scheme that preserves the derivatives at the support points, yielding the map.

Both methods have been implemented in COSY and they give essentially the same results. Especially at high orders
the Gaussian method is faster, due to the smoothing properties of Gaussian interpolation [12]. Although to list the
whole map it would be too long, to get a feeling of the resulting fringe field maps for the above mentioned end regions
we list the opening aberrations in both ends up to order 8 in Table VI. Once we have the maps, they can be employed
for dynamics studies, which is actually the final purpose of the whole theory and methods developed in the present
paper. We applied the methods to study the fringe field effects in the LHC. Some of the results can be found in [13].
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APPENDIX A: STRUCTURE OF B, AND B, FOR NON-MAXWELLIAN FIELDS

We start with the Cartesian components

Bz(way)s) = Z aij(s)xiyj By(xayas) = Z b”(S).’EzyJ (Al)
i,j=0 1,j=0

as given by the field computation, without imposing any relations among the a;;’s and b;;’s. n is the order of
computation. Transformation to cylindrical coordinates gives

B, = Bycos¢+ Bysing By = —B,sin¢g + B, cos¢ (A2)
T =7rCcos¢ y =rsin¢

Inserting eq. (Al) in eq. (A2) we obtain

B.(r,¢,s) = 2": riti cost gpsin? ¢ (ai;(s) cos ¢ + bij(s) sin ¢) (A3)
i,j=0

By(r, ¢,s) = i riti cost ¢psin ¢ (—ay;(s) sin ¢ + bij(s) cos ¢)
i,j=0
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The next step is to transform the products of trigonometric functions into a sum of trigonometric functions involving
multiple angles

i+j+1 ) )
cos't! psin? ¢ = Z ai’) cos ke + ﬂ,(j) sin k¢ (A4)
k=0
i+j+1 ]
cos® psinit ¢ = Z fy(]) cosked + (5,9) sin k¢
k=0

(7 5(])

where ag ), By vy are real constants depending on j. Hence,

n +j+1 H‘.H-l
B, = Z ritd laij(s) Z ( cosko + ﬂm sin k¢) + bi;(s Z ('y cosko + 6(1) sin k(ﬁ)] (A5)
i,j=0 k=0 k=0
il _ il ‘
By = Z rt l—am Z ('y,(f) cosko + (5,(67) sin qu) + bij(s) Z (ai’) cosko + B,(c]) sin k¢)]
i,j=0 k=0 k=0

Now we can use the above definition to retain in B, and By just the true multipoles. We need to keep only the terms
with £ = 4 4+ j + 1, all others giving rise to pseudo-multipoles. We neglect the solenoidal terms, which are always
treated best separately from B;. Then, the components of the field containing just the true multipoles are

n [ ) L (9 ;
N | oaii(s) (o cos(i+j+1)¢+0; sin(i+j+1
B3 i(s) (a By conli 3 416+ Pl sini+5 )9) 6
i7=0 +b,3 (s) (’yzﬂ+1 cos(i+j+1)¢+ 6 P sin(i+j+1) ¢)
B i i+ —a,](s) (’71+J+1 cos(i+j+ )¢+6fj_)]+1 sin(i+j+1)¢
¢ = r .
i,j=0 +sz (s) ( Q1 41 COS (i+i+1) o+ /Bz-f-]—‘,-l sin(i+j+1)¢
or by rearranging terms
n [ (.. () , () L
B =3 (au (S)Qitjjl + bij (s )%JQHI) cos(i+j+1)¢ a7
G0 | ()B4 +bi()0 1 ) sin i+ 5+ 1)
n [ () (4) s .
B 3 it (—ais ()1 P41 + bis()ally 1 ) cos G+ + 1) 6
i,j=0 i + (—aw( )6zi]+l + by (s )ﬂz+)J+1) sin(i+j+1)¢
By expanding the trigonometric functions in terms of exponentials, it can be seen that: for j even
o =2 )" B, = (48)
W =0 G =2 (-1 )”2
and for j odd
ol =0 B, =270 (1Y (A9)
’Yz(i)wrl = —27 () (—)UmD/2 5z(-]r)1+1 =0

Separation of the double sum into summation over ¢ and j-even, respectively j-odd leads to
i 30 jmeven ™ L1 (5) €08 (i + G + 1)) + byj(s) sin(i + j + 1)g] 2 (+9) (~1)"/*
| A0 oaa ™ [=bij(8) cos (i + G+ 1)§) + aii(s) sin(i + j + 1)¢] 27 ) (-=1)V D/

Bo=3 ] Ximoi-euen ™ Buy(s) cos i+ + 1)6) () sinGi + + D2 1) (1) (A10)
3 i oaa ™ [aij(s) cos (i + § + 1)) + b (s) sin(i + j + 1)) 27 (+9) (—1) D/

k2

i=0
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The symmetry of the above equations should be obvious. B, and 1§¢, have the same number of terms, and if the
symmetry holds term by term, then it also holds for their sum. By introducing a new index [ = i + j we obtain
relations of the form

[4;(s) cos(l + 1)¢ + By(s)sin(l + 1)¢] r (A11)

[
M:

N
Il
o

[Bi(s) cos(l + 1)p — A;(s) sin(l + 1)¢] r!

I
NE

By
l

Il
©

where A4(s), Bi(s) are sums over a;;(s), b;;j(s) with ¢ + j = [. Shifting the origin of summation to make comparison
easier with the direct method, and using the convention that the [ = 1 component corresponds to dipole gives the
final form

n+1

(7, @, 8) z [A;(s) coslg + By(s)sinlg]ri~! (A12)

n+1

8) = Z [Bi(s) cosle — A(s)sinlg]r! !

By identification, it is apparent that eq. (A12) is of the same form as the field components derived from a scalar
potential, containing only the true multipoles. For example, up to order 5 we can derive the following relations

A4(s) = aoo(s) (A13)
As(s) = 3 (aro(s) — b (5) (AL4)
As(s) = 7 (ar(s) —bur(s) — ao(s)) (A15)
Ay(s) = % (as0(5) — b21(s) — ar2(s) + bos(s)) (A16)
A5(s) = 75 (aso(s) — b (5) — aa(s) + bis(s) +aoa(s) (AL7)
By(s) = boo(s) (A18)
By(s) = 5 (bio(s) + o (5)) (A19)
By(s) = § (bao(s) + 1 () — boa(s) (A20)
Bu(s) = § (ban(s) + a2 (5) — brals) — aos(s)) (A21)
Bs(s) = 15 (bao(s) + a31(5) — baa(s) — ars(s) + boa(s) (A22)

The differences between the constrained cases (by the Maxwell equations) and arbitrary coefficients now can be
analyzed. Obviously, the dipole component will give the same result in every method. The differences start to
show up beginning with the quadrupole component. For example the normal quadrupole is given in general by
Bs(s) = § (bio(s) + a1 (s))-

If we impose V-B = 0, as it is always the case for magnetic field computations, it gives just ao(s)+bo (s)+cho(s) =0,
that is, it does not impose any constraints between b1o(s) and a1 (s). On the other hand, if Vx B = 0, the s component
imposes: bio(s) = ap1(s). If the curl is not vanishing, i.e. b1g(s) # ao1(s), the method will take as the quadrupole
component the average value. The same type of analysis can be performed on higher order multipoles to emphasize
the importance of vanishing curl.

As a conclusion, we proved that the method can be used for global Maxwellification, with a unique solution, that
alters the original ﬁelds by a minimal amount. However, we remind the reader that B, a.nd B¢ do not contain all the
terms, the whole field expressions for B, and By have contributions from pseudo-multipoles that cannot be written
in the form of eq. (22) in case of non-vanishing curl.
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FIG. 1. Multipole strengths of the lead end. Shown are b2(s), bs(s), b1o(s), a2(s), as(s) and aio(s).

13



24
4x10° 2x10%° 1x10

1x10°

23
2210° [\ 5x10

-300 -200  -100 \/ 0 200 /l \
-1x10"° JHIA
©300  -200  -100 00 200 ©300  -200  -100 o 200

. -2x10"
-2x10 -5x10%
-3x10"
-4x10°
2000 1x10%2 0.3
1500 0.2
5x10'!
1000 A—\ 0.1
A [NANE
500 -300 -200 -100 1 200 -300  -200 100 V- 1op\/ 200
J et -0.1
-300 -200 -100 140 200 x 0.2
-500 »
-1x10 0.3
-1000
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™ By,

Order 7 (0,0,0)

n Computation time [sec] Max. mem. usage [bytes] Lines of Fortran Evaluation time [msec]
0 0.02 890672 4 0.3
1 0.09 912192 20 0.8
2 0.33 1025616 69 2.4
3 0.94 1306056 188 7.0
4 2.50 1931872 457 16.0
5 6.26 3213192 1009 36.0
6 12.95 5709304 2078 72.9
7 27.23 10274512 4059 140.9
8 50.16 18590928 7567 267.0
9 96.73 33132056 13603 480.0

TABLE I. Results of transforming the analytic derivatives of the Biot-Savart law calculated with Mathematica to Fortran
code.

"By,

Order 5z (0,0,0)
n Evaluation time in psec up to order n
1 4.8
5 6.8
10 10.7
15 20.5
20 47.8
25 93.7

TABLE II. Computation time of the Taylor expansion of the y-component of the magnetic field in DA at various orders.

BCC (iL‘,S,y) By (ﬂﬂaS,y)

Coefficient Order Exp. (z,s,9) Coefficient Order Exp. (z,s,y)
0.9384473968456148E-11 0 000 -.8339510041598585E-11 0 000
0.1022945817408163E-09 1 100 17.49010593690617 1 100
0.1430119891325347E-09 1 010 -.1304592905872117E-09 1 010

17.49010593689972 1 001 0.9584448246993324E-10 1 001
-.6067419448807509E-09 2 200 0.5543819518033510E-09 2 200
0.3602525017014357E-08 2 110 6 -3.804751735973857 2 110
0.120536355549538 7E-08 2 020 -.1106863867922359E-08 2 020
-.2014572349218202E-08 2 101 0.1941685518966341E-08 2 101

-3.804751736131598 2 011 0.3444233784028611E-08 2 011
-.5986214510200760E-09 2 002 0.5524820548968856E-09 2 002
-.2282722315338770E-07 3 300 -1.666257305421052 3 300
-.9274588597119049E-09 3 210 0.1244904457298190E-09 3 210
0.7183921058029341E-07 3 120 9.997543895896488 3 120
0.5557759530372408E-09 3 030 -.2165498336204053E-10 3 030

-4.998771979234908 3 201 -.3052480102017086E-08 3 201
-.1133153901822226 E-06 3 111 0.1106802772765647E-06 3 111

9.997543893641829 3 021 0.6954731157637895E-07 3 021
-.3357574107631933E-08 3 102 -4.998771979536424 3 102
-.7398769930055948E-09 3 012 -.5953132431457675E-10 3 012

-1.666257304770050 3 003 -.2216494703055627E-07 3 003

TABLE III. Taylor expansion of the magnetic field components B, and By. The columns represent the expansion coefficients,
the order in the expansion and the exponents of (z, s,y) respectively.
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(V X E) from eq. (10)

(V X l§) from eq. (6)

Coefficient Order Exp. (z,s,y) Coefficient Order Exp. (z,s,y)
0.6448175327022909E-11 0 000 0.6451728040701710E-11 0 000
0.3123336252824904E-08 1 100 0.3123335699448115E-08 1 100
0.1577409314279521E-09 1 010 0.1577009633990656 E-09 1 010
0.3138928421006493E-08 1 001 0.3138927988192986E-08 1 001
0.6297175136893429E-07 2 200 0.3368312531613524 2 200
0.1135643710736822E-06 2 110 0.1135639355887008E-06 2 110
0.2254658681977162E-08 2 020 0.2237449336917052E-08 2 020
0.6101880112296945E-09 2 101 0.6101442684425235E-09 2 101
0.1121600312625759E-06 2 011 0.1121592163033647E-06 2 011
-.6522627415961324E-07 2 002 -.33683125564111546 2 002
-.1035163990081857E-06 3 300 0.8482986704194671E-06 3 300
0.3603849257016734E-05 3 210 -1010523.362231316 3 210
0.2310457119847342E-05 3 120 0.4430214737283222E-06 3 120
0.2364236389995611E-07 3 030 -.3117654705420136E-04 3 030
-.1977820552667708E-05 3 201 -.3840225446083422E-05 3 201
0.9434835135380232E-08 3 111 0.9449170335074086E-08 3 111
0.2256179271853398E-05 3 021 0.6295506663533956E-05 3 021
-.1999900781868291E-05 3 102 -.2090122526610116E-05 3 102
-.3674740044701252E-05 3 012 1010523.362276393 3 012
-.9278849333327333E-07 3 003 0.5070636007076246E-05 3 003

TABLE IV. Comparison of the s component of the curl, up to order 3, computed by two different implementation of the
Biot-Savart law (eq. (10) and eq. (6) respectively).

(V X ﬁ) . after Maxwellification

Coefficient Order Exp. (z,s,y)
-.4547473508864641E-12 6 204
-.1455191522836685E-10 7 214
0.3051757812500000E-04 8 602
-.2328306436538696E-09 8 422
-.3051757812500000E-04 8 206
0.1862645149230957E-08 9 432
-.1862645149230957E-08 10 622
-.1490116119384766E-07 10 442
-.1490116119384766E-07 10 244
-.1455191522836685E-10 10 208
-.2842170943040401E-13 11 506
0.1490116119384766 E-07 11 416
-.3552713678800501E-14 11 209
0.5960464477539063E-07 12 228

TABLE V. The s component of the curl, up to order 12, after Maxwellification of the field in Table III.
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Order

Opening aberrations (z|a™)

n Return end Lead end

2 0 0

3 0.2497609620388847 0.2995410193258450

4 0.6293863605053251E-13 -.3054844395050998E-13
5 0.1903231022089257 0.1962270889999381

6 0.6911276300083234E-12 -.6125473066348172E-12
7 0.1699451387437771 0.9019387229287767E-01
8 -.1364626459777126 E-09 0.2013346179046971E-09

TABLE VI. Opening aberrations, (z|a™), for the return and lead ends’ exit focusing maps.
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