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ABSTRACT

EVOLUTIONARY OPTIMIZATION METHODS

FOR ACCELERATOR DESIGN

By

Alexey A. Poklonskiy

Many problems from the �elds of accelerator physics and beam theory can be

formulated as optimization problems and, as such, solved using optimization meth-

ods. Despite growing e�ciency of the optimization methods, the adoption of modern

optimization techniques in these �elds is rather limited. Evolutionary Algorithms

(EAs) form a relatively new and actively developed optimization methods family.

They possess many attractive features such as: ease of the implementation, modest

requirements on the objective function, a good tolerance to noise, robustness, and

the ability to perform a global search e�ciently which make them the tool of choice

for many design and optimization problems. In this work we study the application of

EAs to problems from accelerator physics.

We review the most commonly used methods of unconstrained optimization and

describe the GATool, evolutionary algorithm and the software package, used in this

work. Then we use a set of test problems to assess its performance in terms of com-

putational resources and the quality of the obtained result. We justify the choice of

GATool as a heuristic method to generate cuto� values for the COSY-GO rigorous

global optimization package. We design the model of their interaction and demon-

strate that the quality of the result obtained by GATool increases as the information

about the search domain is re�ned, supporting the usefulness of this model. We dis-



cuss GATool's performance on the problems with static and dynamic noise and study

useful strategies of GATool parameter tuning for these and other di�cult problems.

We review the challenges of constrained optimization with EAs and then describe

REPA, a new constrained optimization method based on repairing, in exquisite detail,

including the properties of its two repairing techniques: REFIND and REPROPT.

We assess REPROPT's performance on the standard constrained optimization test

problems for EA with and suggest optimal default parameter values based on the

results. Then we study the performance of the REPA method on the same set of test

problems and compare the obtained results with those of several commonly used con-

strained optimization methods with EA. Based on the obtained results, particularly

on the outstanding performance of REPA on test problem that presents signi�cant

di�culty for other reviewed EAs, we conclude that the proposed method is useful

and competitive. We discuss REPA parameter tuning for di�cult problems and crit-

ically review some of the problems from the de-facto standard test problem set for

the constrained optimization with EA.

We study several di�erent problems of accelerator design and demonstrate how

they can be solved with GATool. These problems include a simple accelerator design

problem (design a quadrupole triplet to be stigmatically imaging, �nd all possible

solutions), a complex real-life accelerator design problem (an optimization of the

front end section for the future neutrino factory), and a problem of the normal form

defect function optimization used to rigorously estimate the stability of the beam

dynamics in circular accelerators. The positive results we obtained suggest that the

application of EAs to problems from accelerator theory has large potential. The

developed optimization scenarios and tools can be used to approach similar problems.



Dedicated to

life in all forms and appearances

and the evolution that drives it to perfection
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CHAPTER 1

Introduction

1.1 Beam and Accelerator Theory

1.1.1 Di�erential Algebra and Map Methods

The dynamics of the various objects in Physics are often described by a system of the

nonlinear ordinary di�erential equations

dx

dt
= f(x, t), (1.1.1)

where x is a vector of coordinates of the considered object, t is time, and f is a

nonlinear vector function that describes various forces acting on the object and thus

governing the dynamics. Initial conditions

x(0) = xi (1.1.2)

specify the initial position of the object, i.e. its position at the moment of time that is

considered initial. It is often advantageous to describe the action of the system (1.1.1)

with a so-called �ow operator,MT , which establishes a mapping between the initial

position xi of the object at t = 0 and its �nal position xf that the object assumes at
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time T :

xf =MT (xi). (1.1.3)

The �ow operator approach is especially useful for studying various properties of the

dynamics in systems that are periodic in t. Since it captures the essential properties

of the dynamics in the system, it is possible to assess the properties of the �owMT

instead of the dynamics of individual objects with varying initial conditions. A good

example of such system is a circular particle accelerator.

The problem here is that even in the cases of relatively simple functions f it is

frequently not possible to determine the system map in a closed form, so for the

practical purposesMT is often calculated via numerical integration of the equations

(1.1.1). However, if the function f is only weakly nonlinear, i.e. if its behaviour is

mostly determined by the linear component, then its map is also only weakly non-

linear and thus can be represented as a Taylor expansion with practically acceptable

precision. Developments in the �eld of Di�erential Algebra (DA) and its applications

to Automatic Di�erentiation have have opened the possibility to compute the Taylor

series for maps of such systems to an arbitrary high order. A detailed treatment

of the Di�erential Algebra framework and its numerous applications including map

methods for Accelerator Physics can be found in [18].

Particle accelerators typically consist of numerous subsystems in�uencing di�erent

aspects of particle dynamics. The original method of map calculation, which involves

propagation of functional dependencies through a numeric solver of di�erential equa-

tions using automatic di�erentiation technique, is slow and imprecise. Computation

of the �ow for individual devices and then application of the composition property

to obtain the �ow of the whole accelerator can be performed within the Di�erential

Algebra framework quite e�ciently and with unlimited precision.
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The law of map composition tells us that if we have two maps: Mt0,t1 that relates

the initial position at the t0 to the �nal position at time t1 andMt1,t2 that relates

the initial position at time t1 to the �nal position at time t2 then the map that relates

the initial position at time t0 to the �nal position at time t2 can be constructed via

a map composition:

Mt0,t2 =Mt1,t2 ◦Mt0,t1 . (1.1.4)

Using this property we can assemble the transfer map for the entire accelerator if we

have transfer maps of all its elements which we can compute using DA.

1.1.2 Beam Dynamics

Particles in accelerators are rarely studied as standalone objects. Usually ensembles

of particles that have similar coordinates are used. These ensembles are called particle

beams. Since the particles in a beam are separated from each other by a relatively

small distance, it is often convenient to select one imaginary particle that represents

the motion of the whole beam inside the accelerator and then describe the motion

of other particles in the beam in the coordinates that are relative to those of the

reference particle [18,89,170,175].

In the laboratory coordinate system the particle state is usually represented by

a vector that consists of its space coordinates and the components of its momentum

vector corresponding to the coordinate axes. Time usually serves as an independent

variable:

z(t) = (x, px, y, py, z, pz)
T. (1.1.5)

In the curvilinear coordinate system that is attached to a reference particle the ar-

clength along the reference trajectory is usually serves as an independent variable. In
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this coordinate system (often called the curvilinear coordinate system) the particle

state is represented by the following coordinates:

z(s) =



x

a = px/p0
y

b = py/p0
l = k(t− t0)

δ = (E − E0)/E0


, (1.1.6)

where the x, y denote the position of the particle in this relative coordinate system,

p0 is an arbitrary �xed momentum (usually the one of the reference particle), E0

and t0 are the energy and the time of �ight of the reference particle, E is a total

energy of the particle, and k is a scaling coe�cient that transforms time coordinate

to space-like coordinate. In those coordinates the reference particle corresponds to a

z = 0.

The motion of a particle in the electromagnetic �eld is governed by the Lorentz

force [93]:

dp

dt
= q (E + v ×B) . (1.1.7)

In order to study the motion of the particles that form the beam in the curvilinear

coordinates, those equations of the form (1.1.5) in the laboratory coordinate system,

are transformed into the curvilinear coordinate system, for the special case when the

reference trajectory is restricted to a plane (which is the case for most particle acceler-

ators). Applying these transformations and using the reference trajectory simplifying
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assumption they can be brought to the following form:

x′ = a(1 + hx)
p0
ps

(1.1.8)

y′ = b(1 + hx)
p0
ps

(1.1.9)

a′ =

(
1 + η

1 + η0

p0
ps

Ex
χe0

+ b
Bz
χm0

p0
ps
−

By
χm0

)
(1 + hx) + h

p0
ps

(1.1.10)

b′ =

(
1 + η

1 + η0

p0
ps

Ey
χe0

+
Bx
χm0

− a Bz
χm0

p0
ps

)
(1 + hx) (1.1.11)

l′ =

(
(1 + hx)

1 + η

1 + η0

p0
ps
− 1

)
k

v0
(1.1.12)

δ′ = 0 (1.1.13)

where ′ is a derivative with respect to the arclength s, h is a radius of the curvature

of the reference trajectory,

p0
ps

=

(
η(2 + η)

η0(2 + η0)

m2

m2
0
− a2 − b2

)−1/2

,

η =
E − eV (x, y, s)

mc2
,

χm0 =
p0
ze

is the magnetic rigidity,

χe0 =
p0v0
ze

is the electric rigidity, Bx, By, Bz and Ex, Ey, Ez are x, y and z components of

the magnetic and electric �eld in the laboratory coordinate system, correspondingly.

A rigorous de�nition of the coordinate system and the detailed derivation of the

equations of motion in this system (1.1.8)�(1.1.13) can be found in [18].

Once the �elds and the reference trajectory are known, these equations can be di-

rectly integrated (analytically for simplest cases, numerically for most real-life prob-

lems) in order to determine the dynamics of the particles. More e�ciently, map
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methods, mentioned earlier, can be used for this purpose. The latter approach is used

by the Beam Physics package for COSY In�nity scienti�c computing code [22, 23].

In this framework the Taylor expansion of the map is actually an array of Taylor

expansions of the dependencies of the �nal coordinates on the initial coordinates.

Employing notation that is frequently used in optics in order to emphasize the nature

of the coordinate dependencies, it can be written in the following form:

xf = (x|x)xi + (x|a)ai + (x|y)yi + (x|b)bi + (x|l)li + (x|δ)δi

+ (x|xx)x2
i + (x|xa)xiai + (x|xy)xiyi + (x|xb)xibi + . . . .

In this notation the Taylor expansion for the map of the system (1.1.8)�(1.1.13)

takes the form:

xf =
∑

(x|xi1ai2yi3bi4li5δi6)x
i1
i a

i2
i y

i3
i b

i4
i l

i5
i δ

i6 (1.1.14)

af =
∑

(a|xi1ai2yi3bi4li5δi6)x
i1
i a

i2
i y

i3
i b

i4
i l

i5
i δ

i6 (1.1.15)

yf =
∑

(y|xi1ai2yi3bi4li5δi6)x
i1
i a

i2
i y

i3
i b

i4
i l

i5
i δ

i6 (1.1.16)

bf =
∑

(b|xi1ai2yi3bi4li5δi6)x
i1
i a

i2
i y

i3
i b

i4
i l

i5
i δ

i6 (1.1.17)

lf =
∑

(l|xi1ai2yi3bi4li5δi6)x
i1
i a

i2
i y

i3
i b

i4
i l

i5
i δ

i6 (1.1.18)

af =
∑

(a|xi1ai2yi3δi4li5δi6)δ
i1
i a

i2
i y

i3
i b

i4
i l

i5
i δ

i6 (1.1.19)

(1.1.20)

where the summation is performed on all indices i1, i2, . . . , i6 such that
∑6
k=1 ik ≤ n,

n is the Taylor expansion order.

Normal Form Methods

Repetitive systems such as synchrotrons and storage rings are the main component of

the most modern high-energy particle accelerators. In those circular lattices, particles

6



ought to remain con�ned for many turns. Hence their trajectories should be stable,

which usually requires them to be bounded in some way. The study of the dynamics of

particles in these structures and the stability of the dynamics is very important both

theoretically and practically. The advantages of map methods for such studies lie in

the ability to calculate a map of motion (see section 1.1.1) representing the action of

all accelerator elements in one full revolution. Then the repeated application of this

map, the so called Poincaré map, can be studied to evaluate the stability of the entire

device for large number of turns.

The linear theory of repeated motion has been fully developed since its introduc-

tion by Courant and Snyder [49]. It relies on the well-known matrix methods from

Linear Algebra (see [17] for detailed treatment). Since the transfer map to �rst order

is a matrix, the so called transfer matrix, the stability of the motion is determined

by its eigenvalues: if any of the eigenvalues has absolute value > 1, then the motion

is unstable. Since the motion in such structure is volume preserving, the product of

the eigenvalues of the transfer matrix must be one. This means that if there exists

an eigenvalue > 1, there must be another inversely proportional to it and thus < 1.

However, such an arrangement would make the motion unstable. Therefore for the

motion to be stable and volume preserving, all eigenvalues must have a magnitude

of one. However, real-valued eigenvalues that have the magnitude of one can be per-

turbed from this value under a small perturbation in the system parameters rather

easily, hence they should be complex. In sum, for our motion to be stable we need

the system's linear transfer matrix to have only complex conjugate eigenvalues with

magnitudes of one. Further development of this theory and other conditions imposed

on the matrix and its eigenvalues by stability considerations can be found in any of

the sources mentioned earlier.
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Nonlinear motion is in general much more di�cult to study. In accelerator theory

nonlinear studies are usually divided into the study of the parameter-dependent linear

motion, where parameters include the particle energy spread, magnet misalignments,

etc., with perturbation theory; and the study of fully nonlinear dynamics. Many use-

ful properties of nonlinear motion can be obtained exactly by employing the method

of normal forms, �rst introduced (to low orders, no more than 3) by Dragt in 1979 [54]

and developed over almost two decades, then brought to its full practical power (max-

imum order is theoretically in�nite, i.e. limited only by the available computational

resources) by Berz in 1992 within the Di�erential Algebra framework [16, 17]. This

approach provides an algorithm to build a nonlinear change of variables to remove

all removable non-linearities and present motion in the set of variables where it is

circular with amplitude-dependent frequency.

Assume, that we obtained the nonlinear transfer map of a particle optical system

under consideration:

zf =M(zi, δ ), (1.1.21)

where z is the 2v-dimensional vector of the phase space coordinates, δ is the vector

of the system parameters and the indices i and f correspond to initial and �nal

coordinates. We want to build a sequence of the coordinate transformations A of the

map

A ◦M ◦A−1 (1.1.22)

to remove all nonlinearities of every order up to the desired.

The �rst transformation is performed in order to make the map origin-preserving

for any δ:

M(0, δ) = 0.
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DA methods are employed to move the map to the new parameter-dependent �xed

point z F so that

z F =M(z F, δ ). (1.1.23)

It is possible if and only if 1 is not an eigenvalue of the linear part of the map. For

stable repetitive systems such a condition always holds as we mentioned earlier.

The diagonalization of the linear part of the map, so called linear diagonalization,

is performed on the next step. From Linear Algebra we know that in this case

diagonalization is possible if the matrix has exactly 2v distinct eigenvalues, which is

true for most modern circular accelerators. In this case it is possible to represent all

eigenvalues as complex conjugate pairs rje
±iµj . It is easy to show that for symplectic

systems [17], the condition for the determinant to be unity entails

rj = 1, µj ∈ R, for j = 1, . . . , v.

If we now transfer the matrix to the new basis of complex conjugate eigenvectors v±j

corresponding to complex conjugate eigenvalues, it assumes the diagonal form

R =


r1e

+iµ1 0 . . . 0 0

0 r1e
−iµ1 . . . 0 0

...
...

. . .
...

...

0 0 . . . rve
+iµv 0

0 0 . . . 0 rve
−iµv

 . (1.1.24)

On subsequent steps we iteratively build a sequence of non-linear transformations

of the form (1.1.22), such that on each step the constructed transformation tries to

remove one particular order of nonlinearity. The ultimate goal is to remove all non-

linearities up to a speci�ed order but, as it turns out, this is not always possible.

Nonlinearities that can be removed by means of this transformation are called remov-

able, all other nonlinearities are called non-removable. Non-removable nonlinearities

usually characterize the non-linear nature of the system under consideration.
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It is worth noting that all these transformations are nonlinear and thus they do

not a�ect the diagonal form of the linear map obtained in the �rst two steps. Since

the process is iterative, it is su�cient to describe the algorithm to make the m-th

step in order to fully determine it. Having one step of the algorithm we can proceed

in applying it from order 2 to the desired order.

On the m-th step we try to remove nonlinearities of the order m only. In order

to achieve it, we start by splitting the mapM into a linear part R and a nonlinear

part Sm: M = R+ Sm. Then we perform a transformation using a map that to the

m-th order has the form

Am = I + Tm, (1.1.25)

where I is a linear unity map, Tm has only zero terms up to order (m − 1). The

linear part of the transformation is a unity matrix that is invertible, hence the map

Am itself is invertible. Using relations for transfer map inversion from [17], we obtain

the inverse to order m:

A−1
m =m I − Tm. (1.1.26)

Applying the transformation from (1.1.22), we obtain

Am ◦M ◦ A−1
m =m (I + Tm) ◦ (R+ Sm) ◦ (I − Tm)

=m (I + Tm) ◦ (R+ Sm −R ◦ Tm), (1.1.27)

=m R+ Sm + (Tm ◦ R −R ◦ Tm)

where we used the fact that any nonlinear map composed with Tm is zero to the order

m since Tm is of the order m and does not have smaller-order terms. If we now could

choose Tm so that for communicator

Cm = {Tm,R} = (Tm ◦ R −R ◦ Tm) (1.1.28)
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the following condition holds

Cm = −Sm, (1.1.29)

then result of the transformation in (1.1.27) can be simpli�ed to

Am ◦M ◦ A−1
m =m R (1.1.30)

and the transformation Am de�ned by (1.1.25) removes all nonlinearities of the map

up to the order m. However, such choice of Tm is usually not possible.

In order to �nd the conditions for its existence, we consider the Taylor expansion

of the Tm in the coordinates s±j in the eigenvector basis v±j . The Taylor expansion

for the j-th component of the Tm, has the form

T ±mj =
∑(

T ±mj
∣∣k+,k−

)
·
(
s+
1
)k+

1
(
s−1
)k−1 . . .

(
s+
v

)k+
v
(
s−v
)k−v , (1.1.31)

where (
T ±mj

∣∣k+,k−
)

are Taylor expansion coe�cients for corresponding exponents of s±j ; k+ and k− are

vectors of exponents

k+ = (k+
1 , . . . , k

+
v )

k− = (k−1 , . . . , k
−
v ).

Now if we, using the same notation for Taylor expansion of Cm, substitute relations

(1.1.31) for Tm and the exact expression (1.1.24) for the R into the de�nition of the

communicator (1.1.28), and then use the fact that polynomials are equal if the corre-

sponding coe�cients are equal to equate coe�cients of the corresponding exponents

in Taylor polynomials, we obtain the expression for the Taylor expansion coe�cients
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of Cm components:(
C±mj

∣∣k+,k−
)

=

((
v∏
l=1

r
k+
l

+k−
l

l

)
· eiµ(k+−k−) − rj · e

±iµj

)
·
(
T ±mj

∣∣k+,k−
)
.

(1.1.32)

Substituting this expression into the condition (1.1.29) and solving the resulting

equation for the coe�cients of the Taylor expansion (1.1.31) of Tm, we obtain:(
T ±mj

∣∣k+,k−
)

=
−
(
S±mj

∣∣k+,k−
)((∏v

l=1 r
k+
l

+k−
l

l

)
· eiµ(k+−k−) − rj · e

±iµj

) . (1.1.33)

Now we see that the existence of the transformation (1.1.30) depends on conditions

for which the expression in the denominator in the formula (1.1.33) is not zero. If it is

zero for certain values of (k+, k−), then the corresponding Taylor expansion term of

Sm cannot be removed. Some special cases, such as symplectic systems, which often

arise in accelerator physics, as well as quantities of interest (in particular resonances

of di�erent kinds) that can be obtained from the normal form transformation, are

discussed in details in [17].

Normal Form Defect Function

Normal forms (see [17], section 1.1.2) are a valuable part of the map methods in Dif-

ferential Algebra (DA) framework and a powerful tool in studying the dynamics of the

particles in circular accelerators. As was mentioned, the motion in these coordinates

follows nearly perfect circles around a �xed point (Fig. 1.1).

If the motion has perfectly circular nature, it entails constancy of the radii that

are thus invariants of motion. This, in turn, demonstrates the stability of the motion

for the in�nite time and number of turns. If the motion is non-perfectly circular, a

measure of the defect in the invariants of the motion I is:

d = max(I(M)− I), (1.1.34)
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Figure 1.1: Phase space trajectories in FODO cell, obtained for 1000 turns by applying one turn

map to the vector with initial coordinates 1000 times; in conventional (left) and normal form (right)

coordinates

where M is the Poincare map (see section 1.1.2), and can be introduced using

Nekhoroshev-type estimates [140]. It then could be studied to estimate the time

and the number of turns that particles stay in the accelerator and make assertions

on motion stability [16,18,20]. Note, however, that the presented approach to calcu-

lation of the invariants of motion involves Taylor expansions of maps to a speci�ed

order, hence it allows one to obtain the expansions of the invariant radii to that order

only. This means that with this method we can obtain only approximate invariants

from (1.1.34). Nevertheless, the quality of the approximation for the weakly nonlinear

systems that particle accelerators are in most cases, improves rapidly with the order

of the approximation order.

Suppose all trajectories in normal form coordinates are perfect circles. Then we

know we have found an invariant of the system for all degrees of freedom. Now,

if the transformation from normal form coordinates to conventional coordinates is

continuous, then the set of trajectories is bounded and the motion is stable for an

in�nite time. For most systems under consideration this, however, is not the case.

One reason for this is that the normal form defects can be very small and, being

calculated on a computer, can be caused by �oating point operations errors. Another

reason is that the particle dynamics is calculated by means of Taylor expansions up to

a speci�ed order, so the invariants we obtain are only approximate. Here the defects
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of this approximation (decreasing with increasing order) produce the deviation from

circularity. A third reason that many systems are non-integrable, i.e. they do not have

an invariant for every degree of freedom. In this case the motion is non-circular even

if the dynamics are calculated exactly, with no approximations or numerical errors.

The non-integrability of the system indicates itself in the form of small denominators

in (1.1.33) in some step of the normal form transformation algorithm applied to its

map (see section 1.1.2). The circularity of the motion in the Figure 1.1 is disturbed

for all three reasons but the non-integrability of the system under consideration most

likely has the largest impact.

Any real physical system has some construction defects and real values of pa-

rameters can deviate from designed. Rigorous estimations of the stability ranges for

perturbed motion exist, but stability predictions are possible for only for very small

perturbations and totally dominated by realistic construction errors. While the defec-

tive nature of the invariants of motion prevents us from making statements on global

stability for an in�nite period of time, it is still possible to estimate stability for a

�nite, but still practically useful period of time, applying principles established by

Nekhoroshev [140].

In order to do so, we divide the normal form coordinate space for each degree of

freedom into a set of rings such that in each of them motion is almost circular, as

demonstrated in Figure 1.2(a). Suppose that for the ring n the defect is not larger

than ∆rn. Then all particles launched from ring (n− 1) need to make at least

Nn =
rn − rn−1

∆rn
(1.1.35)

turns before they reach the n-th ring (see Figure 1.2(b)). If we want to estimate the

minimal number of turns it would take particles to get from the inner circle bounded

by rmin (initial region) to the outer ring bounded by rmax (restricted region, particles
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(a) Normal form coordinate

space divided into a set of rings

where we estimate the maxi-

mum defect

(b) Particles motion in the ring: arrows point

at particle positions, step corresponds to one

turn, height of the step corresponds to the

defect, maximum height corresponds to ∆ri,
number of steps is the number of turns Ni par-

ticle stay in this ring. Note that the defect gets

larger towards the outer radii.

Figure 1.2: Normal form coordinate space divided into rings and schematic view of particles motion

in one of those rings

that have reached it are considered lost), we can perform the subdivision

rmin = r1 < r2 < · · · < rn = rmax.

Then if maximal defects on each of the rings bounded by those radii are ∆ri, i =

2, . . . , n correspondingly, the total minimal number of turns, particles need to get to

the restricted region from the initial region, is given by

N =
n∑
i=2

ri − ri−1
∆ri

. (1.1.36)

Usually the normal form defect function grows quickly with radii (as can be seen, for

example, in Figure 4.7), hence large values of n help us to get a better estimate of

N . Since in most cases of interest the ∆ri are small, motion stability can be assured

for a large number of turns.

The practical usefulness of this method heavily depends on the ability to determine

tight and rigorous bounds for the defects of ∆ri. In practice, defect functions (Figs.

4.7, 4.11) are multi-dimensional polynomials of high order, with many of the high-
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order elements canceling each other out. Thus they pose di�culties for conventional

interval methods. Studies on obtaining rigorous bounds for the maxima of normal

form defect functions [20,26,126] have lead to many interesting numerical algorithms

applicable to much wider class of problems (see section 2.2.2 for description of a

rigorous global optimizer based on the DA framework and Taylor Models [118], section

4.2 on its application to the normal form defect function). The behaviour of these

functions is highly oscillatory, the number of local extrema is high so they also present

signi�cant di�culty for conventional minimization methods. These properties are

employed in section 4.2 to test the GATool genetic algorithm-based heuristic optimizer

described in section 2.3 and in appendix B.

1.2 Neutrino Factories

1.2.1 Purpose and History

A neutrino is a special kind of elementary particle that was believed not to have

any mass, charge or color. Recent studies, however, have demonstrated that neutri-

nos have a very small (estimated to be much less than 1 MeV), but non-zero mass.

They are the most abundant constituent of the universe and have an important im-

pact on astrophysical processes, from the �rst minutes after the Big Bang itself to

supernovae explosions observed today. Neutrinos are created as a result of certain

types of radioactive decay or nuclear reactions such as those that take place in the

sun, in nuclear reactors, or when cosmic rays hit atoms. There are three types, or

"�avors", of neutrinos, named after their partner leptons in the Standard Model:

electron neutrinos νe, muon neutrinos νµ and tau neutrinos ντ . Each of those types

also has an antimatter partner, called an antineutrino (ν̄e, ν̄µ, ν̄τ � electron, muon
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and tau antineutrinos, correspondingly). In 1998, experiments began to show that

solar and atmospheric neutrinos change �avors. The processes leading to these unex-

pected masses and mixing parameters are suggested to take place at energies never

seen since the Big Bang, perhaps connected to the uni�cation of all forces. Precise

determinations of the masses and mixing angles of the three families of neutrinos

opens a unique window of observation into these early times [63]. These fascinating

questions of physics require an ambitious accelerator-based neutrino experimental

program [1,2].

The Neutrino Factory is a very important facility for the long-term neutrino

physics program. Modern technologies of particle accelerators, both already devel-

oped and being researched, open the possibility of building an accelerator complex

to produce and capture more than 1020 muons per year. The idea of an accelerator

where the pions are injected into a storage ring, decay to produce muons captured

within the same ring, and then further decay into a neutrino beam was proposed

several times by di�erent researchers starting from Koshkarev in 1974, but it has the

basic problem that the resulting neutrino beam intensity was low [39,106]. The Neu-

trino Factory idea in its current form was proposed by Geer in 1997 [75]. He suggested

creating muons from an intense pion source at low energies, then compressing their

phase space to produce a bright beam which is then accelerated to the energies of

several tens of GeV and injected into a storage ring with long straight sections where

they decay into highly intense neutrino beams

µ− → e−νµν̄e , µ+ → e+ν̄µνe. (1.2.1)

Beams of such brightness can be used for the extensive study of the neutrino oscilla-

tions [5] and neutrino interactions with the required high precision.

In the U.S., the Neutrino Factory and Muon Collider Collaboration [146] is a
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collaboration of 130 scientists and engineers engaged in carrying out the accelerator

R&D that is needed before a Neutrino Factory can be actually built. Much techni-

cal progress has been made over the last few years, and the required key accelerator

experiments are now in the process of being proposed and approved. In addition to

the U.S. e�ort, there are active Neutrino Factory R&D groups in Europe and Japan,

and much of the R&D is performed and organized as an international endeavor. Neu-

trino Factory R&D is an important part of the present global neutrino program. The

Neutrino Factory requires an intense multi-GeV proton source capable of producing a

primary proton beam with a beam power of 2 MW or more on the target. This is the

same proton source required in the near future for Neutrino Superbeams [33]. There-

fore, there is a natural evolution from Superbeam experiments to Neutrino Factory

experiments over time. Studies performed so far have shown that the Neutrino Fac-

tory gives the best performance among all considered neutrino sources over virtually

all of the parameter space. Its practical possibility and cost remain, however, impor-

tant questions that are being actively researched. Numerous articles and technical

reports on the progress are published. The summary reports, including international

ones, are produced every year [1, 3, 86, 150,178].

1.2.2 Design Overview

The Neutrino Factory is a secondary beam machine; that is, a production beam is

used to create secondary beams that eventually provide the desired �ux of neutrinos.

For the Neutrino Factory, the production starts from a high intensity proton beam

that is accelerated to a moderate energy (beams of 2-50 GeV have been considered

by various groups) and impinges on a target, typically made from a high-Z material

(baseline choice is a liquid Hg jet). The collisions between the proton beam and
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the target nuclei produce secondary beams of pions that quickly decay (26.0 ns) into

longer-living (2.2 µs) muon beams. The remaining part of the Neutrino Factory is

used to condition the muon beam, rapidly accelerate it to the desired �nal energy

of a few tens of GeV, and then store it in a decay ring with long straight sections

where the intense beam of neutrinos is produced from the decaying muons (1.2.1).

The resulting beam can then be used, for example, to hit a detector located hundreds

or thousands of kilometers from the source.

The Feasibility Study II [150] that was carried out jointly by the Brookheaven

National Laboratory (BNL) and the U.S. Neutrino Factory and Muon Collider Col-

laboration, established most of the current Neutrino Factory design ideas. Although

a number of other ideas or variations of existing ones was proposed since FS II, later

studies mainly concentrated on the exploration of already proposed concepts and

their combinations. Their main goals were conducting a cost/performance analysis

and developing consensus on a baseline design for the facility [10]. It is worthwhile to

note that the details of the FS II design are highly in�uenced by a speci�c scenario

of sending a neutrino beam from BNL to a detector in Carlsbad, New Mexico. The

results that came out of the Feasibility Studies demonstrated technical feasibility of

the Neutrino Factory, established its cost baseline, and the expected range of per-

formance. Another important feature of this design is that such a Neutrino Factory

could be comfortably constructed on the site of an existing U.S. laboratory, such as

BNL or Fermi National Accelerator Laboratory (FNAL).

Here we list the main components of the Neutrino Factory (see example of the

RLA-acceleration based variant of the Study IIa design in Figure 1.3) and their pri-

mary functions:

• The Proton Driver provides ≈ 2 MW beam of a moderate energy (several
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Figure 1.3: Neutrino Factory schematics from the Feasibility Study IIa (RLA acceleration variant)

[10]
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GeV) protons on target.

• Target. A high-Z target is put inside a 20 T solenoidal �eld (superconducting

solenoid) to capture pions produced in the interactions of the inciding proton

beam with the nuclei of the target material (liquid Hg jet) (see the longitudinal

distribution of the particles 12 m from the target obtained from the MARS

simulation code [138] in Figure 1.4).

Figure 1.4: Distribution of particles energies 12m from the target calculated by MARS, Etotal =
E0 + T , where E0 is a rest energy (105.6 MeV for muons), T � kinetic energy

• The Front End consists of the parts of the Neutrino Factory between the tar-

get and the acceleration section. It collects the pions coming from the target,

conditions them to form a beam of the muons that are produced by pion decay,

and then manipulates this beam to prepare it for the acceleration by e�ciently

matching the beam to the accelerator acceptance (see example of the longitu-

dinal dynamics of a beam with a relatively small initial phase space in Figure

1.5, courtesy of David Neu�er [143]). It consists of the following subsystems:
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Figure 1.5: Example of the longitudinal beam dynamics in the Front End (phase-energy plane),

courtesy of David Neu�er [143]

� Capture. The magnetic �eld at the target is smoothly tapered down to

a much lower value, 2 T, which is then maintained through the bunching

and phase rotation sections to keep the beam con�ned in the channel.

� Decay. This region is just an empty magnetic lattice where pions are

allowed to decay to muons and where the particles of the resulting beam

develop a correlation between a temporal coordinate and an energy.

� Bunching and Phase Rotation. First the large beam of muons is

bunched with RF cavities of modest gradient, whose frequencies decreases

as we proceed down the beam line. After bunching, another set of RF cav-

ities, with changing frequencies, is used to rotate the beam in longitudinal

phase space in order to reduce its energy spread and match the frequency

to the one of the downstream RF cavities for e�cient acceleration.

� Ionization Cooling. A solenoidal focusing channel, �lled with high-

22



gradient RF cavities and LiH absorbers, cools the transverse normalized

RMS emittance of the beam [60]. In this stage muons in the momentum

range of 150�400 MeV/c pass through the absorbers (from LiH in this de-

sign) thus reducing the total momentum (both longitudinal and transverse

components). They are then reaccelerated in RF cavities to regain the lon-

gitudinal momentum component only. The total e�ect is a decrease in the

transverse momentum spread and, therefore, the transverse emittance.

• Acceleration. Increases the beam kinetic energy from ≈ 138 MeV to a �nal

energy in the range of 20�50 GeV. A superconducting pre-acceleration linear

accelerator (linac) with solenoidal focusing is used to raise the muon beam

energy to 1.5 GeV. It is then followed by a Recirculating Linear Accelerator

(RLA), arranged in a dogbone geometry, that increases the beam energy to 5

GeV. Finally a pair of cascaded Fixed-Field, Alternating Gradient (FFAG) rings

with combined-function doublet magnets, is used to bring the beam energy up

to 20 GeV. Additional FFAG stages could be added to reach a higher beam

energy, deemed necessary for physical reasons.

• Storage and Decay Ring. A compact racetrack-shaped superconducting

storage ring in which ≈ 35% of the stored muons decay to neutrinos and are

sent toward the detector located approximately 3500 km from the ring. Muons

survive in a ring for ≈ 500 turns.

1.2.3 Front End

Since the focus of our research is primarily in the exploration and optimization (see

section 4.3) of the Neutrino Factory Front End section, we describe its design here
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in more detail. Since there are di�erent variations of the Front End suggested by

di�erent research groups, including a Japanese FFAG study [81] and CERN linear

channel studies [30], here we describe only the scheme based on the Neu�er phase

rotation [74,141,142,145] and ≈ 201 MHz RFs in cooling and acceleration. The latest

�International scoping study of a future Neutrino Factory and super beam facility�

accepts this design as the currently preferred scheme. Its additional advantage is that

it captures muons of both signs with equal e�ciency. As most neutrino experiments

are aimed at both neutrino and anti-neutrino studies, such setup doubles the overall

e�ciency. Finally, it replaces expensive induction linac-based design with a relatively

inexpensive array of high-frequency RF cavities thus making the overall scheme better

in terms of cost/performance.

As can be seen in Figure 1.4, pions that are produced by the nuclear collisions

on target occupy a signi�cantly large longitudinal phase space. The transverse phase

space is mainly determined by the magnetic �eld strength of the solenoidal capture

channel. According to the properties of the dynamics of particles in a solenoid [119],

particles with the transverse momentum satisfying the following condition

p⊥ < 0.3
BR

2
,

where B is the solenoidal �eld strength and R is the radius of the solenoid are cap-

tured after the target. In order to e�ectively accelerate the beam, it needs to be

preconditioned to be fully contained within the capture transverse acceptance (30 π

mm·rad) and the longitudinal acceptance (150 mm) of the subsequent accelerating

section. Another constraint that the resulting beam has to satisfy is that only the

particles that are contained within the longitudinal bucket of the accelerating system

(bucket area depends on the RF frequency, phase and a �eld gradient) are captured

into the accelerating regime. Transverse emittance should be decreased by cooling in
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order to achieve optimal intensity. Hence the main �gure of merit for the Front End

is the number of captured muons at the exit per incoming pions.

1.2.4 Decay, Bunching and Phase Rotation

Pions, and the muons that are produced by their decay, are generated in the target

over a very wide range of energies (see, for example, Fig.1.4), but in a short time pulse

(≈ 3 ns rms). Preparation of the muon beam for acceleration thus requires signi�cant

conditioning that includes reducing the energy spread and forming the beam into a

train of bunches. Beam splitting into multiple bunches demonstrated itself as the best

technique since in this case the bucket areas are signi�cantly larger than the beam

area hence a very good acceptance is expected [62].

First, the beam is allowed to drift to develop an energy correlation, with higher

energy particles at the head and lower energy particles at the tail of the beam. Next,

the long beam is separated into a number of short bunches suitable for capture and

acceleration in a 201-MHz RF system. This is done with a series of RF cavities that

have decreasing frequencies and increasing gradients along the beam line, separated by

a suitably chosen drift spaces. The resultant bunch train still has a substantial energy

correlation, with the higher energy bunches places �rst and progressively lower energy

bunches coming behind. The large energy tilt is then phase rotated into a bunch train

with a longer time duration and a lower energy spread using additional RF cavities

of decreasing frequencies but constant gradient and drifts.

And example 2D simulation of the dynamics of the particles in the structure is

shown in Fig.1.5. The beam at the end of the buncher and phase rotation section

has an average momentum of about 220 MeV/c. The proposed [142] system is based

on standard RF technology, and is expected to be much more cost e�ective than the
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induction-linac-based system considered in [150]. An additional bene�t of the RF-

based system is the ability to transport both signs of muons simultaneously. Finally,

we note that there are many variations of the proposed scheme in order to study

performance/cost relations and/or better �t to di�erent designs of other sections of

the Neutrino Factory. Examples include low-frequency rotation, phase rotation with

a scaling FFAG, variations of gradients, phases, number of di�erent RF frequencies,

geometry of windows in RF cavities, gas-�lled cavities, and other alternative designs.

The baseline Front End schematic from the latest International Scoping Study [62]

is demonstrated in Figure 1.6. The baseline proton driver has an energy of 10 GeV.

The capture system is a 12 m long channel with the solenoidal �eld dropping from

initial 20 T to 2 T and the channel radius increasing from 75 mm to 250 mm. It is

followed by a 100 m long decay section where the pions decay to muons and develop

a correlation between the temporal position and an energy. This correlation is then

employed by the 50 m long bunching section to split the beam into a train of bunches

via a set of RF cavities of a modest gradient and decreasing frequencies. Then another

set of RF cavities with higher gradients in the 50 m long rotator section are employed

to rotate the beam in the longitudinal phase space to reduce its energy spread. We

describe the logic behind the choice of the frequencies of the buncher and phase

rotator later in detail later in this section. The �nal RMS energy spread in this

scheme is ≈ 10.5 %. Then an 80 m long channel �lled with high-gradient 201.25 MHz

RF cavities and LiH absorbers in the solenoidal �eld is used to cool the transverse

normalized RMS emittance from 17 π mm·rad to ≈ 7 mm·rad at a central muon

momentum of ≈ 220 MeV/c.

To set up buncher parameters we choose some ideal particle to be the main central

particle of the beam. Usually this is a particle with coordinates in the center of the
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Figure 1.6: The baseline Front End schematics from the latest International Scoping Study [62]

beam particles coordinates distribution. We then set phases of RF cavities in such

a way that this particle enters every cavity in the same phase (ϕs = 0) of EM �eld

oscillations. By the virtue of the equations of motion in such a structure (see, for

example, Chapters 13-14, [170]), particles near the central one in (ϕ − δE) phase

space are then formed into a stable group called a �bunch�. This group then oscillates

around the central particle in the longitudinal phase space along with the motion of

this particle in the accelerator. As a consequence of our choice of the main central

particle, phase and cavity parameters, other particles are passing all cavities in the

same ϕs = 0 phase and thus forming bunches around themselves. In the following text

we will call them central particles and the one chosen �rst the main central particle.

Of course, all central particles are not real particles, they are just an idealization

chosen to make equations of motion simpler.

Each cavity in the buncher has its frequency set to maintain the following con-

dition: the di�erence in the time of arrival of any two central particles in a place of

RF �eld application remains equal to a �xed integer number of RF oscillation periods

and this condition is maintained as the beam propagates through the buncher

∆t = tn − tc = z

(
1

vn
− 1

vc

)
= nTrf = n

λrf
c
, n ∈ Z , (1.2.2)

where n is the number of the bunch counted from the main central particles, tc, tn

and vc, vn are time-of-arrival of main central and n-th central particle (main central
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particle has n = 0) and their velocities respectively, Trf is the period of RF �eld

oscillations, λrf is the RF wavelength, c is the speed of light.

As the E �eld phase in the RF cavities is zero for the main central particle, it is

also zero for other central particles since they pass the RFs when the �eld has zero

strength and therefore their energies stay constant through the buncher. We keep the

�nal frequency of the buncher and rotator �xed to match the beam into 201.25 MHz

cooling and/or accelerating sections. Thus, setting n = 1, λrf = λ̄, z = L̄ in (1.2.2),

where z is the longitudinal coordinate with z = 0 at the beginning of the drift, λ̄ is

the �nal RF wavelength in buncher (de�ned by matching to the following cooler), L̄

is the longitudinal coordinate of the last RF in buncher, we can de�ne

δ

(
1

β

)
=

(
1

β1
− 1

βc

)
=
λ̄

L̄
, (1.2.3)

where βc, βn are the main central particle and n-th central particle's normalized

velocities, and then rewriting (1.2.2) we get

1

βn
=

1

βc
+ nδ

(
1

β

)
. (1.2.4)

Therefore for kinetic energies of central particles in the buncher we have following

relation

Tn

(
βc, δ

(
1

βc

))
= W0


1−

 βc

1 + nβcδ
(

1
βc

)
2

−1/2

− 1

 , (1.2.5)

where W0 is the rest energy of the particle and Tn is the kinetic energy of the n-th

central particle. From (1.2.3),(1.2.4) it follows that in order to keep the time of arrival

di�erence between two central particles constant, the frequencies of RFs in a buncher

should depend on the longitudinal coordinate through

λrf(z) = z · δ
(

1

β

)
⇒ νrf(z) =

c

z · δ
(

1
β

) , (1.2.6)
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In the buncher the RF gradient is adiabatically increased over the length of the

buncher. The goal here is to perform an adiabatic capture, in which the beam within

each bunch is compressed in phase such that it is concentrated near the central par-

ticle's phase. We arbitrarily choose this gradient to be increasing quadratically

Vrf(z) = B
(z − zD)

L
+ C

(z − zD)2

L
, (1.2.7)

where Vrf is RF voltage, zD is the longitudinal coordinate of the beginning of the

buncher (equal to the drift length), B and C are positive constants, de�ned by chosen

initial and �nal RF gradients in a buncher, L is the length of the buncher. Note that,

since each of the bunches is centered at a di�erent energy, they all have di�erent

longitudinal oscillation frequencies, and a simultaneously matched compression for

all bunches is not possible. Instead a quasi-adiabatic capture is performed in order

to achieve an approximate bunch length minimization in each bunch.

Following the buncher is the (ϕ − δE) vernier rotation system in which the RF

frequency is almost �xed to the matched value at the end of the buncher and the

RF voltage is constant. In this system the energies of the central particles of the

low-energy bunches increase, while those of the high-energy bunches decrease. So the

whole energy spread reduces to the point where the beam is a string of similar-energy

bunches, which are captured into the ∼201 MHz ionization cooling system matched

to the central energy of the beam.

We now describe the rotator parameters calculation in more detail. At the end of

the buncher we choose two reference particles (n1 and n2) which were kept (n2−n1)

RF periods from each other along the buncher, and the vernier o�set δ. We then

keep the second central particle at ((n2 − n1) + δ)λrf wavelengths from the �rst

one through the rotator. With this choice, the second central particle passes all RF

cavities in a constant accelerating phase ϕn2 having constant energy change ∆Tn2 .
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Ffter
∣∣Tn1 − Tn2

∣∣ /∆Tn2 cavities, the energies of the �rst particle (usually we choose

main central particle as �rst central particle) and the chosen second central one will be

nearly equal. From this consideration we can derive the relation between the energy

change of the n-th central particle in each cavity of the rotator and the rotator

parameters:

∆Tn(Erf , δ, n1, n2) = Erf sin

(
2πδ

n− n1
n2 − n1

)
, (1.2.8)

where ∆Tn is the energy change of the n-th central particle, δ is the vernier parameter,

n1 and n2 are the numbers of chosen central particles, Erf is the RF gradient of the

cavities in rotator. This process also aligns the energies of other central particles and

their bunches, hence at the end of the rotator we have the beam rotated in (ϕ− δE)

space with a signi�cantly reduced energy spread. A simulation of the process in

(ϕ− δE) phase space is shown in Figure 1.5.

Combining equations (1.2.5) and (1.2.8) we can obtain the formula for the central

energy of the n-th bunch after buncher and phase rotator in terms of their design

parameters:

Tfin
n

(
βc, δ

(
1
βc

)
, Erf , δ, n1, n2

)
= (1.2.9)

W0


1−

(
βc

1+nβcδ
(

1
βc

))2
−1/2

− 1

+mErf sin
(

2πδ
n−n1
n2−n1

)
where m is the number of the RF cavities in rotator.

1.3 Optimization Problems

1.3.1 Introduction

We live and work to reach our goals in a world where all available resources are

restricted. There is always a limit on the amount of time, money or technologies
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that we have a control on. Most often we want to achieve our goals with maximum

satisfaction, spending a minimal amount of the limited resources, and producing a

minimal amount of unwanted side e�ects. In vague terms this is a formulation of

the optimization problem. Many design problems of science and industry can be

formulated as the optimization of a certain objective function under a particular set

of constraints. Many problems of accelerator and beam physics can be formulated

as optimization problems. As of the last feasibility study [62] most of the questions

of the Neutrino Factory design R&D (see section 1.2.2) were questions of optimiza-

tion, e.g. optimum beam energy, repetition rate, and bunch length for the Proton

Driver. Target material, optimal production of the Front End (delivery of the most

muons fully contained within the capture transverse acceptance) and the longitudi-

nal acceptance of the Accelerating section (see section 4.3), were investigated. The

simple question of how to design of the one of the basic accelerator lattice building

blocks (see section 4.1) and the complicated problem of the stability estimating for

the particle dynamics in large and complex circular accelerators (see section 4.2) are

solved using the framework of optimization. Thus we see that optimization problems

and, of course, optimization methods, are of great importance for many areas of the

modern science.

If we can construct a function that maps the properties we control to the measures

of the properties we want to optimize (minimize unwanted, maximize wanted), we

get a mathematical optimization problem. Properties under control are called control

variables or parameters, the function of measures is called an objective function. If

we seek the minimum of the objective function, it is typically called a cost function;

if the minimum is known to be zero, it is called an error function. In cases where the

maximum is sought, it is referred to as a �tness function. Since the maximization can
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be turned into minimization by �ipping the sign of the objective function, without

loss of generality we can restrict our consideration to minimization problems.

Optimization of even a single performance measure is already a hard and complex

problem, but simultaneous optimization of several measures poses additional qualita-

tive complexity. Here optimal values of di�erent measures are frequently achievable

with di�erent combinations of control parameters and even the de�nition of the op-

timal solution itself is a non-trivial problem. Therefore it is usually preferable to use

mathematical models with a scalar objective function which provides some combined

performance characteristic of the system under consideration (see [102] for a discussion

on constructing combined objective functions). The problem of optimizing a single

objective function is typically called an optimization problem or a single-objective

optimization problem while the problem of optimizing several objective functions is

referred to as a multi-objective optimization problem.

As was mentioned earlier, resources in real-life problems are typically limited.

Those limits can usually be modelled as equality and inequality constraints imposed

on control variables. An optimization problem in their presence is called a constrained

optimization problem.

There exist many problems that can be formulated as optimization problems and

many methods to build a mathematical model for a problem. Such a variety of

methods produces a large variety of optimization problems. Apart from the properties

mentioned earlier they are often characterized with respect to:

• Parameter types: on/o�, discrete, continuous, functions of a certain type, etc.

• Dimensionality: number of control parameters.

• Presence of noise: noise could be present in parameters and in the objective
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function values.

• Properties of the objective function: modality, time-dependence, continuity, dif-

ferentiability, smoothness, separability, etc.

Classi�cation of optimization problems is done with respect to these properties.

For example, combinatorial optimization deals with discrete control variables from

the space that usually contains a �nite number of candidate solutions. Continuous

optimization typically considers control parameters from the space of real numbers

thus the number of potential solutions is in�nite. Continuous optimization, in turn,

is divided into linear programming (linear objective function, linear constraints) [167]

and quadratic programming (quadratic objective function, linear constraints) [147].

Here well-known polynomial algorithms can solve a problem provided that certain

solution existence conditions are met. Au contrary, in non-linear programming (non-

linear non-quadratic objective function, nonlinear constraints) there are no general

algorithms with guaranteed convergence and estimate on the number of operations

required.

In this work we restrict our consideration to the optimization problems for which

the control parameters are real values, and the objective function is scalar and is

generally nonlinear. A large number of design problems can be formulated as opti-

mization problems of this type (see sections 4.2, 4.1, 4.3). In accelerator design control

parameters usually represent physical properties of the accelerator components, e.g.

magnet positions, strengths, lengths and apertures.

33



1.3.2 Unconstrained Optimization

Under our assumptions we can formulate the optimization problem as follows. Let

S ⊆ Rv be a search domain, x ∈ S be a vector of v control parameters assuming real

values, and

f : S 7−→ R (1.3.1)

be an objective function. Let x be subjected to equality and inequality constraints

gi(x) = 0, i = 1, . . . , n (1.3.2)

hi(x) ≤ 0, i = 1, . . . ,m (1.3.3)

Then the general problem of mathematical optimization is to �nd f∗ ∈ R such that

f∗ = min
x∈S

f(x) (1.3.4)

and corresponding x∗ ∈ S:

f∗ = f(x∗)

which is usually written as

x∗ = arg min
x∈S

f(x), (1.3.5)

such that it satis�es constraints (1.3.2), (1.3.3).

In some cases the optimization problem (1.3.4), (1.3.5) is softened. It is considered

solved if we �nd x∗ ∈ S such that there exist δ ∈ R and

f∗ = f(x∗) = min
x∈Sδ

f(x), (1.3.6)

where Sδ ⊆ S is a delta-neighborhood of x∗. In this case f∗ is called a local minimum

and the problem is called a local optimization problem. The original problem (1.3.4),

(1.3.5) is called global optimization problem and the corresponding f∗ is called a global
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minimum (x∗ is also called a global minimum or, to make a distinction, a minimizer).

In this work we primarily consider global minimization problems therefore for all

considered optimization problems a global minimum is sought unless it is explicitly

stated otherwise. We cannot make any assumptions about the uniqueness of this

minimum for an arbitrary optimization problem. Therefore by a minimum in these

problems we mean any of the non-unique ones, if there are several, unless stated

otherwise.

In some cases a global optimization problem is restricted by adding additional

conditions. If it is required to prove that the found minimum is global, and provide

rigorous bounds for its value, then such sub�eld of optimization is called a rigorous

global optimization (covered in more detail in section 2.2). If the constraints (1.3.2),

(1.3.3) are de�ned, the problem is called a constrained optimization problem, other-

wise it is called an unconstrained optimization problem. In Chapter 2 we review of

the methods of unconstrained optimization with Evolutionary Algorithms, describe

the implemented GATool continuous unconstrained optimization EA, present studies

on its performance and potential of the integration with the rigorous optimization

package COSY-GO.

1.3.3 Constrained Optimization

In this section we consider constrained optimization problems, i.e. problems (1.3.1),

(1.3.5), and (1.3.4) in the presence of constraints (1.3.2) and (1.3.3), in more detail

and introduce the relevant terminology.

When constraints are imposed, the set

F =
{
x ∈ S ⊆ Rv

∣∣ gi(x) = 0, hj(x) ≤ 0, i = 1, . . . , n , j = 1, . . . ,m
}

(1.3.7)
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is called a feasible set. It contains all vectors from the search domain that simultane-

ously satisfy all constraints. Such vectors x ∈ F are called feasible, all other vectors

are called unfeasible. If at some point x ∈ S the inequality constraint hj(x) holds

as an equality (hj(x) = 0), it is called active at x. Equality constraints are consid-

ered active everywhere in S. Using these de�nitions we can rewrite a constrained

optimization problem formulation as

f∗ = min
x∈F

f(x) (1.3.8)

x∗ = arg min
x∈F

f(x),

where a sought minimum is also called a feasible minimum.

Search domain S is usually given as a v-dimensional box

S =
{

x ∈ Rv
∣∣xl ≤ xl ≤ xl, l = 1, . . . , v

}
(1.3.9)

and thus can be treated as a set of inequality constraints included into the feasible set

de�nition (1.3.7) (note that by this de�nition F ⊆ S). However, for most real-world

problems S can be determined rather easily by estimating physically reasonable ranges

for control parameters and thus has a simple convex structure with linear boundaries.

Feasible set, in contrast, can be speci�ed by a large number of complex non-uniform

constraints and therefore can have an extremely complex structure. Depending on

the problem F can have nonlinear boundaries, be non-convex, not connected, have

measure of zero, or even be empty (in this case the constrained optimization problem

has no solution) and is thus hard to study and visualize. Moreover, for many test

and real-life problems |F | � |S|, hence the distinction between a search space and a

feasible set is fully justi�ed. The quantity

ρ =
|F |
|S|
∈ [0, 1] (1.3.10)
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is often used as one of the measures of the di�culty of the constrained optimiza-

tion problem. Empirically it can be viewed as a measure of the di�culty that the

constrains are adding to the problem, in comparison with the di�culty of the un-

constrained problem with the same objective function. Generally, the smaller ρ is,

the harder it is for the algorithm to �nd feasible points in the search space. Note,

however, that for an arbitrary problem this factor is hard to estimate because of the

unknown and frequently complex structure of F . Random sampling of the search

space is usually employed for such estimation [130].

It is worth noting that the ρ factor alone does not determine the constrained

problem's di�culty completely. However, the theoretically developed framework for

such analysis and comparison of di�erent problems does is not established yet. Most

of the di�culty ratings are assigned heuristically and are derived from the practice.

For example, it is well-known that the problems with convex feasible sets are easier

to solve than the ones with non-convex feasible sets; that the problems with disjoint

F are harder to solve than the ones with connected F , etc [135]. It is also known

that the di�culty of the problem often increases as the number of constraints that

are active at the sought feasible minimum increases (for an arbitrary problem this

information is not available before the minimum is found). It is also worth noting,

that the optimization performance is algorithm-dependent (see section 2.1.4), hence it

cannot be measured for the problem itself without the considerations on the algorithm.

Some work towards characterizing constrained problems and determining if they are

EA-hard can be found in [57].

Inequality constraints (1.3.3) can be transformed into equality constraints by in-

troducing �dummy� variables ξj , j = 1, . . . ,m. In this case each inequality constraint

hj(x) ≤ 0
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is converted into an equivalent equality constraint

hj(x) + ξ2
j = 0.

Each equality constraints (1.3.2) can in turn be transformed into two inequality con-

straints:

−gi(x) ≤ 0, i = 1, . . . ,m (1.3.11)

gi(x) ≤ 0, i = 1, . . . ,m,

or, for the methods that do not rely on smoothness of the constraint functions to one

inequality constraint

|gi(x)| ≤ 0, i = 1, . . . ,m. (1.3.12)

For practical purposes of non-rigorous optimization

|gi(x)| − ε ≤ 0, i = 1, . . . ,m, (1.3.13)

where ε is an acceptable tolerance for equality constraint satisfaction is also frequently

used. Using these transformation we can limit our consideration to the problems

with either equality-only or inequality-only constraints without loss of generality. For

simplicity we consider only inequality constraints, i.e. constraints of the type (1.3.3),

treating n as a total number of constraints. In this case the feasible set (1.3.7) is

de�ned as

F =
{
x ∈ S ⊆ Rv

∣∣hj(x) ≤ 0 , j = 1, . . . , n
}
. (1.3.14)

If certain conditions on the constrained problem are satis�ed, methods to solve

it analytically can be applied. For example, the well-known and widely applied La-

grange Multipliers Method requires an objective function and constraint functions be

written in an algebraic form, be deterministic, and di�erentiable. The generalization
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of these conditions are Karush-Kuhn-Tucker (KKT) conditions [110] which formu-

late the necessary conditions for a point to be a conditional extrema. Additional

assumptions formulated in a variety of di�erent forms and called regularity condi-

tions assure that the solution is non-degenerate. Under additional assumptions about

constraint functions, for example, when inequality constraint functions are a�ne and

equality constraint functions are convex, su�cient conditions for the point to be a

global minimum can be formulated [7].

Unfortunately, many real-life problems are posed in such a way that their objec-

tive and/or constraint functions make the KKT conditions not applicable. In these

cases various numerical optimization methods are usually employed. Constraints are

often incorporated into an objective function or used to transform the problem into a

multi-objective optimization problem with help of penalty and barrier functions (see

Chapter 3) or the Lagrange multipliers method. After such simplifying transforma-

tion the optimization methods for the unconstrained problems can be applied to solve

the constrained problems. In general, most optimization methods for constrained

problems are based on the methods designed for unconstrained problems [147]. In

Chapter 3 we review constrained optimization methods (mostly those used in Evolu-

tionary Algorithms), propose a new method for a constrained optimization and study

its performance.
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CHAPTER 2

Unconstrained Optimization

2.1 Optimization Methods

Once the mathematical model of the problem is developed, the types of the control

parameters are chosen and the objective function is constructed, the problem is most

frequently need to be solved. For all but rigorous optimization problems, point-based

iterative methods are most often used. Each step, they operate on a population

of points (for single-point methods it consists of one point) to generate the next,

supposedly better population in order to eventually converge to the sought minimum.

Single-point methods (also called descent methods) typically use the greedy iterative

search strategy from Figure 2.1.

2.1.1 Derivative-based Methods

If the objective function is su�ciently di�erentiable, derivative-based methods can be

utilized. The classic and the most well-known among them are: Newton's, Steepest

Descent, Conjugate Gradient and Quasi-Newton methods, which all are iterative
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1. Start from the initial guess x0.

2. Compute the search direction pk.

3. Choose the step λk to achieve ϕ(λk) = f(xk + λkpk) < f(xk) = ϕ(0)

(more or less extensive line search).

4. If the move is successful, move to the next point xk+1 = xk + λkpk.

5. Repeat steps 2-4 until ‖f(xk)− f(xk+1)‖ < ε, where ε is a required

precision.

Figure 2.1: One-point greedy iterative search strategy

single-point local minimizers. Multi-start and clustering techniques were developed

in an attempt to turn them into multi-point global minimizers [172]. These techniques

increase the method's chances of �nding a global minimum rather than being trapped

in one of the local minima.

If the derivative cannot be obtained or is too expensive to calculate, derivative-free

direct search heuristic methods can be employed. These methods can be determinis-

tic or stochastic depending on the usage of random numbers in the search procedure.

Examples of the direct search methods are: Random Walk, Simulated Annealing,

and Hooke-Jeeves, which are single-point methods, and Nelder-Mead (nonlinear sim-

plex), Evolutionary Algorithms, and Particle Swarm Optimization, which are multi-

point methods. Rigorous optimization typically employs interval methods (see section

2.2.2).

If the objective function f is analytic, then denoting the gradient of the function

f(x) at the point x0 as g(x0) and its Hessian matrix at the same point as H(x0), we

can write its Taylor expansion at x0 in the form:

f(x) = f(x0) + g(x0)(x− x0) +
1

2
(x− x0)TH(x0)(x− x0) + . . . . (2.1.1)

If we then di�erentiate this expression, we get the expansion for the gradient:

g(x) = g(x0) + H(x0)(x− x0) + . . . . (2.1.2)
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Taking into account that the necessary condition for the point to be a minimum is

that g(x∗) = 0, substituting into (2.1.2) and neglecting terms of the order 3 and

higher since the function is approximately quadratic near the minimum, we obtain

the formula for the minimizer

x∗ = x0 −H−1(x0)g(x0) (2.1.3)

that is obviously exact for quadratic f(x). For non-quadratic twice di�erentiable

functions, it can be turned into the iterative procedure given in Figure 2.1. By

replacing x∗ with xk+1, x0 with xk and multiplying the direction by the step size λk,

we obtain the multi-dimensional Newton's method formula:

xk+1 = xk − λk ·H−1(xk)g(xk). (2.1.4)

This method basically approximates a function at the current point with the quadratic

part of the Taylor polynomial and then makes a step to the minimum using the exact

formula (2.1.3). Since the formula is exact for the quadratic functions only, this step

does not reach the minimum but hopefully produces a next point that is closer to it.

In the su�ciently small neighborhood of the minimum the function is dominated by

the quadratic terms of the expansion (2.1.1) so the approximation gets more accurate

and the convergence speed increases.

However, the calculation of the Hessian matrix on each step is computationally

expensive. Its inversion is also an expensive and, moreover, numerically unstable

operation. Various methods like Gauss-Newton, Fletcher-Reeves, Davidon-Fletcher-

Powell, Broyden-Fletcher-Goldfarb-Snanno and Levenberg-Marquardt [147] were de-

veloped to avoid this problem.

One of the simplest of the gradient-based methods, the method of the Steepest De-

scent (also called Gradient Descent), is based on the fact that the function decreases
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with the largest rate in the direction opposite to the direction of the function's gra-

dient at this point. Hence the step direction pk is chosen as

pk = −g(xk) (2.1.5)

and the iterative formula is

xk+1 = xk − λk · g(xk). (2.1.6)

Formula (2.1.6) can also be viewed as formula (2.1.4) with inverse Hessian approx-

imated by the identity matrix. However, such an approximation is very crude and

leads to the step size control problem due to the loss of the information about the

function curvature contained in the Hessian. This leads to very slow convergence

rates for functions like Rosenbrock's function (see section C.4). The anti-gradient in

the narrow valleys seen on its contour plot is directed towards another wall, while

the direction that leads to the minimum positions itself along the walls, i.e. almost

orthogonal to the direction calculated by the Steepest Descent method. Hence a typ-

ical path to the minimum consists of a series of zigzags from one wall to another,

the overall progress to the minimum is slow and the search process could be termi-

nated prematurely by spending all its budgeted number of steps. This problem is

well-known in optimization and is referred to as the �error valley� problem.

Other derivative-based methods designed to solve the problems of slow conver-

gence and high computational cost can roughly be divided into two categories. Quasi-

Newton methods use formula (2.1.4) with various approximations for the inverse Hes-

sian while Conjugate Gradient methods employ another scheme to select directions pk

(based on the conjugate gradient method developed for fast minimization of quadratic

functions). Some methods combine both approaches adding heuristics to determine

directions and step sizes. The disadvantage of these derivative-based methods is that
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in order to work they require the di�erential of the objective function or the second

di�erential which are often not de�ned or are expensive to obtain. Also, while their

convergence on the quadratic functions is very fast, it generally does not hold for ar-

bitrary nonlinear functions. Finally, they are all local minimization methods so they

are best suited for unimodal objective functions. For multimodal objective functions

several approaches were developed: Multi-start techniques where optimization with

one of the iterative methods from Figure 2.1 is started several times from di�erent

initial points and Clustering methods which attempt to identify basins of attraction

(or clusters) for each extremum in order to determine the number of initial points

needed to �nd all minima.

Here we describe one of the heuristic Quasi-Newton methods, namely the

Levenberg-Marquardt method. It forms the core of the LMDIF optimizer, one of the

built-in COSY In�nity [23] optimization methods. We start with the Gauss-Newton

method that is designed to solve nonlinear least squares problems, i.e. problems where

the objective function has a special form:

S(x) =
m∑
i=1

(
fi(x)

)2
. (2.1.7)

Here x typically consists of v parameters to be �tted, fi, i = 1, . . . ,m are the functions

of x, typically experimental results. If we denote f(x) = (f1(x), f2(x), . . . , fm(x))T,

we can write the objective function as

S(x) = f(x)f(x)T. (2.1.8)

Then its gradient is given by

g(S(x)) = 2Jf (x)Tf(x), (2.1.9)
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where

Jf (x) = Jacf (x) =

{
∂fi(x)

∂xj

}
i=1,...,m, j=1,...,v

(2.1.10)

and its Hessian is given by

HS(x) = 2Jf
T(x)Jf (x) + 2

m∑
i=1

fi(x)Hfi
(x), (2.1.11)

where Hfi
is the Hessian of fi.

Usually the objective function S is constructed so that its minimum value is zero.

By (2.1.7) it is attained only at the point x∗ where all fi are zeros. For continuous

fi this means that in the neighborhood of the minimum the second term in the

expression (2.1.11) for the Hessian of S(x) is getting close to zero and the Hessian

can be approximated as

HS(x) ≈ 2Jf (x)TJf (x). (2.1.12)

Substituting expressions (2.1.9) and (2.1.12) into Newton's method iterative formula

(2.1.4), we obtain an iterative formula for the Gauss-Newton method:

xk+1 = xk − λk ·
(
Jf (xk)TJf (xk)

)−1
Jf (xk)Tf(xk). (2.1.13)

The advantage of this method is that while it does not require a computation of

the second derivatives, it still uses information from them (although only approxi-

mately). In cases where the sought minimum is greater than zero, the neglected term

in expression (2.1.11) for the Hessian can become signi�cant thus making the approx-

imation (2.1.12) crude and decreasing the quality of the search procedure (2.1.13).

In this case the Levenberg-Marquardt algorithm, which is a heuristic combination of

the Gauss-Newton algorithm and the Gradient Descent could be a better approach.

It is generally more robust (albeit sometimes slower) than the Gauss-Newton or the

Gradient Descent algorithms alone [77], in the sense of reliably �nding solutions even

if the initial guess is far from the resulting minimum.

45



The Levenberg-Marquardt algorithm iterative formula is a slightly changed version

of the Gauss-Newton formula (2.1.13):

xk+1 = xk − λk ·
(
Jf (xk)TJf (xk) + γI

)−1
Jf (xk)Tf(xk). (2.1.14)

Here I is the identity matrix, γ is a non-negative value called damping parameter. It

is adjusted on each iteration using the following logic: if the value of the objective

function S decreases rapidly, the damping factor is decreased to make the algorithm's

behaviour closer to that of the Gauss-Newton algorithm. If an iteration results in

insu�cient change of an objective function value, the damping factor is increased to

make algorithm's behaviour closer to the one of the Steepest Descent. The choice of

the damping parameter and a scaling strategy is usually a matter of heuristic and

might require �ne-tuning for the problem.

Formula (2.1.14) is actually a development of Levenberg, while the insight of Mar-

quardt was to replace the identity matrix with the diagonal of the approximated Hes-

sian (2.1.12) in order to use information contained in it even when the damping factor

is high and the method behaves like the Gradient Descent. This helps to avoid the

classic �error valley� problem mentioned earlier. The Levenberg-Marquardt method

is essentially heuristic, which makes it hard to theoretically prove its convergence, but

it is known to work extremely well in practice and thus is often considered as one of

the standard methods of the nonlinear optimization. Note, however, that for higher-

dimensional problems its performance is signi�cantly reduced by the expensive and

ill-conditioned matrix inversion needed on each step of the iteration (2.1.14). Several

initial steps of the LMDIF minimization process (which is a heuristically enhanced

implementation of Levenberg-Marquardt algorithm) on the 2-dimensional Sphere test

function (see section C.1) starting from the initial guess (10, 10) are shown in Figure

2.2.
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Figure 2.2: First steps performed by the LMDIF (COSY In�nity built-in optimizer) on the 2-
dimensional Sphere test function (see section C.1) starting from the initial guess (10, 10)

2.1.2 Direct Search Methods

The methods described so far require the objective function to be at least one time

di�erentiable and its derivatives to be cheap to obtain. Unfortunately, for most real-

life problems these conditions do not hold. Therefore we cannot use derivatives to

select the direction and the step size for the greedy strategy from Figure 2.1. The

Direct Search heuristic algorithms, also known as �generate-and-test� methods, are

heavily used for such problems. Their distinctive feature is that they divide the next

point search into generation and selection phases. Possible moves generated during

the �rst phase are either accepted on the second phase and the iteration advances or

they are rejected and then a new move is generated.

The simplest direct search method is probably the Brute Force method. Here

the search domain is covered by a grid which is then visited point by point and
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the best found minimizer is updated every time a better one is found. Due to its

search method, this algorithm is also called the Naïve Sampling method. It su�ers

from several obvious drawbacks: strong dependence of the optimal grid size on the

problem and an exponential growth of the number of the points in the grid with

dimension. Since the algorithm visits all points in the grid during search, it leads to

an exponential growth of the search time.

The Random Walk method uses a v-dimensional Gaussian distribution to generate

trial step vectors ∆x randomly. Then the trial points on k-th step are given by

xk,trial = xk−1 + ∆x.

The selection is greedy, i.e. the �rst trial point such that

f(xk,trial) < f(xk−1)

is accepted as the new iterate. While the method seems to not be as badly a�ected

by the �dimensionality curse�, the problem of determining the optimal parameters for

the Gaussian distribution that is used to generate step sizes still remains.

Hooke and Jeeves method also known as Pattern Search attempts to dynamically

adjust step size by exploring coordinate axes separately using per-axis step sizes,

which are reduced if the trial move is unsuccessful. In practice, this approach is

more e�ective than the Random Walk and Brute Force methods. More sophisticated

techniques to �nd the direction and step size exist but methods of this type are still

typically used only in combination with other methods.

Greediness of the selection process in direct search algorithms often leads to their

convergence at a local minimum once they get into its basin of attraction. To avoid

this problem, the Simulated Annealing algorithm [105] modi�es the selection criteria

to also accept some �uphill� moves on the function's landscape. This method is
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frequently used for metaheuristic algorithms and is also one of the built-in COSY

In�nity optimizers called ANNEALING.

Strictly speaking, Simulated Annealing is not a method, it is a selection strategy

that replaces the greedy selection from step 3 of the greedy iterative search algorithm

from Figure 2.1. It helps to avoid being trapped in a local minimum, which is a

common case for greedy methods, and increases the chances of �nding the global

minimum. As such it is often used in conjunction with direct search methods, most

frequently with the Random Walk method.

The inspiration for the method is the annealing process from metallurgy when a

material is �rst heated (recovery phase) and then slowly cooled to change its properties

such as strength and hardness (recrystallization phase). The heating causes atoms to

move freely and the slow cooling gives them time to �nd con�gurations with minimal

energy. A strategy built on this analogy allows the current search point to move to

the next point with a probability that depends on the di�erence of the function values

at the current and the candidate points (energy di�erence)

dk = f(xk,trial)− f(xk−1)

and the value of a parameter T (temperature) that is gradually decreased as the

search progresses. There are several parameters that in�uence the performance of the

method:

1. Probability of acceptance: de�nes the probability with which the next move

is accepted. It has to posses the following properties: be non-zero for any

values of d and T , but such that the probability of accepting a move with

d > 0 (function value increases) decreases as temperature decreases, while the

probability of accepting moves with d < 0 (function value decreases) increases
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or stays constant (in classical Simulated Annealing it is equal to 1 for all such

moves). Frequently used is the following formula for the probability satisfying

these requirements:

P (d, T ) =

{
1 , d < 0 or T = 0

e
− dT , otherwise

. (2.1.15)

Since there is a non-zero probability of accepting moves that worsen the �nal

result, the best found point is typically saved separately.

2. Annealing temperature schedule: determines the change of temperature with

iterations T = T (k). If the temperature decreases too fast, the method might

converge prematurely. If it decreases too slowly, calculations might take an

unnecessarily long time. Also note that for T = 0 the strategy turns to greedy.

3. Trial point generation method: is not a part of the Simulated Annealing algo-

rithm itself but since the choice of the probability of acceptance and annealing

schedule depend both on a problem and on an exploration method, all three

control parameters should be selected and �ne-tuned together.

Further developments and enhancements of the algorithm like Adaptive Simulated

Annealing, Boltzman Annealing, Simulated Quenching, Fast Annealing and Rean-

nealing are discussed in [91]. Several initial steps of the ANNEALING minimization

process (which is an implementation of the Random Walk method with Simulated

Annealing selection strategy) on the 2-dimensional Sphere test function (see section

C.1) starting from initial guess (10, 10) are presented in Figure 2.3.

Another heuristic search method that tries to avoid a convergence to a local min-

imum is the well-known Nelder-Mead method, also known as the Deforming Polyhe-

dron Search or the Nonlinear Simplex Method [92]. The main idea of the method is
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Figure 2.3: First steps performed by the ANNEALING (COSY In�nity built-in optimizer) on the

2-dimensional Sphere test function (see section C.1 starting from the initial guess (10, 10)

to use a �search object� which in this case is a polyhedron with (v + 1) vertices in

v-dimensional search space called a simplex. After creation of the initial polyhedron,

search proceeds with the search object being transformed and moved in the search

space in order to reach the minimum. Objective function evaluations in its vertices

are used to measure the performance and to select appropriate transformations and

movements. The initial simplex is either generated randomly, or is set as one of the

parameters. Note that if it is too small, the algorithm can be trapped in a local min-

imum. After the simplex is generated, the iterative search process given in Figure 2.4

can be initiated. There is a certain level of �exibility in de�ning the control �ow and

conditional transitions, which sprouted di�erent variations of the method, so Figure

2.4 demonstrates only one of those existing variations. Classic values for α, β, γ, andσ

� the re�ection, expansion, contraction and shrinking coe�cients � are 1, 2, 0.5,

and 0.5, respectively.
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0. All vertices are ordered and relabeled according to the corresponding

function values:

f(x1) ≤ f(x2) ≤ . . . ≤ f(xv+1),

centroid of all points except the worst one is calculated:

xm = 1
v

∑v
i=1 xi.

1. Reflection is performed:

xr = xv+1 + α(xm − xv+1).

If f(xr) < f(x1), reflection improved the best point,

go to step 2.

If f(x1) < f(xr) < f(xv), reflection improved the next worst point,

xv+1 = xr,

go to step 0.

If f(xv) < f(xr) < f(xv+1), reflection improved the worst point,

go to step 3.

Else reflection failed to improve the worst point,

go to step 4.

2. Expansion is performed:

xe = xr + β(xm − xv+1).

If f(xe) < f(xr), expansion improved reflection,

xv+1 = xe.

Else expansion failed to improve reflection,

xv+1 = xr.

Go to step 0.

3. Contraction is performed:

xc = xv+1 + γ(xm − xv+1).

If f(xc) ≤ f(xr), contraction improved reflection,

xv+1 = xr,

go to step 0.

Else contraction failed to improve reflection,

go to step 4.

4. Shrinking of the whole simplex around the best point is performed:

xi = x1 + σ(xi − x1), i = 2, . . . , v + 1.

Go to step 0.

Figure 2.4: Nelder-Mead method iteration
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The advantage of the simplex is that it can adapt to the objective function surface

and thus e�ciently control the step size. However, for complicated objective functions

(v + 1) points might not be enough to build a good model of the landscape, hence

there exist methods that use di�erent �search objects� with more sample points, for

example, complex, which contains 2v points [136]. The Nelder-Mead method is the

last one of the built-in COSY In�nity optimizers and is called SIMPLEX. Several

initial steps of the SIMPLEX minimization process on the 2-dimensional Sphere test

function (see section C.1) starting from the initial guess (10, 10) are shown in Figure

2.5.

Figure 2.5: First steps performed by SIMPLEX (COSY In�nity built-in optimizer) on the 2-
dimensional Sphere test function (see section C.1) starting from the initial guess (10, 10)

2.1.3 Evolutionary Algorithms

Another family of methods that use many points to explore the objective function

landscape is inspired by the process of evolution described by Darwin in his revo-
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lutionary work �Origin of Species�, �rst published in 1859 [51]. According to it, the

main driving forces of evolution are the variability in living organisms and the natural

selection implicitly performed on them by the environment. Over time these forces

shape di�erent species to be very sophisticated inhabitants of the environment, i.e.

make them �t to it.

If we view an objective function as an environment and points in a search space

as organisms evolving to �nd the best places in this environment (which are for

our purposes minima), we can easily sketch a general model of evolution suitable for

optimization which is called an Evolutionary Algorithm (EA) (see Figure 2.6). Having

the evidence of the e�ciency of this algorithm in a variety of very well-�t organisms

on Earth, there emerged a strong belief that its main principles can be applied to

function optimization problems equally successfully.

Generate initial population, evaluate fitness

While stop condition not satisfied do

Produce next population by

Selection

Recombination

Evaluate fitness

End while

Figure 2.6: Evolutionary Algorithm

Note that EA is actually a meta-algorithm and that all algorithms described earlier

can be formulated in this form. For single-point algorithms the population consists

of just one individual, selection and recombination are not applicable, the process

of producing a next search point can be viewed as a mutation. Multi-start methods

di�er from the single-point ones only in the size of the population. The Nelder-Mead

method (see Figure 2.4) resembles EA more closely: it maintains a population of
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(v+ 1) points and uses both selection (by sorting its points using function values and

replacing the worst on each step) and recombination (during re�ection a new point is

generated by means of other points in the population) to perform the optimization.

Expansion, contraction and shrinking here can be considered as di�erent types of

mutation.

Because of such generality, it is commonly agreed that the family of Evolutionary

Algorithms includes only the ones that directly imitate the processes of evolution

and use evolutionary terminology to describe their search strategies. A particularly

important distinctive feature of EAs is that the members of the population actively ex-

change information about the search space. Despite these distinctions, the boundary

is still blurry and some EAs, for example the Di�erential Evolution [171] algorithms,

are closer to multi-point direct search methods than to the �true� Evolutionary Algo-

rithms.

It is worth noting that EA does not pose any restrictions on the search space and

members of the population, which, multiplied by a variety of di�erent approaches

to de�ne �tness, selection, recombination and mutation, leads to a very broad �eld

of applications. Examples include a wide variety of optimization problems: numer-

ical optimization, combinatorial optimization, circuit design, scheduling problems,

video and sound quality optimization, control systems [53], image analysis [50], mar-

keting [164] and economics [12], tra�c control [35], manufacturing [90], and many

others. While EAs do not explicitly guarantee to �nd even a local minimum, practi-

cal applications demonstrate that frequently they are able to �nd a global minimum

or at least produce a practically acceptable solution.

Each of these applications is usually tied to a particular �avour of the Evolu-

tionary Algorithms. Genetic Algorithms (GAs) [78, 79] often encode parameters as
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strings of bits and modify them with logical operators and thus are better suited

for combinatorial optimization, for example for the class of problems equivalent to

the famous Traveling Salesman Problem [158]. Genetic and Evolutionary Program-

ming [107] evolve computer programs and are used, for example, to design snippets

of code to �lter out unimportant events from the �ow of the events coming from a

detector in high-energy physics. Evolution Strategies (ES) [82] and Di�erential Evo-

lution (DE) [171] both use real numbers and arithmetic evolutionary operators for

continuous function optimization. It is also worth noting rapidly increasing inter-

est in the development of the optimizers mimicking various optimization and search

processes of nature: Particle Swarm Optimization, Ant Colony Optimization, Tabu

Search, Cultural algorithm, etc. [165] and their successful application to many real-

world problems.

In this work we consider EAs primarily in the context of the real-valued functions

optimization. However, the overabundance of the variations of the Evolutionary Al-

gorithms suitable for the task does not allow us to cover them all. Our primary

goal was to �nd and implement the one that is proven to be robust and e�cient,

with a default set of parameters e�ective for many applications and then to assess

its applicability to our problems. The description of the Evolutionary Algorithm we

implemented is presented in section 2.3.

2.1.4 No Free Lunch Theorems for Optimization

With such a large variety of optimization methods, having described only a few well-

known ones, one can conclude that there is no need for new algorithms. However,

each method has its own strengths and weaknesses and the variety of optimization

problems is much larger than the variety of methods. Thus development actively
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continues, especially along with the rapid growth of the available computing resources,

which is opening the possibility to solve increasingly complex problems.

To combine the best features of di�erent methods and compensate for their weak-

nesses, combinations of methods are sometimes used. The Levenberg-Marquardt

method described earlier, is a heuristic combination of the Steepest Descent and

Gauss-Newton methods, and it works very well in practice. Even more sophisticated

combinations can be constructed using several direct search methods. Consider, for

example, a perfectly viable combination: a multi-start method, sampling points of the

search space by using them as initial points for the greedy direct search method com-

bined with the Simulated Annealing to compensate for its greediness. Combinations

of rigorous methods with good heuristic methods could signi�cantly speed up their

convergence (see section 2.3.6) and increase their robustness (see section 3.3.5). The

number of parameters for state-of-the-art methods and for their combinations can be

so large and their interactions so complex, that a separate optimization technique to

adapt method parameters to the problem might be used.

Much controversy was caused by the so called �No free lunch theorems for opti-

mization� [176] which in rough terms states that the di�erence in performance of all

search algorithms averaged over all optimization problems is negligible. Every method

can perform better at certain classes of problems only at the price of performing worse

on other classes and this performance depends on the amount of information about

the problem incorporated into algorithm, i.e. on �ne-tuning of the algorithm for the

problem.

While this means that theoretically there is no algorithm that outperforms all

other algorithms on all problems, in practice we are always solving a particular prob-

lem or a class of problems. Therefore, we can interpret these theorems as an additional
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reason to �nd the best matching optimizer for each circumstance. No e�cient general

purpose optimization method exists, hence there is always a scope for improving al-

gorithms for better performance on particular problems. It must be noted, however,

that since human time is getting more and more expensive with computation time

becoming increasingly cheap and since we usually need a good solution in a reasonable

time rather than the best solution in an optimal time, running an algorithm which is

not optimal but capable of �nding satisfactory solution in an acceptable time might

overall be more bene�cial than spending precious human time on �nding the optimal

method.

2.2 Rigorous Global Optimization

2.2.1 Conventional Interval Methods

While local optimization methods solve only the problem of �nding the extremum of

the function and in most cases they settle at a local extremum, global optimization

methods have an additional goal to achieve. They need to prove that the extremum

they �nd is global in the given search domain. Rigorous, veri�ed or validated global

optimization is dealing with the problem of �nding mathematically rigorous enclo-

sures for the extrema and the points in which they are attained, accounting also for

numerical computational inaccuracies. Note that for this purpose the function under

consideration is usually required to be su�ciently smooth on the search domain.

The most straightforward approach to validated global optimization is a version

of the well-known general �divide and conquer� strategy: the large problem that is

hard to solve as a whole, is divided into a set of smaller problems which are easier to

solve (or conquer, following the terminology). For the global optimization this strat-
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egy takes the form of the branch-and-bound method that divides the original search

domain (1.3.9) into a stack of sub-boxes and conquers them one-by-one, removing

each box, proven not to contain a minimum, from further consideration, reducing its

size, or dividing into even smaller boxes for subsequent processing. This strategy is

applied on each step until the desired accuracy is reached. A rigorous estimate of

the upper bound of the minimum, a so called cuto� value, is frequently employed to

speed up the elimination. It can be calculated, for example, using interval arithmetic

evaluation of the function at some point in the box. Typically, interval calculus is

also used to obtain rigorous estimates for the maximum and minimum values of the

function on a box.

Algorithms based on the outward rounding interval arithmetic allow one to ob-

tain a rigorous estimate of the global extrema. However, there are several problems

connected to their usage, of which the two most important are [26]:

1. Dependency Problem: resulting bound is not tight due to a signi�cant overesti-

mation introduced by the complexity of the function and features of the interval

arithmetic operations (these features at the same time make them rigorous).

2. Cluster E�ect: the number of boxes in the stack that are located near the local

extrema remains almost constant for a prolonged period of algorithm execution

thus slowing down the elimination process.

The �eld of global optimization is very wide and there exist many di�erent ap-

proaches and algorithms which we do not cover in detail in this work. A detailed

survey of interval global optimization methods can be found, for example, in [56,101].
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2.2.2 Taylor Methods

E�cient Taylor model methods that solve the dependency problem were �rst de-

veloped in [125] for the problem of rigorously bounding a particularly complicated

function, which was introduced to solve a practical problem from the �eld of nonlin-

ear dynamics (normal form defect function optimization is discussed in section 4.2).

Detailed coverage of the current Taylor model methods research status, theory, im-

plementation, applications of the Taylor models, and numerous Taylor model-based

methods to solve many important problems of scienti�c computing, can be found

in [117]. Here we just outline the basic ideas behind these methods and describe their

application to veri�ed global optimization.

For the function f that is (n+ 1) times continuously partially di�erentiable on a

domain D, a Taylor model of the order n consists of the Taylor polynomial P for f ,

expanded at the point x0 ∈ D up to n-th order and a remainder error bound interval

I such that

f(x) ∈ P (x, x0) + I, ∀x ∈ D. (2.2.1)

Given the Taylor model for the function on a search domain, one could perform

naïve bounding by merely evaluating the polynomial P in interval arithmetic and then

summing results with remainder interval I. Even such a simplistic approach outper-

forms naïve interval methods or more advanced Centered Form methods applied to a

function f directly [117]. However, more sophisticated and e�cient range bounders

based on the Taylor model representation (2.2.1) were developed and implemented.

Two of them, namely the Linear Dominated Bounder (LDB) and the Quadratic Fast

Bounder (QFB), outlined in this section and covered in detail in [26, 117], form the

core of the Taylor model-based veri�ed global optimization package COSY-GO, im-

plemented in COSY In�nity [23].
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Linear Dominated Bounder

The Linear Dominated Bounder (LDB) is based on the observation that in the Taylor

model representation (2.2.1) the linear part of the Taylor polynomial P frequently

dominates model's behaviour and thus plays the main role in range bounding. This

linear part is utilized by the LDB in order to reduce the search domain that encloses

extrema. To �nd the lower bound of M, the minimum of the Taylor model (2.2.1) inD,

it performs the steps given in Figure 2.7. All re-expansion errors and point function

evaluations from step 3 are accounted for by including them into the remainder error

bound interval. Note, that even if there is no linear part in the original Taylor model,

it can often be introduced by shifting the expansion point.

1. Re-expand P at c, mid-point of D, to obtain polynomial Pm on the

centered domain D1.

2. Flip the coordinate directions to make all the linear coefficients Li of

the Pm positive so as to obtain the polynomial P+.

3. On the n-th step compute the bound of the linear (IL) and nonlinear (IN)

parts of P+ = L+N on Dn. Then, according to the rules of interval

arithmetic, the minimum is bounded by [M,Min] = IL + IN.

If possible, reduce Min using the minimum of the current cutoff value,

the function values calculated at the left endpoint and the mid-point.

4. Calculate width of the resulting range: d = width(M,Min).

a) If d < ε, desired accuracy ε is reached, stop. M is a lower bound of

the minimum.

b) Else, if Li 6= 0, the domaini containing the minimum is reduced by

setting

Dn+1,i = min(Dn,i + d/Li, Dn,i).

Perform steps 1 and 2 on Dn+1 to obtain new P+. Return to step 3

to perform (n+ 1)-st iteration.

Figure 2.7: LDB range bounding algorithm based on Taylor model (2.2.1)
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Quadratic Fast Bounder

The Quadratic Fast Bounder (QFB) is designed to work in cases where the linear

part of the Taylor model (2.2.1) is not dominant (most importantly in the vicinity

of the local minimizer) and it utilizes the quadratic part of P . Range bounding of a

quadratic polynomial on an arbitrary interval generally has exponential complexity

growth with the dimension and thus can be very expensive. However, obtaining a

lower bound of the quadratic polynomial in an isolated neighborhood of the local

minimum (which is also an important problem of global optimization) turns out to

be a much simpler task. Indeed, in such a neighborhood the Hessian of a function f is

positive de�nite, so the purely quadratic part of the Taylor model (2.2.1) has a positive

de�nite Hessian matrix H. Positive de�niteness itself can be tested in a veri�ed way

via a common LDL or extended Cholesky decomposition, as demonstrated in [26]. If

a purely quadratic part is, indeed, positive de�nite, QFB provides a lower bound of

the Taylor model rather cheaply based on the following observations.

Suppose we obtain the Taylor model (2.2.1) for the given function f on the given

domain D. Let H be the Hessian matrix of P and let it be positive de�nite. We now

represent P as

P + I = (P −Q) + I +Q (2.2.2)

and observe that then the lower bound for P + I is obtained as

l(P + I) = l(P −Q) + l(I) + l(Q). (2.2.3)

If we now choose Q such that

Q = Qx0 =
1

2
(x− x0)TH(x− x0) (2.2.4)

for any x0 ∈ D, then, since H is positive de�ned, l(Q) = 0 in (2.2.3) and is actually

attained at x = x0. By this choice of Q, the remaining polynomial (P −Q) does not
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contain purely quadratic monomials: it consists only of �rst (linear), third and higher

order terms. If we now choose x0 to be the minimizer of the quadratic part P2 of P

in D, then, by the consequence of the Kuhn-Tucker conditions, it is also a minimizer

of the remaining linear part, so the lower bound (2.2.3) is dominated by the orders

≥ 3 and is thus optimally sharp.

Hence, by choosing x0 to be su�ciently close to a minimizer of P2 in D, we can

make the contribution of P2 − Q to the lower bound (2.2.3) su�ciently small. To

determine this minimizer we can utilize the fast iterative directional minimization

method descending in the direction of −∇P2 limiting at the same time the obtained

values to remain inside D.

Validated Global Optimization Package COSY-GO

The methods described earlier, combined together, form the basis for the veri�ed

global optimization COSY-GO package for COSY In�nity . It uses a branch-and-

bound scheme to manage the list of boxes that represents the current state of the

search space. The core of the package itself consists of two global optimization meth-

ods: interval bounding and interval bounding with Centered Forms which is roughly

equivalent to the �rst order TM method (used mainly as an auxiliary tool for simple

tasks). The other, most sophisticated, e�cient and thus heavily employed method is

based on the Taylor model methods described earlier in this section [26,117,122,125].

At every step, the algorithm from Figure 2.8 is applied to each box from the list.

Then the search process either stops if the desired accuracy is achieved, or reduces

the search space volume by re-splitting it to smaller boxes and inserting them back

into a list and continues. An example output of the COSY-GO rigorous minimization

of the 2-dimensional Rosenbrock's function (see section C.4) is presented in Figure 2.9.
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It demonstrates di�erent methods COSY-GO utilized to eliminate and reduce boxes

in order to obtain a rigorous enclosure of the minimum.

1. A lower bound is obtained by applying the various available bounding

schemes sequentially in the order described below. If the obtained lower

bound is below the cutoff value, the box is eliminated, otherwise it

is bisected. Each subsequent method is applied only if the previous

one fails. The following bounding methods are used:

a) Simple interval bounding of the function f.

b) Naive Taylor model bounding based on the evaluation of the Taylor

polynomial P in interval arithmetic.

c) LDB bounding. If it fails, the LDB domain reduction is performed as

described earlier.

d) QFB bounding, if the quadratic part of the P is positive

definite.

2. The cutoff value is heuristically updated using following methods:

a) The result of the function evaluation at the midpoint of the

current box.

b) The linear and quadratic parts of P are utilized to obtain a

potential cutoff update.

Figure 2.8: COSY-GO Veri�ed Global Optimizer box processing algorithm
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# COSY-GO result for Rosenbrock: ID=0, NV=2, NO=5, GORUN=1

# Output level=3

#

# COSY-GO Computation time : 0.2002880000000001 sec

#

# Initial search volume : 9.000000000000016

# Remaining volume : 0.7655209967109666E-19

#

# Total number of steps : 119

#

# Number of boxes eliminated

# By retained lower bound : 0

# By interval lower bound : 43

# By naive TM lower bound : 0

# By LDB cutoff : 3

# By QFB cutoff : 7

# By splitting : 53

#

# Number of boxes reduced

# By LDB : 32

# By QFB : 23

# - QFB and no box splitting : 12

#

# Number of remaining boxes

# In the master list : 0

# In the local lists : 0

# Smaller than SIZE : 1

#

# SIZE= 0.1000000000000000E-05

#

# Maximum number of active boxes in the local list : 14

#

# Enclosure of the minimum

# [-0.2004168360008975E-291, 0.1112491091587934E-026]

Figure 2.9: Output of the results of the minimization of the 2D Rosenbrock's function (see section

C.4) by COSY-GO
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2.3 GATool Evolutionary Optimizer

As it was mentioned in section 2.1, Evolutionary Algorithms (EAs) are successfully

employed to solve many di�erent optimization problems of science and industry. Their

distinctive advantages include:

• relative ease of implementation,

• ability to e�ciently �nd global optima avoiding local ones even in very large

search spaces (see section 2.3.6),

• no requirements on the objective function other than the ability to calculate its

value at every point of the search space,

• good tolerance to noise (see section 2.3.5),

• ability to work even when the traditional search methods fail.

General interest in the �eld of EAs is steadily growing. Active research on the devel-

opment of EAs and their applications has produced a large number of publications;

bibliography on Evolutionary Computation as of now contains more than 4000 en-

tries on Evolutionary Computation and related areas [65]. To save space and avoid

repeating work we describe only the concepts of Evolutionary Algorithms that essen-

tial to the considered optimizer. For more detailed treatment we refer the reader to

an excellent introduction to Evolutionary Algorithms in [128].

2.3.1 Principles, Concepts and Building Blocks

A generic scheme of the Evolutionary Algorithm is presented in Figure 2.6. Because

of the EA's generality, in order to select or construct a speci�c EA for the problem or
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a class of problems, we need to make certain design decisions. Usually the EA design

process starts with selecting an appropriate representation of the possible solutions

from the search space. E�ective encoding of the solutions is the �rst and one of the

most important components of successful EA usage. For the Travelling Salesman

Problem [6], it can be a string of numbers denoting the visited cities, for the physical

device design optimization it can be an array of the control parameters in the �oating

point format.

Some algorithms make a distinction between genotypic and phenotypic represen-

tations. Genotypic representation here is an encoding of the solution that has to

be decoded to a phenotypic representation before evaluation. Typical example of

such encoding is a genotypic binary encoding of the phenotypic real-valued param-

eters that is frequently employed by Genetic Algorithms [78]. Most frequently used

representations include binary encoding, binary gray encoding, integer, real or even

standard data structures such as lists, trees, etc.

Each step of the execution, EA works with a set of the representations of the cur-

rent potential solutions called a population (P ). Individual members of the population

are called individuals :

P =
{
x1,x2, . . . ,xN

}
, (2.3.1)

where N is the population size. As the algorithm progresses with the search, the pop-

ulation changes. The population on the i-th step of the EA is called i-th generation.

The de�nition of the solution representation is, of course, meaningless without a

method to measure the performance of the represented solution. The �tness function

is used for this purpose (typically �tness is a real, non-negative number):

fitness : P 7−→ R+. (2.3.2)
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The �tness function serves as the main connection between the objective function

and the Evolutionary Algorithm. Its main purpose is to rank individuals according

to the optimization goals. Hence it is constructed such that the individuals that are

better in terms of the underlying optimization problem have higher �tnesses than

the ones that are worse. Typically the �tness is calculated from the value of the

objective function via a process called �tness scaling. This process can, for example,

convert the function values obtained during the minimization process where smaller

values correspond to better solutions, to �tnesses in [0, 1] such that a larger �tness

corresponds to a better individual:

fitness(x) = fitness
(
f(x)

)
, x ∈ P. (2.3.3)

Fitness scaling plays an important role in a successful EA application. It can be used

to increase or decrease the evolutionary pressure by in�uencing the selection methods

(especially the proportional selection described later in this section) increasing or

decreasing the di�erence in �tness between the members of the population that have

di�erent objective function values.

In order to progress in the evolutionary search the selection and reproduction

processes must also be designed. The selection process selects individuals for repro-

duction with a probability that is related to their �tnesses. If we want the evolution to

progress, we must select better individuals more often. One class of selection methods

is called proportional selection. It includes roulette, stochastic remainder, universal

stochastic, deterministic sampling and other methods where individuals are selected

with a probability that is directly proportional to their �tness. Another class of meth-

ods includes tournament selection where a series of the tournaments among the �xed

size (two or more) samplings of the individuals of from the population is held. The

�tnesses of all the tournament participants are compared in order to determine the
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�ttest one that is the winner. The important problem here is to choose and tune the

selection method so that it exerts an optimal amount of evolutionary pressure in order

to keep the population diverse and avoid premature convergence of the algorithm on

the one hand but, on the other hand, not to suppress the convergence at all and keep

it at a reasonable level.

During the reproduction phase, the next generation is produced from the current

one and the results of the selection phase. Two evolutionary operators usually em-

ployed for reproduction are mutation, which produces a new individual (mutant) via

modi�cation of the single selected individual, and crossover, which uses two or more

individuals (parents) to produce a new individual (child). These two operators are

typically connected with two main processes of the EA search procedure: exploration

and exploitation. The �rst of them is a search of the potentially interesting zones

of the search space, i.e. zones where the location of the optima is suspected. The

second is an examination of these zones in order to �nd the optima. Mutation is

usually responsible for the exploration while crossover is driving the exploitation.

An important concept that in�uences reproduction is elitism. It is an operator

employed by the EA algorithm to preserve a certain number of the best members of the

current population and transfer them to the next population intact, without mutation

or crossover (though they also participate in the selection and can be selected to

produce both mutants and children). Elitism guarantees that the best found value

of the next generation is not worse than the best found value of the current one and

thus is very important for steady convergence. Care must be taken, however, to keep

the number of elite members relatively small in order to allow an EA to explore the

search space even when some very good potential solutions have already been found

and thus to avoid the convergence to a local optimum. Under additional assumption
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about the run time being in�nite (or a maximum number of generations, depending on

the selected stopping criteria) the convergence to the global optimum can be proven

for the Evolutionary Strategies that are a type of EAs [161].

To start the search we also need a method to generate the initial population

(typically by generating random samples uniformly over the whole search space),

stopping criteria (typical criteria include maximum number of generations, maximum

number of stall generations and maximum run time) and the algorithm parameters

(population size N , tolerances mutation and crossover rates, number of elite members,

etc.). Only when the design process is completed can the algorithm be used.

Here we should note that despite all their attractive features, Evolutionary Algo-

rithms also have certain weaknesses and complications:

• it is possible to choose a �right� representation but �wrong� genetic operators

or to set method parameters to non-optimal values, which results in degraded

performance in both speed and quality,

• extensive �ne-tuning via trial-and-error and intuition might be required to tune

the method for reasonable performance on speci�c problems,

• no complete theoretical methods to unambiguously select or design the Evolu-

tionary Algorithm for the problem are developed up to date.

2.3.2 Design and Implementation

The algorithm we implemented uses the best features of Evolutionary Strategies (ES),

Genetic Algorithms (GA) and Di�erential Evolution (DE). We named the algorithm

and its implementation in COSY In�nity system GATool because it most closely re-

sembles the logic of GA (while it is de�nitely not a classic GA). It is worth noting that
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the widely popular Matlab scienti�c computations package [139] includes Genetic Al-

gorithms Toolbox that provides a very similar algorithm in its standard distribution.

This helps demonstrate that this algorithm is, indeed, well-tested and proven to be

e�cient.

From Evolutionary Strategies we adopted the representation of a potential solution

as a vector of real numbers, i.e. a vector of problem arguments:

x =
(
x1, x2, . . . , xv

)T
. (2.3.4)

Then the population members are:

xi =
(
xi1, xi2, . . . , xiv

)T
, i = 1, . . . , N

and

f =
(
f(x1), f(x2), . . . , f(xN )

)T
=
(
f1, f2, . . . , fN

)T (2.3.5)

is a vector containing function evaluations for the members of the population and f

and f denote the minimum and maximum function values of the population members

correspondingly. Noting the success of the ES and DE (see references in section

2.1) both using such a representation, we suggest that it is more adequate for the

optimization of the problems with real-valued parameters than the binary encoding

frequently used in GAs. Note that this representation is phenotypic, i.e. a member

of the population does not need to be decoded in order to be evaluated.

Since we implemented the algorithm for the minimization of real-valued functions,

�tness scaling mapping had to satisfy two requirements:

• smaller function values mapped to larger real �tness values and

• resulting �tness is non-negative for all function values.
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For convenience, after the function values are mapped to �tnesses they are normalized

to be in the [0, 1] range. Several �tness scaling functions are currently used:

• Linear:

fitness(xi) = fitnessi = f − fi ≥ 0 (2.3.6)

• Proportional: �rst the following transformation

fitnessi =

(
f + f

2
− fi

)
, (2.3.7)

which e�ectively rotates the function values around the center of the function

values range, is applied. Then, if f < 0, it is added to the resulting �tness to

make it non-negative.

• Rank: function values are sorted in ascending order and then the �tness is

assigned to individuals according to the indices of their �tnesses in the resulting

array. Practically, the square root of the inverse of the index has demonstrated

itself as an e�cient formula. This technique ensures that the best members

(with smaller indices) are further apart than the worst members (with larger

indices). Hence the evolutionary competition between best members is stronger.

From these �tness scaling methods, rank scaling has demonstrated itself as the most

e�cient. Note that albeit being most computationally expensive of the implemented

methods, it is also the most numerically stable since it does not involve the operation

of subtraction which can lead to a cancellation e�ect and thus to the loss of accuracy

if the function values are close to machine precision.

The initial population in EAs is generated by producing uniformly random points

from the initial box (the most common method). Here we assume that the search
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domain is given as a v-dimensional box:

S = [a1, b1]× [a2, b2]× . . .× [av, bv]. (2.3.8)

GATool makes a distinction between the global search box and initial box, which is

usually (but not necessarily) contained within the global box or is equal to it. As

it was mentioned, the initial box is utilized to generate the initial population, while

the global box is employed to control the population for the presence of the outside

members. If the elimination mode is on (by default), all members of the population

that are initially generated or produced during the search outside of the global box,

are killed and then regenerated in the initial box. This strategy can be easily extended

on a collections of boxes, both local and global. It can be used if we want to direct

the search to certain zones of the search domain and is particularly important for the

COSY-GO rigorous optimization package interaction (see section 2.3.6).

The initial population can also be seeded, i.e. initialized with prede�ned members.

For example, if we have reasons to suspect certain zones of the search space for the lo-

cation of the minima, we might want to pre-generate some members of the population

located there in order to direct the search process. In most cases, however, seeding

is not recommended because additional pressure can decrease GATool's chances to

�nd a global minima and in the worst case trap GATool in the local minima. It

must also be noted that a search space that does not enclose the sought minima with

enough tightness can produce similar e�ects since the uniformly randomly generated

initial population can be too sparsely distributed over the search space and thus be

to distant from the minima for a successful search.

The process of selection of individuals for reproduction is also of great importance
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for the algorithm's e�ciency. For ease of notation we denote by

ξ = rand〈a, b〉, (2.3.9)

where �〈� is either [ or (; �〉� is either ] or ), a uniformly distributed random number

from the corresponding interval: ξ ∈ 〈a, b〉. For example ξ = rand[a, b) denotes

a uniformly distributed random number ξ from [a, b). We denote the number of

members we need to select as Nselect. The following frequently used methods of

selection are used b GATool:

• Roulette Wheel: suppose

Sk =
k∑
i=1

fitnessi, k = 1, . . . , N, (2.3.10)

S0 = 0 and t = rand[0, SN ]. Then the index ξ such that

Sξ−1 < t < Sξ

denotes the member selected by a random turn of the roulette wheel. Note that

here

Sk − Sk−1 = fitnessk,

i.e. sizes of the sectors of the wheel are equal to the �tnesses of the correspond-

ing members. Thus members with larger �tnesses have higher chances to be

selected. The procedure is repeated Nselect times.

• Stochastic Uniform: suppose partial sums of �tnesses are de�ned as in the

Roulette Wheel selection method (2.3.10). Let h be a selection step:

h =
SN

Nselect
.

Let t1 = rand[0, h] and

tj = t1 + (j − 1)h, j = 2, . . . , Nselect.
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Then

tj ∈ [0, SN ], j = 1, . . . , Nselect

and we select Nselect indices ξj of the population members by choosing those

that satisfy the relation

Sξj−1 < tj < Sξj , j = 1, . . . , Nselect.

• Tournament: suppose T is a number of the members participating in a tour-

nament. We randomly select T members of the population with equivalent

probability for each member to be selected. Suppose the indices of the chosen

members form the set I. Then the index of the member that is a result of the

tournament selection is determined as

ξ = arg max
i∈I
{fitnessi}.

The procedure is repeated Nselect times.

From these selection methods Stochastic Uniform stood out as the most e�cient and

robust in practice. Elite members are selected as the Nelite members of the population

with the largest �tnesses. Members needed for the evolutionary operators in order to

produce the next generation are selected by the chosen selection method. It must be

noted that one member of the population can be selected several times.

The next population is produced during the reproduction phase on the basis of

the current one and the results of the selection. Elite transfer and two evolutionary

operators � mutation and crossover � are employed. While elite transfer is a simple

process of copying the best individuals from the current population to the next one

(evolution of neutrality, preservation of already found results), mutation (variability,

innovation, exploration) and crossover (ancestry, information exchange, exploitation)
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are more advanced. The number of members of the next generation generated by each

of these methods is determined by two parameters: mutation rate and the number

of elite members. Mutation rate is a number in the [0, 1] range that determines the

percentage of the next population that is generated by mutation. The number of the

elite members or elite rate determines the number or percentage of elite members

transferred to the next population. The remaining members of the next population

are generated by the crossover. Hence the next generation completely replaces the

current one with the exception of elite members.

There are two types of mutation used:

• Uniform: usually employed by classic GAs [78], it involves random change

in one or several genes that occurs with a certain probability. For classic GAs

operating on binary codes, it involves �ipping the bit value or several bit values.

In our case for every member xi selected for mutation for each coordinate xij ,

j = 1, . . . , v, the random number ξij = rand[0, 1] is generated. If it is less or

equal to the prede�ned coordinate mutation rate pc ∈ [0, 1], the coordinate is

replaced with the random value of this coordinate from the search domain:

xij,m = rand[aj , bj ].

Since the distribution of ξij is uniform, the coordinate mutation rate is also a

probability for exactly one coordinate of the member scheduled for mutation

to change. Hence the case of pc = 0 corresponds to no mutations at all while

the case of pc = 1 corresponds to a mandatory mutation in every coordinate

of every member selected for mutation. Frequently the value of pc = 1/v is

used so that on average only one coordinate is changed per the mutation of

the member. From probability theory we know that the probability of the
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combination of the independent events (replacement of the certain coordinate)

is equal to the product of the probabilities of the mutations of the individual

events (replacement of the several coordinates). Since usually pc is chosen such

that pc � 1 and it is shared between all coordinates, the probability for several

coordinates of one member to mutate is rapidly decreasing as the coordinate

mutation rate raised to the power of the number of coordinates. This also means

that the probability for the mutant of any point from S to be any other point

from S (i.e. the probability of transition between any two pairs of points in S

during the search) is positive if pc is positive (even if it is very small). This, in

turn, means that any point of the search space has a certain probability to be

considered during optimization, which is important to ensure that the search

for the optimum is global (in the search space). The example of the uniform

mutation is demonstrated in Figure 2.10. Here x is the population member

selected for mutation, xm,1 (the ones on the dashed lines) are the mutants

with only one coordinate changed, xm,2 are the mutants with two coordinates

changed. Here for every x scheduled for mutation, the probability of mutating

to any of the xx,1 is pc while the probability of mutating to any of the xx,2 is

p2
c ≤ pc.

• Gaussian: usually employed by the ESs [161]. In this type of mutation a di�er-

ence vector is added to each member selected for mutation in order to produce a

mutant member of the new generation. Each coordinate of the di�erence vector

is generated as a random number from the Gaussian distribution with the mean

of 0 and a standard deviation equal to half the length of the corresponding range
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of the search domain S:

N(µ, σ2) = N

(
0,
bj − aj

2

)
.

Due to the properties of the Gaussian distribution this means that even though

all coordinates are changed for every mutant, most changes in coordinates are

small compared to a search range for the corresponding coordinate. We note

that in this case the result of the mutation is not guaranteed to remain in S

hence additional suppression of these cases might be needed if such requirement

is imposed. In our case we do not perform this check since the outside members

can still be a valuable source of information about the search space and they

will transfer this information during the recombination phase. We also added an

option for this mutation type to be adaptive by de�ning the shrinking schedule

for the standard deviation:

σ2 = σ2(g) =

(
1− α g

gmax

)
, (2.3.11)

where g is a generation number, gmax is the maximum allowed number of gen-

erations and α is the shrinking factor (typically in the [0, 1] range). Of course,

adaptive parameters are de�ned only if the maximum allowed number of gener-

ations is set. The mutant produced by the Gaussian mutation can be any point

of the search space (even outside of it) with the probability that is decreasing

with the growth of the distance from the mutated point. Due to the form of the

Gaussian distribution there is a positive probability for any point in the search

space S to be generated by the mutation of this type.

Practical experience shows that there is no universally best mutation type and that

di�erent problems bene�t from di�erent approaches. Some problems might perform
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better with both types working simultaneously. For Gaussian mutation with adap-

tation, the shrinking factor must be chosen carefully to allow enough time for ex-

ploration in the beginning of the search by generating large jumps but to, allow the

algorithm to converge at the end of the search by producing relatively small deviations

in the neighborhood of the potential result location.

Figure 2.10: Uniform mutation example: x is a member scheduled for mutation, xm,1 are some of

the possible one-coordinate mutants (all such mutants are located on one of the two dashed lines),

xm,2 are some of the possible two-coordinate mutants (can be anywhere in S)

The process of the generation of new, untested solutions is essential for the success

of the method. But the process of the exchange of the information about already

explored points of the search space is also an integral part of the algorithm. The

evolutionary operator of crossover is designed to perform this task. A usual crossover

method employed by GAs is the Uniform Crossover (also called n-point Crossover).

The child is produced from the two selected parents and the process starts from

randomly generating n (typically 1 or 2) di�erent random integers from [1, v] to serve

as the crossover points. These points divide the member vector into (n + 1) zones.

For each of these zones the contributing parent is selected randomly or by some other
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means. Then the genes in each such zone are copied from the contributing parent

into the corresponding zone of the child. Therefore the child have a chance to share

a part of its genes with one parent and another part with another. The number of

points in n-point crossover determines how parents' genes are being mixed in a child.

Despite the success of this crossover method used in a variety of the di�erent EAs

we decided to use another crossover method, which could be viewed as a very simple

form of the line search method of the classic continuous optimization methods (step

3, Figure 2.1). This method is usually called Arithmetic or Continuous Crossover.

Suppose two parents are selected for crossover: xp,1 and xp,2. We compare their

�tnesses to determine the better �t and the worse �t parents and relabel them as xp,b

and xp,w, correspondingly. Then their child is generated by the following formula:

xc = xp,w + β(xp,b − xp,w), (2.3.12)

where β is a scaling factor. It can be shared between all coordinates or selected

individually for each coordinate (then the formula (2.3.12) is applied coordinate-

wise). Since all parents are selected independently, the situation when one population

member is chosen for the role of both parents can occur. Particularly often this

happens when the population size is small. From (2.3.12) it follows that in such

a case the child duplicates this member, which leads to a stagnation of the search

process. We implemented a process of the suppression of such situations: in case

it occurs, another parent may be re-selected until di�erent parent is chosen or the

budgeted number of trials is exhausted.

From (2.3.12) it can be seen that the child is generated on the line connecting two

parents and the scaling factor β (typically β ∈ (0, 2]) determines its location on this

line relative to the better and worse parents. If β < 0.5 then the child is generated

closer to the worse parent, if 0.5 < β < 1, then the child is generated closer to the
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better parent, between parents, if β > 1, then the child is generated closer to the

better parent, outside the segment of line between parents and the case of β = 0.5

corresponds to the intermediate crossover when the child is generated in the middle

of this segment (in this case, parents' �tness values are e�ectively ignored). Examples

of the di�erent crossover children can be seen in Figure 2.11.

Equivalent notes can be made for per-coordinate scale factors, only coordinate-

wise, with the line replaced by a box with parents occupying opposite vertices of its

main diagonal (see examples in Figure 2.12). In this case, it is possible, for example, to

generate a child that is closer to the worse parent in the �rst coordinate but closer to

the better parent in the second coordinate, or with all coordinates closer to the better

parent's coordinates but each one with its own scale. This feature can be useful for

the �ne adjustment of the algorithm to a problem, if an additional knowledge about

its landscape is available.

Since this type of crossover for β > 0.5 introduces additional pressure to converge

(although in practice it does work better) additional randomization can be added

to preserve the diversity of the population and avoid the stagnation of the search

process:

xc = xp,w + rand(0, 1) · β(xp,b − xp,w). (2.3.13)

Random multiplier can be generated once for a member or generated anew for each

coordinate. Values of β ∈ [0.75, 0.85] have demonstrated a reliable performance in

most practical cases.

It is interesting to note that for the DE optimization approach a very similar

method is employed to perform the di�erential mutation which is an essential feature

of the algorithm (there the crossover is of the n-point type). The di�erence is that in

classic DE all three vectors in the right hand side of (2.3.12) are di�erent.
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Figure 2.11: Continuous Crossover examples for the common scaling factor β. Points xp,b and

xp,w are the parents with the better and worse �tnesses, correspondingly; xc,i for various i are the

children generated with di�erent values of the scaling factor: i = 1 corresponds to β ∈ (0.5, 1), i = 2
corresponds to β > 1, i = 3 corresponds to β = 0.5 (intermediate crossover, values of the �tnesses

neglected)

Figure 2.12: Continuous Crossover examples for the per-coordinate scaling factors βi. Points xp,b

and xp,w are the parents with the better and worse �tnesses, correspondingly; xc,i for various i are

the children generated with di�erent values of the scaling factor for di�erent coordinates. Here the

dotted rectangle contains all the children generated with 0 < βi < 1, i = 1, . . . , v
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2.3.3 Statistics, Diversity and Convergence

Several types of statistics are gathered during the search process. Some of them are

used to determine if the stopping condition is met and some provide various measures

of the algorithm's performance. One important performance characteristic of any EA

is its ability to maintain a diversity in the population in order to avoid the convergence

to a local minimum. The population is considered diverse if it contains members from

di�erent parts of the search space and therefore corresponds to di�erent objective

function values. Of course the range of the objective function values ∆f = f − f

depends on the objective function landscape as well as on the search space. But if

we have a way to estimate this range on the whole search domain (for example by

applying interval arithmetic, see section 2.2), we can use the ratio of the range of

function values of the population members to this estimated range as a measure of

diversity.

It must be noted, however, that ∆f alone is not a good estimate of population

diversity. Consider, for example, a population of (N − 1) equal members where

only one of them lies very far apart and has a signi�cantly di�erent function value.

This population is obviously not diverse yet ∆f is large. Instead, another measure

of diversity, average distance between the members of the population, should be

considered. In our case the distance is Euclidean; for GAs with binary encoding it is

Hamming. Since the population can have a large number of members (especially for

high-dimensional problems) only a rough estimate of this distance is calculated by

sampling 5�10% of the population. Note, however, that there is no information about

the �right� amount of the diversity, only experimental observations are available.

However, we are not interested in keeping diversity at all cost all the time. To-

wards the end of the search we want an optimizer to converge at the sought result.
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Convergence here means that the diversity drops down and the search process stalls,

i.e. the improvement achieved by a next generation remains less than the required

tolerance. Therefore we actually want the diversity to decrease but we do not want

it to decrease prematurely in order to keep the balance between the exploration of

the search space and the exploitation of the potentially interesting zones. Achieving

the balance between the fast but possibly, premature convergence and slow but more

robust performance is a matter of GATool parameters settings, particularly those of

the selection and reproduction. The minimum, average and maximum function values

in the current population and their change from generation to generation measure the

performance of the search. If the minimum is known, the distance to a minimum both

in the search space and in the space of the objective function values can also be used

(see section 2.3.6).

An example of the values of these performance characteristics and their behaviour

during the search is demonstrated in Figure 2.13. These results are gathered during

one run of the GATool on the 10-dimensional Sphere function test problem (see section

C.1). Even though GATool is a stochastic search method and thus the results of

the di�erent runs are di�erent if the random number generator generates di�erent

random numbers, the qualitative picture generally remains the same. Two stages of

the search process can be clearly recognized. The �rst stage, which typically takes

1�20 generations, is exploration, i.e. the search for the zones of interest. It can

be observed on the graphs of the statistics from Figure 2.13 as relatively fast in

the beginning, slowing towards the end improvement of the minimum, average and

maximum function values, as well as the average distance between the members of

the population. After the exploration is done, exploitation performs its job of �nding

the minimum in the zones of interest (typically one zone) found during exploration.
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This can be noticed for all statistics as the relatively slow change of the minimum

function value while other statistics randomly oscillate aroun an equilibrium state.

Now that we have considered all the building block of the algorithm, in order to

be able to start the search, we must de�ne the stopping criteria. We implemented 4

stopping criteria commonly used by EAs:

• Maximum stall generations: maximum allowed number of stall generations, i.e.

generations with the improvement to the obtained minimum function remains

less than the desired tolerance. Usually it means that the search converged.

• Desired objective function value: useful for design optimization when we know

we will be satis�ed and will not need further search if the values of the param-

eters that produce the desired value of the objective function are found. If the

algorithm preserves the best found values by elitism, this criteria can be less

useful since the smaller values of the objective function that can still be found

even after the desired value is reached are usually more preferable.

• Maximum total generations: maximum allowed number of generations, gmax.

• Maximum run time: maximum CPU time allowed to be used by a search pro-

cess.

By default GATool uses the maximum number of stall generations and maximum

total number of generations stopping criteria.

2.3.4 Summary, Notes on Performance and Parallelization

The GATool search algorithm is demonstrated in Figure 2.14, technical details of

its implementation in COSY In�nity [23], user interface and default values of the
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parameters are described in Appendix B. Performance of the method on standard test

problems is assessed in section 2.3.6, on real-life problems from Accelerator Physics

� in sections 4.2, 4.1, 4.3, noisy data handling methods are discussed in section

2.3.5, and constrained optimization in pair with the proposed REPA repair algorithm

is examined in section 3.3. Results of several example runs on the 10-dimensional

Rastrigin function problem (see section C.2) performed with di�erent GATool settings

are summarized in Table 2.1. Even though the results obtained from di�erent runs

would be di�erent, it can be seen that the results of the optimization highly depend

on the choice of parameters.

Since the EAs are heuristic in many ways and since most of their parameters

are interdependent in a non-trivial way, a rigorous analysis of the method is too

complex and not available for the general case. Rather the statistical approach to

performance evaluation on the various test problems is adopted. However, as it is

discussed in section 2.1.4, good performance of the algorithm on the arbitrary large

class of the optimization problems does not guarantee good performance on problems

that do not belong to this class. Therefore we suggest considering these tests only as

an estimate of the algorithm's behaviour and always performing tests on the problems

that are to be studied by any EA including GATool.

Table 2.1: Results of one run of GATool on the 10-dimensional Rastrigin function problem (see

section C.2) performed with di�erent GATool settings. The values of the parameters that are di�erent

from the default ones (see Figure B.1) are given in boldface

Scaling Elite Mutation Crossover Result Time

Rank 10 Unif(0.1) Heur(0.8, 1) 0.593E-02 0h 4m 30s

Rank 10 Unif(0.01) Heur(0.8, 1) 0.196 0h 4m 27s

Rank 10 Gauss(1, 1) Heur(0.8, 1) 3.082 0h 4m 25s

Rank 10 Unif(0.01) Heur(0.8, 0) 0.100E-01 0h 4m 43s

Rank 0 Unif(0.1) Heur(0.8, 1) 0.125E-03 0h 4m 29s

Linear 0 Unif(0.1) Heur(0.8, 1) 7.4327 0h 4m 1s

Note that, in principle, GATool can be parallelized almost trivially. If the objective
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Randomly generate initial population, set predefined members, if any

Calculate objective function values, scale to fitnesses

Update statistics

While any of the stop conditions is not satisfied do

Perform Roulette Wheel/Stochastic Uniform/Tournament Selection

Generate next population

Produce mutants by Uniform/Gaussian Mutation

Produce children by Continuous Crossover

Copy elite members

Replace old population with a newly generated one

Calculate objective function values, scale to fitnesses

Update statistics

End while

Figure 2.14: GATool search algorithm

function evaluation is expensive relative to the GATool's computational expenses, it

can be distributed over several (several hundreds or thousands) computers, evaluated

there in parallel and then gathered and passed back to the GATool running sequen-

tially for processing. This can be done with no extra e�ort using the PLOOP �parallel

loop� construct that was recently added to COSY In�nity [103, 104]. In cases where

a large population is needed or any other purpose, the algorithm itself can be paral-

lelized by using a co-evolutionary model where several populations co-evolve together

starting from di�erent initial populations, possibly using di�erent algorithm param-

eter values. Each of these populations can be evolved on a separate machine. After

certain number of generations (or in prede�ned time quants) a transfer of members

between these populations is performed in order to exchange the obtained informa-

tion. This model of the parallel EA execution is frequently called the Island Model,

and the process of exchange, the Migration Operator.

Also it should be noted that GATool is a modular algorithm, i.e. it allows easy
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modi�cation or substitution of its operators. Other types of selection, mutation,

crossover, initial population generation and stopping criteria can be added if deemed

necessary. Another important note is that GATool is a very general-purpose optimizer

with almost no requirements imposed on the considered problem. In fact, the only

requirement is the ability to evaluate an objective function value at any point in search

space. However, because of this generality, if there exists a method of optimization

that is specialized for a particular class of problems and it uses the extra information

about this class, then it is likely to outperform than GATool. On the other hand,

even in this case it can still be advantageous to build a hybrid algorithm (see section

2.3.6) or at least use GATool to cheaply explore the search space and generate some

good starting points for the specialized method.

2.3.5 Noisy Data Handling

All physical devices operate with errors: they could not be manufactured exactly as

designed without construction errors and the operational information coming from

various detectors contain noise and due to imperfections and limited precision. Here

we discuss how such problems can be treated with GATool.

We consider two classes of problems both containing noise in the function values:

• Static: the function values contain errors but these errors remain constant across

function evaluations:

f(x) = ftrue(x) + ∆f(x), ∀x.

• Dynamic: the function values contain errors that change every time the function

is evaluated:

f(x) = ftrue(x) + rand(−∆f(x),+∆f(x)),
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where rand is a random number whose distribution is determined by the con-

sidered problem. For simplicity, in this section we consider only uniformly

distributed random numbers.

First we consider static noise problems. Since the noise in the function values is

usually several orders smaller than the function range, for this class of the problems we

can use the same GATool parameter values that we would utilize for the undisturbed

function values, possibly averaging results to decrease the contribution of noise. Of

course, if the function range is of the same order as the noise itself, then its presence

signi�cantly changes the properties of the function and the true value of the minimum

is unlikely to be recovered.

Many test functions in Appendix C can be viewed as a sum of the �main function�

that determines the large-scale behaviour, main properties and a global minimum, and

a �noise function� that adds oscillatory behaviour of a smaller scale, thus introducing

many local extrema and making optimization harder. Consider, for example, the

Sphere function (see section C.1):

f(x) =
n∑
i=1

x2
i

and the Rastrigin function (see section C.2):

f(x) = 10n+
n∑
i=1

(
x2
i − 10 cos(2πxi)

)
.

The �main function� here is a Sphere function and the �noise function� is

10n+
n∑
i=1

(−10 cos(2πxi)) .

Both Sphere and Rastrigin's functions have the same global minimum: f(0) = 0,

x∗ = 0.
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We ran GATool on both test problems in 5 dimensions 100 times using a default set

of parameters (see Figure B.1), population size = 10*dimension = 50. The statistical

distributions of the solutions by the neighborhoods of the known global minima is

presented for both functions in Figure 2.15. The average run time for the Sphere

function is 4.09 seconds, for Rastrigin function � 5.22 seconds; quality reduction is

clearly noticeable. However, if we increase the population size to 20*dimension =

100 and repeat the simulation, we can bring the quality back (see Figure 2.16), i.e.

compensate for the noise at the cose of an increased average runtime increased of

11.92 seconds. Hence, our recommendation for noisy problems with the static noise

is to increase the population size and the maximum number of generations allowed

to retain the quality at the expense of an increased run time.

(a) Sphere (b) Rastrigin

Figure 2.15: Distribution of the results of 100 runs of GATool on the 5-dimensional Sphere (left)

and Rastrigin (right) test function problems (see Appendix C) with the default set of parameters (see

Figure B.1), population size = 10*dimension, by the ε neighborhoods of the global minimum.

Dynamic noise in the function values can occur, for example, in the problem of

on-line optimization of the control parameters of some complicated physical system:

a car autopilot, a self-tuning nuclear reactor or particle accelerator. Here the primary

source of the noise is the limited accuracy of the physical measurements. Here our

population members are vectors that store sets of control parameters. The objective
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Figure 2.16: Distribution of the results of 100 runs of the GATool on the 5-dimensional Rastrigin

(right) test function problem (see Appendix C) with the default set of parameters (see Figure B.1),

population size = 20*dimension, by the ε neighborhoods of the global minimum.

function is evaluated by taking measurements of the performance from detectors.

Di�erent measurements performed with the same set of control parameters will most

likely return di�erent values of the objective function, so the noise is indeed dynamic.

The main problem here is that the mechanism of the elite members that preserves

the best values found to this step and assures convergence does not work since func-

tion values change between generations and the best members might not remain best

after re-evaluation. This e�ect does not let the method converge which can be seen in

Figure 2.17. Here we use the sum of the coordinate-wise di�erences of the best found

minimizer with the true one instead of their squares or modules in order to demon-

strate that the current minimizer's position relative to the true minimum is changing

not just the distance. Note that for the problem without noise, the method converged

in the 52-nd generation, while for the noisy problem it reached the maximum number

of generations oscillating around the true minimizer without convergence.

The approach recommended earlier for the static problem (increased population

size and/or maximum number of generations in evolution) can also be utilized in this

case. Another alternative is to use the mean value of the population's best member
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(a) No noise (b) Dynamic noise

Figure 2.17: GATool's performance in the 5-dimensional Sphere function problem (see section

C.1), population size 50, default set of parameters (see Figure B.1), without noise (left) and with

the dynamic noise in the range [−1, 1] (right). Generation number versus
∑v

i=1(x∗i − xi,true), where
x∗ is the best minimizer found by GATool and xtrue is the true global minimizer (in this case 0), is
plotted.

averaged over generations as suggested in [102]:

x∗ = x∗ =
1

g2 − g1 + 1

g2∑
i=g1

x∗i , 1 ≤ g1 ≤ g2 ≤ gmax. (2.3.14)

As can be seen in Figure 2.17, the best value obtained by GATool oscillates around the

true minimum. Hence, by running GATool for a su�cient number of generations and

skipping several initial ones (typically g1 = 5 . . . 20) where the method is searching

for the area of interest and then averaging the best obtained minimizer using (2.3.14),

we can reduce the e�ect of noise. Note that the noise distribution must be taken into

account when averaging. In our case we used a uniform noise distribution, hence we

employ the simple arithmetic mean.

Minimizing the 5-dimensional Sphere function problem with the true minimizer 0

(see section C.1) by GATool with the default set of parameters (see Figure B.1), pop-

ulation size = 10*dimension= 50 and the uniform dynamic noise in the range [−1, 1]

with a di�erent maximum number of generations we obtain the results summarized in

Table 2.2. While GATool's stochastic nature and the fact that noise is dynamic make
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Table 2.2: Euclidean distance from the true minimizer to the current best found objective function

value and the objective function value averaged by formula (2.3.14) with g1 = 5, for the 5-dimensional
Sphere test problem (true minimizer 0 see section C.1) minimized with GATool with the default set

of parameters (see Figure B.1), population size = 10*dimension= 50 and dynamic noise in the range

[−1, 1]

Generation
Distance to minimizer

current averaged

100 0.18567 0.22973

200 0.17075 0.31166

500 0.13479 0.07508

1000 0.21228 0.06281

the results run-dependent, we can repeat these simulations to statistically observe

that the averaged value of the minimizer indeed gets better with an increase in the

number of generations GATool is allowed to run. It should be noted, however, that

if the noise is dynamic but its level is of the same order as the required precision, the

number of generations where the positive e�ect of the averaging starts to show up

can get very large.

2.3.6 Studies on Integration with COSY-GO Rigorous Global

Optimizer

The COSY-GO veri�ed global optimizer is based on the box processing algorithm

described in section 2.2.2. In the second step of the algorithm (see Figure 2.8), it

employs various heuristics in order to update the current cuto� value, which is the

best rigorous upper bound for a minimum. This value is then used in the �rst step to

help trimming branches of the search tree when they are evaluated to lie above the

cuto� in the objective function range space. The better the cuto�, the more boxes

can be eliminated from the relatively expensive processing performed by COSY-GO

to maintain the rigor. Thus the overall execution time is also getting better. In the

current version, the heuristics used for this purpose are an evaluation of the function
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value at the middle of each box, a gradient line search, and a representation of the

function as a convex quadratic form to update the cuto� value [26].

For small-dimensional problems, even such a naïve approach works �ne but for

larger problems where days of computational time on thousands of CPUs are needed

to �nish the search, it can be bene�cial to use a better heuristic algorithm. While

there exists a plethora of heuristic optimization methods (see section 2.1), we claim

that GATool is particularly suitable for this purpose since it is fast, robust, multi-

purpose and tolerant to noise (see sections 2.3, 2.3.5, 4.2, 4.1, 4.3). We should note,

however, that while generally EAs are capable of �nding good estimates of extrema

even for very complicated functions, they are not guaranteed to succeed and may

require extensive �ne-tuning to the problem in order to achieve good results.

In this section we describe the problems that rigorous optimization with COSY-

GO is dealing with as the dimension of the problem increases and discuss how the

GATool optimization method can be utilized to reduce their negative impact. We

also demonstrate some example simulations and overview some ideas on the optimal

choice of GATool parameters in order to obtain a good balance between computation

time and the quality of the result.

In order to rigorously bound the optimum, COSY-GO represents the current

search space as a list of boxes and employs Taylor model methods [4] to eliminate or

split them, e�ectively reducing the search space volume. The package was e�ciently

applied to rigorous global minimization of the well-known test problems for the global

optimizers [26,117,122] as well as to solve some real life problems such as spacecraft

trajectory optimization [11] and normal form defect function optimization [26,103]. A

collection of the boxes generated during the 2-dimensional Rosenbrock's test problem

(see section C.4) minimization and the spacecraft trajectory optimization are shown

95



in Figures 2.23 and 2.18, correspondingly (courtesy of Roberto Armellin). Perfor-

mance of the COSY-GO on some of the test problems listed in Appendix C with

increasing dimensionality is summarized in Table 2.3.

Figure 2.18: Global optimization of the spacecraft trajectories: pruned search space in the epoch/e-

poch plane (courtesy of Roberto Armellin) [11])

It should be noted that even for such a small sampling of the test problems,

some of the results demonstrate a visible correlation between the dimension and the

minimization time. Some problems scale well with dimension (An), i.e. the time

required to �nd the minimum does not grow as the dimensionality increases, some

scale not so well (CosExp), and some scale poorly (Paviani, SinSin). Note that for the

An function, computation time is very small and is dominated by the input/output
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time rather than by actual numerical computations.

Generally, we cannot expect problems to scale well with dimension. Only when

they have some special properties and symmetries are such expectations justi�ed.

There are several reasons for that. First, as the dimensionality of the problem in-

creases, so does the volume of the search space. Suppose, for simplicity, that our

search space is a v-dimensional cube with the length of one side equal to d. Then its

volume is given by

V = dv. (2.3.15)

so the volume of the space searched for the extrema grows exponentially (see Figure

2.19(a)). Note that if 0 < d < 1 then the search space volume actually decreases

with the dimension, which is the case for the An test function from Table 2.3. As

the volume increases, in general the number of the boxes that COSY-GO needs to

eliminate to enclose the minima with the desired accuracy increases. The number of

local minima that should be reviewed and rejected in order to �nd the global one, can

grow exponentially as well (as it does for most test problems from Appendix C). Hence

the complexity of global optimization generally grows exponentially with dimension.

Note, that for the local optimizers, complexity often grows polynomially [26].

Another problem, directly connected to the Taylor methods used by COSY-GO,

is that the number of monomials in the Taylor expansion of the function grows with

the dimension:

M =
(n+ v)!

n!v!
. (2.3.16)

Here v is the number of variables (dimension) and n is the order of the expansion

(NO in Table 2.3). The graph of the number of monomials against the dimensions

obtained for di�erent Taylor expansion orders is shown in Figure 2.19(b). As the

number of monomials increases, so does the evaluation time for P from the Taylor
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model representation (2.2.1). Since in high-order multi-dimensional Taylor models,

many higher-order monomials are frequently zero, an e�cient technique to handle

this sparsity helps to reduce the impact of this factor. Such a technique is e�ciently

implemented in COSY In�nity : monomials that are equal to zero are not stored and

do not participate in calculations [13]. This allows COSY In�nity to be memory and

computation-e�cient and allows it to operate on Taylor expansions up to higher orders

with a reasonable amount of the computing resources. A good heuristic cannot help

in solving the problem of growing numbers of monomials, but it could help to reduce

the bad impact of exponential growth of the search space volume by providing good

cuto� values and thus allowing elimination of more boxes on each step of COSY-GO.

Here we consider GATool as a potential candidate cuto� values generator. The

rationale for such a consideration is that it frequently succeeds in �nding a good upper

bound for the global minimum even for high-dimensional and complex problems in a

reasonable time (see sections 4.2, 4.1, 2.3) and that it scales well with dimension. We

start our examination by applying GATool with the default set of parameters (see

Figure B.1) to the set of test problems from Table 2.3 (this table shows the COSY-GO

performance).

Since the population size in EA is what largely determines its ability to thoroughly

explore a search space, we tested di�erent population size scaling schemes. Here we

present results for two di�erent mechanisms: the population size is 100*dimension and

the population size is 10*dimension. Results obtained from random runs using these

two strategies are summarized in Tables 2.4 and 2.5 respectively. For each problem,

three parameters are listed: V is the volume of the search space, t is the execution

time in seconds and Q is the quality factor calculated as the di�erence between the

best obtained upper bound and the value of the global minimum (smaller is better, 0
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(a) Search space volume for di�erent initial volumes

(b) Number of monomials for di�erent expansion orders

Figure 2.19: Growth of complexity factors of global optimization with COSY-GO with dimension

100



means that the global minimum is found). Note that the Sphere function test problem

is not listed for the large population size due to its simplicity.

We note that GATool is by design a stochastic algorithm. Hence, even if it provides

good results on an occasional run, there is no guarantee for results to be consistently

good each time. However, statistical studies demonstrate its robustness in providing

a good upper estimate of the minimum. See, for example, Table 2.6 in this section

and Table 4.1 in section 4.1.

Albeit an increase in the population size usually increases the quality of the ob-

tained estimate (by quality we mean its proximity to the global minimum), population

size is also one of the main factors that in�uences the computation time of GATool.

It is directly connected to the required number of function evaluations, it increases

the execution time for the most �tness scaling algorithms, increases selection time

and number of times crossover and mutation must be performed to generate the next

population. Finally, it increses the size of the memory footprint, which increases the

computation time due to a high price of the memory operations. The important prop-

erty of the heuristic cuto� search algorithm is not only its ability to �nd a good result

but also its ability to perform this search in a reasonable amount of time. GATool has

several features that allow it to perform well even with relatively small population

sizes (which also greatly reduces the computation time).

Now we investigate the tradeo� between the quality of the result and execution

time in more detail. Between Tables 2.4 and 2.5, there is the di�erence of almost two

orders of magnitude of the execution time can be easily seen, yet for some problems

the quality of the result remains the same. For some problems, the quality decrease

is lower than the increase in the time of the execution. Comparing the time of the

execution of GATool from Table 2.5 with that of COSY-GO from Table 2.3, we see
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that for poorly scaling, high-dimensional problems (SinSin, Paviani and also complex

multi-dimensional normal form defect function optimization discussed in section 4.2,

Tables 4.2, 4.3), the time di�erence between the two methods becomes signi�cant

enough for GATool to be a useful heuristic.

It is important to note a relatively low quality of the several estimates provided

by GATool. However, the interaction algorithm interaction of COSY-GO is such

that the search domain for GATool is being reduced with time by the COSY-GO

box elimination process. Domain reduction greatly improves GATool's accuracy, as is

demonstrated later in this section. Also note that there might be a di�erent optimal

strategy for population size scaling with dimension. This choice is largely heuristic

and depends on the problem under consideration. In Figures 2.20 and 2.21, we demon-

strate how the execution time and the result quality result change with dimension for

di�erent multipliers m from the

PopSize = m ·Dimension

scaling strategy. Results are presented for the random run on the Rastringin's function

test problem (see section C.2) with the default set of parameters from Figure B.1 and

may vary from run to run. However, qualitatively the relation between the quality

and the population size remains unchanged; larger population statistically provides

better search results at the cost of increased execution time.

The statistical demonstration of the consistency of results is summarized in Figure

2.22. Data is gathered from 1000 runs of GATool on the 5-dimensional Rastrigin

function test problem with the default set of parameters (see Figure B.1), population

size = 10*dimension. The average run time is 5.22 seconds. Note that while the

quality of the result from Table 2.5 is only achieved in 5.8% of the runs, almost 50%

of the times, the result is consistent with the general trend demonstrated in Figures
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2.20 and 2.21. Also note that since we are studying the quality of the obtained cuto�

value, we measure the proximity of the results to the global minimum in the range

space of the function. Hence, for some functions, even if the values of the function at

some points are in the same su�ciently small neighborhood of the global minimum

value, the points themselves may be far from each other.

Figure 2.20: Example of the execution time scaling for di�erent scaling strategies for Rastrigin's

function test problem (see section C.2) minimization with GATool. The volume of the search space

(logarithmic scale) is shown to better demonstrate scaling issues.

The interaction mechanism between COSY-GO and GATool could be turned from

exploitation into true symbiosis. Suppose both methods start working on the same

problem at the same time. In section 2.3.2 it was mentioned that GATool starts its

search in a box and ends up with the minimum value of the function in this box that

it was able to obtain. By that time COSY-GO, working in parallel on the same box, is

likely to have already partitioned it into a set of smaller boxes and eliminated some of

them. Using the cuto� value provided by GATool, COSY-GO likely could eliminate
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Figure 2.21: Example of the result quality scaling for di�erent scaling strategies for Rastrigin's

function test (see section C.2) problem minimization with GATool.

ε % sol.

5.0 100.0

1.0 77.7

0.5 71.7

0.1 56.7

0.05 48.6

0.01 27.4

0.001 5.8

Figure 2.22: Distribution of the results of 1000 runs of the GATool on the 5-dimensional Rastrigin

function test problem (see section C.2) with the default set of parameters (see Figure B.1), population

size = 10*dimension, by the ε neighborhoods of the global minimum. Average run time is 5.22

seconds.
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more boxes and send GATool the update of the current search space in the form of its

current boxes list. COSY-GO rigorously guarantees that the global minimum resides

in one of the boxes from this list. Then GATool runs again using this set of boxes as

an initial search space and, in most cases, since its volume is smaller, obtains a better

cuto� value. It is then returned to COSY-GO to let it eliminate more boxes. The

process continues until the global minimum is bounded by COSY-GO with desired

accuracy.

Since the whole method is heuristic, there might be several di�erent strategies of

using the information about the search space obtained from COSY-GO. For example,

if we have some information about more suspicious and less suspicious boxes, we can

run GATool on a set of the more suspicious boxes with the hope that a smaller volume

results in a better cuto�. Alternatively, we can run GATool in each of the boxes for

a very small number of generations with a very small population size to obtain a

value of the minimum for each of the boxes in the collection in a time comparable to

that of the midpoint test. Then the cuto� is selected as the best value among the

ones obtained. Some other strategies could also be invented possibly using additional

information about the problem. Regardless of the choice of the strategy, we claim that

the smaller volume of the search space that encloses the sought minimum generally

leads to a better upper bound on the minimum obtained by GATool. Since COSY-

GO often provides smaller enclosures of the minimum on each step, this would lead

to an increased quality of the cuto� provided by GATool, thus these two methods

performances form a synergy. The exact strategy formulation and implementation is

a direction for future work.

In order to support our hypothesis, we selected the Rosenbrock's function test

problem in 10 dimensions (see section C.4) as the worst case scenario for which
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GATool alone was unable to provide a reasonable estimate with a small population

size (see Table 2.5) and/or high dimensionality. Since it is also one of the COSY-GO

performance test problems, we �rst run it with COSY-GO to obtain the list of boxes

it generates during execution (see the example of the 2-dimensional Rosenbrock's

function minimization process in Figure 2.23). Then we used several boxes similar to

the generated ones with the decreasing volume as initial search domains for GATool

and performed the statistical study of the quality of the estimates obtained for each

of these initial boxes in 100 runs. The results are summarized in Table 2.6 and in

Figure 2.24.

Figure 2.23: Boxes generated during COSY-GO minimization of the 2-dimensional Rosenbrock's

function (see section C.4)

Note that while generally the distribution of results by neighborhood improves

as the volume of the search space decreases, the volume itself is not the only factor

determining performance. Comparing the results for the search domains of [−5, 10]10

and [−1.5, 1.5]10, we see that, while for the second box 100% of the results in the

second domain lie within the radius 10 around the global minimum, there are no

solutions that lie within the radii of 5 or 1. However for the �rst box, having a

volume 7 orders of magnitude larger, 45% and 7% of the results lie within these
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(a) [−5, 10]10, V = 5.67 · 1011 (b) [−1.5, 1.5]10, V = 5.9 · 104

(c) [0, 1.5]10, V = 5.76 · 101 (d) [0.5, 1.5]10, V = 1.0 · 100

(e) [0.7, 1.3]10, V = 0.6 · 10−2

Figure 2.24: Distribution of the results of 100 runs of the GATool on the 10-dimensional Rosen-

brock's function test problem (see section C.4), with the default set of parameters (see Figure B.1)

by the ε neighborhoods of the global minimum for di�erent initial search domains with decreasing

volumes. Average run time is ≈ 35 seconds independent of the domain size.
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Table 2.6: Distribution of the results of 100 runs of the GATool on the 10-dimensional Rosenbrock's

function test problem (see section C.4), with the default set of parameters (see Figure B.1) by the

ε neighborhoods of the global minimum for di�erent initial search domains with decreasing volumes.

Average run time is around ≈ 35 seconds independent of the domain size.

radius
domain

[−5, 10]10 [−1.5, 1.5]10 [0, 1.5]10 [0.5, 1.5]10 [0.7, 1.3]10

V = 5.76e+11 V = 5.9e+4 V = 5.76e+1 V = 1.00e+0 V = 0.60e-02

100 100 100 100 100 100

50 86 100 100 100 100

10 72 100 100 100 100

5 45 0 100 100 100

1 7 0 50 100 100

0.5 3 0 13 100 100

0.1 0 0 0 100 100

0.05 0 0 0 94 100

0.01 0 0 0 39 94

0.001 0 0 0 0 25

closer neighborhoods, correspondingly. It was observed that for the [−1.5, 1.5]10

initial search domain GATool converges on the function values around 7 and is not

progressing towards the global minimum.

The reason behind such behaviour is that the di�erent choices of the search do-

main can reveal or hide di�erent properties of the studied function thereby changing

the performance of the algorithm trying to exploit them. Therefore some particular

choices of the search domain might work better than the other even if the volume

size-based logic suggests otherwise. The problem of the optimal initial box selection

is similar to the problem of �nding a good initial point for the local optimization

methods. Determination of the optimal initial search domain for an arbitrary func-

tion, when we generally have no information about its behaviour and the location

of the minimum, is in this case a matter of trial and error. However, COSY-GO

exploring the search space and eliminating regions that are guaranteed not to contain

the sought minimum, provides GATool this additional information about the search

domain, thereby greatly increasing the quality of search, as is demonstrated in Table
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2.6 and in Figure 2.24. It is also worth noting that in this case the average run time

for all domain sizes is around 35 seconds and it is not observed to depend on the

volume of the search space.

As an additional note, we need to mention that during the �nal steps of the COSY-

GO execution, the function and parameter values at which the algorithm operates

can get very small. In such a case, the precision of the calculations might su�er from

�oating point arithmetic rounding errors. Hence it is also important for the cuto�

search method to be numerically stable. As mentioned in section 2.3.2, GATool with

the Rank selection method does not perform any numerically unstable operations.

Hence it does not add numeric instability to the problem.

2.4 Conclusions

We reviewed the commonly used methods of unconstrained optimization and de-

scribed the implemented GATool Evolutionary Algorithm for unconstrained continu-

ous optimization in detail. We assessed its performance in terms of computation time

and the quality of the obtained result, studied the tradeo� between the computational

resources needed and the resulting quality GATool provides. We discussed GATool's

performance in the presence of static and dynamic noise, suggested useful strategies

of performance tuning for the EA-hard problems and demonstrated their usefulness

on examples. We justi�ed the choice of GATool as a heuristic method to generate cut-

o� values for COSY-GO rigorous optimization package, outlined the scheme of their

interaction, and presented sample runs and statistics that support these choices. We

demonstrated that the quality of the result increases as the information about the

search domain is re�ned, which is an essential feature for integration with the box
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elimination scheme of COSY-GO. Full implementation of the combined GATool and

COSY-GO algorithm is a matter of technical details of integration and is a promising

direction of future research.
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CHAPTER 3

Constrained Optimization

3.1 Challenges in Constrained Optimization with

Evolutionary Algorithms

As noted in section 2.1, EAs are successfully applied to problems for which conven-

tional methods are not applicable or fail, and they have proven themselves useful for

many of such real-life problems. The issue here is that Evolutionary Algorithms were

not originally designed to handle constraints. Even though unconstrained EAs had

already demonstrated themselves to be very e�cient general-purpose optimizers, the

ability to handle constraints would signi�cantly increase their range of applications

and help in solving many important optimization problems.

This motivation drove the development of a large number of di�erent approaches

for constraints handling for EA and their successful usage in a number of di�erent

constrained optimization problems. In this section, we give just a short review of the

most commonly used constrained optimization methods for EAs. Necessary modi�ca-

tions are made to the way they were originally presented to make the review uni�ed.
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For more methods, detailed descriptions, critique and comprehensive bibliography on

the topic, we refer to [129], [42], and [128].

There are certain challenges in adapting EAs for constrained minimization. For a

general EA optimizer, the only operation that connects an algorithm with a problem

is the evaluation of an objective function. This operation alone then serves as a basis

for the �tness evaluation of the population members (see section 2.3) and constraints

are ignored. Suppose now that we are implementing an EA optimizer for constrained

problems and have started from producing the initial generation demonstrated in

Figure 3.1. Here the dots represent members of the population, the cross represents

the sought feasible minimum, and S and F denote the search space and feasible set

correspondingly.

Before we proceed further, we need to design the method to handle constraints and

this poses several important problems. As can be seen, the population contains both

feasible and unfeasible members positioned at di�erent distances from the solution.

Since we are interested in a feasible minimum at the end of the search, there is an ob-

vious strategy to completely eliminate unfeasible members from further consideration.

However, this strategy is too naïve since keeping unfeasible members in a population

might be bene�cial for the whole process as demonstrated in Figure 3.1. Here the

arithmetic crossover (see section 2.3) between unfeasible points a and c or between

feasible point d and unfeasible point b would likely produce a new member that is

much closer to the optimum than the one produced by a crossover between feasible

points f and d. Hence, keeping unfeasible members might increase the probability of

success and speed of convergence.

If unfeasible members are allowed to remain in a population, the questions of

comparison between feasible and unfeasible, and between two unfeasible members,
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arise during the �tness calculation. Repairing unfeasible members in order to make

them feasible also seems like a worthwhile approach. Increased number of factors to

deal with and a variety of possible modi�cations to the algorithm that can be made to

handle constraints greatly increase the diversity of various approaches to constrained

EAs.

Figure 3.1: Example of the generation produced by EA for a constrained optimization problem.

Here points represent members of the population, the cross represents the sought feasible minimum,

S is a search space, and F is a feasible set

In the general Evolutionary Algorithm from Figure 2.6 we can pick out several op-

erations to modify for constrained optimization: �tness evaluation, selection, genetic

operators of recombination and mutation and reproduction process. Combinations of

approaches and various heuristics are also possible and, in fact, are widely adopted.

Also popular are co-evolutionary techniques where several populations are evolved

using di�erent �tness evaluation methods and/or di�erent genetic operators. Such an

approach can be viewed as a higher order meta-method that combines several EAs.

115



3.2 Overview of the Methods

In this section we describe various approaches and their variations in arbitrary order

trying to cover them from the simplest, most widely adopted and general methods

to the novel, more sophisticated, and more problem-speci�c algorithms. Note that

EAs are very heuristic optimization methods and many of them are combinations of

several techniques which makes them hard to classify. So for the reason of uni�cation

and for the sake of simplicity of comparison we mostly cover only the main ideas

introduced in these methods. Their implementation details, testing and applications

can be found in references given along with descriptions. As a last note before starting

the review, we have to add that examples of successful applications of constrained

EA to real-world problems from various �elds are numerous and could be found, to

list a few, in [36,37,45,55,59,80,99,112,149].

3.2.1 Killing

Perhaps, the most obvious and frequently used approach to constraint handling in EAs

is to eliminate unfeasible members of the population. Usually elimination is performed

after genetic operators are applied but before �tness evaluation. Replacements are

then generated using the selected new members generation method (usually uniformly

distributed random points from S, see section 2.3). To allow some unfeasible members

in population for the reasons described earlier, members are often eliminated non-

deterministically, with certain probability that increases with the amount of constraint

violation (usually estimated by some combined penalty function, see section 3.2.2).

To increase the number of the feasible members, the elimination-regeneration process

can be repeated several times or until a certain percent of the population members
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becomes feasible. Note, that in its simplest form, i.e. when all the unfeasible members

are eliminated independently of the amount of the constraint violation, this method

uses minimal amount of information about the problem and thus is expected to be

ine�cient.

From the description it is logical to suggest that the killing method performs

reasonably well only in the cases where the ρ factor is large [42]. Its practical usage

demonstrated that this is, indeed, true and that its performance is far from acceptable

(see section 3.3.6) only the cases of the small ρ, i.e. when the feasible set is signi�cantly

smaller that the search space [133], which frequently happens when constraints are

hard to satisfy. This method is particularly ine�cient for problems where the global

minimum is attained at the point where some constraints are active, i.e. hold as

equalities, because they are hard to satisfy. This observation supports the claim that

limiting the EA search to only a feasible space may reduce its performance since in

this case EA is omitting the information about a search space provided by already

generated unfeasible individuals.

3.2.2 Penalty Functions

The penalty functions paradigm was not invented speci�cally for EAs. Rather it

was suggested as a general numerical method applicable to constrained optimization

problems. Its basic idea is to transform the original constrained minimization prob-

lem (1.3.1), (1.3.3) into an equivalent unconstrained minimization problem. Here

equivalence means that the feasible minimum of the original constrained problem is

a minimum of the resulting unconstrained problem or at least is acceptably close to

it.

This transformation is performed via a set of so-called penalty functions
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Pj(hj(x)), j = 1, . . . , n corresponding to a set of constraints. Here penalty function

Pj calculates the amount of penalty assigned to a vector x for violating j-th constraint.

Utilizing those functions the problem of constrained minimization (1.3.7), (1.3.8)

could be transformed into an unconstrained multi-objective minimization problem

x∗ = arg min
x∈S

Φ(x), (3.2.1)

where Φ(x) =
(
P1(h1(x)), P2(h2(x)), . . . , Pn(hn(x)), f(x)

)T that could be solved by

multi-objective optimization techniques. It could also be converted even further to

an unconstrained single-objective minimization problem

x∗ = arg min
x∈S

ϕ(x), (3.2.2)

where ϕ = ϕ
(
Φ(x)

)
is the function that combines the original objective function

and penalty functions into a single objective function. Usually penalty functions are

chosen such that ‖ϕ(x)− f(x)‖ −→ 0 as x→ F . Function ϕ also has to be balanced

to guide the search process to a feasible set F and hold it there, but not to interfere

with the search of the minimum inside F . Care must be taken to achieve this balance

in terms of the in�uence of the original objective function and penalties on a combined

function ϕ. In case penalties are dominating a value of ϕ, the pressure to produce

feasible points might prevent the algorithm from �nding an optimum. In the opposite

situation, i.e. if the original objective function dominates in calculating the value of

ϕ, the optimization result tends to be optimal but unfeasible and thus useless.

A variety of methods to de�ne penalty functions for Φ, combine them and the

original objective function into a function ϕ(x), produced a large number of di�er-

ent constrained minimization methods. Nevertheless, since di�erent problems have

di�erent properties of the constraint functions sets, there seem to be no universally

optimal penalty function de�nition strategy, similarly to a nonexistence of the uni-
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versally best general optimizer as discussed in section 2.1.4. The optimal approach

should instead be selected and �ne-tuned based on knowledge about the posed prob-

lem. It should also be noted that multi-objective optimization problems are generally

harder to solve (see section 2.1), so it is often more desirable to convert a constrained

problem into a single-objective unconstrained problem (3.2.2) by choosing appropriate

P1, P2, . . . , Pn, ϕ.

The most frequently used method to de�ne the combining function ϕ is a linear

combination of the individual penalties:

ϕ(P1, P2, . . . , Pn; f) =
n∑
k=1

wjPj + wn+1f, (3.2.3)

where wj are freely chosen weight constants. Under this choice of ϕ the constrained

optimization problem (1.3.7), (1.3.8) is transformed into an unconstrained optimiza-

tion problem (3.2.2). Since wn+1 is a weight coe�cient of the objective function

in the original constrained problem, usually chosen to be unity for simplicity. The

objective function then assumes the form

ϕ(x) = f(x) +
n∑
j=1

wjPj(hj(x)). (3.2.4)

For a general-purpose optimizer in cases where no information about a problem is

available, all weight coe�cients for penalties are usually set to unity, at least initially.

Since in practice constraints and thus penalty functions often have di�erent ranges

of values, weight coe�cients wj can be selected to either normalize penalty values to

balance their in�uence on the combined objective function or to increase the relative

impact of some constraints if they are known to be harder or more important to

satisfy.

Historically, the penalty function method applied to nonlinear programming was

proposed by Fiacco, McCormick and Zangwill [72,127]. Their proposal was to replace
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an original constrained optimization problem with a single-objective unconstrained

optimization problem via ϕ from (3.2.4), where wj = r > 0, ∀j, r is an arbitrary

constant. Then by carefully choosing penalty functions it can be guaranteed that the

search process applied to the unconstrained optimization problem (3.2.2) converges

to a feasible minimum. Two most frequently used types of penalty functions that

satisfy these requirements are inverse:

Pj(z) = − 1

hj(x)
(3.2.5)

and logarithmic:

Pj(z) = − log(−hj(x)), (3.2.6)

j = 1, . . . , n, so substituting them to (3.2.4) we get

ϕ(x) = f(x)− r
n∑
j=1

1

hj(x)
(3.2.7)

and

ϕ(x) = f(x)− r
n∑
j=1

log
(
− hj(x)

)
(3.2.8)

correspondingly.

Note that the penalty part of the objective functions (3.2.7) and (3.2.8) demon-

strates fast and unbounded growth if one of the constraint functions hj(x) approaches

zero. Therefore it creates an in�nite barrier on the boundary of the feasible set in the

objective function landscape and thus prevents iterative unconstrained minimization

methods from stepping outside of the feasible region once they start their search inside

it. Also note that the in�uence of the penalties falls o� rapidly as we move from the

boundary. So if we choose the parameter r so that the unconstrained minimum of the

combined objective function (3.2.7) or (3.2.8) is reached at the feasible minimum of

the original objective function, we can approach the original constrained optimization

problem with most of the unconstrained minimization methods.
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In practice, this method is applied by solving a sequence of the unconstrained

optimization problems (3.2.7) or (3.2.8) with di�erent values of the parameter r = rk

for k = 1, 2, . . . such that rk → 0 as k increases. This approach is called Sequential

Unconstrained Minimization Technique (SUMT) and is proven to converge under cer-

tain assumptions on the objective function, the constraint functions and the sequence

{rk} [147]. Penalty functions of the barrier type are called barrier functions, so the

method is also called Barrier Functions Method.

The disadvantages of this approach are its computational expensiveness and that

in order to start the search it requires a feasible initial point which is frequently hard

to �nd for all but the most trivial problems. Penalty functions of the barrier type are

also called interior penalty functions since they prevent optimization methods from

considering any unfeasible members during the execution, thereby pushing them to

search in the interior of the feasible region. Exterior penalty functions allow unfeasible

members to be considered during the search process but assign them a penalty that

generally grows with their distance from the feasible set. Usually exterior penalty

functions are such that Pj = Pj(z) ≥ 0, z ∈ R, j = 1, . . . , n and de�ned in the

following way

P (z) =

{
0 z ≤ 0

penalty(z) > 0 otherwise
. (3.2.9)

The most frequently used penalty functions of this type are from the power penalty

family:

P a(z) =

{
0 z ≤ 0

za otherwise
= (max{0, z})a, (3.2.10)

where a = 0, 1, and 2 are most frequently used.

If we then substitute the value of the constraint function into a penalty function

of the type (3.2.9)

Pj(hj(x)),
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we obtain a non-negative penalty assigned to a vector x for not satisfying the j-th

constraint or zero if the j-th constraint is not violated (here index j of the penalty

function is given because generally penalty functions could be selected separately for

each constraint function). Power penalty functions (3.2.10) use a violated constraint

function value at the unfeasible point raised to the a-th power as a penalty (see

example of the power penalty for a = 1, one-dimensional problem in Figure 3.2).

(a) Inequality constraint function (b) Power penalty for inequality constraint

function

Figure 3.2: Example of the one-dimensional inequality constraint function and corresponding power

penalty function of the type (3.2.10), a = 1.

In order to demonstrate how penalty function values correlate with the distance

of the unfeasible x from the feasible set F we use the simple constraint

h(x) = ‖x‖∞ − 1 ≤ 0, (3.2.11)

where

‖x‖∞
def
= max

i=1,...,v
|xi|

is the in�nity norm of x. This constraint de�nes F to be the v-dimensional cube cen-

tered at the origin of the coordinates, with the length of the side equal 1. Colormaps

of the power penalties (3.2.10) with a = 0, 1, as well as the actual Euclidean distance

122



Figure 3.3: Left to right, top to bottom: colormap plots (scales are di�erent, i.e. the same color on

di�erent plots may correspond to di�erent function values) of P 0(h(x)), P 1(h(x)), and the actual

Euclidian distance from x to F where h is given by the formula (3.2.11) and F is a set of all

x ∈ S = [−5, 5]× [−5, 5] such that the constraint h(x) ≤ 0 is satis�ed

from x to F

d(x, F )
def
= min

y∈F
d(x,y),

for v = 2 are demonstrated on the Figure 3.3. It can be seen that that for a 6= 0

a power penalty function provides an approximation of the actual distance to the

feasible set, although there can be cases where such approximation can be too crude.

In this case special penalty functions based on the knowledge about a particular set

of constraints are preferred.

Since changing the �tness evaluation procedure by using combined penalty func-

tions (3.2.2) requires relatively small e�ort and is relatively easy to analyze due to

moderate changes to EA, this approach is widely adopted for constrained EA opti-
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mization and has demonstrated its practical usefulness [129]. A common weakness

of such an approach is that the choice of penalty functions, combining function ϕ

and their parameters are strongly problem-dependent. Most of the time it requires

extensive �ne-tuning for the problem in order to achieve optimal performance. Since

EAs are often applied to the problems with little knowledge available in advance, this

turns out to be a non-trivial task. Solving it is a matter of experience, trial and error,

and good heuristics. Little to no theory about choosing the right penalty functions

for the problem and method have been developed. There is, however, a promising

potential solution in the development of penalty function methods that are adapting

and self-adapting (see later in this section).

A general observation about penalty functions coming from experience is that

penalty functions of just the number of the violated constraints generally perform

worse than the penalty functions using the information about the degree of the con-

straint violation [162]. This observation supports the claim of the �No Free Lunch

Theorem for Optimization� (see section 2.1.4) stating the direct dependence of algo-

rithm performance on the amount of information about the problem it utilizes. From

the family of power penalty functions (3.2.10),

P 0(z) =

{
0 z ≤ 0,

1 otherwise
(3.2.12)

is the only one that does not use information about the degree of constraint violation

and thus should be avoided.

The penalty function methods described so far, can be used not only with EAs

but with most other unconstrained optimization methods (including those described

in section 2.1) and, in general, are frequently used for constrained optimization. Later

in this section we review several EA-speci�c penalty function methods. All of these

use transformation to a single-objective minimization problem (3.2.2) via some sort
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of combining function, ϕ. It is also worth noting that other methods of constrained

EA optimization frequently use penalty functions for various auxiliary tasks.

Levels of Violation

This method was proposed by Homaifar, Lai and Qi [87]. For each constraint, a user

de�nes several levels of constraint violation:

0 = z0j < z1j < . . . < zlj < zl+1,j = +∞, j = 1, . . . , n, (3.2.13)

where l is the chosen number of levels of violation and penalty level coe�cients are

R1j , R2j , . . . , Rl+1,j so that

Rj(z) = Rkj , zk−1,j < z ≤ zkj . (3.2.14)

Then the combined objective function is built using a linear combining function (3.2.4)

and power penalties (3.2.10) with

Pj(z) = P 2(z), (3.2.15)

wj = wj(z) = Rj(z), (3.2.16)

for j = 1, . . . , n. Hence

ϕ(x) = f(x) +
n∑
j=1

Rj
(
hj(x)

)
P 2(hj(x)). (3.2.17)

The main idea here is to give a user the ability to precisely balance the contribution

of each constraint to the combined objective function by making weight coe�cients

wj dependent not only on the index of the constraint function but also on the vio-

lation level for this constraint. However, this method requires levels of violation and

violation coe�cients to be de�ned for each constraint, thus the total number of pa-

rameters of this method is n(2l + 1). Therefore their determination for the problem
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is a non-trivial problem itself and can easily get quite taxing. At the same time,

practical studies from [133] indicate that the quality of solutions obtained via this

method heavily depends on the choice of these parameters.

Multiplicative

An interesting approach was proposed by Carlson [34]; she suggested constructing

the combined objective function for unconstrained optimization by multiplying the

original objective function by a penalty:

ϕ(x) = f(x)P (x), (3.2.18)

where P is designed such that P (x) ≥ 1, ∀x ∈ S. Note that this method also

requires f(x) ≥ 0 , ∀x ∈ S. Studies on various multiplicative penalties demonstrate

reasonably good performance [37].

Dynamic

Joines and Houck [98] propose using a dynamic penalty function, i.e. a function

with parameters depend on the number of the current EA generation, similar to the

parameter rk in the SUMT method. In their method, the combined objective function

is built using the linear combining function (3.2.4) and power penalties (3.2.10) with

Pj(z) = Pβ(z), (3.2.19)

wj = (Ck)α, (3.2.20)

for j = 1, . . . , n, where k is the generation number and constants C, α and β are

method's parameters that can be used to tune it to the problem. With this choice of

penalties and the penalty combination method, the unconstrained objective function
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assumes the form

ϕ(x) = f(x) + (Ck)α
n∑
j=1

Pβ(hj(x)). (3.2.21)

Parameters must be chosen such that the penalty multiplier (Ck)α of the objective

function increases with generations, thus increasing the pressure to produce feasible

individuals after a given time to explore the whole search space S. This method, albeit

reported to be e�cient and having much smaller number of parameters to set, su�ers

from the problem of most penalty function ,ethods: the sensitivity of the quality of

a result to the choice of method parameters. Even though the values C = 0.5 and

β = 1 or 2 were found by authors to work reasonably well, there is an evidence that

these values lead to premature convergence at either an unfeasible solution or at a

feasible solution impractically far from the optimum (see examples in [133]).

Another idea is to change the penalties dynamically in similarly to the Simulated

Annealing method described in section 2.1. The method proposed by Michalewicz and

Attia [130] divides all constraints into four types: linear equalities, linear inequalities,

nonlinear equalities and nonlinear inequalities. th the uses a random single point

that satis�es all linear constraints as a seed and maintains linear constraints satis�ed

via a set of specially designed genetic operators, �nally, it applies a linear combining

function (3.2.4) and power penalties (3.2.10) with

Pj(z) = P 2(z), (3.2.22)

wj =
1

2τk
, (3.2.23)

for j = 1, . . . , n and {τk}, a cooling schedule de�ned by the user. The summation of

penalties in the resulting objective function is done over all nonlinear equality and

inequality constraints. Linear constraints are considered taken care of, hence

ϕ(x) = f(x) +
1

2τk

∑
j∈A

P 2(hj(x)), (3.2.24)
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where A is a set of indices of the violated nonlinear constraints and τk is decreasing

as the evolution progresses. The process is stopped upon reaching a �nal, prede�ned

�freezing temperature�, τf . This method provides not only a good performance on

many test functions with τ0 = 1, τf = 0.000001 and τk+1 = 0.1τk [130] but also a

signi�cant sensitivity to the choice of cooling schedule.

Another annealing objective function is proposed by Joines and Houck [98] and is

based on their penalty combination function (3.2.21):

ϕ(x) = f(x) + e
(Ck)α

∑n
j=1 P

β(hj(x))
. (3.2.25)

However, this function requires very precise normalization of penalties in order to

avoid �oating point over�ows during computations.

It is worth noting the results published by Hilton and Culver [37]. They tested the

multiplicative penalty function method (3.2.18) and additive penalty method (3.2.4).

They observed that the linear change of weights with generations resulted in faster

convergence when they were kept constant and the multiplicative penalty method

(MPM) was more robust than the additive penalty method (APM) for their problem.

Adaptive

The main idea behind adaptive penalty function methods is to introduce a feedback

about the performance of the search process into the penalized objective function. An

intention behind this idea is to increase the penalty if the algorithm is experiencing

insu�cient pressure to generate feasible members or decrease it in the other order to

redirect e�ort towards the search for the minimum of the objective function. Weights

of the individual penalties could be redistributed based on the statistics about the

number of members of the population satisfying particular constraints over gener-

ations (see, for example [57]). However, since the adaptive penalty approach itself
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requires some parameters that are set by the user, this method still su�ers from the

same parameter-dependence performance problem as all penalty function methods.

Research in this direction looks very promising and rewarding, but it is out of the

scope of this work. For a detailed description of the family of the adaptive and self-

adaptive penalties we refer to [42] and for examples of the adaptive penalty functions

and their applications we refer to [45,58].

3.2.3 Special Genetic Operators

Special genetic operators could be applied to preserve the feasibility of the population.

They are particularly important for problems where �nding even one feasible solution

is problematic. These operators are heavily utilized in the GENOCOP framework

(GEnetic algorithm for Numerical Optimization for COnstrained Problems) invented

and developed by Michalewicz. They are used to handle constraints in cases where

the feasible space F is convex [131]. The �rst versions were capable of processing

linear constraints only; later versions used co-evolutionary techniques and a repairing

method to extend the method to process non-convex spaces as well [132,134]. We note

that the task of designing such operators is very problem dependent and might not

be solvable for the general feasible set F de�ned by generally nonlinear inequalities

(1.3.14).

3.2.4 Selection

Since changes in an objective function produced by penalty functions methods di-

rectly a�ect the �tness of the individuals, they also implicitly a�ect the selection

process. For the penalty function methods, we refer to section 3.2.2 and here we de-

scribe only methods that modify the selection process explicitly. Methods of selection
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modi�cation avoid the weakness of penalty function methods, which is a sensitivity

of their performance on the choice of the penalty functions and various parameters of

the method. An example of the most straightforward approach of de�ning a selection

for constrained problems can be found in the method of Powell and Skolnick [157].

They suggest using the heuristic selection rule: �every feasible solution is better than

any unfeasible.� However, for problems with small ρ factor, the algorithm is often

trapped in an unfeasible solution [133] and its behaviour is similar to the behaviour

of the killing method described in section 3.2.1.

Coello [43] suggests splitting the population into a number of sub-populations

equal to the number of constraints plus one and then performing the selection as

follows: in each of the sub-populations, selection is based on the corresponding con-

straint violation; in the last one it is based on the objective function value. This

approach is reported to produce good results on several test problems albeit with a

somewhat slow convergence rate.

An interesting algorithm to compare individuals was proposed by Jiménes and

Verdegay [94]. Selection in their method is performed via a series of deterministic

binary tournaments with the winner determined based on the following set of rules:

1. If both members are feasible, selection is performed on the objective function

value.

2. If one member is feasible and another one is unfeasible, select the feasible mem-

ber.

3. If both members x and y are unfeasible, select the one with the smaller maxi-

mum constraint violation:

ξ = arg min

{
max

j=1,...,n
hj(x), max

j=1,...,n
hj(y)

}
.
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This method strongly favors feasible points over unfeasible ones, thus might be omit-

ting useful information about the problem provided by unfeasible members. Hence it

might get trapped in a wrong part of the feasible space, i.e. far from the feasible min-

imum. However, the method may be useful if the feasible space is heavily constrained

and/or relatively small.

An extension of this technique, inspired by the concept of the non-dominance from

Game Theory and multi-objective optimization and based on so called Niched-Pareto

Genetic Algorithm [88] for multi-objective unconstrained optimization, was suggested

by Coello and Mezura [41]. Suppose we are given a multi-objective optimization

problem: to �nd x∗ ∈ S such that

x∗ = arg min
x∈S

F(x), (3.2.26)

where F(x) =
(
f1(x), f2(x), . . . , fN (x)

)T.
The de�nition of the minimum for the unconstrained multi-objective optimization

problem is not trivial since, generally, objective functions fi(x) attain minimal values

at di�erent points. Therefore the problem is not �nding a vector that minimizes

all objective functions simultaneously but rather �nding a set of all Pareto optimal

points in a search space [151]. To de�ne Pareto optimality for the problem (3.2.26)

we �rst de�ne the concept of Pareto dominance. Vector x is said to dominate vector

y in the Pareto sense if it is not worse than y in all objective functions values

Fl(x) ≤ Fl(y), l = 1, . . . , N

and is strictly better in at least one objective function value, i.e.:

∃l̂ : F
l̂
(x) < F

l̂
(y).

Basically, this de�nition says that any of the objective function's values at x could

not be improved by any y from the search space without worsening another objective
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function value. Then the point x∗ is called Pareto optimal (or non-dominated) for

the problem (3.2.26) if it is not dominated by any other point x ∈ S, i.e. if there

does not exist a better compromise for the x∗ in the search space.

Considering penalty functions of constraints as additional objectives to minimize

and thus transforming a single-objective constrained minimization problem into a

multi-objective unconstrained problem (3.2.1), they propose to use this de�nition to

modify the selection rules as follows:

1. If both members are feasible, selection is performed on the objective function

value.

2. If one member is feasible and another one is unfeasible, select the feasible mem-

ber.

3. If both are unfeasible, one is dominated, and another one is non-dominated,

select the non-dominated member.

4. If both are unfeasible and dominated or both are unfeasible and non-dominated,

select the one with the minimal constraint violation.

As could be seen, the �rst two rules remained intact and the last rule is changed

using the de�nition of non-dominance. This approach is demonstrated to be useful

and computationally e�cient on various test problems. Based on this method and

the concept of non-dominance, Oyama, Shimoyama and Fujii developed an extension

also applicable to multi-objective constrained optimization problems [149].

3.2.5 Repairing

Repair algorithms are based on the idea of �repairing� the unfeasible members of

the population to make them feasible and then either using the repaired version to
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evaluate the �tness of the original member or to replace it altogether. Particularly

popular in combinatorial optimization problems, they are not widely used in non-

linear numerical optimization problems. The GENOCOP algorithm, mentioned in

section 3.2.3, employs repair algorithms [132]. During the search process it maintains

two separate populations. The �rst one is kept feasible against linear constraints via

specialized genetic operators and is used for the search of an optimum. The second

population is used for constraint satisfaction and consists only of fully feasible mem-

bers. These fully feasible members are used to repair linearly feasible members of the

�rst population before �tness calculation.

In principle, any optimization algorithm (see section 2.1) can be used for repairing.

Since these methods put high pressure on keeping population feasible, they might be

particularly useful for heavily constrained problems, problems with small feasible

space and problems where constraint satisfaction is critical like engineering problems

or veri�ed optimization (see section 2.2). The disadvantages of these methods are

that they increase computational cost and might actually harm the search process, if

repair algorithm is not tuned for a problem by turning potentially useful unfeasible

members into useless feasible members (see examples of useful unfeasible members on

Figure 3.1, section 1.3.3).

3.2.6 Other Methods

Handling constraints in some pre-de�ned order was suggested by Schoenauer and

Xanthakis [166]. Their method starts with a randomly generated population and

evolves it to minimize the violation of j-th constraint on j-th step, i.e. its objective

function on j-th step is

ϕj(x) = Pj(hj(x)). (3.2.27)
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The population from step (j − 1) is used as an initial population for step j. Points

that do not satisfy the �rst (j − 1) constraints are eliminated during the j-th step.

The search process stops when a certain threshold on a number of members of the

population that satisfy the current constraint is reached. On the last step, the method

optimizes the objective function itself. This algorithm was primarily designed for

engineering problems where the search space is small and sparse and shows reasonable

performance in these cases. However, it poses a problem of selecting a particular order

of constraints. It is reported that di�erent orders produce di�erent results in terms

of the run time and precision [133].

Koziel and Michalewicz [108] proposed and reported successful application of the

interesting method based on establishing a homomorphous mapping between a gen-

erally nonlinear, non-convex feasible search space and a v-dimensional cube that is

convex, linear and is much easier to optimize with EA. Using this method, an original

constrained problem is transformed into a topologically equivalent but simpler uncon-

strained problem. This method, apart from being elegant and e�cient, su�ers from

the complexity of the transformation in general case and the additional computational

expense it requires.

The co-evolutionary model [8] constitutes another popular direction of constrained

optimization with EA. As was mentioned earlier, some algorithms are maintaining

several populations in which evolution is performed based on various criteria. Some-

times di�erent �avours of EA are used. GENOCOP (see section 3.2.3), for example,

maintains two populations, one with members satisfying linear constraints and an-

other one with members satisfying all constraints.

Other approaches include using Immune System Emulation [44, 84], Cultural Al-

gorithms [40], Ant Colony Optimization [28], and many others. However, there is no
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universally superior constrained optimization method found yet; most of the described

methods are applicable to di�erent problems with reasonable average performance yet

they perform particularly well on some speci�c problem or a class of the problems.

There is a variety of other methods that are unique or combine several approaches

and thus fall o� our classi�cation. For thees methods we refer to the references in the

beginning of the section. Spreading interest in the �eld and active contributions from

many researchers, have increased their number rapidly. We present our own approach

to constrained optimization with EA in section 3.3.

3.3 The REPA Constrained Optimization Method

3.3.1 Introduction

As already noted in section 1.3.3, constrained optimization problems (1.3.8) form

an important class of all optimization problems (1.3.4), which is the reason for the

existence of a large number of constrained optimization methods for Evolutionary Al-

gorithms (see section 3.2). These methods are usually divided into several subclasses

by the main approach employed to handle constraints in originally unconstrained

EA: killing, penalty functions, special genetic operators, selection modi�cation, re-

pairing unfeasible individuals and others. Each of these approaches has advantages

and examples of successful applications as well as disadvantages demonstrated in test

cases. It was also noted that existence of the universally best constrained optimiza-

tion method for EA is not very probable due to the �No Free Lunch Theorem for

Search and Optimization� (see section 2.1.4) [135].

However, non-existence of the best method does not eliminate the possibility to

design better general methods. Since most of the time optimization methods are
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applied to a particular problem, there is also a de�nite need for new methods that

perform better on this problem or class of the problems even if they fail on some other

problems. Also, since the repair approach to constraints handling was successfully

applied to a combinatorial optimization with EA but is not very popular in numeric

mathematical programming, it was worth exploring. Our main motivations were to

create a method which would be useful for constrained veri�ed global optimization (see

section 2.2 for global optimization and section 2.3.6 for the description of the scenario

of integration of our EA with COSY-GO global optimization package) and to use for

the problems of constrained optimization in accelerator physics where constraints

are often imposed by physical limitations and thus must not be violated. For these

purposes, the main requirement is not to produce the optimal value but rather to

produce good value to serve as an excellent cuto� update as fast as possible. For

constrained veri�ed global optimization the result must be feasible, otherwise it is

useless.

Also note that while the found value is feasible but not optimal, it could still be

a good cuto� value. Most of the methods described in section 3.2 are constructing

feasible members by generating the initial population and then performing stochastic

mutation and crossover. Most of the methods, while shown to be e�cient given

enough time and good at preserving diversity in the population, might not put enough

pressure on constraints satisfaction to work in conjunction with COSY-GO . The

repair type of the constrained satisfaction methods seems the most promising for our

purpose. Finally, this method might also get useful if the evaluation of the objective

function is much more expensive than evaluation of constraints, which, nevertheless,

have to be satis�ed since it does not require objective function evaluations in order

to perform repairing. The approach suggested in this work is of this repair type and
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is called REPair Algorithm (REPA).

3.3.2 REFIND: REpair by Feasible INDividual

The REPair Algorithm (REPA) consists of two repairing techniques working together

in order to transform an unfeasible member of the population into a feasible one and

then replacing it in the population with the result if repair was successful. These two

techniques are called REpair by Feasible INDividual (REFIND) and REpair by PRo-

jecting through OPTimization (REPROPT). The �rst one was originally suggested

by Michalewicz, then implemented in his GENOCOP package [132] and then adapted

and extended by us. The idea of the method is to use already feasible members of

the population to repair unfeasible ones by searching for a replacement along the line

connecting an unfeasible member xu ∈ S \ F with the feasible member xf ∈ F . In

most cases there is at least some neighborhood of xf that belongs to F or the line

might cross F in several places. Hence, such searches have high chances of producing

a replacement feasible member that is not xf , thus not trading o� the diversity of

the population. The algorithm for the REFIND is presented on the Figure 3.4. Here

P is a penalty function of the type (3.2.9) that also includes penalties for leaving the

search space S. The search for a feasible point along the line is performed via one

of the COSY In�nity built-in optimization algorithms (see section 2.1) starting from

the pre-de�ned initial parameter value λ0. The method has the following parameters

that are to be set by user:

• The feasible member search algorithm: currently the search is sequential and

is is performed until the maximum allowed number of feasible members (5 in

this work) is found or the last member of the population is checked. At this

point the one that is closest in a sense of the Euclidean distance to the repaired

137



member is selected.

• The algorithm to search for the repair candidate: the search is performed along

the line (thus only one parameter is �tted) that includes at least one feasible

vector xf . Hence, the probability of �nding a repair in this case is high (we

are not considering the case of λ = 1 since it would produce a duplicate of

the xf and thus reduce diversity). In order to keep some randomness of the

result we currently employ the ANNEALING optimization algorithm (see sec-

tion 2.1). The initial value λ0 is common for all members in all generations

and quite possibly in�uences the results as well (see notes on the dependence

of the iterative, single-point search methods on the initial point in section 2.1).

We suggest avoiding λ0 = 0 since it corresponds to xu and we know that it

is unfeasible in advance. On the other hand, values of λ0 close to 1 make the

initial point for the search closer to the xf , which is known to be feasible, so the

search might stop prematurely and the result might be too close to the xf which

also unnecessarily decrease the diversity of the population. Thus, by choosing

λ0 ∈ (0, 0.5) we increase the probability of �nding a feasible member faster. In

this work, λ0 = 0.1 is used. Tolerance to the �nal value and maximum number

of steps allowed in�uence the quality of a result and execution time. We used a

tolerance of 0, since the expectation of �nding a feasible member by this method

is high and the maximum number of steps equal to 15 since we are dealing with

a 1-dimensional optimization problem so the search should not take a lot of

steps. We also do not want to set up the maximum allowed number of steps to

a higher value to keep the repair method reasonably computationally expensive.

• The penalty function method: de�nes penalty function to minimize in order
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to �nd a feasible vector. For the description of the penalty function methods

see section 3.2.2. In this work, we employed quadratic penalty functions of the

power family (3.2.10) and combining function (3.2.4) with wj = 1, j = 1, . . . , n,

wn+1 = 0 since we are minimizing penalty only. It must be noted, however, that

the search algorithm and penalty function method should generally be selected

together. For example, some algorithms might be able to solve multi-objective

penalized problems (3.2.1) better than single-objective combined problems.

Find feasible individuals from the current population

R = {xf,1,xf,2, . . . ,xf,N}
If at least one feasible individual is found

Find xf ∈ R such that d(xf ,xu) = minx∈R d(x,xu)

Search for a feasible point along the line connecting xu and xf by

solving the optimization problem λ∗ = arg minλ P (xu(1− λ) + λxf ),

where P is a penalty function for constraints violation

If the resulting penalty is within tolerance

Repair succeeded, return x = xu(1− λ∗) + λ∗xf
Else

Repair failed

End if

Else

Repair failed

End if

Figure 3.4: REFIND: REpair by Feasible INDividual algorithm

3.3.3 REPROPT: REpair by PRojecting through OPTimiza-

tion

The second method used to repair individuals is REPROPT. Its main idea is to

perform a projection of the unfeasible member to the feasible set by optimizing the
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penalty function via some single-point iterative method (see section 2.1). The un-

feasible point serves as an initial value for the optimizer. Note that the projection

here means a possibly existing element in the feasible set F that could be found via

the optimization process; hence it depends on the method and method parameters.

Moreover, if the method is stochastic (for example, Simulated Annealing), the results

of the projection are not unique.

This method follows the same logic as REFIND in Figure 3.4. However, for RE-

PROPT, there is no feasible member in the population thus there is no parametriza-

tion of the line between xf and xu as in REFIND, hence instead of minimizing the

penalty function by changing one parameter λ (1-dimensional problem), we perform

minimization by changing all coordinates (or a subset) of the repair candidate (multi-

dimensional problem). This, of course, increases the complexity of the problem (see

also section 2.3.6 for discussion of the increased complexity of the multi-objective

optimization), since the direction towards a feasible set is generally not known. Thus

for high-dimensional problems, this method might be ine�cient and might have to be

replaced with some other strategy, for example, killing. Some other strategy to �nd at

least one feasible member for REFIND can also be employed. Another possibility is

to use quasi-projection, i.e. to project using a relatively large penalty tolerance. Then

the points successfully projected by REFIND, would reside in some neighborhood of

F but not necessarily inside F itself.

Parameters of this algorithm are the choice of the penalty functions method, opti-

mizer for projection, penalty satisfaction tolerance, and a maximum number of steps

allowed. Parameters for REFIND and REPROPT can be tuned separately. In this

work we used the LMDIF optimization algorithm (see section 2.1) and transforma-

tion of a single objective constrained problem into a multi-objective problem (3.2.1)
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via power penalties (3.2.10) (see section 3.3.5 for the justi�cation of the choice) with

penalty tolerance 1−5 and the maximum number of steps allowed, 50. Note, that

since LMDIF is capable of handling multi-objective optimization problems, we trans-

form our single-objective constrained problems into a multi-objective unconstrained

problem (3.2.1).

3.3.4 REPA: REPair Algorithm

A simpli�ed demonstration of the possible results of the application of those two

algorithms to the example initial population from Figure 3.1 is presented in Figure 3.5.

Here, points e and g are repaired by the REFIND algorithm, and a is repaired by the

REPROPT. Dotted lines represent optimization paths and primed points represent

possible repair candidates.

For the unfeasible point e, the closest feasible point is f so the successful repair

candidates e′ and e′′ are located on the line connecting e and f , e′ corresponds to

λ∗ < 1 and e′′ corresponds to λ∗ > 1. For the unfeasible point g, the closest feasible

point is h. Even though h lies on the boundary of F , the repair candidates g′, g′′,

g′′′, and g′′′′ lie inside F . Note that the line connecting g and h leaves and enters

F . This demonstrates that repair candidates obtained via some feasible point might

not necessarily be close to it, thus the diversity is preserved. Here g′ corresponds to

λ∗ < 0, g′′ corresponds to 0 < λ < 1, and g′′′ and g′′′′ correspond to λ > 1.

Even though there are feasible members in the population, point a is shown re-

paired by the REPROPT method as a demonstration. It can be seen that the repair

candidate a′ obtained via some iterative optimization method is not the closest feasi-

ble point from F that we can obtain knowing the structure of F . However, since the

structure of F is complex and it is given as a set of nonlinear equalities and inequal-

141



Figure 3.5: An example of the repairs performed by REFIND and REPROPT repair methods (F

is large compared to S)

ities, such projection might not be feasible to perform. Also note that the feasible

repair candidate a′ is in some sense �worse� than the unfeasible point a itself since it

is farther from the feasible minimum. To avoid this, we can include the original ob-

jective to optimization done by REPROPT but generally this should be decided on a

per-problem basis, since, as we noted, the objective function itself might be expensive

to calculate. Also it is worth noting that here we demonstrate only successful repairs

and the volume of the example F compared to the volume of S is relatively large. If

we start from the population from Figure 3.5 but reduce the feasible space as shown

in Figure 3.6, we notice that there are no feasible members in the population to use

for REFIND and that it is much more di�cult for REPROPT to produce a feasible

repair candidate. Thus, only d, which was already close to F , is repaired to d′ while

h′, a′, and c′ are considered repair failures.

The REPA algorithm uses both of these methods to perform repairs of an unfea-

sible member as shown in Figure 3.7 (see (2.3.9) for the de�nition of rand). The user
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Figure 3.6: An example of the repairs performed by the REFIND and REPROPT repair methods

(F is small compared to S)

can control the percentage of the population repaired and the required penalty toler-

ance. Note that this REPA does not change the objective function nor does it change

the selection process, thus additional modi�cations to the EA might be needed. In

this work we used the EA from section 2.3 and the penalty functions method (3.2.2)

with a linear combining function (3.2.4) (wj = 1, ∀j) and quadratic power penalties

(3.2.10).

An Additional bene�t of the REPA method is that it is only applied if the mem-

bers of the population are unfeasible. As long as the population remains feasible, it

produces no e�ect on the optimization.
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If combined penalty > penalty tolerance

If rand[0,1] < percent repaired

If succeeded x = REFIND(xu)

Repair succeeded, replace xu in population with x

Else

If succeeded x = REPROPT(xu)

Repair succeeded, replace xu in population with x

Else

Repair failed

End if

End if

Else

Repair skipped

End if

Else

Repair not needed

End if

Figure 3.7: REPA algorithm

3.3.5 Studies on Constraint Projection by Standard COSY

In�nity Optimizers

Introduction

Both the REFIND and REPROPT methods have certain parameters to be set by the

user. Both use one of the built-in COSY In�nity optimizers (SIMPLEX, LMDIF,

ANNEALING, all described in section 2.1). The choice of ANNEALING as the

optimization method for REFIND was justi�ed by two reasons: �rst, the task is one-

dimensional, thus relatively simple, and is solvable with high probability, as explained

in section 3.3.2 so all search methods work e�ciently, and, second we wanted to add

randomness to the process so that there is no pattern in the results of the repair such

as a repair candidate being close to the boundary of F or close to the feasible point
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used for repair. Therefore we selected ANNEALING as the �most random� of all three

methods. The REPROPT method, however, deals with much harder v-dimensional

optimization problems, hence the question of the best optimization algorithm it is not

solvable as easily. Although generally this selection should be made for the problem

(see section 2.1.4), we investigated this question on the set of test problems commonly

used in the �eld of constrained EA optimization [135] (see Appendix D).

The parameters of REPROPT include the penalty functions method, the algo-

rithm used for projection, penalty satisfaction tolerance and the maximum number

of steps allowed. To determine good default values of these parameters, we studied

the performance of this method on a standard set of test problems for constrained op-

timization with Evolutionary Algorithms [128, 135] (see section 2.1). Built-in COSY

In�nity unconstrained optimizers (see section 2.1) and their combinations were used

for this purpose. The choice of the optimization methods is based on their long-term

reputation of being versatile, robust and e�cient tools (see section 2.1). They are

frequently used by many nonlinear optimization packages and are readily available in

the COSY In�nity system where GATool (see section 2.3) is implemented. Di�erent

methods to construct penalty functions and formulate the unconstrained optimiza-

tion problem from the constrained problem by their means (see section 3.2.2) were

explored. The transformations and conventions applied to all the test problems and

the general setup of the tests are described in the next section.

Methodology

All the equality constraints of the type (1.3.2) were converted into the equivalent

inequality constraints (1.3.3) using the transformation (1.3.12) so that the feasible

set is given by (1.3.14).
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All constraints in the test set were known to be satis�able. Since we were not

interested in the global minima of the constraint functions but rather in the simul-

taneous satisfaction of all constraints, the set of constraint functions was converted

to a set of penalties using power penalties (3.2.10) with a = 0, 1, and 2. Using the

property (3.2.9), which the power penalty functions satisfy, the problem of projecting

point x0 onto F via a chosen optimizer can be formulated as follows: using x0 as a

starting value, �nd xf such that

Pi
(
hi(xf )

)
= min

x∈S
Pi
(
hi(x)

)
= 0, i = 1, . . . , n. (3.3.1)

Such xf is then automatically feasible. Note that this method is equivalent to the ap-

proach (3.2.1) that allows a conversion of a single-objective constrained optimization

problem to a multi-objective unconstrained problem via penalty functions. The di�er-

ence from it is that in our case we do not have an objective function to minimize. Note

also, that in (3.3.1) we can be satis�ed with non-zero penalty values if they are within

the desired tolerance from zero (e.g. because of the practical considerations). This is

particularly applicable to the converted equality constraints because they might be

non-zero simply due to the limited precision of the �oating-point arithmetic.

Three types of the objective functions were tested:

• all combined: a multi-objective problem (3.3.1) was converted into a single-

objective problem (3.2.4) with all wi = 1.

• equality combined + inequality combined: a multi-objective problem (3.3.1) was

converted into a two-objective optimization problem with inequality constraints

and equality constraints (transformed to inequality constraints using (1.3.12)

but still more di�cult to satisfy than the true inequalities) converted into two

separate objective functions using the method from all combined approach.
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This distinction was made because the equality constraints are usually harder

to satisfy thus they might require more severe penalties in order to be satis�ed

by optimizer.

• separate: a multi-objective optimization problem (3.3.1) was treated as is. It

must be noted, however, that for ANNEALING and SIMPLEX methods, the

problem was internally converted into a single-objective optimization problem of

optimizing the sum of the squares of the objective functions, i.e. this formulation

is equivalent to the all combined method for a = 2. LMDIF has the ability to

solve multidimensional problems directly.

The following abbreviations for the search methods are used: S � SIMPLEX,

L � LMDIF, A � ANNEALING optimization methods. Combined methods were

implemented by making several steps using one method and then making several

steps using another method with the idea to combine the strengths of both methods

and compensate for their weaknesses. Combinations of methods and their respective

abbreviations are: S+A� SIMPLEX +ANNEALING, S+L� SIMPLEX + LMDIF,

L+A � LMDIF + ANNEALING.

Each combination of the penalty function (a = 0, 1, 2, selected separately for

equality and inequality constraints) and the optimization problem formulation (all

combined, equality combined + inequality combined, separate) was tested on each

of the simple (S, L, A) and combined (S+A, S+L, L+A) methods. For the prob-

lems without equality constraints, optimization problem formulations all combined

and equality combined + inequality combined are equivalent, hence only all combined

was tested. For problems with only one constraint all formulations of optimization

problems are equivalent.

Special abbreviation for each variant of the problem formulation and optimization
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strategy is employed. The description starts with the abbreviation of the optimiza-

tion method (S, L, A, S+A, S+L, L+A) followed by the type of the penalty function

used for the constraints, enclosed by parentheses. For problems with equality and

inequality constraints, both types are separated by a comma and the �rst type cor-

responds to equality constraints. The following types are used: 1 for power 0, z

for power 1, and z2 for the power 2. For problems with inequality or equality con-

straints only, one type denotes the type of the penalty used for the corresponding

constraints. For optimization problems of the all combined type �:c� is added after

the method abbreviation before parenthesis. For problems with both equality and

inequality constraints type equality combined + inequality combined is also marked

with �:c�, types of the penalties are separated by �+� instead of a comma. Examples:

S+L:c(z2) denotes SIMPLEX+LMDIF combined method, problem with inequality

constraints only, all combined objective function, and a penalty power is 2. L(z)

denotes LMDIF method, separate objective functions, power of the penalty equals

1. L+A:c(z + z2) denotes combined LMDIF+ANNEALING optimization method,

equality combined + inequality combined optimization problem with penalty power 1

for equality constraints and 2 for inequality constraints.

Test problems were constructed by taking constraints from the standard con-

strained optimization test bench for EAs [128,135] (see Appendix D). Since it mostly

consists of the inequality-only constrained problems, a simple 2-dimensional problem

(3.3.2) with one equality and four inequality constraints was suggested by Dr. Martin
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Berz [27].

g1(x) = x2
1 + x2

2 − 1.12 = 0

h1(x) = x1 − 1 ≤ 0

h2(x) = −x1 − 1 ≤ 0 (3.3.2)

h3(x) = x2 − 1 ≤ 0

h4(x) = −x2 − 1 ≤ 0

Initial points were generated randomly from the uniform distribution over S =

[−100, 100]v and S = [−1000, 1000]v. The total number of the di�erent points tested

for each combination was 1000.

For all these methods the maximum number of steps was 1000 and the precision

was 10−5. For the combined methods, the maximum number of steps with the �rst

and second methods in one step of the combined algorithm was 10, the total number

of steps was counted by summing steps made by both methods, and the maximum was

set to 1000. The projection was considered successful if all the objective functions were

within the tolerance from the global minimum of zero. The projection was considered

failed if the desired tolerance was not reached and the method either converged or

reached the maximum allowed number of steps.

Results and Conclusions

Using all those conventions a series of tests was performed. Outcome of those tests

is summarized in the tables, where for every combination of the method, the penalty

functions and the objective function construction method, the percentage of the suc-

cessful runs and the average number of steps including the failed runs are listed. For

each problem a set of the tables similar to the Tables 3.1, 3.2, 3.3, and 3.4 for the
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problem (3.3.2) is constructed. The best methods in terms of the number of the

successful runs are listed in these tables in boldface, the number of the steps of

these best methods is highlighted using the same style. Headers of the columns show

powers of the penalty functions as described in methodology.

For each method three rows contain the results for the all combined, equality com-

bined + inequality combined and separate objective function construction methods.

In the cases where there are no equality constraints or no inequality constraints, the

equality combined + inequality combined method is equivalent to the all combined

hence it was not tested. Therefore the number of the rows for each method in this

case is two. The problems G03 and G11 have one constraint each, hence the number

of rows in these cases is one.

For the sake of space we do not list all tables for all the cases. Results of all test

can be found in [156]. Here we list the results for the constraints set (3.3.2) since

this problem has both an equality constraint and several inequality constraints (see

Tables 3.1, 3.2, 3.3, and 3.4). We also list the results for the problem G03 in Figure

D.3) because it has only one constraint (see Tables 3.5, 3.6, 3.7, and 3.8) and for

the problem G07 in Figure D.7 because it has the largest number of constraints (see

Tables 3.9, 3.10, 3.11, and 3.12).

Results of all tests are summarized in two performance tables: Table 3.13 and Ta-

ble 3.14 [156]. For every problem the three best approaches to constraint satisfaction

are listed. Di�erent tables correspond to the di�erent initial point sampling ranges.

The comparison is based on the percentage of the successful runs and the average

number of the steps made during the search process (including failed ones).

From those tables it could be clearly seen that the optimal approach to constraint

satisfaction on the selected set of problems is:
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Table 3.1: Success rate of the constraints projection for the Problem G00 (3.3.2) on 1000 random

points from [−100, 100]v. Here v = 2, problem has one nonlinear equality constraint and four linear

inequality constraints. Three rows for each method correspond to the all combined, equality combined

+ inequality combined and separate optimization problem formulation methods. Best methods in

terms of the percentage of the results are listed in boldface

Method
% success

1, 1 1, z 1, z2 z, 1 z, z z, z2 z2, 1 z2, z z2, z2

SIMPLEX
0.00 0.00 0.00 60.20 57.10 31.70 78.50 72.50 74.50
0.00 0.00 0.00 29.10 29.10 29.70 37.00 37.00 37.70
0.00 0.00 0.00 29.10 29.10 29.70 37.00 37.00 37.70

LMDIF
0.00 0.00 0.00 50.60 60.90 81.90 64.70 92.70 94.10
0.00 0.00 0.00 66.80 91.80 95.50 80.10 85.90 89.80
0.00 0.00 0.00 66.80 98.10 99.60 80.00 98.10 94.00

ANNEALING
0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.10 0.20
0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.20
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.20

SMP+LMD
0.00 0.00 0.00 91.00 64.90 85.50 96.10 100.0 99.40
0.00 0.00 0.00 84.50 100.0 100.0 98.80 99.90 100.0
0.00 0.00 0.00 84.50 100.0 100.0 98.80 100.0 100.0

SMP+ANN
0.00 0.00 0.00 0.10 0.30 0.100 77.30 76.30 71.60
0.00 0.00 0.00 0.20 0.20 0.200 76.60 73.30 74.10
0.00 0.00 0.00 0.20 0.20 0.00 77.70 75.90 75.80

LMD+ANN
0.00 0.00 0.00 99.60 91.20 73.10 98.20 93.00 95.50
0.00 0.00 0.00 99.70 100.0 100.0 98.50 75.00 97.30
0.00 0.00 0.00 99.70 100.0 100.0 98.50 100.0 96.60

Table 3.2: Average number of steps of the constraints projection for the Problem G00 (3.3.2) on

1000 random points from [−100, 100]v

Method
avg # of steps

1, 1 1, z 1, z2 z, 1 z, z z, z2 z2, 1 z2, z z2, z2

SIMPLEX
4 37 40 338 409 422 262 338 329
4 4 4 452 452 452 359 359 359
4 4 4 452 452 452 359 359 359

LMDIF
6 26 34 113 94 72 134 128 166
6 23 73 56 79 91 112 203 176
6 10 62 56 50 65 112 92 145

ANNEALING
1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000

SMP+LMD
1000 1000 1000 236 405 206 169 118 125
1000 1000 1000 248 140 271 129 233 179
1000 1000 1000 248 70 201 129 113 126

SMP+ANN
1000 1000 1000 1000 1000 1000 428 435 476
1000 1000 1000 1000 1000 1000 431 458 476
1000 1000 1000 1000 1000 1000 410 439 468

LMD+ANN
1000 1000 1000 118 240 383 225 279 273
1000 1000 1000 104 170 232 217 741 382
1000 1000 1000 101 82 147 220 156 226
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Table 3.3: Success rate of the constraints projection for the Problem G00 (3.3.2) on 1000 random

points from [−1000, 1000]v

Method
% success

1, 1 1, z 1, z2 z, 1 z, z z, z2 z2, 1 z2, z z2, z2

SIMPLEX
0.00 0.00 0.00 56.40 58.30 31.80 70.40 73.90 74.80
0.00 0.00 0.00 29.00 29.00 29.30 40.60 40.60 41.10
0.00 0.00 0.00 29.00 29.00 29.30 40.60 40.60 41.10

LMDIF
0.00 0.00 0.00 45.80 56.10 81.30 64.70 86.90 92.00
0.00 0.00 0.00 64.90 92.80 97.70 81.20 80.60 88.80
0.00 0.00 0.00 65.10 99.60 99.10 81.10 99.60 92.80

ANNEALING
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SMP+LMD
0.00 0.00 0.00 90.80 63.20 88.50 98.20 100.0 99.70
0.00 0.00 0.00 84.50 100.0 100.0 99.60 100.0 100.0
0.00 0.00 0.00 84.50 100.0 100.0 99.60 100.0 100.0

SMP+ANN
0.00 0.00 0.00 0.20 0.20 0.10 76.60 73.90 70.20
0.00 0.00 0.00 0.30 0.20 0.40 76.20 71.80 69.10
0.00 0.00 0.00 0.20 0.10 0.10 76.20 74.10 71.60

LMD+ANN
0.00 0.00 0.00 99.40 93.60 70.60 98.30 92.70 91.50
0.00 0.00 0.00 99.50 100.0 100.0 97.70 0.700 51.00
0.00 0.00 0.00 99.60 100.0 100.0 97.70 100.0 87.40

Table 3.4: Average number of steps of the constraints projection for the Problem G00 (3.3.2) on

1000 random points from [−1000, 1000]v

Method
avg # of steps

1, 1 1, z 1, z2 z, 1 z, z z, z2 z2, 1 z2, z z2, z2

SIMPLEX
4 51 53 386 395 455 351 343 344
4 4 4 447 447 447 366 366 366
4 4 4 447 447 447 366 366 366

LMDIF
6 33 48 187 168 121 210 207 209
6 30 87 131 92 114 191 271 227
6 11 72 131 45 79 192 101 167

ANNEALING
1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000

SMP+LMD
1000 1000 1000 261 442 201 189 161 163
1000 1000 1000 274 192 332 164 342 281
1000 1000 1000 274 90 233 164 154 171

SMP+ANN
1000 1000 1000 1000 1000 1000 512 531 573
1000 1000 1000 1000 1000 1000 508 541 599
1000 1000 1000 1000 1000 1000 513 537 573

LMD+ANN
1000 1000 1000 151 223 437 297 341 366
1000 1000 1000 135 271 332 299 1000 788
1000 1000 1000 133 106 171 292 218 318
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Table 3.5: Success rate of the constraints projection for the Problem G03 (Figure D.3) on 1000

random points from [−100, 100]v. Here v = 10, problem has one nonlinear equality constraint. One

row for each method correspond to the separate optimization problem formulation methods. Best

methods in terms of the percentage of the results are listed in boldface

Method
% success

1 z z2

SIMPLEX 0.00 100.0 99.90

LMDIF 0.00 83.30 77.70

ANNEALING 0.00 0.00 0.00

SIMPLEX+LMDIF 0.00 100.0 100.0

SIMPLEX+ANNEALING 0.00 46.80 55.20

LMDIF+ANNEALING 0.00 100.0 100.0

Table 3.6: Average number of steps of the constraints projection for the Problem G03 (Figure D.3)

on 1000 random points from [−100, 100]v

Method
avg # of steps

1 z z2

SIMPLEX 7 258 257

LMDIF 9 338 430

ANNEALING 1000 1000 1000

SIMPLEX+LMDIF 1000 333 488

SIMPLEX+ANNEALING 1000 924 901

LMDIF+ANNEALING 1000 270 361

Table 3.7: Success rate of the constraints projection for the Problem G03 (Figure D.3) on 1000

random points from [−1000, 1000]v

Method
% success

1 z z2

SIMPLEX 0.00 99.50 99.50

LMDIF 0.00 69.40 68.80

ANNEALING 0.00 0.00 0.00

SIMPLEX+LMDIF 0.00 99.90 100.0

SIMPLEX+ANNEALING 0.00 0.00 0.00

LMDIF+ANNEALING 0.00 100.0 100.0
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Table 3.8: Average number of steps of the constraints projection for the Problem G03 (Figure D.3)

on 1000 random points from [−1000, 1000]v

Method
avg # of steps

1 z z2

SIMPLEX 7 343 343

LMDIF 9 475 526

ANNEALING 1000 1000 1000

SIMPLEX+LMDIF 1000 466 691

SIMPLEX+ANNEALING 1000 1000 1000

LMDIF+ANNEALING 1000 419 614

Table 3.9: Success rate of the constraints projection for the Problem G07 (Figure D.7) on 1000

random points from [−100, 100]v. Here v = 10, problem has 8 inequality constraints (3 linear, 5

nonlinear). Two rows for each method correspond to the All combined and separate optimization

problem formulation methods. Best methods in terms of the percentage of the results are listed in

boldface

Method
% success

1 z z2

SIMPLEX
0.00 48.20 64.70
0.00 0.00 0.00

LMDIF
0.00 100.0 90.10
0.00 100.0 99.30

ANNEALING
0.00 0.00 0.00
0.00 0.00 0.00

SIMPLEX+LMDIF
0.00 0.00 0.00
0.00 0.00 0.00

SIMPLEX+ANNEALING
0.00 0.10 0.00
0.00 0.00 0.00

LMDIF+ANNEALING
0.00 0.00 0.00
0.00 0.00 0.00

Table 3.10: Average number of steps of the constraints projection for the Problem G07 (Figure

D.7) on 1000 random points from [−100, 100]v

Method
avg # of steps

1 z z2

SIMPLEX
12 782 741
12 44 44

LMDIF
14 130 441
14 122 342

ANNEALING
1000 1000 1000
1000 1000 1000

SIMPLEX+LMDIF
1000 1000 1000
1000 1000 1000

SIMPLEX+ANNEALING
1000 1000 1000
1000 1000 1000

LMDIF+ANNEALING
1000 1000 1000
1000 1000 1000
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Table 3.11: Success rate of the constraints projection for the Problem G07 (Figure D.7) on 1000

random points from [−1000, 1000]v

Method
% success

1 z z2

SIMPLEX
0.00 25.20 40.40
0.00 0.00 0.00

LMDIF
0.00 99.80 92.90
0.00 100.0 97.20

ANNEALING
0.00 0.00 0.00
0.00 0.00 0.00

SIMPLEX+LMDIF
0.00 0.00 0.00
0.00 0.00 0.00

SIMPLEX+ANNEALING
0.00 0.00 0.00
0.00 0.00 0.00

LMDIF+ANNEALING
0.00 0.00 0.00
0.00 0.00 0.00

Table 3.12: Average number of steps of the constraints projection for the Problem G07 (Figure

D.7) on 1000 random points from [−1000, 1000]v

Method
avg # of steps

1 z z2

SIMPLEX
12 908 869
12 50 50

LMDIF
14 139 499
14 129 514

ANNEALING
1000 1000 1000
1000 1000 1000

SIMPLEX+LMDIF
1000 1000 1000
1000 1000 1000

SIMPLEX+ANNEALING
1000 1000 1000
1000 1000 1000

LMDIF+ANNEALING
1000 1000 1000
1000 1000 1000
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Table 3.13: Best constraint satisfaction approaches according to the tests performed at 1000 random

points from [−100, 100]v. Here v is de�ned by a problem (see Appendix D). Success rates for the

problem G05 are too low, hence II and III best methods for it are not listed

problem
I II III

method % succ steps method % succ steps method % succ steps

G00 L+A(z, z) 100.0 82 L(z, z) 98.1 50 S+L(z, z) 100.0 70

G01 L(z) 100.0 45 L:c(z) 98.67 94 L(z2) 100.0 234

G02 L(z) 97.8 65 S+A:c(z2) 97.6 93 S+A:c(z) 97.0 94

G03 S(z) 100.0 258 L+A(z) 100.0 270 S+L(z) 100.0 333

G04 L(z) 100.0 19 L+A(z) 100.0 53 L(z2) 100.0 80

G05 L(z2 + z) 10.1 938 - - - - - -

G06 L(z) 99.9 83 L(z2) 99.6 121 S+L(z) 100.0 191

G07 L(z) 100.0 122 L(z2) 99.3 342 - - -

G08 L+A(z) 100.0 66 S+L(z) 100.0 67 L(z) 99.5 56

G09 S:c(z2) 96.1 327 L+A(z2) 97.5 513 L+A(z) 89.6 373

G10 L(z2) 81.9 386 S+L(z2) 76.0 501 L+A(z) 74.1 379

G11 L(z) 100.0 20 S+L(z) 100.0 50 L+A(z) 100.0 56

G12 S+L(z) 100.0 125 L+A(z) 100.0 132 S+L(z2) 100.0 210

G13 L+A(z) 99.9 361 S+L(z) 98.3 327 L(z) 75.6 342

vess S+L:c(z2) 98.3 242 L+A(z) 91.6 141 L(z) 89.4 90

tens L(z2) 22.8 202 L(z) 20.7 329 S+A:c(z2) 25.1 902

Table 3.14: Best constraint satisfaction approaches according to the tests performed at 1000 random

points from [−1000, 1000]v. Here v is de�ned by a problem (see Appendix D). Success rates for the

problem G05 are too low, hence I, II and III best methods for it are not listed

problem
I II III

method % succ steps method % succ steps method % succ steps

G00 L+A(z, z) 100.0 106 L(z, z) 99.6 45 S+L(z, z) 100.0 90

G01 L(z) 100.0 45 L:c(z) 98.5 97 L(z2) 100.0 278

G02 L(z) 94.0 103 S+A:c(z) 78.8 302 S+A:c(z2) 78.6 301

G03 S(z) 99.5 343 S+L(z) 99.9 466 L+A(z) 100.0 419

G04 L(z) 99.9 41 L+A(z) 100.0 130 L(z2) 100.0 125

G05 - - - - - - - - -

G06 L(z) 99.5 116 L(z2) 98.4 183 S+L(z) 100.0 209

G07 L(z) 100.0 129 L(z2) 97.2 514 - - -

G08 L+A(z) 100.0 92 S+L(z) 100.0 91 L(z) 98.1 80

G09 S:c(z2) 59.3 715 L+A(z2) 47.4 572 L+A(z) 25.4 913

G10 L(z2) 77.8 445 S+L(z2) 74.3 540 L+A(z) 66.6 453

G11 L(z) 99.9 25 S+L(z) 99.9 69 L+A(z) 100.0 79

G12 S+L(z) 100.0 171 L+A(z) 100.0 187 S+L(z2) 100.0 295

G13 L+A(z) 98.3 472 S+L(z) 98.1 502 L(z) 66.6 542

vess S+L:c(z2) 93.5 268 S:c(z2) 93.3 123 S:c(z) 92.1 121

tens L(z2) 4.6 196 L(z) 2.5 168 S+A:c(z2) 15.3 984
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• optimizer: LMDIF

• objective function type: separate, i.e. penalties for individual constraints are

treated as separate objectives in a multi-objective optimization problem (3.2.1)

• power for the penalty function: a = 1 for both equality and inequality con-

straints

This approach is the �rst best for problems G01, G02, G04, G06, G07 and G11,

second best for G00 and �tens� and the third best for G08, G13 and �vess� (see

Appendix D). The combined LMDIF+ANNEALING search method used with the

same penalty function and the objective function type is the second best approach

with a slightly larger number of steps. However, for some problems (G03, G13), it

demonstrated signi�cantly better performance; and, for most of them it does not

perform signi�cantly worse than the leader. We believe that this is caused by the fact

that the random and very heuristic ANNEALING method helps the deterministic and

analytic LMDIF method to avoid getting stuck on di�cult landscapes in the search

space of the complicated problems. We also believe that a good performance of the

next best SIMPLEX+LMDIF combined method is also due to the LMDIF while the

heuristic SIMPLEX method helps LMDIF to not get stuck. Therefore we consider

LMDIF (possibly paired with heuristic �helper method�) as the best selection for the

constraint satisfaction on the presented set of problems. ANNEALING method alone

demonstrated the worse results and SIMPLEX showed generally average performance.

Considering �No Free Lunch Theorems for Search and Optimization� (see section

2.1.4) such a superior performance of one optimization method over others can be

explained since it uses the largest amount of the information about the problem to

guide the search process. While SIMPLEX and ANNEALING are purely heuristic
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methods and do not use any information about a problem apart from the function

values, LMDIF uses both the �rst derivative and approximation of the second deriva-

tive [77] to determine the direction to the minimum. As one can see in Appendix

D, most of the constraints in the presented set of the problems are given in a form

of nice, twice continuously di�erentiable functions. Hence it is possible to use this

available information in order to run the specialized method. We speculate that for

general constraint functions LMDIF would not work so well do not, in terms of the

best constraint satisfaction method might be quite di�erent.

The data in the summary tables 3.13, 3.14 can also be used to help in selecting

an optimal number of steps for guaranteed constraint satisfaction. However, we are

interested in the computational cost as well as the performance. Hence, a di�erent set

of the tests might be needed in order to determine the minimum maximum number

of steps allowed in order to reach a desired rate of successful runs to all runs. Here

we can only conclude that this level would depend on the maximum allowed number

of steps. Setting it to the values less than the average from the tables would most

likely lead to a degradation in performance.

We also note that problems with equality constraints (G03, G05, G13) and high-

dimensional problems (G03, G07, G09, G10) have indeed demonstrated themselves

as harder to solve. However, high-dimensional problem G02 and problem G11 with

equality constraint only, did not obey this empirical rule. Hence we suggest the

estimation of the di�culty of the problem based on this rule to be taken with care

and always veri�ed by simulations.

We see that for these problems the power penalty functions (3.2.10) with a = 1

are the best choice, while a = 2 is a signi�cantly inferior variant. However, this

result is not only a problem-dependent but also an optimizer-dependent hence we
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can not conclude that these functions are the best choice for any combination of the

problem and the optimizer. We believe that since the step penalty functions (a = 0)

demonstrated near zero successful runs in our test (see tables in section �Results�

in [156]), they should generally be avoided as they do not provide any information

about the direction in which the penalty is changing. Since they only indicate if

the point is feasible or not, the search landscape for such penalties is �at, which is

causing most optimization methods to fail because of their inability to make a move

to a point that is better than the initial. This conclusion is in accordance with the

study on penalty functions in [162].

Wherever it applies (problems G00, G05), our studies do not demonstrate a signif-

icant di�erence in performance between the all combined and the equality combined

+ inequality combined optimization problem formulation methods except for the G05

tested on 1000 random points from [−100, 100]4 where it demonstrated 2.5 times bet-

ter performance than any other method. However, these results were not veri�ed by

the test performed on the search domain from the problem formulation (see Figure

D.5) [156]. Both these objective function types were outperformed by the separate

method and thus are not recommended.

Poor results for the problem G05 in both test ranges are observed to be ob-

tained due to a di�erence in 3 orders of magnitude between search domains for

x1, x2 ∈ [0, 1200] and x3, x4 ∈ [−0.55, 0.55] from the problem formulation (see Fig-

ure D.5) that are inconsistent with the common search domains of [−100, 100]4 and

[−1000, 1000]4 used in testing. Additional testing on the suggested search domain

supported all the observations about the best optimization and the objective func-

tion construction methods presented earlier. It must be noted, however, that the best

results were obtained when the quadratic power penalties were used for the equality
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constraints, i.e. when penalties for violating the equality constraints were steeper

than the ones for violating the inequality constraints.

Based on our tests we conclude that the transformation of the constraint satis-

faction problem into the multi-objective unconstrained optimization problem (3.2.1)

via the power penalty functions (3.2.10) with a = 1 and successive treatment of the

resulting optimization problem with the LMDIF COSY In�nity optimizer is a rea-

sonable choice for the default parameters of REPROPT. However, we should note

that the considered problem set is not very large and it does not cover all the pos-

sible cases, hence the results might not be general enough and thus might not be

universally applicable. In case of the poor performance of the REPROPT method we

suggest tuning the parameters based on the information about the problem, possibly

after studies similar to the ones performed for this work.

3.3.6 Performance

In this section we assess the performance of the REPA constraint handling method for

Evolutionary Algorithm. The REPA repair algorithm does not work as a standalone

method, but rather is designed to work with any Evolutionary Algorithm for the

continuous optimization on the real domain. Here we study its performance together

with GATool (see section 2.3). The population size for GATool was chosen using

the dimension*20 formula, to compensate for additional di�culty that constrained

problems have compared to unconstrained ones, all parameters were set to their de-

fault values (see Figure B.1). As the test problems we used the standard constrained

optimization test bench for EAs [128,135] (see appendix D for problem formulations

and properties).

Three methods are chosen for comparison. The �rst one is the most straight-
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forward and expectedly least e�cient, killing method (see section 3.2.1). For each

member of the population the sum of the quadratic penalties (3.2.10) is calculated.

Members of the population that have this combined penalty higher than the allowed

tolerance (10−5 in our simulations) are eliminated and then regenerated using the se-

lected method of the new members generation (randomly uniform by default). This

process is repeated several times up to the maximum allowed number (50 in our cases)

or until all the penalties are zeros, i.e. until the resulting member is feasible. The

objective function is not modi�ed and the elimination process is the only connection

of the algorithm with the problem's constraints.

Another one is based on the modi�cation of the objective function via the penalty

function method (see section 3.2.2). Due to its e�ciency despite the simplicity we

employed the annealing dynamic penalty (3.2.24) where τ0 = 100, τk+1 = 0.9τk and

τf is not needed since the number of generations we used for testing is relatively small

and the termination upon reaching the �nal temperature is not required. Despite the

existence of the more sophisticated techniques, the penalty function methods are still

e�cient and quite popular.

Another strategy that we tested is a killing method combined with the objective

function modi�cation method. This algorithm has only 5 kill/regenerate cycles but

the objective function was calculated using the formula (3.2.4) where all wj = 1 and

Pj are quadratic penalty functions from the power penalty family (3.2.10).

For the REPair Algorithm (REPA) following values for the parameters were used:

the percentage of the repaired unfeasible members was set to 95% tolerance was

set to 10−5. The search space in our tests was given in a form of a v-dimensional

box. This box was represented as a set of linear inequality constraints and added to

the de�nition of the feasible set (1.3.14). This was done since the repairing process
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technically can produce repair candidates out of the search space hence we need to

penalize the repair algorithm for leaving the search space.

For the repair methods of REPA the following parameters were used:

• REPair by Feasible INDividuals (REFIND): the feasible member to repair with

was chosen among 5 feasible members as the closest to the unfeasible one being

repaired; the objective function for constraint satisfaction is built by using the

multi-objective optimization approach (3.2.1) with the quadratic power penal-

ties (3.2.10); the optimization algorithm was ANNEALING, the maximum steps

allowed was set to 15 and the tolerance was set to 0.

• REpair by PRojecting through OPTimization (REPROPT): constraint satisfac-

tion optimization problem formulation and solution methods were selected based

on studies presented in section 3.3.5: single-objective constrained problem was

converted into a multi-objective optimization problem via linear power penal-

ties (3.2.10), then solved via LMDIF optimization algorithm with the maximum

number of steps allowed set to 50 (compromise between speed and e�ciency)

and the tolerance set to 10−5.

For each combination of the problem and the method 100 runs were performed.

Percentage of the successful runs is given in Table 3.15. Results on the obtained values

are summarized in Tables 3.16, 3.17, 3.18, 3.19 for the killing, annealing penalty,

killing+penalty and the REPA methods, respectively. In those tables �rst six columns

describe the problem (for full description see Appendix D) with the sixth column,

�Optimum�, listing the value of the global feasible optimum or the best known value

of the optimum. Next four columns describe the results of the 100 runs with the

selected optimizer: the best, median, mean and the worst values that were found.
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To select the resulting value from the �nal population produced by the chosen

method, the member with the minimum function value among those whose penalties

were smaller than the allowed tolerance. If the emphasize is on the constraints sat-

isfaction rather than on the minimum function value (as in the rigorous constrained

optimization), the selection of the result can be based on the minimum penalty vi-

olation (among those within tolerance, of course) instead. If no population member

with its constraint violation penalty within required tolerance was found, the run was

considered failed. Mean and median results were calculated over the successful runs

only.

It is also worth mentioning that due to the fact that one of the stopping criteria

was the maximum number of generations allowed and some of those problems are

signi�cantly di�cult (particularly high-dimensional), most constrained optimization

methods were frequently not convergent. Rather they exhausted the allowed number

of generations and stopped, which is particularly true to the least e�cient naive

killing strategy. Results obtained using this method, even though they can be worse

than the one obtained with no such restriction, are particularly important for the

problem of cuto� value update generation in rigorous optimization (see section 2.3.6)

and allows to keep the execution time under control. In this study we tried to show

that at a reasonable computational expense REPA method is capable of generating

good solutions. Another study might be required in order to �nd out if it is able to

�nd optimal solutions to all the problems. Another note that has to be made is that

here all the constrained optimization methods were used in conjunction with GATool

(see section 2.3) but in principle are not tied to it. For di�erent pairing unconstrained

continuous EA-based optimizers results can be di�erent.

By studying the rate of success in Table 3.15 one can conclude that the REPA
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Table 3.15: Percentage of the successful runs for di�erent methods (from 100 runs total). HEre

v is the problem dimension, n is the number of constraints, �Di�.� column lists di�culties of the

problems according to [128]. Here E,A,D,VD mean EASY, AVERAGE, DIFFICULT and VERY

DIFFICULT, correspondingly

Problem Di�. v n
Success Rate (%)

Killing Killing+Penalty Anneal. Penalty REPA

G01 D 13 9 2 3 100 9

G02 D 20 2 100 100 100 100

G03 D 10 1 3 2 100 100

G04 A 5 6 100 100 99 100

G05 VD 4 5 0 0 0 100

G06 A 2 2 23 2 54 99

G07 A 10 8 0 0 100 100

G08 E 2 2 100 100 100 100

G09 A 7 4 100 100 100 100

G10 D 8 6 10 0 0 11

G11 E 2 1 12 1 100 99

G12 E 3 1 100 95 100 100

G13 VD 5 3 0 0 76 100

tens E 3 4 96 44 89 100

vess A 4 4 100 100 100 100

method is the best one for the considered problem set. Apart from its poor per-

formance on the problems G01 and G10 (see Figure D.10) it was able to produce a

feasible result in almost all runs with the default settings. The second best was the

annealing penalty method, the third and the fourth places are shared between the

killing and the killing+penalty methods.

It is worthwhile to note that for the problem G06, G10, G11 the killing method

outperforms the killing+penalty method. If we compare the numerical values of the

results produces by those two methods (Tables 3.16, 3.18), we can notice that none

of those two methods is superior to another. They both failed on the problems G05,

G07, G10 and G13 and demonstrated similar quality of the result on the problems

G04, G09 and G12. On the problems G01, G02, G03, G11 the killing+penalty has

demonstrated better performance, while on the problems G06, G08, �tens� and �vess�

the naive killing performed better. On almost all the problems marked as EASY those
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methods were able to achieve the optimum or a value close to the optimal. Both the

killing and the killing+penalty methods were clearly outperformed by the annealing

penalty and REPA techniques (see additionaly Tables 3.17, 3.19) both in the success

rate and the quality of the results.

It is worth noting that the killing method can be adequate for problems with a

relatively large ρ factor. However, for the cases when it is relatively small or very

small, random regeneration has a very small chance of generating a feasible member.

Here the directional search for the feasible set that is done by REPA demonstrated

itself to be more e�cient. Speci�cally this is demonstrated on the problems with

equality constraints, i.e. cases with the theoretical ρ equal to zero.

Comparing the annealing penalty and REPA methods (Tables 3.15, 3.17, 3.19)

we notice that while the success rate for the problem G01 is higher for the an-

nealing penalty method, the quality of the best and median results was better for

REPA method. The annealing penalty method failed on the problems G05 and G10

(VERY DIFFICULT and DIFFICULT), demonstrated a similar performance on the

best achieved results for the problems G08, G09, G11 and G12 (EASY and AVER-

AGE). It was able to �nd optimal values for the problems G08, G11, G12 (EASY).

However the mean and the median results for all the problems except G09 were much

better for REPA than for the annealing penalty method (for problem G09 the mean

and the average values are of the same quality). Therefore we can conclude that

REPA method provides more consistent results over the runs and thus is a more

robust algorithm. REPA method found the optimal values for the problems G05,

G08, G11, G12, G13 and �tens� and the results close to the optimum for the prob-

lems G03, G04, G06, G09. For two problems that were classi�ed by Mezura [128]

as VERY DIFFICULT (G05, G13) it was able to �nd an optimal value consistently
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(the mean and the median values are nearly optimal). REPA method outperforms

the annealing penalty method on all the problems but G09, where the results are of

the same quality.

Based on our tests we can conclude that the proposed REPA method was the

best from the tested methods for the continuous constrained optimization. It also

demonstrates itself as being robust which is important for consistent generation of

good cuto� values for rigorous constrained optimization. Due to the repairing process

performed by it, the REPA method is relatively computationally expensive but for

rigorous optimization it is a valid tradeo� for the quality of the result. Another

important case is the optimization of the physical device design, where the objective

function can be calculated on the base of the expensive simulations and thus be very

taxing to calculate. Constraints in this case are very important to satisfy.

If we compare the results obtained by REPA method with the results obtained

with other constrained Evolutionary Algorithms by other authors, we can conclude

that the proposed approach is, indeed, e�cient and competitive. Those experiments

include the studies performed by Michalewicz [133] (problems 1, 2, 3 and 5 in his

test set are problems G01, G10, G09 and G07 in our test set, correspondingly); by

Coello and Mezura [41] (examples 2, 3, 4 in his test set are the problems �vess�,

�tens� and G12 in our test set, correspondingly) and by Mezura [128] (see Chapter

5, test functions are the same). We also note that for the problems G05, G13 that

are e�ciently and robustly solved by our method, most of the other state of the

art approaches to constrained optimization with EAs failed even to �nd a feasible

member [128].

Trying to improve the results for the test problems marked DIFFICULT (G01,

G02, G10) and those marked AVERAGE (G07, �vess�) that were not completely
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solved because the feasible optimum was not reached with the default settings, we

tested if the increase in the maximum allowed number of generations from 150 to 250

increases the quality of the results (this suggestion is more or less generic for GA-hard

problems, see for example section 2.3.5). For G01 we did not obtain any statistically

signi�cant improvement. For G02 the increased number of generations resulted in the

increase in the quality of the results (compare with values from Table 3.19):

best = -0.7896210467822932

median = -0.746413744215766

mean = -0.740383328183245

worst = -0.6797819227868159

For G10 the increased number of generations produced an increase in the success rate

(grows to 19%) with reduction in the quality of the results:

best = 7407.208490599209

median = 9378.23832879927

mean = 9870.55475611721

worst = 19827.95976815720

For G07 the increased number of generations resulted in the increase in the quality

of the results:

best = 25.22498907620453

median = 28.1881923101962

mean = 28.2941232844445

worst = 35.71934554079836

For �vess� the increased number of generations resulted in the increase in the quality

of the results:

best = 8797.914097806060

median = 9724.07325335419

mean = 10449.0859049756

worst = 23374.47976868584
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However, for G02, ρ ≈ 99.9973%, hence the main impact on the performance

for this problem is an e�ective optimization inside the feasible region, which REPA

method is not interfering with. Hence the performance is mainly a�ected by the

performance of the underlying genetic algorithm and the problem should be tuned

for the optimal performance by tuning GATool parameters. We suggest that the

better performance of GATool in this case is a main reason for the better results of

the GATool + REPA method. For other problems changing REPA settings might be

more relevant.

Since the problem G01 is not only high-dimensional (13) but has the largest num-

ber of constraint functions (nine) de�ning the feasible set, we suspected that the

increase of performance for this function can be reached by changing the settings for

the optimizer used by REPROPT method to project unfeasible members to the feasi-

ble set. Experiments demonstrate that by decreasing the projection penalty tolerance

to 1 and increasing the maximum allowed number of steps for projection to 70 we can

improve the success rate from 9% up to the 100% and increase the quality of results

to

best = -14.95789279338429

median = -14.3710717847534

mean = -14.3276103831189

worst = -13.12539263469034

This case also demonstrates an important technique of repairing. By setting the

desired constraint satisfaction penalty to 1 we allow the resulting repaired point to

be in the close proximity to the feasible set (provided the constraint functions are

continuous, see section 3.2.2), but not necessarily inside it or on the boundary. It

turned out that this relaxation of the repairing conditions still can be useful for the

optimization process. The determination of the optimal set of parameters for the
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given constrained optimization problem is not a trivial task and generally done by

trial and error. Little to no theory exist on the topic.

If we consider optimizers constructed from GATool and REPA by changing their

parameters as di�erent optimizers rather than the same version of the one optimizer

(this assumption is valid since most of them can in�uence the search process to

a large extent) from �No Free Lunch Theorems for Search and Optimization� or

NFL theorems (see section 2.1.4), we can conclude that there is no universally best

set of those parameters, no matter how hard and extensively we try to �nd them.

There will always exist problems for which the default parameters will not work in

an optimal way, hence knowing the strategies to tune the method for the problem is

also important. For the parameters of GATool and REPA see sections 2.3 and 3.3,

correspondingly. Note that the number of parameters is large and some of them are

dependent, which on one hand makes it hard to tune them, but on the other hand

gives the user a great �exibility. Since we view our optimizer as a general-purpose

tool applicable to a wide range of di�erent problems, we consider this mostly as its

advantage.

Few words of critique must be said about the standard problem set for EA-based

constrained optimization that we used. First, we note that the di�culty of the prob-

lem according to NFL theorems is method-dependent, hence the classi�cation of the

di�culty made by Mezura [128] and we adopted in this work (see Appendix D) might

not be adequate for all methods. Indeed, it turns out, that two of the problems: G05

and G13 marked as VERY DIFFICULT due to a presence of one or more nonlinear

equality in the constraint functions set, did not pose a signi�cant problem for our

method (see Tables 3.15, 3.19) thus can not be considered VERY DIFFICULT with

respect to it. The problems G01, G02, G03, G10 marked as DIFFICULT, due to a
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high dimensionality and small ρ (except for G02, which has the largest dimensional-

ity) have demonstrated themselves as being moderately di�cult since the values close

to the optimal were found. However, the problems G07 and vess marked as AVER-

AGE posed for our method the same or even higher di�culty than the DIFFICULT

problems. The problems G08, G11 and G12, marked as EASY, pose no di�culty for

our method thus the classi�cation here is adequate.

We claim that the good performance of our approach on the VERY DIFFICULT

problems G05 and G13 is due to the fact that their extreme di�culty was suggested

based on the small size of the feasible set (ρ ≈ 0) and the presence of the rela-

tively large number of the nonlinear and linear equalities in the set of constraint

functions. However, all those constraint functions are analytic therefore REPROPT

repair method having the LMDIF as a default optimizer and thus using the extra

information coming from di�erentiability (see the description of LMDIF in section

2.1), is capable of e�ciently repairing unfeasible members (see section 3.3.5). For

functions that do not possess those desirable properties, results can be di�erent.

We claim that the di�culty of the DIFFICULT problems is mostly due to their

high dimensionality which is known to increase the problem's complexity (see section

2.3.6). Additional studies with the increased maximum number of generations for

GATool, increased maximum number of steps for repairing and the decreased con-

straint projection tolerance for REPA demonstrate an increase in the quality of the

result.

We additionally note that the problem G12 originally suggested to be a test for the

cases when where a feasible set is disjoint and thus the problem is di�cult, demon-

strated itself as an easy problem, successfully solved even by the most ine�cient

methods (see Tables 3.15, 3.17, 3.19, the studies in Chapter 5 of [128]). It seems like
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the disjoint pieces of the feasible set (3-dimensional balls, see Figure D.12) are large

enough, placed close enough to each other and cover the search space dense enough

(ρ ≈ 4.7697) that they do not model the main di�culty they were supposed to model

well enough. Moreover, for this problem the unconstrained and the constrained min-

imumizers coincide (which is easy to verify) hence the results of both unconstrained

and constrained minimization should coincide as well. Therefore it does not test

the speci�c di�culty of the constrained minimization. We conclude that other more

adequate test problems for disjoint feasible sets are needed.

3.4 Conclusions

In this section we reviewed the challenges of the constrained optimization with the

Evolutionary Algorithms. We presented a uni�ed overview of the commonly used

constrained optimization methods for EA. We described our proposed constrained

optimization by the repairing method called REPA in the exquisite details including

its two repairing methods: REFIND and REPROPT. For REPROPT we assessed

its performance on the standard constrained optimization test problems for EA with

a variety of con�gurations and we discussed the results and suggested the optimal

default con�guration. We also studied the performance of the REPA method with

the default settings on the same set of test problems and compared its results with

several of the commonly used constrained optimization methods for EA described in

the review section. We outlined and demonstrated with examples several strategies

for REPA performance tuning for the hard problems. We also presented some critique

on the de-facto standard test problems set used in this work.

More extensive testing of REPair Algorithm (REPA) on other synthetic problems
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(see, for example, Chapter 8 in [128]) and real-life problems is needed and therefore

is a direction for the future research. The problems that pose di�culties for our

method should be identi�ed and their distinctive properties should be studied and

described. Here it must be noted that the optimization methods used for the con-

straint projection by REPA can be changed. Hence the optimization methods that

are more appropriate for the considered constrained problem can be used to increase

the REPA e�ciency.

For the practical purposed REPA repair method should be used together with

penalty function methods that augment the objective function with penalties for

constraint violation. This is done in order to direct the evolutionary search performed

by GATool towards a feasible optimum, not just an optimum of the objective function

itself. Otherwise all additional computations required to repair unfeasible members

and bring them to the feasible region can become worthless. For example, if the

unconstrained optimum is outside of the feasible set and is strongly pronounced,

the unconstrained search based on the original unmodi�ed objective function tends

to converge to this unconstrained optimum thus driving the constrained optimum

search in the wrong direction.

To conclude the section we present some ideas that can be used to further enhance

REPAmethod. The concept of elitism is important for the convergence proofs (see, for

example, Chapter 9 in [128])) and in practice it improves convergence. However, in the

case of the GATool+REPA optimization the result of the elitism operator application

in GATool are frequently destroyed by REPA since every unfeasible member can be

repaired and thus has its function value changed. The concept of the feasible elitism

might be introduced to perform a similar task, i.e. the best feasible members can

be preserved (note, however, that �nding even one feasible member is often the main
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di�culty of the constrained optimization). Preservation of all feasible members found

during the optimization might also be a valuable enhancement, especially for the

problems with a small ρ, i.e. a feasibility set that is a much smaller than the search

space. First, it guarantees the success in terms of �nding a feasible result even if

it is not optimal. Second, it allows REPA to use the much less expensive and the

more e�cient REpair by Feasible INDividuals (REFIND) repair method instead of

the more general-purpose REpair by PRojecting through OPTimization (REPROPT)

(see sections 3.3.2, 3.3.3).

Based on the results described in this Chapter, particularly on the outstand-

ing performance of REPA on the test problems that presented signi�cant di�culty

for other constrained optimization EAs, we conclude that the method is useful and

competitive. Important consequence of this development is that REPA constrained

optimization method can be used to extend the GATool integration with COSY-GO

(see sections 2.3.6 and 2.4). Since COSY-GO is capable of the constrained rigorous

global optimization as well as of the unconstrained one, GATool, given the ability to

handle constrained optimization problems, can be used as is suggested in the scheme

of GATool & COSY-GO integration for the constrained rigorous global optimization

as well as for the unconstrained one.
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CHAPTER 4

Optimization Problems in Accelerator

Design

Evolutionary Algorithms (EAs), as was mentioned in section 2.1, have many proper-

ties that make them attractive for various applications in Accelerator Physics. They

can �nd globally optimal or nearly optimal solutions even for very high-dimensional

functions (when the objective function depends on many control parameters) with

moderate computational expenses (see section 2.3.4. They can handle noisy prob-

lems which often arise in physical systems, have no requirements on the objective

function other than the ability to calculate its value for all points from the search

space, and, �nally, are relatively easy to implement (see Chapter 2). These properties

make EAs a great tool to explore and solve problems that were previously considered

unsolvable, or �nd newer, better, and even unpredicted solutions to well-known prob-

lems. EAs are capable of the both unconstrained and constrained optimization (see

Chapter 3). This is particularly important for design problems that usually include

a large number of constraints imposed by physical limitations, cost considerations,

and available technology. EA's ability to generate new solutions mimics the nature's
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ability to produce new species. It has proved itself useful in the �eld of design in gen-

eral and shows great potential for application to accelerator design in particular (see

section 4.1 in this chapter). The results presented earlier in this work extend EA's

application to the �eld of rigorous global optimization which is used, for example, for

rigorous estimation of the stability of the particles in large accelerators that consist

of thousands of elements (see section 4.2).

Despite these attractive features that have created growing interest in Evolution-

ary Algorithms in science and industry, their usage in the �eld of Accelerator Physics

and Beam Theory is not very common. The number of publications that we were

able to �nd on accelerator design with Evolutionary Algorithms is surprisingly small

( [32, 64, 160]) especially in comparison with the number of papers on their applica-

tion to various other design problems. In this chapter we present several di�erent

problems from the various stages of accelerator design that were treated with the

GATool Evolutionary Algorithm (see section 2.3). These problems include a simple

accelerator design problem, a complex real-life accelerator design problem, and the

problem of optimizing the normal form defect function that is connected to the rig-

orous stability estimation of the particle motion in a circular accelerator (see section

1.1.2). The usefulness of the obtained results encourages us to suggest that the EAs

application to these problems is indeed very promising and has great potential for

future research.

4.1 Quadrupole Stigmatic Imaging Triplet Design

Di�erent types of electromagnetic elements are used to con�ne and manipulate

charged particle beams in accelerators. The most common are dipoles, which usually
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generate a constant magnetic �eld to bend the beam, and quadrupoles which employ

a linear �eld gradient to focus the beam in the transverse dimension. The questions

of con�nement and focusing are of the utmost importance for circular accelerators

and storage rings. Here particles must remain in the central channel for millions of

turns in order to be accelerated to the required energy, or focused, as is the case in

a collider, to provide continuous collisions of beams circulating in the opposite di-

rection. The three main types of focusing employed in most accelerators are: weak

focusing, strong focusing, and solenoidal edge focusing.

Weak focusing was historically the �rst type of focusing developed for accelerators

and is primarily achieved by shaping the poles of the dipole magnets such that the

By component of the magnetic �eld decreases with orbit radius r

∂By
∂r

< 0,

Such shaping of the poles generates a linear restoring force which forces particles to

oscillate around a stable reference orbit as they travel through the channel. These

oscillations are called betatron oscillations, since the �rst machines built employing

this design principle were betatrons [47,170]. However, the principle of weak focusing

has one serious drawback: when the circumference of the accelerator is large, the

amplitude of the betatron oscillations is large as well, which leads to either increased

particle loss or large magnet apertures to avoid it. Large apertures, in turn, lead to an

increase in the magnetic lattice cost and increased complexity in the manufacturing

process.

The main principle of strong focusing is in alternating focusing and defocussing

magnetic lenses in order to achieve an overall focusing e�ect. Quadrupole lens are

commonly used in accelerators to achieve focusing. However, they focus only in one

direction and defocus in the other direction. Hence, in order to to achieve simulta-
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neous focusing in both planes one needs to combine at least two of the quadrupole

lenses.

The smallest accelerator element that is focusing in both x and y directions using

alternating focusing is called a FODO cell. Here F denotes the lens focusing in one

direction (and defocussing in the other direction), D denotes the lens defocussing in

the same direction, and O denotes a drift. FODO cells are optically stable if the

distance between lenses of equal strength in a sequence is less than their focal length

in the focusing plane.

The edge �eld of the solenoids can be used to focus in both directions simultane-

ously. However it introduces non-linear components to the particles motion, couples

the motions in the (x-a) and (y-b) planes and thus makes the dynamics signi�cantly

more complex [119]. Hence this type of focusing is typically limited to the cases where

the beam has a large phase space size and a large momentum distribution [144] so

the quadrupole focusing cannot be used.

Most modern high-energy accelerators utilize strong focusing by quadrupole lens

combinations. It is worth noting that the combination of the magnetic quadrupole

lenses with alternating north-south pole orientation (which makes them alternately

focusing in (x-a) and (y-b) planes) has a stronger net focusing e�ect than a series

of solenoid lenses of the same �eld strength. Thus quadrupole lattices are gener-

ally favored over solenoidal ones because of a reduced size, power consumption, and

decoupled particle motion in the transverse planes. These are the key reasons why al-

ternating gradient (strong) focusing with the quadrupole lens is the main technology

employed in many large-scale high-energy modern accelerators.

The map methods described in section 1.1.1 are typically employed to study trans-

verse motion of the particles around the reference trajectory. The combined e�ect of
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accelerator lattice elements on the particle coordinates can be calculated by applying

series of the maps of individual elements to the particles' initial phase space coordi-

nates. In the linear case these maps can be obtained rather easily. They are simple

matrices and their combined e�ect is calculated via a matrix multiplication. In linear

optics (both light and magnetic), studies on the maps' properties provide a simple

and elegant derivation of well-known physical laws of optics [31].

For nonlinear cases transfer maps can be described as polynomials for which the

particle coordinates are variables (see (1.1.20)). As the required order of calculations

goes up, their computation becomes more and more costly. In weakly nonlinear

systems (which most accelerators are by design) the Di�erential Algebra framework

can be successfully applied to easily obtain maps up to an arbitrary order [18].

If we consider a rotationally symmetric optical system and set x to be the position

of the ray and m its slope, then the transfer matrix for its optical element can be

conveniently denoted as

M =

(
(x, x) (x,m)

(m,x) (m,m)

)
. (4.1.1)

If the initial coordinates of the ray are given as (x,m)T then its coordinates after this

element are computed via(
xf
mf

)
=

(
(x, x) (x,m)

(m,x) (m,m)

)(
xi
mi

)
. (4.1.2)

Applying the maps of the elements in the system along the ray trajectory, we obtain

the �nal coordinates. Imaging systems, i.e. optical systems in which the �nal position

of a ray is independent of its initial angle and depends only on the initial position,

must have a transfer map satisfying the following condition:

(x,m) = 0.
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Now consider the linear uncoupled motion of the particles in the accelerator in the

(x-a) and (y-b) planes. Suppose it is not radially symmetric. Applying a similar

principle we see that in order for such system to be simultaneously imaging in both

planes, its transfer matrix must possess the following property:

(x, a) = (y, b) = 0. (4.1.3)

In light optics the smallest imaging system consists of drift, rotationally symmetri-

cal lens and one more drift. As was mentioned earlier, in accelerators the quadrupole

lens focuses in one plane and defocuses in other plane, hence the system that consists

of the drift, quadrupole, and one more drift cannot achieve simultaneous imaging in

both planes. Optical systems that are imaging in both planes are called stigmatically

imaging or point-to-point systems.

A system that consists of two quadrupoles with alternating focusing planes is

called a quadrupole doublet. Its net e�ect is focusing in both planes, but the focusing

e�ects in x and y directions are di�erent. If we use the convention that the �rst

quadrupole is focusing in the x direction and defocussing in the y direction, then

the calculations show that the orbit displacement is larger in the x direction and

the focusing action in this direction is stronger. Hence the focal points for x and

y are di�erent and simultaneous imaging cannot be achieved (see [170] for detailed

derivation).

Stigmatic imaging can be achieved by a system of three quadrupole lenses called a

triplet. In order to achieve this property two outside quadrupoles are set to the equal

strength and the same focusing direction, and the quadrupole in the middle is set

to focus the beam in the perpendicular plane with a di�erent strength. Quadrupoles

in the system are almost always separated by drifts. The parameters of such system

could be tuned so that it performs stigmatic imaging.
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An example of tuning quadrupole triplet parameters to achieve stigmatic imaging

can be found in the standard COSY In�nity Beam Theory package [22] in one of the

demonstrations from the demo.fox �le. In this particular case the system is built

from a quadrupole of length 0.1 meters and strength −q1 Teslas (negative strength

convention denotes that it is defocussing in x direction); a drift of length 0.06 meters,

another quadrupole of the same length and strength of q2 Tesla, followed by the drift,

and a quadrupole with the same parameters as the �rst two (i.e. system is symmetric

with respect to the center quadrupole). In COSY In�nity such system is conveniently

de�ned by the following sequence of commands:

MQ .1 -q1 .025 ;

DL .06 ;

MQ .1 q2 .035 ;

DL .06 ;

MQ .1 -q1 .025 ;

If we now de�ne the function

f(q1, q2) = |(x|a)|+ |(y|b)| ≥ 0, ∀q1, q2, (4.1.4)

where (x|a) and (y|b) are the corresponding elements of the triplet transfer map, then

for q̂1 and q̂2 such that

f(q̂1, q̂2) = 0,

also (x|a) = 0 and (y, b) = 0 hence the system is stigmatically imaging, according to

condition (4.1.3). From the de�nition of this function it is clear that its minimum is

at zero. The graph of the function (4.1.4) is shown in Figure 4.1.

By looking at the contour plot we can roughly guess that the objective function has

four extrema. From the 3D plot we can deduce that all four of them are minima. Using

the COSY In�nity 's built-in SIMPLEX method as it is demonstrated in demo.fox

we can �nd all four of them. But the problem here is that it requires us to provide
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(a) 3D plot

(b) Contour lines plot

Figure 4.1: Objective function for triplet stigmatic imaging f(q1, q2), qi ∈ [−1, 1], i = 1, 2
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good initial guesses in the domain of attraction of each minimum (starting from the

same initial guess the SIMPLEX method always converges to the same result, i.e.

it is deterministic, see Figure 2.4). In a two-dimensional problem we can search for

such points relatively easily, using visual tools such as a contour plot. However, for a

high-dimensional problem this task is often far from trivial. Even if we perform very

�ne-grained sampling of the search space (which gets prohibitively expensive as the

dimensionality goes up) we may not �nd good starting points since the search space

volume is too large.

Once we know the locations of these four extrema, we can �nd them using one of

the standard optimization methods. Their values with a precision up to 10−5 are:

1. q1 ≈ 0.452, q2 ≈ 0.58,

2. q1 ≈ 0.288, q2 ≈ 0.504,

3. q1 ≈ −0.288, q2 ≈ −0.504,

4. q1 ≈ −0.452, q2 ≈ −0.58.

Points 1 and 4, and 2 and 3 are symmetric relative to the origin, since the quadrupole

is re�ection symmetric in both planes even though the focusing/defocussing pattern

reverses (the change of the sign of the quadrupole strength just �ips the direction

of focusing). With these quadrupole strengths the system is imaging in both planes,

hence it stays imaging. It is worth noting that the paths of the particles in the (x-

a) and (y-b) planes, corresponding to symmetric solutions, also interchange between

Figures 4.2, 4.3 and 4.4, 4.5), correspondingly.

We ran GATool on the same objective function using the default parameters (see

Figure B.1, p.273), choosing the population size to be 100 times the dimension which
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(a) (x-z) projection

(b) (y-z) projection

Figure 4.2: Ray tracing of the triplet, solution 1
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(a) (x-z) projection

(b) (y-z) projection

Figure 4.3: Ray tracing of the triplet, solution 2

188



(a) (x-z) projection

(b) (y-z) projection

Figure 4.4: Ray tracing of the triplet, solution 3
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(a) (x-z) projection

(b) (y-z) projection

Figure 4.5: Ray tracing of the triplet, solution 4
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Table 4.1: Triplet stigmatic imaging design statistics

# Runs
Solution found (%)

1 2 3 4

200 12.0 46.5 36.0 5.5

1000 9.0 46.9 37.0 7.1

3000 4.7 31.3 60.3 3.7

10000 8.18 47.27 38.19 6.36

is 2 in our case. The stopping criteria was set to the maximum number of stall

generations (see section 2.3) and the search domain was [−10.10] × [−10, 10]. Tak-

ing into account physical considerations about the strengths of non-superconducting

quadrupoles, we should have searched for q1, q2 in a realistic interval [−1, 1] but we

wanted to demonstrate GATool's usefulness for exploration even if the information

about a search domain is scarce and approximate. Constraints in general reduce the

search space volume thus simplifying the task of the optimizer.

Each run of the GATool successfully �nished the search on one of the solutions

1-4. Since the Genetic Algorithm is a stochastic optimization method, it does not

guarantee the result will be the same on each run. Running the algorithm 200, 1000,

3000, and 10,000 times with the same set of parameters and search domain and then

analyzing the resulting solutions we get Table 4.1. One important observation here is

that GATool was able to �nd one of the global minima on every run without needing

to specify an initial search point. Second observation is it was able to �nd all solutions

to the problem in just 200 runs. These observations demonstrate that GATool is a

valuable method to perform at least an initial study of a system with complicated

behaviour, complex dependences on control parameters, a sophisticated structure, and

a non-analytic objective function. Such conditions often arise during the accelerator

design. Even though this method does not guarantee a global minimum, it frequently

provides excellent insight into the behaviour of the system and is usually able to �nd
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a good upper bound for the minimum. It can then serve as a starting point or a cuto�

value for another optimization method as it is described in section 2.3.6.

Some of the minima (1-st and 4-th solutions) are more di�cult for the optimizer

to �nd. We believe that non-symmetric percentages for symmetric solutions were

introduced by the random number generator implementation details but this question

requires further investigation which is out of the scope of this work. We suggest

running GATool a su�ciently large number of times in order to get a better estimate

of the minimum value (or values).

In the case of the objective function (4.1.4), insights into the fact that solutions 1

and 4 are harder to �nd can be obtained by studying the contour lines of the function

(see Figure 4.1). The contour lines indicate that these minima are sharper than the

other two and that their domains of attraction are much smaller. As we noted earlier,

a graphical method of system investigation is not always available.

It is also worth noting that, in principle, the linear transfer map of the quadrupole

can be calculated analytically using the expressions for the magnetic �eld

Bx = 2ky

By = 2kx,

where k is a quadrupole strength, and x, y are transverse coordinates. Plugging them

into the equations of motion (1.1.8)�(1.1.13), linearizing them and then solving, we

can directly obtain the transfer matrix of the system. The linear map of the drift

is the same as it is in light optics. Thus we can calculate the map describing the

combined action of the triplet by multiplying known maps. Then, using strengths of

the quadrupoles as variables, we can obtain an analytic expression for the objective

function (4.1.4).
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However, the algorithm described in this section and its implementation in COSY

In�nity are applicable to any map element, including non-linear elements (which are

much harder to obtain), and its combinations, including non-analytic. COSY In�nity

e�ciently calculates transfer maps to an arbitrary order, giving the user a powerful

tool to build complex yet relatively computationally inexpensive objective functions

that describe the desired properties of accelerating structures. Then, applying the

method described in this section, the user can tune the control parameters to achieve

the design goals.

It is worth noting that this particular example problem is relevant to the frequently

encountered collider Interaction Region design problem. Here, strong Final Focus

Telescope (FFT) quadrupoles are required to focus the beam in both planes to extreme

sizes at the low-beta Interaction Point (IP) where the beams collide. All of the current

approaches and techniques fail to �nd an adequate minima for the IP optics [97].

These accelerator codes start from the assumption of the optically small beta sizes

at the IP and attempt to �t and match the strengths of FFT quadrupoles to optical

regions outside of the IR. Even with this simpli�cation, the sensitivities are such that

the solutions are highly oscillatory, thus additional constraints are often imposed

to �nd an acceptable solution. The optical designs of the advanced systems such

as forefront colliders, the International Linear Collider, the Muon Collider, and the

Linear Hadron Collider with most modern codes create a di�cult and often intractable

problem.

The considered example highlights the power of GATool in uncovering solutions

that are di�cult to �nd for the problems originating in advanced accelerator op-

tics. Thus this work is of a particular importance to the advanced accelerator design

�eld, especially since most modern optimization algorithms break down for parame-
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ter spaces of large dimension and volume. Based on this evidence we conclude that

GATool is a signi�cant addition to an advanced accelerator designer's tool set.

4.2 Normal Forms Defect Function Optimization

Normal form defect functions, described in section 1.1.2, are very useful for rigorous

estimation of the stability of a circular accelerator. Deviations from the invariant

circles they are measuring, directly in�uence the number of stable turns particles

stay in an accelerator before being lost. The maximum of a deviation allows us to get

a lower bound of the number of turns particles stays within the considered region.

The di�culty in this seemingly solved problem is that these functions are multidi-

mensional polynomials of the order of up to 200 [125] (thus they are very oscillatory)

with many high-order terms that cancel each other out during the function evaluation.

Conventional optimization methods do not perform well on such functions and usually

get stuck in one of the local extrema. See Figures 4.7, 4.11, particularly phase angle

dependence plots for examples of the landscapes of these functions. Conventional

methods of global optimization (such as various �avors of interval methods) [83,101]

su�er from the cancellation and the clustering e�ects [26]. Taylor model methods

(see section 2.2.2), however, allow one to obtain tight rigorous estimates of the maxi-

mum, even under these unfavorable conditions. While in this case tight estimation is

practically doable, such a daunting task still requires a tremendous amount of com-

putation time. This time can usually be reduced when there is a method to provide

good cuto� values to the box elimination algorithm. Here by a cuto� we mean a

lower bound for the maximum. Knowing the lower bound we can safely cut o� all

the candidates (in our case boxes for maximum) that are below this bound from the
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future considerations, thus saving computing resources and speeding up the search

process.

The box elimination algorithm is one of the main parts of the rigorous global

optimization process of COSY-GO, hence its execution time heavily contributes to

the execution time of the whole search. We claim that having a cuto� value generated

by the GATool optimizer (see section 2.3.6) is advantageous for COSY-GO and it leads

to a reduced computation time.

In this section we study the performance of GATool on normal form defect function

optimization in order to:

• assess its performance on the complex high-dimensional multi-modal function

• compare the computation time and the quality of the results with the ones

obtained by the Taylor model methods-based rigorous global optimizer devel-

oped by Youn-Kyung Kim [103] in order to study the potential for combining

COSY-GO and GATool into one hybrid method

At �rst, a less complex (and thus potentially easier to optimize) synthetic defect

function in 6 variables (three pairs of phase radii and angles) based on the generated

polynomials available at the http://bt.pa.msu.edu was considered on the search do-

main from Figure 4.6.

[ 0.499999999E-001, 0.100000001 ] [ -3.14159266, 3.14159266 ]

[ 0.499999999E-001, 0.100000001 ] [ -3.14159266, 3.14159266 ]

[ 0.499999999E-001, 0.100000001 ] [ -3.14159266, 3.14159266 ]

Figure 4.6: Synthetic normal form defect function domain of interest

Projection on the space of two phase angles is demonstrated in Figure 4.7 (�xed

values of the radii are equal to 0.1). Note that the oscillatory behavior of the function
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Table 4.2: GATool's performance for di�erent population sizes compared to the performance of

the Taylor model methods-based global optimizer (TMMGO) and the Naive Sampling method, on

the synthetic normal form defect function (see Figure 4.7). TMMGO was executed on 256 IBM SP

POWER3 processors 375 MHz each, GATool and Naive Sampling were executed on 1 Intel Pentium

IV 2 Mhz processor. *For TMMGO time is given as a number of processors × wall clock time of

the run

Method Time (s) Max Value Di�erence with COSY-GO

TMMGO 256 x 3297∗ - [-, -]

Naive Sampling 109 0.209075292E-4 [1.28294580E-5, 1.28294626E-5]

GATool, pop=60 17 0.327416142E-4 [9.95373092E-7, 9.95377677E-7]

GATool, pop=180 83 0.319524687E-4 [1.78451855E-6, 1.78452314E-6]

GATool, pop=300 300 0.332044502E-4 [5.32537049E-7, 5.32541634E-7]

GATool, pop=600 378 0.331694477E-4 [5.67539577E-7, 5.67544162E-7]

GATool, pop=1000 553 0.332085478E-4 [5.28439469E-7, 5.28444054E-7]

GATool, pop=1200 613 0.336515785E-4 [8.54087318E-8, 8.54133164E-8]

GATool, pop=2000 3459 0.337010630E-4 [3.59242826E-8, 3.59288671E-8]

is very prominent.

The results obtained from the Taylor model methods-based global optimizer used

for the rigorous estimation of this function's maximum [26, 103] are summarized in

Figure 4.8,

Results obtained from GATool with parameters from Figure 4.9 and initial box

from Figure 4.6 are summarized in Table 4.2. Results obtained by naive sampling

of the search space are presented for comparison. The number of samples is equal

to the maximum number of function evaluations made by GATool during the search

(over all population sizes). Timing for Taylor model methods-based global optimizer

(TMMGO) is calculated as a product of the number of processors used and the total

execution time measured by a wall clock. We should note, however, that parallel

execution introduces unavoidable overhead for communications which should be sub-

tracted from the total execution time, but for our problem it is relatively small hence

this correction is neglected.

From the comparison table it is evident that even with a population size that is
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(a) 3D plot

(b) Contour lines

Figure 4.7: Synthetic normal form defect function plots. Function values vs two phase angles
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SAMPLE NORMAL FORM DEVIATION FUNCTION (RADII IN [0.05,0.1])

STOPPING CONDITION 1 HAS BEEN MET.

NUMBER OF PROCESSES: 256

NUMBER OF ITERATIONS: 2013

WALL CLOCK TIME: 0 hr 54 min 57.32927064225078 sec

WALL CLOCK TIME IN SECONDS: 3297.329270642251 sec

ORDER OF TAYLOR MODELS USED: 5

TAYLOR MODEL BOUNDING METHOD: REDB

MAXIMUM LIST SIZE: 503064

FINAL LIST SIZE: 16

NUMBER OF SMALL BOXES IN THE LIST: 0

INTERVAL ENCLOSURE FOR THE MAXIMUM:

[0.3373698730538533E-04, 0.3373699188996994E-04]

WIDTH: .4584584624369067E-11

Figure 4.8: COSY-GO output on synthetic normal form defect function maximization

Reproduction: number of elite = 10, mutation rate = 0.2

Mutation: UNIFORM, gene mutation probability = 0.1

Crossover: HEURISTIC, ratio = 0.8, randomization is on

Fitness scaling: RANK

Selection: STOCHASTIC UNIFORM

Creation: UNIFORM

killing is on

Stopping: max generations = 1000,

stall generations = 25,

tolerance = 1E-9

Figure 4.9: GATool's parameters used for synthetic normal form defect function maximization
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just 10 times the dimension of the problem (60), GATool is able to provide a good

estimate (naive sampling estimates the range of the function when the values are in

the search box as 0.5 · 10−4) of the lower bound of the maximum. As can be seen

from the table, an increase in the population size generally leads to an increase in

the quality of the estimate. However, as could be seen for the population of the size

180, this is not always the case and even runs with larger populations can occasionally

perform worse than runs with smaller populations. Performing a statistically su�cient

number of runs for each population size, we can verify that for the problem under

consideration the quality of the obtained estimate averaged across runs is getting

better as the population size increases.

Another normal form defect function is computed for a real large circular accel-

erator and thus contains a lot of nonlinear elements which makes it generally harder

to optimize. It is computed by P. Snopok for the Tevatron accelerator [159] located

at Fermi National Accelerator Laboratory. Here we were interested in estimating a

maximal defect on a particular circular region of the phase space de�ned in Figure

4.10.

[ 0.199999999E-004, 0.400000001E-004 ] [ -3.14159266, 3.14159266 ]

[ 0.199999999E-004, 0.400000001E-004 ] [ -3.14159266, 3.14159266 ]

Figure 4.10: Tevatron's normal form defect function domain of interest

A projection on the space of the two phase angles is demonstrated in Figure 4.11

(�xed values of radii are equal to 0.4 · 10−4). The oscillatory behavior similar to the

synthetic function is clearly recognizable. The dynamics of the particles in Tevatron

that resulted from applying the one-turn transfer map in conventional and normal

form coordinates is demonstrated in Figure 4.12. This map was used for the normal

form defect function computation.
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(a) 3D plot

(b) Contour lines

Figure 4.11: The Tevatron normal form defect function. Function values vs two phase angles
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(a) Conventional coordinates (b) Normal form coordinates

Figure 4.12: Particles dynamics in the Tevatron

Results of applying COSY-GO to the rigorous estimation of this function's maxi-

mum [26,103] are summarized in Figure 4.13,

NORMAL FORM DEVIATION FUNCTION FOR TEVATRON

STOPPING CONDITION 0 HAS BEEN MET.

NUMBER OF PROCESSES: 1024

NUMBER OF ITERATIONS: 326

WALL CLOCK TIME: 0 hr 15 min 35.44252496212721 sec

WALL CLOCK TIME IN SECONDS: 935.4425249621272 sec

ORDER OF TAYLOR MODELS USED: 7

TAYLOR MODEL BOUNDING METHOD: REDB

MAXIMUM LIST SIZE: 999424

FINAL LIST SIZE: 998400

NUMBER OF SMALL BOXES IN THE LIST: 0

INTERVAL ENCLOSURE FOR THE MAXIMUM:

[.3846166509606185E-18, .7114456197038863E-13]

WIDTH: .7114417735373770E-13

Figure 4.13: COSY-GO output on the Tevatron normal form defect function maximization

Applying GATool with parameters from Figure 4.9 (only relative tolerance was

changed to 1 ·10−25 to re�ect much smaller function values), and the initial box from

Figure 4.10, we obtained results summarized in Table 4.3. As in Table 4.2, results

obtained by naïve sampling are presented for comparison.
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Table 4.3: GATool's performance for di�erent population sizes compared to the performance of

the Taylor model methods-based global optimizer (TMMGO) and Naive Sampling methods on the

Tevatron normal form defect function (see Figure 4.11). TMMGO was executed on 256 IBM SP

POWER3 processors 375 MHz each, GATool and Naive Sampling were executed on 1 Intel Pentium

IV 2 Mhz processor. *For TMMGO time is given as a number of processors × wall clock time of

the run

Method Time (s) Max Value Di�erence with COSY-GO

COSY-GO 1024 x 935∗ - [-, -]

Naive Sampling 46 0.384215054E-18 [4.01596187E-22, 7.11441777E-14]

GATool, pop=40 5 0.380347985E-18 [4.26866555E-21, 7.11441816E-14]

GATool, pop=200 18 0.382665745E-18 [1.95090547E-21, 7.11441793E-14]

GATool, pop=400 75 0.384126132E-18 [4.90518103E-22, 7.11441778E-14]

GATool, pop=600 177 0.384406960E-18 [2.09690285E-22, 7.11441775E-14]

GATool, pop=800 117 0.384035970E-18 [5.80680790E-22, 7.11441779E-14]

GATool, pop=1000 230 0.384644775E-18 [-2.81241401E-23, 7.11441773E-14]

Notice that the last value of the maximum obtained by GATool for a popula-

tion size of 1000 is inside the rigorous enclosure established by COSY-GO, hence we

might conclude that GATool improved the lower bound for the maximum obtained by

COSY-GO. However, this e�ect might also be attributed to �oating point operation

errors that is made signi�cant by the values of the considered function being close

to the machine precision. Such errors are treated by COSY-GO in a rigorous way

via outward rounding for the interval calculations. GATool uses standard �oating

points operations and thus is susceptible to numerical inaccuracies. Therefore the

numbers from the table can be used to demonstrate only the growth of the quality of

the estimate obtained by GATool with the growth of the population size.

If a more rigorous result is needed, COSY In�nity 's object-oriented features allow

the user to easily overload standard �oating point arithmetic with high-precision

arithmetic. Development of the high-precision arithmetic package for COSY In�nity

is currently underway [27,174]. It is worth noting that this e�ort is partially inspired

by a normal form defect function rigorous bounding problem.

In this section we demonstrated that GATool can be satisfactory applied to the
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practically useful problem of estimating the extrema of a complex multidimensional

function. We showed that the quality of the result together with the computation time

support the usage of GATool as a fast generator of good cuto� values for COSY-GO.

It should be noted, however, that a cuto� is a lower bound of the maximum. GATool

itself can not be used to estimate the upper bound of the maximum of the normal form

defect function. COSY-GO is needed to accomplish this task with GATool working

in parallel to reduce the overall computation time. As is discussed in section 2.4, the

integration of these methods is a topic for the future research. Normal form defect

function bounding problem would server a good test to assess the performance of this

combined tool.

4.3 Neutrino Factory Front End Design Optimiza-

tion

4.3.1 Problem Description and Motivation

The Neutrino Factory, as is described in section 1.2, is an important facility for a fu-

ture of the neutrino research program, and is currently in the active R&D stage [178].

Its designs are frequently changed and explored in search for the optimal solution and

the cost/performance ratio. Such a solution would allow for the international collab-

oration (mostly members are from USA universities and laboratories) to realistically

consider building this next-generation accelerator [10]. The front end section plays

an important role in the overall performance of the factory. It conditions the high

emittance beam coming from the production target for the subsequent acceleration

(see section 1.2.3).
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E�ective delivery of the particles with optimal phase space formation (to match

the transverse acceptance and the acceleration regime) and minimal particle losses

are key performance characteristics of the Front End. Thus one quantity that requires

optimization is the ratio of the muons matching the accelerating regime at the end

of the channel to the number of the pions coming from the target, i.e. production

e�ciency. It is also one of the main factors in achieving the primary goal of the

whole accelerator, namely producing high-intensity beams of neutrinos for various

experiments.

From the description of a currently accepted baseline front end in section 1.2.3

it can be easily concluded that there are many variations in the lattice parameters

that can potentially lead to di�erent performance characteristics. Since the front end

is just a subsection of the Neutrino Factory, it needs to �t into a general scheme,

which means that its performance cannot be considered alone. Rather it should be

tuned to �t optimally into the overall accelerator design. However, there are di�erent

suggested designs of the subsections that precede and follow the Front End, and

di�erent variants of the Front End itself, therefore di�erent optimizations might be

required in order to explore all possibilities to their full extent. Hence, it is important

to establish a general scheme of exploration and optimization that can be applied

to study any of these variants. Some of the factors that should be considered or

explored for the Front Ends include: physical limits on the maximum gradients that

can be obtained in RF cavities or a number of RF cavities with di�erent frequencies;

schemes that provide shorter or longer bunch trains; optimization of the production

parameters (the number of muons captured into the accelerating regime); di�erent

central energies of exiting bunches; di�erent allowed energy spread, and, of course, the

cost considerations. Matching the beam into di�erent accelerating/cooling structures
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following the considered lattice also has to be taken into account.

Optimization studies that address some of these issues [10,71,74,95,109,145,152,

154,155] are summarized in the yearly summary reports produced by the international

collaboration working on the Neutrino Factory project [1, 62, 86, 150, 178]. However,

given the fact that there was not general agreement on the design and there are still

a lot of the variations that were to be considered, we were motivated to perform such

a study ourselves. Another motivation lied in the fact that Evolutionary Algorithms

had demonstrated themselves as an e�cient tool for design exploration and optimiza-

tion (see section 2.1). Thus the application of the GATool algorithm (see section 2.3)

to the problem of a front end optimization was interesting both from the practical

point of obtaining new optimal designs and as a test of the algorithm performance

on a complicated real-life problem. Here the complexity of the problem lied in the

objective function that was not de�ned analytically and included stochastic simula-

tions. Moreover, successful application of the algorithm to this problem would have

established a general scheme of front end optimization which could be used for the

subsequent studies. Successful application of the EA to an exploration of one of the

front end designs [32] served as another factor that lead us to believe in the success

of the experiment.

4.3.2 Optimization of the Front End Production Parameters

As can be seen from the description of the Front End design, parameters that can be

changed for di�erent sections (see section 1.2.3) include:

1. Capture and Decay: the length of the section LD and the focusing �elds.

2. Bunching: the length of the section LB, RF voltages V iB, i = 1, nrfs or initial
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and �nal voltage and the voltage increase formula (linear, quadratic, etc.). Final

frequency is usually strictly speci�ed by the cooling/accelerating subsections of

the whole accelerator, but can be varied if it positively in�uences the overall

Neutrino Factory performance.

3. Phase Rotation: the length LϕR, RF voltage VϕR of the phase-energy rotation

section, number N of RF �eld oscillation periods between chosen second central

particle and the main central particle (with n = 0), and the vernier parameter δ.

Also the kinetic energy Tc of the main central particle can be changed (usually

Tc is taken as the peak of energy distribution of the particles of the beam).

4. Ionization Cooling: parameters of the RF cavities (νrf,cool, Vrf,cool, ϕrf,cool);

position, width, material, and the position of absorbers, and focusing �eld.

For our study we explore the cooling section. We varied RF cavities parameters

and the momentum of the central particles in the beam within the ranges obtained

from the physical considerations. We also optimized the mathematical model of the

structure in order to �nd a con�guration which would provide the maximum particle

production described earlier.

Most of the numerical studies of beam dynamics in the Front End are performed

in ICOOL � the de-facto standard Muon Collaboration particle tracking code. It

was originally developed in 1999 for ionization cooling simulations of muon beams [66]

and has been actively developed over years to include new elements and models [69]

(available at http://pubweb.bnl.gov/users/fernow/www/icool/readme.html).

ICOOL belongs to the family of the so-called ray tracing codes. It calculates

particle dynamics employing the Runge-Kutta or the Boris numerical integration

methods to integrate equations of motion. The dynamics is studied in Frenet-Serret
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coordinate system [29], which is a right-handed system where s is tangent to the

reference orbit, y is vertical, and x is the third orthogonal coordinate. In a circular

orbit x grows in the radial direction. The reference orbit is de�ned to be the path

where the transverse coordinates x and y and the transverse momenta px and py

remain zero. The shape of the reference orbit in a global Cartesian coordinate system

is determined by the curvature parameter.

The electromagnetic �eld can be speci�ed using built-in models that include most

common accelerator elements and their approximations. It can be calculated from the

�eld maps or Fourier coe�cients, or read from external sources. ICOOL accurately

models the decay processes and particle interactions with matter including energy

loss, energy straggling and multiple Coulomb scattering [68, 70]. The beam can be

generated from the uniform or Gaussian distributions or read from an input �le.

Various tools are developed to analyze the results produced by ICOOL. The stan-

dard code for the emittance calculation is called ECALC9 [67]. It allows a user to

compute the number of particles in the �xed phase space volume. The input is read

from a �le that contains the particle type, maximum, and minimum value for pz in

GeV/c, two di�erent cuts for the transverse acceptance in m·rad (to obtain a number

of particles that are left after two di�erent acceptance cuts when all other cuts staying

the same at once), a longitudinal acceptance cut in m·rad and an RF frequency to

determine the RF bucket area for the longitudinal cut.

The tool chain for the optimization of the production parameters was assembled

from the following pieces:

• COSY In�nity: provided the implementation of the GATool optimization

method (see section 2.3 for the description of the algorithm and Appendix B

for the technical details of the implementation).
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• ICOOL: performed actual simulations of the beam dynamics in the Front End

with the parameters values passed from COSY.

• ECALC9: performed analysis of the results of the ICOOL simulations, cal-

culated the number of particles within the desired acceptance (and thus the

production ratio), that served as the objective function value.

• Perl: used to control other programs in the tool chain and pass parameters

and values between them. It was used to set up the Front End lattice for

ICOOL based on the control parameters provided by COSY, run ICOOL and

then ECALC9 to obtain the objective function value, and �nally pass it back

to COSY to complete one optimization step.

The initial distribution of particles coming from the target contains 8000 particles.

It was generated by MARS simulation code for the 24 GeV proton beam on the Hg

jet target [138]. The Front End lattice that was used for this study started from the

target and included capture, decay, bunching, and phase rotation regions as well as

a cooling section and a matching between phase rotation and cooling subsystems:

• Capture: 15.25 m of the vacuum channel in a solenoidal �eld that falls o�

starting from 20 T on the target to 2 T at the end of the channel. At the same

time the radius of the channel increases from 0.075 m to 0.3 m.

• Decay: vacuum channel of a constant aperture of 0.3 m in a constant solenoidal

�eld of 2 T.

• Bunching: vacuum channel of a constant aperture of 0.3 m and a total length of

L = 21 m in a constant solenoidal �eld of 2 T. An array of RF cavities separated

by drifts where the parameters were calculated according to logic described in
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section 1.2.3 so as to perform the adiabatic bunching (28 cells, each consists of

the drift of 0.125 m, followed by RF cavity of 0.5 m and another drift of 0.125

m). Particles are bunched around the central momentum of 0.280 GeV/c. An

integer number of wavelengths that separate two reference particles (n in (1.2.2))

is 7 (hence the momentum of the second central particle according to (1.2.5) is

0.154 GeV/c) and the initial RF gradient is set to 15 MV/m, the formula for

the RF gradient dependence on the longitudinal coordinate z, measured from

the start of the buncher, is

Vrf = V0,rf
z

L
.

• Phase rotation: vacuum channel of a constant aperture of 0.3 m and a total

length of L = 24 m in a constant solenoidal �eld of 2 T. An array of RF

cavities separated by the drifts with the parameters calculated according to

logic described in section 1.2.3 so as to perform the rotation of the beam in

the longitudinal space by decelerating higher-energy bunches and accelerating

lower-energy ones (32 cells, each consists of the drift of 0.125 m, followed by

RF cavity of 0.5 m and another drift of 0.125 m). Vernier o�set δ from (1.2.8)

is 0.1, RF gradient is 15 MV/m for all cavities.

• Cooling: vacuum channel of a constant aperture of 0.3 m and a total length

of L = 93 m in an alternating solenoidal �eld of the maximum strength ≈ 2.5

T. An array of the 124 cells (0.75 m each), with LiH absorbers to achieve total

momentum loss and an RF �elds to achieve longitudinal momentum regain, are

combined together in order to cool the transverse emittance of the beam. The

�rst four cells have the solenoidal �eld designed so as to match the transverse

particle dynamics in phase rotation section to the one of the cooling section.
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All RF cavities have a frequency of 201.25 MHz, �eld gradient is 18 MV/m and

the RF phase is 30 degrees.

This particular design was shorter than the one of the baseline and it was developed to

study the cost gain versus the performance losses resulted from shortening the Front

End. It achieved this tradeo� by removing some of the elements of the baseline.

Another goal was to study the potential applicability of this design for the Muon

Collider project [46].

We used the described lattice as a reference design and explored its performance

related to changes in the following control parameters:

• RF frequency in the cooling section (also in�uences the downstream accelerator

section): νrf,cool ∈ [200, 204] MHz.

• RF �eld gradient in the cooling section: Vrf,cool ∈ [12, 20] MV/m.

• RF �eld phase in the cooling section: ϕrf,cool ∈ [0, 360] degrees.

• Central momentum in the �rst four matching sections of the cooling channel:

pc,match_cool ∈ [0.22, 0.24] GeV/c.

The values of the cuts for ECALC9 analysis were selected to estimate of the accep-

tance of the subsequent acceleration subsystem [143]:

• minimum and maximum pz: 0.100 GeV/c and 0.300 GeV/c, correspondingly;

• transverse acceptance cut: 30E-3 m·rad;

• longitudinal acceptance cut: 0.25 m·rad;

• RF frequency for the bucket calculation set to a value used by RF cavities of

the cooling section (on of the control parameters).
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The number of particles within the speci�ed acceptance (n2) [67] at the end of the

lattice was chosen as an objective value to be maximized. The initial number of

particles was kept constant so the targeted quantity was the production ratio. GATool

parameters were set to default values (see Figure B.1, p.273) and the population size

for this 4-dimensional problem was set to 250 (dimension×62.5). Such choice provided

a good compromise between the total time of the search given the expensiveness of

the objective function calculation (see below), and the quality of the GATool result

(see studies in section 2.3.6).

Several of the best obtained results (elite in GATool terminology) from three runs

(each of them took several months to complete on a single machine) were evaluated

using the described scheme and the full initial number of particles of 8000 (2000 of

which were used in optimization to reduce computation time). The control parameters

and the objective function values for the discovered designs are listed along with the

reference design provided by Neu�er [143] in Table 4.4. The range of the values

of the objective function that was obtained during the optimization runs is 15 to

497. From the table it can be seen that the optimization of the current scheme with

control parameters in the speci�ed ranges was unable to achieve designs that have

statistically (simulation includes stochastic processes) signi�cantly better production

e�ciency. Although this cannot serve as a rigorous proof of the nonexistence of such

designs, we can take into account generally good performance of the GATool on other

problems (see section 2.3.4) and suggest that this gives a good reason to believe that

the reference design is, indeed, optimal. Relatively small deviations of the optimal

RF frequency (201.20�201.55) and RF gradient (17.67-18.88) among all the solutions

(except for the �rst optimization run) support the assumption about the reference

parameters being robust and located near the global optimum. This observation is
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particularly important, since the parameters of the devices that are calculated by

numerical simulations eventually have to be realized in the physical devices operating

with �nite precision and subject to construction errors.

The best solution obtained from the �rst optimization run, demonstrated one of

the best performances and, along with it, the smallest RF gradient among other solu-

tions. Smaller-gradient RFs are generally easier/cheaper to manufacture, which can

signi�cantly reduce in the potential cost of the lattice. However, the �nal frequency

from this solution is di�erent from the frequency of the current baseline accelerating

section. Hence additional studies on the combined performance are needed to reveal

additional bene�ts and drawbacks of this solution. The best solution from the third

optimization run provides similar performance on a frequency that is much closer to

the reference 201.25 and thus might be preferable. Some of the other sets of parame-

ters that provide similar production performances can also be useful since they might

be easier or cheaper to obtain, or provide additional opportunities for the designers

of the downstream sections of the Neutrino Factory. Hence the main bene�ts of the

GATool for this problem are in the exploration of the space of the solutions that

provide some interesting candidate solutions. It would otherwise only be possible

through extensive trial and error, similar to the method used to obtain the reference

solution over the years of the research. Also we veri�ed the quality of this solution

obtained through such a laborious process.

Yet another important result that was obtained is that we established a framework

for the Neutrino Factory Front End lattice numerical optimization. It can be used for

many optimization scenarios, including, for example, a simultaneous optimization of

all control parameters of the most realistic Front End simulation on the large ranges

of the parameter values.
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An additional note must be made on performance. Even though 2000 particles

were used for simulations during optimization instead of the 8000 used in the baseline

simulations, one simulation run of the optimized front end lattice still took approxi-

mately 0.4 hours on a Pentium IV 2Mhz computer with 1Gb of memory. Therefore

the calculations needed to perform one step of GATool optimization (which include

the evaluation of the objective function for every population member, see section

2.3) took approximately 100 hours. Since a typical number of generations needed

for GATool to explore a space of parameters and converge can easily get above 100,

the computing time can get prohibitively long. For subsequent studies (possibly on

more realistic and thus more computationally expensive lattices), a potentially bene-

�cial strategy is to employ the parallelization of the objective function evaluation as

discussed in section 2.3.4.

4.4 Conclusions

In this section we considered an application of the GATool evolutionary optimizer

presented in this work to set of the cases covering a broad spectrum of the problems

from the accelerator design �eld:

• an example of the quadrupole stigmatic imaging triplet design that is relatively

simple on the surface yet demonstrates certain complexities under closer in-

vestigation (this problem is also directly connected to the real-life complicated

problem of the collider interaction region design);

• an estimation of particle dynamics stability via a normal form defect function;

• optimization of the control parameters of the front end for the next generation

accelerator. All of these optimization problems are formulated in such a way
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that their objective functions are either very hard to treat for most standard

optimizers or are even non-treatable due to their small domains of attraction

for the extrema, highly oscillatory landscape that contains a large number of

local extrema, or, as in the third problem, general unavailability of the function

in the algebraic form (it is computed through numerical simulations) and its

stochasticity (some devices in accelerators are simulated with stochastic e�ects).

We demonstrated how GATool is capable of solving these problems (or helping to

solve by dramatically reducing the computational time as is the case for the normal

form defect function optimization). It proved itself to possess attractive features such

as: moderate requirements on the computational resources, no requirements on the

objective function except for the trivial ability to compute its value for a given set of

control parameters, and a surprisingly high (considering such modern requirements)

quality of the obtained result.

GATool also demonstrated a very useful ability to �nd furtive or unpredicted

solutions to accelerator design problems, thus enabling easy exploration of the space

of the di�erent optimal solutions. Exploration phase usually require a domain expert,

a lot of the time spent in trial and error, with fair amount of intuition and even blind

luck. With the help of GATool both the initial exploration of the design and the �nal

�ne tuning phases become much more e�cient and/or rich since the number of the

solutions that can be considered and their quality dramatically increase with almost

no additional human e�ort. Summing up all the evidences we conclude that GATool

demonstrated itself to be a valuable addition to a tool set of a modern accelerator

scientist.
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APPENDIX A

COSY++ Macroprogramming

Extension for COSY In�nity

A.1 COSYScript

A.1.1 Introduction

COSY In�nity [22, 23, 48] is a powerful software package for scienti�c computations.

It was originally created by Dr. Martin Berz [14], who is currently maintaining and

further developing the package with Dr. Kyoko Makino. Contributions, additions and

enhancements, accumulated for over a decade, experience and feedback obtained from

di�erent users working on di�erent scienti�c problems, along with careful design and

the implementation have made this powerful tool even better.

It is built around the Fortran77 kernel which implements the Di�erential Algebra

arithmetic [16]. Other packages implement graphical interface, optimization methods,

and even own scripting language interpreter. This language is called COSYScript and

has simple yet rich syntax closely resembling Pascal. Despite a relatively small number
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of built-in operators, this language gives a demanding user full access to not only

real numbers, vectors (with optimizations for vectorizing supercomputers), complex

numbers, logical type variables, and strings but also to such complex data types as

Interval Numbers, Di�erential Algebra Vectors, Taylor Models [118, 121] and their

complex arithmetic via a transparent set of operators and functions. The concept of

polymorphism from Object-Oriented programming is carefully used in design to allow

a user to easily switch between di�erent data types and mix them in calculations, thus

giving this package the ability to easily manage the complexity of computations, type

and precision of the obtained results.

Another interesting feature of the language is an optimization built into the stan-

dard syntax. After each step of the optimization process with one of three built-in

optimizers (each one has its own strengths and weaknesses) a user is given the current

best value and execution control, and is from there free to make decisions about the

subsequent execution �ow. This feature allows one to build complex optimization

scenarios combining automatic optimization by built-in optimizers with the user in-

put. It is also worth noting the COSY In�nity is a multi-platform system and is

capable of producing a graphical output on every platform it is supported on (includ-

ing Windows, Linux and MaxOS), interfaces modern programming languages such as

C++ and Fortan90 and, �nally, it is easily extensible. The code base is still under

active development, new features are being developed and added, and, as such, are

available to users upon request. The general policy is to include them in a standard

distribution available to the entire user community only after extensive testing and

�ne-tuning. This policy ensures that system remains consistent and robust. Current

features under development includes the language-level parallelism and high-precision

numbers arithmetic.
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Such a framework provides a user with a versatile set of tools capable of ele-

gantly solving a lot of otherwise computationally hard (or even unsolved) problems.

COSYScript applications include, but are not limited to:

� high-order Automatic Di�erentiation of the functions [4],

� the veri�ed and non-veri�ed integration of the Ordinary Di�erential Equations and

Di�erential Algebraic Equations [168],

� rigorous and veri�ed numerical methods with highly suppressed dependencies [168],

� rigorous global optimization [118],

� Beam Theory, where it is applied to a variety of problem, e.g. the analysis of

the high-order e�ects, high-order fringe �elds treatment in accelerators and

spectrographs, rigorous long-term stability studies [15,19,21,24,25,76,96,113�

116,119,120,123,124,126,154,177].

A.2 Syntax

From a programmer's point of view COSY In�nity consists of the three main parts:

1. An elementary operations package written in Fortran 77 which implements oper-

ations on various COSY data types such as Di�erential Algebra, Taylor Models

and interval arithmetic: dafox.f.

2. An optimization package (fox�t.f), a graphics package (foxgraf.f) and a com-

piler and executor package (foxy.f) which combines all these to implement the

COSYScript language and COSY In�nity front end. All these are written in

Fortran 77, same as the kernel.
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3. Packages written in COSYScript : the Beam Theory package (cosy.fox), the

Rigorous Computing package (TM.fox), the Rigorous Global Optimizer and

Rigorous Global Integrator (currently distributed separately).

Although it is such an extensive and developed, environment for scienti�c compu-

tations, COSY In�nity still has some aspects that could bene�t from improvement.

At the time COSY In�nity was initially designed and developed it was not possi-

ble to predict how successful it would be. Thus, the built-in mechanism to allow

COSYScript code to be modular was relatively simple and rudimentary (by the code

modularity we hereby mean the ability to store the source code in more or less self-

contained modules). When the code is modular, most of the services are provided by

well-de�ned interfaces to these modules with the implementation details hidden from

a user.

A common program in such a framework simply includes the required modules to

import their services and call the imported procedures and functions. The amount of

the code in the modules is typically much larger than the code in the user program.

If a user decides to build a larger program or a set of programs, he might want to

implement some functionality in his own modules. This approach allows code to be

clean and well-structured and permits easy reuse of the already written code. In such

cases the amount of the user code can be comparable to one of the modules shipped

with the system itself.

In general, COSYScript program is a set of nested blocks and each of them consists

of three sections. The blocks are marked by the beginning and ending statements for

the outermost block (the main program block):

BEGIN;

...

END;
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and for all the inner blocks:

FUNCTION <name> {<args>};

...

ENDFUNCTION;

or

PROCEDURE <name> {<args>};

...

ENDPROCEDURE;

The three sections that build up a block are

1. Variables

2. Nested blocks (functions and procedures)

3. Executable code

placed in this exact order. The �rst two of these sections are optional and can be

omitted, while the absence of the executable code results in a compilation error.

The structure of a generic COSYScript program along with some hints on the

name scoping rules (for variables, procedures and functions) are demonstrated by

the example in Figure A.1. Note that COSYScript is a case-insensitive language,

hence the variables, functions, and procedures that are de�ned in the same scope

whose names di�er only in case refer to the same variable, function, or procedure,

correspondingly.

A.2.1 Problems

Inclusion Mechanism

While the code's nested structure makes it tree-like, the original inclusion mechanism

supported by COSY In�nity is linear. It is implemented via a pair of commands:
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BEGIN;

VARIABLE main_var1 1;

...

VARIABLE main_var8 10;

...

PROCEDURE Proc1 arg1 arg2;

VARIABLE proc1_var1 5 2;

PROCEDURE Proc1_Proc1 arg1;

VARIABLE proc1_proc1_var1 11;

...

{ Commentary: code for Proc1_Proc1 }

proc1_proc1_var1 := ’Hello’;

proc1_var1 := ’world!’;

...

ENDPROCEDURE;

{ Commentary: code for Proc1 }

proc1_var1 := ’Goodbye!’;

...

ENDPROCEDURE;

...

FUNCTION Func1 arg1 arg2 arg3;

{ Commentary: code for Func1 }

Func1 := (arg1 + arg2 + arg3) * main_var1;

ENDFUNCTION;

{ Commentary: code for main block }

write 6 ’Hello, world!’;

...

END;

Figure A.1: COSYScript program structure
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SAVE <name>

and

INCLUDE <name>

The �rst of these commands is used at the end of the COSYScript �le that is included.

It precompiles the source code from the <name>.fox �le and then saves it in the

binary form to the �le �le named <name>.bin. Then the

INCLUDE <name>

command used in some other �le includes the compiled <name>.bin into it. How-

ever, each �le can contain only one inclusion command (at the beginning), thereby

only linear �chain inclusion� is supported. The �rst �le calls

SAVE <name>

in its last line and every next �le starts from

INCLUDE <name_previous>

and ends with

SAVE <name_current>

in order to incrementally save both the code it includes from the previous �les and

the code it contains. The last �le starts with

INCLUDE <name_previous>

and includes all the code that was gathered by the name_previous.fox (and thus

the code of all the �les from the inclusion chain).

Note that while the code saved by SAVE is precompiled (which saves the source

processing time), the action of the INCLUDE is essentially equivalent to copying the

content of the �le that was saved with the SAVE statement (not including the statement

itself) and then replacing corresponding INCLUDE statement with this copied code.
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The problem with this approach is in the fact that the sections in the blocks of

any COSYScript program have to be exactly in the order mentioned previously and

cannot be broken into parts. Suppose the �rst �le in the inclusion chain opens the

main block with BEGIN, then speci�es variables, functions, and procedures, and then

precompiles and saves its contents as described.

The next �le includes it in-place, thereby starting where the previous �le left o�,

i.e. in the middle of the section with functions and procedures. In this case some

of them are already de�ned in the included �les. Thus the including �le cannot

add variables to the main block, rather it can only continue adding functions and

procedures to the Nested Blocks section, and then some code to the Executable Code

section. If the �rst �le is saved only after some code is added to the Executable Code

section, then the next �le in inclusion chain can only add code to the Executable Code

section of the main block; it has no access to Variables or Nested Blocks sections.

The frequently used workaround for such an approach is to de�ne the procedure

called RUN and then use it as shown in Figure A.2. Note that we have to put END at

the end of this code even though we did not explicitly put a corresponding BEGIN; to

this �le. It is hidden behind the INCLUDE statement in the �le we are including.

Names de�ned in the enclosing block are visible and accessible in the enclosed

block. They can even be overridden by the names local to the enclosed block. How-

ever, the opposite is not true: the variables de�ned in the enclosed block are not

visible to the enclosing block and thus cannot be used by it. This is perfectly legit

from the encapsulation point of view, since the external block should be isolated from

the intrinsic implementation details of the internal block. This concept is successfully

applied to enhance modularity in many existing programming languages.
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INCLUDE ’file’

PROCEDURE RUN;

{ Private variables }

VARIABLE i 1;

...

{ Private nested blocks }

FUNCTION max a b;

...

ENDFUNCTION;

...

{ Private code }

i := max(1,2);

...

ENDPROCEDURE;

{ Main block code, just call the package code }

RUN;

END;

Figure A.2: Example of inclusion workaround

Suppose, however, we want to save the code in the �le from Figure A.2 and then

include the result into another �le. We have several options: we can save the code

inside the RUN procedure, outside of it, in the main block before the �rst line of

code, in the nested blocks section, or in the code section of the main block. Let

us consider each of these options. If we save the �le anywhere outside of the RUN

procedure, and then include it in the next �le in chain, the next �le can only call

the RUN procedure. It will have no access to the variables, procedures or functions

de�ned in the RUN procedure. Hence either RUN should serve as a call dispatcher,

providing the access to the names de�ned inside it (which is a cumbersome and hardly

maintainable solution), or we have to call SAVE inside the RUN procedure. But then

with the next �le in chain we will be in the same situation: it would have to de�ne

its own RUN enclosed in the RUN of the previous �le in chain. As the chain grows, the
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resulting �le

file1 code

file2 code

...

...

...

...

...

...

...

...

file11 code

�le1

file1 code

SAVE file1;

�le2

INCLUDE file1;

file2 code

SAVE file2;

...

�le11

INCLUDE file10;

file11 code

Figure A.3: Example of the inclusion chain

level of nesting increases, and keeping track of the names visibility and nesting level

can become an issue.

Consider the case where a user did not build the code of the whole chain but

receives only a �le in precompiled binary form. He than has no way to determine

the number of �les that was used to compile the received �le and the combination

of methods they used to cope with the nesting problem in inclusion. It makes the

derivation of the proper syntax for ending statements a matter of trial and error and

clutters user's program with unneeded code.

We can see that such an approach to inclusion is suitable for small projects.

However, for large projects, especially the ones developed by by several authors, it

does not provide enough support to maintain modularity of the program and manage

the dependencies transparently. All these consequences follow from each �le in the

inclusion chain not being a syntactically separate compilation unit and is bound to

be made aware of its place in the chain of inclusion (see Figure A.3).
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Size of Dynamic Global Variables

COSYScript is an interpreted language, and it each program is interpreted from

beginning to end, following a nested blocks structure. In each block interpreter starts

from the variables section, processing all the variables declarations and storing the

corresponding entries in the symbols table. Then, it checks the declarations of the

procedures and functions in the Nested Blocks section without looking into their

code. It then proceeds to the Executable Code. When the procedure or function call

is found, the interpreter searches for the name of the procedure or function in the

symbol table, initializes the arguments (provided the name was found) and recursively

continues interpreting the nested block de�ned by a procedure or function, thereby

following the tree-like structure of the program.

COSYScript uses the following syntax for the variable declaration:

VARIABLE <name> <size> { <dim1> {<dim2>...}};

Here name is a variable name, size is a variable size (where unit is the size of REAL data

type), and dimensions are used to make multi-dimensional arrays of the objects. Note

that the type of the variable is not declared and is deduced dynamically at run time.

In this de�nition, size and dimensions can be valid COSYScript expressions. The

validity of the expression includes both the syntactic validity (i.e. it should form a

syntactically correct COSYScript expression) and interpretation validity (i.e. should

be interpretable: all the names used in the expression must have their declarations

already processed). It is thus possible to have the size of a variable or its dimensions

to be set by nother variables, but the variable containing size must be declared earlier.

Consider an example in Figure A.4 where we want the variable dynamic_var to be

declared such that its size is de�ned by another variable. Here we want to set the size

of the dynamic_var to 10 but this is not what would happen. The declaration of the
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...

VARIABLE size 1;

VARIABLE dynamic_var size;

...

size := 10;

...

Figure A.4: Dynamic size of the variable in COSYScript (non-working)

dynamic_var is processed after the declaration of the size variable but before the size

variable gets the value of 10. The syntax of the variable declaration in COSYScript

does not allow to de�ne the initial variable value. All variables in COSYScript are

initially initialized to RE(0) which is 0 of the REAL data type. Hence the dynamic_var

in the example is not declared as we intended. It is not even a valid declaration of a

COSYScript variable since it really declares a variable of zero size and in COSYScript

variable size must be a positive integer.

To solve this problem it is currently suggested to use a technique similar to the

one to avoid the inclusion problems [23]. Some procedure or function encloses the

variable whose size is to be de�ned by another variable, thus placing the size variable

in the outer block. Going back to the example in the Figure A.4, we modify it using

the current guidelines to get a proper dynamically sized variable de�nition. Such

modi�cation ensures that both a declaration and an initialization of the variable size

are done before the declaration of the dynamic_var thus we achieve the result desired.

However, there are two problems with the proposed solution. First, it clutters

a program with the unnecessary code, second, it cannot be used for the variables

declared in the main block since it serves as a root of the tree of all blocks. Hence it

is therefore not enclosed by any other block where the size variable can be declared

and initialized.
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...

VARIABLE size 1;

...

PROCEDURE RUN;

...

VARIABLE dynamic_var size;

...

ENDPROCEDURE;

...

size := 10;

...

RUN;

...

Figure A.5: Dynamic size of the variable in COSYScript (working)

User Interface

Apart from the problems already mentioned, the execution options for the

COSYScript interpreter are very limited. In fact, it does not accept any options

directly from user. During startup, it looks for the �le foxyinp.dat in the current

directory, reads its �rst string and then displays the COSY In�nity logo and the user

prompt. In the prompt it allows the user to either enter a new COSYScript �lename

for execution or press �Enter� to execute the �le read from foxyinp.dat. If the

�lename is correct, it interprets the �le and displays either the list of interpretation

errors if interpretation fails or the output of the program if it succeeds. The text out-

put is shown in COSY In�nity window, optional (depending on the driver selected)

windows containing the graphical output can be opened separately.

After executing the script, the �le interpreter exits, leaving two intermediate pro-

cessing �les with the names <name>.cod and <name>.lis (useful for debugging)

and the �les produced by the script. The user cannot specify the name of the script to
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execute from the command line, cannot ask to cleanup the intermediate �les, specify

the path to search for the �les to include or pass command line arguments to the

COSYScript script. The command to call external programs through the OS shell

was added to COSYScript just recently so the only way to interface COSY In�nity

was through the �les containing input parameters and output results.

Much of these limitations for such a powerful language and framework are at-

tributes to the fact that it was designed and developed by a very small group of

people in a very limited amount of time with primary focus on scienti�c methods and

new algorithms. User interface was never a top priority. Enhancing COSY In�nity

user interface and providing tight integration with another well-developed and ma-

ture programming language to use some of its features seemed as a good approach to

make the scienti�c computing features of COSY In�nity more attractive to users.

A.3 COSY++

A.3.1 Introduction and Features

To address the problems described in the previous section and enrich the user's ex-

perience with COSY In�nity we designed and implemented the COSY++ extension

package. Its main features include, but are not limited to:

� new mechanism for COSYScript source �les inclusion that provides better separa-

tion of modules from user code;

� Active Blocks mechanism that enables the use ofthe Perl programming language

( [153]) as a macrolanguage for COSYScript programs. Applications: con-

ditional COSYScript code generation, command-line arguments processing,
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macroprogramming, data preprocessing, and COSYScript libraries con�gura-

tion;

� new libraries for vector manipulations, coordinate conversions to/from MARS [137]

and ICOOL [68], logging, timing scripts execution and debug output;

� GATool library for real-valued functions optimization with callback interface (al-

lows a user to interact with the optimizer on each step, �ts into the general

COSY In�nity optimization package design (see Appendix B for details);

� front end for the COSYScript interpreter that allows a user to specify the script

(and even several scripts) to interpret and execute from the command line, pass

command line arguments to the scripts, use di�erent COSY In�nity executables

(e.g. complied with di�erent compiler optimizations to benchmark the speed

and precision), perform cleanup after an execution, and save script output to

a �le and specify a search path for the library �les (this allows user to store

common libraries in one central location and use them from any script in any

directory);

� automatic conversion of old COSYScript scripts, i.e. compatibility mode.

We will now describe these features and implementation details in greater depth.

A.3.2 Sections Assembler

Sections Assembler addresses inclusion mechanism problems discussed in section A.2.

Instead of linear inclusion it uses the concept of assembly. In order to produce the

resulting �le from the user's code and the code of the modules (libraries) it assembles

them together using the structure of the COSYScript program, its blocks ordering,
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and special markup commands inside COSYScript comments (this makes them trans-

parent to the conventional COSYScript interpreter).

As we discussed in section A.2), a COSYScript program is con-

structed from blocks. Each of these is built from the sections

(some can be omitted). Consider the root block that consists from

HEADER section

BEGIN;

VARIABLES section

VARIABLE main_var1 1;

...

VARIABLE main_var8 10;

...

FUNCTIONS section

PROCEDURE Proc1 arg1 arg2;

VARIABLE proc1_var1 5 2;

PROCEDURE Proc1_Proc1 arg1;

VARIABLE proc1_proc1_var1 11;

...

{ Commentary: code for Proc1_Proc1 }

proc1_proc1_var1 := ’Hello’;

proc1_var1 := ’world!’;

...

ENDPROCEDURE;

{ Commentary: code for Proc1 }

proc1_var1 := ’Goodbye!’;

...

ENDPROCEDURE;

...

FUNCTION Func1 arg1 arg2 arg3;

{ Commentary: code for Func1 }

Func1 := (arg1 + arg2 + arg3) * main_var1;

ENDFUNCTION;
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CODE section

{ Commentary: code for main block }

write 6 ’Hello, world!’;

...

FOOTER section

END;

The goal here is to �rst mark up sections of the root blocks of the COSYScript �les.

Then, if a COSYScript �le requests to add marked up �le to an assembly, the result

is created by merging the corresponding sections of the included �le with the ones of

the including �le, instead of performing in-place insertion.

Intrinsically, the assembly is represented by a list of sections. All the contents

of these sections are empty on initialization. The included �le is parsed into the

sections, and these sections are added to the assembly, and then the same procedure

is repeated for the including �le. Thus the including �le's sections are e�ectively

appended to the corresponding sections of the included �le. If there are more �les

to assemble, the process becomes multi-step. The assembler goes through the list of

the �les to assemble, parsing them into sections and adding sections to the assembly.

When the parsing process is completed, sections are output to the assembled �le in

the speci�ed order. Thus they form correctly structured COSYScript code which can

then be interpreted by COSYScript .

As an example, consider the two �les with their sections marked up in Figure A.6.

The result that comes out of the Sections Assembler after processing and merging is

in Figure A.7. Note that the function FUNC1 and the variable FOO1 used in including

�le were not declared in it, hence any attempt to use this �le without assembly would

result in COSYScript interpretation errors. Also note, that after assembly these

names are correctly ordered, thus the compilation and the execution of the resulting
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�le is possible. The order of the ’Hello, world-1,2’ statements in the assembled �le

is meant to give hints on the assembly order.

The general rule is that the content of included �les in assembled sections precede

the contents of corresponding sections in including �les. Section mark up statements

{ #section <name> }

...

{ #section <name> }

are preserved in the form of sections beginning markers in order to increase the

readability of the resulting �le. These statements are transparent for COSYScript

since they look like valid comments to its parser.

The instruction to add a �le to an assembly has the form

{ #assemble ’file_name’ }

and can be put anywhere in the �le. Assembly instructions are processed before run-

ning COSYScript interpreter hence they are not ruled by the COSYScript syntax

rules. The name of a �le speci�ed in the instruction is searched in the current direc-

tory and in the assembly path, which can be speci�ed via the COSY++ front-end.

Standard su�xes (by default .fh and .fox) can be omitted and will be automatically

appended during library search. See section A.3.8 on con�guring the COSY++ front

end for details on the search path and standard su�xes.

The �le added to assembly can itself contain assembly instructions. In this case

processing continues recursively, forming the assembly tree, which is traversed from

the leaves to the root in the depth-�rst manner. For example, if �le1 instructs the

assembler to assemble �le2, which in turn requests to assemble �le3, then every

section's contents will be built from the contents of the corresponding sections: �rst

from �le3, then from �le2 and only then from �le1. Such ordering rules allow �le2

and �le3 to be libraries, and for the �le2 to use �le3 (possibly to implement parts
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Including �le

{ #assemble ’lib_file’ }

{ #section HEADER }

BEGIN;

{ #endsection }

{ #section VARIABLES }

VARIABLE FOO2 1;

{ #endsection }

{ #section FUNCTIONS }

PROCEDURE PROC2;

...

RES := FUNC1(FOO1, FOO2);

...

ENDPROCEDURE;

{ #endsection }

{ #section CODE }

WRITE 6 ’Hello, world-2!’;

{ #endsection }

{ #section FOOTER }

END;

{ #endsection }

Included �le (lib_�le)

{ #section VARIABLES }

VARIABLE FOO1 1;

{ #endsection }

{ #section FUNCTIONS }

FUNCTION FUNC1;

...

ENDFUNCTION;

{ #endsection }

{ #section CODE }

WRITE 6 ’Hello, world-1!’;

{ #endsection }

Figure A.6: Including and included �les with their sections marked up
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{ #section HEADER }

BEGIN;

{ #section VARIABLES }

VARIABLE FOO1 1;

VARIABLE FOO2 1;

{ #section FUNCTIONS }

FUNCTION FUNC1;

...

ENDFUNCTION;

PROCEDURE PROC2;

...

RES := FUNC1(FOO1, FOO2);

...

ENDPROCEDURE;

{ #section CODE }

WRITE 6 ’Hello, world-1!’;

WRITE 6 ’Hello, world-2!’;

{ #section FOOTER }

END;

Figure A.7: Assembled �le
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of its own functionality). In this example �le3 can be a user application using the

features from the library in �le2 (and thus implicitly from �le3).

The Sections Assembler also has a mechanism to prevent the multiple �le inclusion

into an assembly in order to avoid duplicating code across sections. If the �le that

is already in the assembly tree is encountered again during assembly processing, the

warning is issued and the �le is not processed for the second time around. Note

that this mechanism also prevents the assembly tree from the loops (�le3 includes

�le2, which, in turn includes �le3) that can lead to an in�nite cycle in the assembly

process.

The algorithm is straightforward: whenever a �lename is encountered in the as-

sembly process, a unique name based on the �le's base name, size, and creation time

is created. The name generation process is guaranteed to create the same unique

name for the same �le (in the same location with the same attributes) whether it is

speci�ed by an absolute path or a relative path. This generated name is then looked

up in the list of the unique �lenames for the �les that are already in assembly. If this

name is found, the �le is considered to be already assembled, otherwise its unique

name is stored in the table and the �le is added to the assembly.

Apart from the HEADER, VARIABLES, FUNCTIONS, CODE and FOOTER

sections described earlier, COSY++ recognizes a DESCRIPTION section that pre-

cedes all other sections in the assembly. It is intended to serve as a placeholder for

the library descriptions but it can also contain assembly instructions and the Ac-

tive Blocks initialization code. An example of the description section taken from the

logging.fh library is shown in Figure A.8.
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{ #section DESCRIPTION }

{*************************************************************************}

{ Copyright (C) Michigan State University 2007, All Rights Reserved, }

{ \COSYS{} logging routines library by Alexey Poklonskiy }

{*************************************************************************}

{ Control variables and their defaults }

{ LogLevel = 1 (0 -- logging is off, 1 -- logging is on) }

{ nMaxLogFiles = 10 }

{ iFirstLogFileDescriptor = 50 }

{ LogFilesDir = ’./log/’ }

{*************************************************************************}

{ #endsection }

Figure A.8: Description section of the logging.fh library

A.3.3 Active Blocks

The idea of Active Blocks is inspired by the Active Server Pages technology developed

by Microsoft [85]. It allows one to build interactive HyperText Markup Language

(HTML) pages by adding the ability to embed VBScript or any other Active Scripting

Engine language code into the otherwise static web page source code.

The embedded code in the HTML text is recognized by special beginning and

ending markers, <% and %>. Everything in between these markers is treated as a code

written in one of the scripting languages mentioned earlier and is executed during

the HTML page rendering phase. Since VBScript is a feature-rich scripting language

with an extensive object model providing access to many OS services, it gives user

a plethora of tools to make HTML pages dynamic. A detailed description of the

technology is out of scope for this work and can be found in [85].

Similar design lies in the foundation of COSY++ Active Blocks (ABs). Everything

enclosed by {% and %} markers in the COSYScript source code is treated as Perl

programming language [173] source code and is executed during �le processing.
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There are two types of the Active Blocks:

non-inclusive

{%

...

%}

and

inclusive

{%=

...

%}

The di�erence between them is that apart from the e�ects produced by the execu-

tion of the Perl code inside the non-inclusive Active Block, it does not a�ect the

COSYScript source code in any way. A return value of the inclusive Active Block

is inserted back into the �le and is thus interpreted as a part of the COSYScript

program. This makes inclusive Active Blocks useful for conditional COSYScript code

generation. As an example, consider the code of the tracing procedure from the

trace.fh library:

procedure Trace sMsg;

{%=

my $result = "";

if($TraceLevel){

$result = " write 6 sMsg;";

}

else{

$result = " CONTINUE;";

}

return $result;

%}

endprocedure;

If $TraceLevel is set to any nonzero value in one of the earlier Active Blocks, this
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inclusive Active Block de�nition inside the COSYScript procedure declaration is re-

placed by:

procedure Trace sMsg;

write 6 sMsg;

endprocedure;

But if it is not set or set to a zero, this Active Block is replaced by:

procedure Trace sMsg;

CONTINUE;

endprocedure;

One more example of Active Block usage comes from the logging library logging.fh:

{%

# Create the directory for log files if it was not created and the

# logging is on

if($LogLevel and not -d $LogFilesDir){

mkdir($LogFilesDir) or

AB::die("Can’t create directory \"$LogFilesDir\" ".

"for log files: $!");

}

%}

Here AB is used during library initialization. It checks if the directory to store the

log �les exists and creates it if it does not. In the code from utils.fh, ActiveBlock is

used to access Perl's random number generator:

{ Get the inintial random value by using Perl’s rand() which }

{ calls srand() to get random seed automatically }

time := {%= rand(); %}*1000;

COSYScript does not provide an interface to directory creation and its pseudorandom

number generation capabilities are limited by the fact that it always starts from the

same seed. Therefore these examples clearly demonstrate how COSYScript can be

enhanced by providing access to Perl's services via Active Blocks. Other examples can

be found in the examples directory of the COSY++ distribution. It is also worth
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noting that all Active Blocks in one COSYScript �le share the same Perl environment

thus they can communicate with each other via shared variables.

In the previous paragraph we brie�y considered the aspects of Active Block ex-

ecution. Now we will examine them in more detail. After an Active Block is found

by COSY++, its type (inclusive, non-inclusive) is determined, beginning and ending

marks are stripped, its contents are extracted, and then it is executed as Perl code.

Perl, as well as many other scripting languages, provides dynamic compilation and

execution of its own code during the main program execution. This feature allows a

user to generate subroutines in the run-time or execute code passed to the script as

text. The compilation and execution of this code is performed in Perl via the eval

operator. It accepts a string with Perl code as an argument, compiles it, and then

executes it in the context of the script. AB execution order is the order in which they

are speci�ed in the source �le.

The problem with this approach is that in this case the code passed to the eval

operator has access to all variables of the program executing the eval within the

scope of the eval statement. This code can accidentally or intentionally modify

these variables thereby altering the calling program execution �ow, and in the worst

case leading to a data corruption or a crash. COSY++ itself is written in Perl, it

executes ABs written in Perl using the mentioned operator, and thus it is potentially

susceptible to this problem.

The solution we implemented is to use special Perl module Safe, which provides

so called �sandboxes� or compartments for a safe code evaluation. A code executed in

such a compartment is unaware of this fact, but it is e�ectively unable to access any

data belonging to the program that initiated the code execution (and in some cases

even to some of the Perl services), unless such permissions are explicitly granted. By
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applying this technique we ensure that all the sensitive COSY++ data is protected

from the code in Active Blocks and all its services are provided only through a well-

de�ned interface, which we describe later.

There are two di�erent symbol scoping mechanisms in Perl: dynamic and lexical

(for further details on Perl programming refer to [173]). Dynamically scoped variables

are accessible globally. They always belong to some package and can be accessed

via fully a quali�ed name (e.g. $Package::Variable). Alternatively, a short name

(e.g. $Variable) can be used instead if the variable belongs to a current package

(maintained by Perl) ($CurPackage::Variable). The current package can be set via

the package <name> operator, the default package name is main. A current package

declaration stays in e�ect from the place it is made in the current program to the end

of the block it is speci�ed in.

The visibility of lexically scoped variables is de�ned by the blocks they are declared

in. Their scoping rules are the same as the one for COSYScript variables, i.e they are

accessible after their declaration in the block they are de�ned in and in all the blocks

enclosed by the block they are de�ned in. The di�erence between Perl's lexically

scoped variables and COSYScript variables is that Perl's variables can be declared

anywhere in the block. This is possible because Perl does not separate blocks into

sections while COSYScript does and, moreover, allows variable declarations only in

the �rst of the sections of the block. Lexically scoped variables do not belong to any

package and are not in�uenced by package statements.

The reason for such an extensive treatment of this seemingly irrelevant topic is

that individual Active Blocks are internally executed as if they were di�erent blocks

of the same Perl program, hence all of the hereby mentioned scoping rules apply to

them. It is possible for Active Blocks to communicate and control each other via
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COSYScript �le

{ #package PackageName }

COSYScript code

{%

Active Block 1 code

%}

\COSYS{} code

{%=

Active Block 2 code

%}

\COSYS{} code

{%

Active Block 3 code

%}

...

Corresponding Perl �le

{

package PackageName;

Active Block 1 code

}

{

package PackageName;

Active Block 2 code

}

{

package PackageName;

Active Block 3 code

}

...

Figure A.9: COSYScript �le as a Perl �le view from Active Blocks perspecitve

this program's execution environment, de�ned by variables and functions, and these

scoping rules must be taken into account.

Active Blocks execution order (a�ects the scoping and the availability of the vari-

ables declared in ABs) is the order in which they are declared in the source �le.

COSYScript �le containing Active Blocks can be viewed as a Perl script, as demon-

strated in Figure A.9. Note that since Active Block 2 is of the inclusive type, its

return value (de�ned by the Perl return statement or by the result of the evaluation

of the last statement in a block, if the return statement is not speci�ed) is inserted

into COSYScript program after evaluation.

Using the view from Figure A.9 and the mentioned scoping rules, one can see that

in the Active Block body, dynamic variables used without package name are binded to

the package PackageName. For example, the unquali�ed dynamic variable $Variable

in any of the Active Blocks 1, 2, 3 in the above example is internally the quali�ed
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dynamic variable $PackageName::Variable. Dynamic variables accessed via a fully

quali�ed name with a package name explicitly given are bound to this package, e.g.

$AnotherPackageName::Variable. Dynamic variables are accessible from anywhere in

the program across the AB boundaries and, as such, are useful to pass information

between ABs of the COSYScript program.

Lexical variables are declared via the my Perl operator. They are visible only in

the lexical block they are declared in, thus they cannot be accessed outside the AB

itself. If AB consists of several Perl blocks, then each block's lexical variables are

visible in the corresponding block only.

PackageName in the example earlier is a package name for the current �le. It is

either a unique name that is automatically generated from the �lename or a name

set by the user via the package pragma:

{ #package package_name }

In the case when there are several package name declarations, the name from the �rst

pragma is used.

In both cases PackageName is set once per �le. Technically a user can change it

from ABs using Perl, but such practice is not recommended in order to avoid possible

problems. We recommend to naming packages in order to o�er some clue of the

services provided by the package. For example, the timers.fh library uses the Timers

package name (thus the variables are syntactically in the COSY::Timers:: package),

and logging.fh uses the Logging package name (thus the variables are syntactically

in the COSY::Logging:: package). Note, however, that the cosy.fh library uses the

BeamTheory package name, as it better describes the library's services.

A user's code can omit a package name declaration and rely on automatic pack-

age name generation unless his intent is to build a library to share it with other
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people. In this case it is strongly advised to invest some time in chosing a descriptive

package name in order to make the library con�guration variables accessible via the

COSY::<PackageName>:: pre�x. The unique package names generated for the �le in

the absence of an explicit de�nition by the package pragma are not guaranteed to not

change in the next COSY++ run.

Also note, that Perl itself internally maintains the __PACKAGE__ variable to store

the current package's name. It is often used by COSY++ libraries to mark their

variable and function sections with

{%= "{*** ".__PACKAGE__." functions ***}\n" %}

that is replaced by the COSYScript commentary

{*** package_name functions ***}

during COSY++ processing.

From experience we suggest the following scheme of Perl variable usage in Ac-

tive Blocks: to create the variables used in the current Active Block only, use lexical

scoping. For variables accessible in all Active Blocks of a single �le (e.g. �le-speci�c

con�guration options and �ags), use the unquali�ed dynamic variables (and we ad-

vise not changing the current package in Active Blocks so that they remain easily

accessible). In order to create variables visible to other �les (e.g. public con�guration

options) or access such variables de�ned in other �les, use dynamic variables that are

fully quali�ed by the name of the package. For example, $COSY::Timers::nMaxTimers

is a variable used to de�ne a maximum number of timers supported by a timers li-

brary, and it can be accessed from any �le, not just from the �le with the library

itself. The dynamic variables should be used with great care and properly initialized

prior to their usage. They are accessible from anywhere in the program and thus can

be accidentally or intentionally set to unexpected values causing problems that are
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hard to debug.

A.3.4 Full Processing

So far we reviewed the individual pieces of the COSY++. Here we review the general

algorithm it follows to process a �le. When the �le for processing is speci�ed by

the user, COSY++ initializes a new processing session by setting the parameters

of the processing, checking the �le for existence, and creating and initializing safe

compartments for Active Blocks execution. Then it creates a new Sections Assembler,

initializes it, and �nally adds the speci�ed �le to the assembly. Before parsing the

�le into the sections and creating the assembly, the Sections Assembler pre-processes

the �le's pragmas and Active Blocks in the three passes:

1. package pragmas: searches for the �rst package and saves the package name for

Active Blocks evaluation;

2. Active Blocks: executes everyting in the respective package; replaces their def-

initions in the source code with a result of the execution if AB is inclusive or

with nothing, if it is non-inclusive);

3. The assembly pragmas, as described in section A.3.2.

Note that all ABs in the �le are processed and executed before the assembly pragmas

are porcessed, i.e. it does not matter if they are located before or after the pragmas.

The assembly pragmas processing is performed in the following order: every

assembly pragma is parsed and the �lename to assemble is extracted and then added

to the assembly. The Sections Assembler then pre-processes this �le using the same

3-pass processing and adds it to the assembly. On the third pass assembler can
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encounter other assembly pragmas, in which case the assembly process recursively

continues forming assembly tree along the way.

Consider an assembly tree with the assemblying �les on the top and the assembled

�les on the bottom. In this tree the Active Blocks are executed starting from the root

(the �rst �le added to the assembly) to the leaves, depth �rst. The sections, on the

contrary, are assembled from the leaves to root, depth �rst. This approach allows the

user to con�gure libraries he is adding to the assembly before adding their code. This

logic is common to the source �le inclusion processing mechanisms used by many other

programming languages and macrolanguages. Note, however, two major di�erences

between COSY++ and these other languages:

• All Active Blocks in a �le are executed prior to processing the �rst assembly

pragma.

• The assembly method works di�erently from the commonly used whole-�le-in-

place inclusion method as described above.

A.3.5 Libraries

Libraries generally provide some additional functionality to a user and are packaged

together by using a common factor in the services they provide. For example, the

logging.fh library provides functions to open, write to, and close log �es, conver-

sions.fh provides beam physics coordinate conversion routines, and utils.fh pro-

vides various utility functions to operate on vectors and other built-in COSYScript

datatypes. Some of the libraries included to COSY++ package provide con�g-

uration interfaces via Active Block variables, such as $LogLevel, $nMaxLogFiles,

$iFirstLogFileDescriptor, $LogFilesDir in the logging.fh library. Special care
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must be taken in providing default values for these variables since a user can change

them prior to con�gure library prior to use. Hence we need to check if the variable

was already assigned a value before initializing it to a default value in the library.

Another issue is that having errors in Active Blocks does not stop the processing

of the �le and assembly. Rather, these errors are trapped in eval, shown to a user

during processing, and otherwise ignored. Sometimes the severity of these errors is

such that we want to stop further processing and exit with an error message. However,

snce Active Blocks are executed by Perl in safe compartments (see the details before),

termination of the processing is not possible unless it is explicitly permitted.

To address these (and possibly other) issues, the AB package provides two subrou-

tines: init_config_var and die. The �rst subroutine takes a con�guration variable

name and either a reference to its initial value (can be any of Perl's basic data types:

SCALAR, ARRAY, or HASH [173]) or its SCALAR value itslef (in case of the scalar

variable initialization as a shortcut for this most frequently used datatype). It checks

if this variable of this datatype (in Perl there can be several variables with the same

name but di�erent datatype) has not already been assigned a value. If it has not, then

it is initialized with the provided value. Otherwise, the subroutine does nothing, thus

preserving the value set by the user or some other library. The second subroutine,

die, takes one argument: a message to show to the user. It outputs this message

to the standard error stream and then stops any subsequent processing. Note that

from Active Blocks these two subroutines should be called AB::init_config_var and

AB::die, correspondingly.

As a self-explanatory example of the library variables initialization we take the

real code from logging.fh:

{%

AB::init_config_var(LogLevel, 1);
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AB::init_config_var(nMaxLogFiles, 10);

AB::init_config_var(iFirstLogFileDescriptor, 50);

AB::init_config_var(LogFilesDir, "./log/");

%}

A.3.6 Compatibility Mode

In order to make the user experience with the new system as painless as possible and to

allow user to reuse the large code base accumulated over the years of COSY In�nity

active usage, COSY++ has the old syntax conversion mode. Before processing a

�le, COSY++ tries to determine if the �le was written in the pure COSYScript by

checking for section pragmas and Active Blocks. If they are not found, the �le is

considered to be using the old syntax and an attempt to convert it to the new syntax

is performed prior to the further processing. After replacing the original COSYScript

inclusion with the assembly instructions and marking up the sections, the �le is

processed by COSY++ using the new syntax rules.

Here we provide more details of the process. COSY++ �rst checks if the �le begins

with the INCLUDE statement or the BEGIN statement. If it starts from the inclusion

statement, COSY++ extracts the �lename from the statement and searches for it

in the list of the available libraries. Two of the most commonly used COSYScript

libraries are cosy.fox and tm.fox and they both have substitutes: cosy.fh and tm.fh,

correspondingly. If a substitute has been found, the INCLUDE statement is replaced by

the corresponding assemble pragma.

During the second and �nal step of this conversion, COSY++ tries to determine

the boundaries of the sections of the root block (see section A.2) and properly mark

them with section pragmas. Note that this search used heuristics, hence it can fail

for some �les. Our tests, however, show that most of the old �les can be converted,
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processed, and executed without problems.

One error case can occur if the sections' boundaries are placed to the comments

that are put before the actual section boundary. COSY++ does not recognize COSY

In�nity comments so the sections in this case are marked up incorrectly. Anothe case

is missing sections. Care is taken to correctly process these cases, but we cannot

guarantee this will work correctly in all circumstances. Correct treatment of the

sections requires a complete rewrite of the COSYScript parser which is out the scope

for this work. Such rewrite might potentially be done provided signi�cant demand

from users. Some work in this direction has already been done as a part of the

development of the autoconversion tool for the COSYScript to C++ programming

language source �le conversion [38].

A.3.7 Standard Libraries

COSY++ libraries are a part of the COSY++ package and can be found in the

include subdirectory of the package root directory. Below is a list of the currently

implemented general purpose libraries:

• conversions.fh provides coordinate conversions between COSY In�nity parti-

cle coordinates and ICOOL coordinates and between COSY In�nity coordinates

and MARS coordinates [68, 137]

• logging.fh provides log �les manipulation and a logging interface

• physics.fh contains the de�nitions of the physical constants, their initializa-

tions and various functions for the commonly used formulae from accelerator

physics
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• timers.fh provides timing for the COSY In�nity scripts or the parts of them

which are useful for code pro�ling

• tracing.fh provides an interface to the tracing procedures that generate output

only when the certain tracing level is set; useful for degugging or maintaining

output verbosity level consistency across di�erent parts of the program

• utils.fh de�nes various convenience functions that are not built-in into COSY

In�nity : seed-based random numbers generators, including random numbers

from a Gaussian distribution, vector constructors, arithmetic and logical op-

erations on vectors and matrices, logical indexing for them similar to the one

used in Matlab, vector distances; domain scaling procedures for optimization

functions

There are also libraries for optimization in the optimization subdirectory of the

COSY++ package:

• gatool.fh implements the real-valued functions optimizer based on the Genetic

Algorithm described in this work (see Appendix B for details)

• test_functions.fh is a collection of the test functions for global minimizers;

most of them possess properties that make them hard to optimize

• lienard_jones.fh is a set of test functions based on various Lienard Potential

calculation problems; accessible from the test_functions.fh or as a standalone

library

• tm.fh is aTM.fox standard COSY In�nity package containing a Taylor Models

manipulation interface marked up for COSY++

and there are Beam Theory libraries in the cosy subdirectory:
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• cosy.fh is the standard COSY In�nity package COSY.fox containing var-

ious Beam Theory computation and visualization algorithms marked up for

COSY++

• cosy_wrappers.fh provides convenience functions to access certain elements

of cosy.fh

Examples of appropriate library usage can be found in examples subdirectory of the

COSY++ distribution root directory.

A.3.8 Front End

In order to make all these features available to a user, the front end to the Sections

Assembler and the Active Blocks processor is written in the Perl programming lan-

guage. It exists in the form of a command-line script cosy++.pl and can be found

in the root directory of the COSY++ distribution along with a readme �le that

brie�y covers its features and installation procedure. A more complete and detailed

description of the command line parameters and the usage modes of the cosy++.pl

can be obtained anytime by the calling the script from the command interpreter with

the -h switch:

> cosy++.pl -h

COSY++ is under active development and details can change, but at the current

moment it outputs the following information about the current version, developer,

copyright, and usage:

Usage:

cosy++.pl [-h]

cosy++.pl [options] file1 [file2 ...]

cosy++.pl [options] -a file [arg1 ...]

--h[elp]
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Print usage information

--v[erbose]

Print information about the parsing process. Additive, i.e can be

used several times for increased level of verbosity. Currently

supported levels are 0, 1, 2

--co[sy]=cosy_exec

Execute the processed file with COSY Infinity using cosy_exec

executable. By default uses "cosy_ni" in the directory set up

during COSY installation

--[no]e[xec]

COSYInfinity execution flag. It is run if the flag is on and not

run if it is off

--cl[eanup]

Perform cleanup after execution. Additive. Supported levels:

0: no cleanup

1: delete ".lis", ".cod" and "foxyinp.dat" COSY intermediate

files

2: delete processed file too

--o[ut]

Stores COSY Infinity output to file after execution. If not

set or set to "", output to STDOUT (default)

--i[nclude]=path

Semicolon-separated list of directories to search in during

assembly pragmas processing (usually where COSY++ libraries

for COSY Infinity are stored)

--s[uffixes]

Semicolon-separated list of suffixes to be appended to files

specified in assembly directives during assembly

--a[arg-mode]

In case this option is set, everything that follows first file name

is treated as an argument to \COSYS{} and it can be accessed from

the Active Blocks via Perl internal @ARGV array
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--p[roc-name]=processed_template_string

String used to generate the name of the processed file. Could

contain special variable names $base, $ext, $full which are

replaced by basename of the file, its extension and the full

name of file during processing correspondingly (defaul:

"processed_$full)

file

File to process. In arg-mode everything that follows it is treated

as a list of arguments to script accessible through Active Blocks

file1 [file2 ...]

If arg-mode is off, expect a list of files to process in the order

they are supplied. All options set are shared between all files

in the list

As seen from the detailed help, a user can specify the path to search for the

�les from assembly pragmas, su�xes to be appended to �lenames during this search,

template for the processed �lename(s), the name of the COSY In�nity executable to

run the resulting �le, the �lename to store the textual output of the run, cleanup

options and a level of the output verbosity for COSY++, in addtition to the name(s)

of the �les to process and arguments that get passed to them.

There exists another method to specify COSY++ parameters that is particularly

useful if the user typically executes COSY++ with the same set of parameters and

rarely needs to modify them. All these parameters can be stored in COSY++ con-

�guration �les. All con�guration �les used by COSY++ are named .cosy++ but

can be stored in di�erent directories. Whenever COSY++ is executed it sets its

con�guration parameters in the following order:

1. Default parameter values de�ned in the cosy++.pl source code

2. Parameters set in .cosy++ stored in the directory with cosy++.pl script
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3. Parameters set in .cosy++ stored in the user home directory (obtained from

the operating system)

4. Parameters set in .cosy++ stored in the current directory (current as of the

moment of execution)

5. Parameters set from the command line

Parameters that are not set on any of these stages will have the values set by the

previous stage. The value of a parameter set on any one of these stages will override

the value from all previous stages.

Such a scheme allows for a �exible con�guration of the execution parameters,

where the global parameters that are used most of the times can be stored in the

main con�guration �le (processed on the stage 2) and the con�guration parameters

that are unique to some source �le can be stored along with the �le itself. A user

does not need to set all of the parameters in this con�guration �le, only the ones he

intends to override. For example, during the development phase a user can set the

cleanup level to a minimum in the local con�guration �le in order to closely track

all syntax processing errors. Later, when the code is stable and he does not need

cleanup, he can simply remove the local con�guration �le to automatically switch to

the settings speci�ed in the global one. For trial runs with parameters changing from

run to run, command line parameters con�guration is more useful.

The syntax of the .cosy++ con�guration �le is the same as what is typically used

by Unix con�guration �les. It consists of the lines containing

name = value

pairs. Here name is a name of the con�guration variable to set and value is a value to

assign to this variable. Everything after the # symbol is considered a comment and
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thus ignored. A value string can contain expressions in the form %name% which will

be replaced by the value stored in the variable name durping processing. This feature

is useful for adding values to con�guration variables instead of completely overriding

them. For example, to add directory c:/dir to the search path for assembly �les, the

following syntax

ASSEMBLY_PATH = %ASSEMBLY_PATH%;c:/dir

is used. File .cosy++ in the root directory of the COSY++ distribution contains all

the con�guration parameters that COSY++ recognizes along with their initializtion

instructions.

A.3.9 Additional Features and Notes

One useful feature of COSY++ is that the result of its processing (in case it was

successful) is a valid COSYScript �le. It can then be executed by COSY In�nity

without any further modi�cation. Hence, if there is a need to share the code that

actively uses COSY++ features with a plain COSY In�nity user, it is enough to

process the �le with COSY++ and then share the results of processing.

Another feature of the COSY++ which does not �t into the general list of features

provided by Sections Assembler and Active Blocks is the extended veri�cation of the

COSYScript syntax. If the corresponding con�guration �ag is set, COSY++ performs

the check for global variable name clashes and warns the user if the global variable

name is de�ned more than once. By global variables we mean variables de�ned in

the VARIABLES section of the root block (see section A.2). By default, if there

are several declarations of the variable with the same name, COSYScript silently

uses the last one. With the new assembly mechanism in place, the number of the

global variables can easily get very large and variable names can be unintentionally
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used multiple times. The behaviour of the program that results from assemblying

these �les is, at best, unpredictable. Bugs like this are very hard to �nd and �x,

hence the variable name clash detection feature can be of great help to avoid them.

In order to avoid problems with the global variables names clashes we recommend

the user pre�xes all global variables in the library by an acronym of the library

name and uses long descriptive names, e.g. GAToolStatus. Additional COSYScript

syntax checking can be added, e.g. COSY++ can issue warnings about other common

mistakes COSYScript programmers make.

Interaction between Active Blocks syntax and the COSYScript syntax is subtle.

During the Active Blocks processing phase COSY++ totally ignores the COSYScript

syntax. It searches for the Active Block beginning and ending marks, and executes

whatever it �nds inside. Then it replaces the Active Block in the source code with

the results of processing if the Active Block is of the inclusive type or with nothing

if it is of the non-inclusive type. It then proceeds to the next Active Block and this

process continues until the end of the �le is reached. However, COSY++ ignores

COSYScript comments and any other syntax elements. One of the consequences of

this is that an AB inside a valid COSYScript comment can still be processed which

can contradict the user's expectation since COSYScript does not execute commented

code. The contents of the Active Blocks are treated as Perl code, hence all comments

inside them should be written in Perl style, not in COSYScript style which again can

be confusing. Nested Active Blocks are not supported and should be avoided which

can be confusing since COSYScript uses block structure that supports nesting.

The parsing algorithm of COSY++ is based on heuristic and utilizes regular

expressions [173] while ehe COSYScript structure is recursive. It is well-known that

parsing of the recursive structures with regular expressions is very hard and is not
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even possible in general case [73]. To change this unfortunate situation we need to

completely reimplement the COSYScript language parser. For example, we would

need to omit searching for the beginnings and endings of the sections in COSYScript

comments which can be recursive if sections are nested. It is worth noting that

we did not �nd a lot of cases where the heuristic COSY++ parser failed. To avoid

problems with section recognition the user should try to avoid words such as �variable�

in comments before the VARIABLES section, or �functions�, or �procedure� before

FUNCTIONS section.

Also note that while the assembly model greatly increases the �exibility and mod-

ularity of the code, it slows down the interpretation process. In the conventional

COSYScript inclusion model the �le to be included is already precompiled, while in

the assembly mode it is inserted as text each time. Thus it is recompiled every time

the �le is processed. If the library to include/assemble is large, the conventional model

provides for faster startup (the time passed between passing a �lename to execute to

COSY In�nity and the moment the program execution actually starts). We believe,

however, that for large and complex projects the assembly model still constitutes a

good tradeo� of some speed for signi�cantly better code quality and modularity. For

small projects it might still be worthwhile to use old model, but new convenience

libraries provide a lot of useful services that speed up the development process so

there are still some reasons to use COSY++. The old syntax conversion mode can

help in making the transition from the conventional COSYScript usage model the to

new one easier.

COSY++ code is modular, well-documented and easily extensible, so missing

features can be added and limitations resolved in the future given signi�cant demand

generated by users. As of now this is out of the scope of this work.
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APPENDIX B

The Genetic Algorithm Tool

(GATool) in COSY In�nity

B.1 Introduction

GATool is a real-valued function optimization package for COSY In�nity that imple-

ments the Evolutionary Optimizer from section 2.3. It is designed in such a way that

it should work well for most problems with either the default values of the parame-

ters or a minimal amount of �ne-tuning. However, some problems might be solved

better and/or faster with non-default algorithm parameters thus the parameter con-

�guration interface was developed for GATool. The parameter initialization must be

done before starting the actual minimization process, as the change of the parameters

during the run process is not supported and its consequences are unpredictable. The

methods to get access to the statistics of the current run and the best value found on

each step are also provided. Interfaces, con�guration parameters and the values they

can take, the default parameter set and typical GATool usage patterns, are described

in this appendix.
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B.2 Con�guration

procedure SetCreationParams CreationAlg;

Sets the creation algorithm used in the initial population generation and regeneration

of the eliminated members of the population. It supports the following CreationAlg

values:

CreationAlg = 1 { UNIFORM creation algorithm, i.e. new member of the }

{ population is any point in the initial box with }

{ uniform probability }

procedure SetArealParams ivInitBox Scale ivGlobalBox IsKillingOn;

Sets the initial box and global box parameters. The �rst parameter, ivInitBox is

a vector of intervals that de�nes search ranges for the coordinates. The second pa-

rameter, Scale, is a scaling coe�cient. The e�ective initial box is generated from

ivInitBox by multiplying the lengths of its sides by this coe�cient (note that in such

case the volume of the box changes as the n-th power of the Scale). The scaling

coe�cient is introduced to simplify the exploration of the problem, i.e. if a user

wants to try running the algorithm with a smaller or larger box, he does not have

to manually rescale each interval in ivInitBox. Instead, he can simply change the

scaling coe�cient. The initial population is generated in the scaled ivInitBox.

The third parameter, ivGlobalBox is a vector of intervals and in most cases

it should contain the scaled initial box. It is used along with the last parameter,

IsKillingOn. In the case that parameter is set to a non-zero value, all the members

of the population outside of ivGlobalBox are eliminated and then replaced by new

members generated using the creation algorithm speci�ed by SetCreationParams.
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This rule is applied on each step of the optimization process. Hence if the killing

mode is on, GATool guarantees that all members of every generation stay inside

ivGlobalBox. If the scaled initial box is not a proper subset of the global box,

GATool issues a warning, but proceeds with the execution. In this case the members

of the population that are in the scaled initial box but not in the global box are

eliminated if the killing mode is on.

procedure SetInitialPopulation nInitPopSize aInitPop;

Some portion of or the whole initial population can be prede�ned with this pro-

cedure. This feature is particularly useful if a user has some insights about the

function's behaviour (perhaps, obtained by using GATool with the parameters tuned

for the exploration of the search space, some other optimizer, or analysis). This

subroutine provides an interface to transform these insights into a hint for the

GATool optimizer. The information in our case consists of the points in the search

space that user considers to be potential minimizers or in their close proximity.

The two parameters the procedure takes are nInitPopSize and aInitPop. They

de�ne the size of the initial population (must be less than or equal to g_nPopSize)

and its members, correspondingly. Here aInitPop is an array with g_nDim ele-

ments. Each of the elements is a vector of g_nPopSize length, so that aInitPop(i) is

a vector containing all the i-th coordinates of all the members of the initial population.

procedure SetReproductionParams nElite MutationRate;

Sets the ratio of the members of the next generation generated by each of the avail-

able new members generation methods. There are three types of members in the

next generation: the elite, the mutated and those produced by a crossover. The
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elite members are the best members (the points that provide the smallest values to

the minimized function) and as such they are transferred from the previous genera-

tion without changes. A number of these members is set by the nElite parameter,

which thus must be a non-negative integer less than or equal to the population size

g_nPopSize. The mutated members are the ones produced by mutating members

of the previous generation using the chosen mutation algorithm. The MutationRate

parameter de�nes the percentage of the new population that is generated by the mu-

tation. It must be a real value from the [0, 1] range. The actual number of mutants

is then g_nPopSize*MutationRate. The number of elite children plus the number of

the mutants must be less then or equal than the population size. If this sum is less

than the population size, all the remaining members of the population are generated

by crossover.

There are three forces that a�ect evolution in a genetic algorithm: the exploration,

the exploitation and the conservation (see [148] for a more detailed study and explana-

tion of the similar concepts of compression, transmission and neutrality selection and

their interplay in the evolution process). The exploration is responsible for exploring

the search space by moving in mostly random directions in hopes of �nding areas

of interest. The exploitation is a more careful examination and re�nement of these

areas aimed at �nding a minimum. The conservation is responsible for preserving the

best values found so far. The elite members of the population drive the preservation,

mutated members drive the exploration, and the members produced by the crossover

drive the exploitation. Hence by controlling the reproduction parameters, a user

controls the impact of these forces on the evolutionary search and, as such, the

performance of the method which can be made more exploratory or quickly converg-

ing to a local minimum. The process of selecting a right set of parameter values
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is mostly heuristic, involves trial and error, and non-trivially depends on the problem.

procedure SetFitScalingParams FitScalingAlg;

Sets the �tness scaling algorithm. Currently supported algorithms (described in detail

in Section 2.3) include:

FitScalingAlg = 1 { LINEAR }

FitScalingAlg = 2 { PROPORTIONAL }

FitScalingAlg = 3 { RANK }

Fitness scaling transforms the function values in any �nite range to the �tnesses

in the [0, 1] range in order to make comparison between di�erent function values

domain-independent. Since the search is directed towards the minimum of the

function, larger �tnesses correspond to smaller values of the function. To perform

this transformation, LINEAR and PROPORTIONAL scaling algorithms map the

function values to the desired interval by means of multiplication and addition while

RANK algorithm sorts them and then assigns �tnesses according to the positions

in the sorted list. Of these methods, RANK is the slowest because sorting that it

employs is of the order of O(n log n), where n = g_nPopSize. However, at the same

time, this scaling algorithm is the least sensitive to numerical errors since it does

not involve any mathematical operations on function values. The other two involve

subtraction which can lead to the cancellation errors if the function assumes small

values on the search domain.

procedure SetCrossoverParams CrossoverAlg CrossoverParams;

Sets the crossover parameters. The �rst parameter, CrossoverAlg, sets the type of

algorithm. Currently GATool supports only one crossover algorithm:
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CrossoverAlg = 1 { HEURISTIC }

The second argument, CrossoverParams, is an array with the parameters of the

crossover algorithm. For the HEURISTIC algorithm the following parameters are

supported:

CrossoverParams(1) { ratio (scalar or vector) of the distance between two }

{ parents where the child is created }

CrossoverParams(2) { randomization flag which determines if the effective }

{ ratio is multiplied by a random number before usage }

This algorithm creates a child on the line connecting two parents if the ratio is a

scalar, or in the hypercube determined by two parents and the ratio if the ratio is

a vector. If the scalar ratio is > 0.5, then the child is created closer to the better

parent, if it is in [0, 0.5) the child is created closer to the worse parent, and if it is

0.5 the child is created exactly in the middle. If the ratio is negative, the meanings

are reversed. The recommended range of values for the ratio is [0, 2]. In case of the

vector ratio, each of these rules applies coordinate-wise. This crossover algorithm is

described in section 2.3.

procedure SetHeurCrossover Ratio IsRandomize;

More user-friendly interface to set the HEURISTIC crossover algorithm and its

parameters. See the description of the SetCrossoverParams in this section for a

description of the parameters.

procedure SetMutationParams MutationAlg MutationParams;
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Sets the mutation algorithm parameters. The �rst parameter, MutationAlg, selects

the mutation algorithm. Currently supported are the following types of the mutation

algorithms:

MutationAlg = 1 { UNIFORM }

MutationAlg = 2 { FADING GAUSSIAN }

The UNIFORM algorithm �rst checks the mutation probability for each coordinate

of every member and, if the mutation occurs, replaces the coordinate value by a

randomly generated number from the initial box' corresponding range. The FADING

GAUSSIAN algorithm generates a vector of coordinates each that from the Gaussian

distribution centered at 0 with a mean equal to the width of the corresponding range

of the initial box, multiplied by the scale and fading parameter, and then adds it to

a mutated member to produce a mutant. Details of the algorithms are described in

Section 2.3.

The second argument, MutationParams, is an array containing parameters of the

selected mutation algorithm. For UNIFORM mutation only one parameter is sup-

ported:

MutationParam(1) { gene mutation probability which specifies the }

{ probability with which each gene of every member }

{ of the population selected for mutation is mutated }

For FADING GAUSSIAN the following parameters are supported:

MutationParam(1) { scale to determine the Gaussian distribution’s mean }

{ value (scale = 1 corresponds to the full length of }

{ the box along coordinate) }

MutationParam(2) { shrink factor, that determines the speed with which }

{ mean value shrinks with generations (shrink factor = 0}

{ corresponds to no shrinking; allowed values range is }

{ [0,1]) }
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procedure SetUnifMutation GeneMutProb;

procedure SetGaussMutation Scale ShrinkFactor;

Is a more user-friendly way to set UNIFORM or FADING GAUSSIAN mutation

algorithms and their parameters.

procedure SetSelectionParams SelectionAlg;

Sets the selection algorithm parameters. Currently there is only one parameter sup-

ported and it determines the algorithm that selects the members of the population

for the mutation and crossover. Currently supported selection algorithms include:

SelectionAlg = 1 { ROULETTE }

SelectionAlg = 2 { STOCHASTIC UNIFORM }

SelectionAlg = 3 { TOURNAMENT }

All of these algorithms use information about members' �tnesses to select with higher

probability the members with better �tness for the reproduction. The method used

to exploit this information depends on the algorithm. The details of these algorithms

are described in section 2.3.

B.3 Usage Scenarios

A typical usage scheme of the GATool is:

GA_Init ProblemDim PopulationSize RandomSeed;

{ Set initial population }

{ Set various algorithm parameters }

{ Set stopping criteria }
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GA_InitProblem;

while g_GAToolStatus#0;

g_vFValues := OBJ_FUNC(g_aNextPopulation, g_nDim);

GA_Step;

endwhile;

GA_FinalizeProblem;

Here comments denote the placing of the optional GATool con�guration procedures

described in the previous section and OBJ_FUNC is a function that GATool is minimiz-

ing. Note that the function value computation method is left to a user. In order to

proceed with the search process GATool only needs function values evaluated at the

points stored in g_aNextPopulation, which is an array that contains g_nDim vectors

with population member coordinates. The population array's i-th element is a vector

containing the i-th coordinates of all the members of the population. Function values

must be stored in g_vFValues in the same order they are stored in the population

array.

A member can be extracted from the array as a vector by calling

GetPopulationMember, the function described in this section. Note that this involves

using temporary variables and does not exploit vector operators optimized by COSY

In�nity ; hence such practice is generally ine�ective and should be avoided. A more

e�cient (however not always applicable) method is to design OBJ_FUNC such that it

takes the population array and dimension as its arguments, returns the vector with

function values at these points, and uses the vector operators to compute this result.

Vector manipulation functions from the utils.fh library (see section A.3.7) might

prove themselves particularly useful for the task. Below is an example of the function

designed to take advantage of these vector operations (from the test_functions.fh

library):

function SchwefelFcn x nDim;
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variable i 1;

SchwefelFcn := 0;

loop i 1 nDim-1;

SchwefelFcn := SchwefelFcn + (x(i)*sin(SQRT(VectorAbs(x(i)))));

endloop;

SchwefelFcn := 418.9829*nDim - SchwefelFcn;

endfunction;

A user is free to put and execute arbitrary code before calling the GA_Step pro-

cedure to proceed with the next step. Such �exibility allows him to build arbitrarily

complex optimization scenarios on the base of GATool. A user might perform data

manipulations of his own, change the initial and global boxes (which is particularly im-

portant for the COSY-GO interaction described in details in section 2.3.6), use other

optimizers, get interactive input, etc. thus �ne-tuning the optimization process to his

needs. If any of the stopping criteria are satis�ed, GATool sets the g_GAToolStatus

variable to zero, causing the main while loop in the example to stop execution. The

g_StopReason variable indicates the reason for stopping.

Here is the list of the procedures used to initialize and �nalize GATool, set the

stopping criteria, and perform one step of the optimization.
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procedure GA_Init Dim PopSize Seed;

Initializes the GATool. Sets the dimension and the population size (these can be

shared by several di�erent problems), which also implicitly de�nes a lot of internal

parameters' and bu�ers' sizes. It also sets the default values of the parameters. The

last parameter, Seed, sets the initial seed for the pseudorandom number generator

and can be used to reproduce GATool runs. The pseudorandom numbers generator

implemented in COSY In�nity produces exactly the same sequence of the random

numbers being started from the same seed. Hence, two runs on the same problem

with the same value of Seed (and other parameters) will be identical in both the

intermediate and �nal results. If Seed is set to -1, the value of seed is generated

randomly using the computer's internal clock as a source of randomness. This

procedure should be called before any other GATool subroutine.

procedure SetStoppingCriteria nMaxGenerations nMaxStallGenerations

DesiredMinFValue IsStopDesiredMinFVal RelTol;

Sets various stopping criteria for the algorithm. The �rst argument, nMaxGenerations,

if positive, sets the limit on the maximum number of generations created during

the optimization (essentially the maximum number of steps). The second argument,

nMaxStallGenerations, if positive, sets the limit on the maximum number of steps

on which the best found function value (minimal in our case) changes by less than

the tolerance set by the last argument, RelTol. The third and fourth arguments

determine if the algorithm stops when the desired minimal function value is reached

or exceeded. Here DesiredMinFValue speci�es the desired minimal value and the

IsStopDesiredMinFVal �ag turns the checking on (when set to any non-zero value)

269



or o� (when set to a zero).

procedure SetMaxRunTime MaxRunTime;

Sets another stopping criteria for the algorithm: maximum run time in seconds,

speci�ed by MaxRunTime. It must be positive.

procedure GA_InitProblem;

Performs the initialization of the problem-speci�c data structures. It opens the log

�les, starts the timers, initializes the statistics, generates the initial population, and

outputs the GATool parameters to results log �le. Then it sets the g_GAToolStatus

variable to a non-zero value to indicate that the search is in progress. This procedure

should be called after all the parameters of the method are set but before the �rst

call to GA_Step.

procedure GA_Step;

Performs one step of the search process. In order to perform it correctly, algorithm

needs g_vFValues to contain the values of the function calculated at the points stored

in g_aNextPopulation. The points themselves are generated by GATool but the com-

putation of the function values is left to a user. The procedure also updates the

statistics (including the current best minimizer) and writes this information to the

log �les. It also checks the stopping criteria. If at least one of them is satis�ed, it

sets g_StopReason to a non-zero value, indicating the exact reason for stopping, and

g_GAToolStatus to zero, indicating that the minimization is completed. In the current

version the following reasons for stopping are supported (correspond to the GATool

stopping criteria):

270



g_StopReason = 1 { Maximum number of generations is reached }

g_StopReason = 2 { Maximum number of stall generations (when the }

{ minimum value of the function changes by less then }

{ the specified tolerance) is reached }

g_StopReason = 3 { Desired minimal function value is reached }

g_StopReason = 4 { Time limit is reached }

If the minimization process is not completed, the procedure then generates the

next population and stores it in g_aNextPopulation. It should be called after

GA_InitProblem.

procedure GA_FinalizeProblem;

Closes the log �les, shutdowns the timers, performs the internal cleanup and prints the

execution timings. It should be called when the optimization process is completed.

B.4 Access to Statistics

There are many internal variables used by GATool to store the statistics, the current

and next populations, the function values and �tnesses, the stopping criteria, the

log �les' descriptors, timers, etc. Since all of them are de�ned as global variables,

a user can potentially access these variables directly, but is strongly discouraged to

do so. The internal representation of the algorithm structures is the implementation

detail and thus is subject to a future changes by a GATool developer. What the

user should rely on is an open interface in the form of procedures and functions

designed to provide open access to internally available information. This interface

forms a contract between a tool developer and a user. For example, if the procedure

is designed to return the number of the elite members of the population to a user, it
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would return this number even if the internal name of the variable holding this value

or the whole set of the internal structures storing these members was changed. Were

a user accessing this variable by its name or making any assumption about storage

mechanism, he would have make changes across all of his code.

In the current version of GATool the following routines provide access to its

internal statistics:

procedure GetCurBestMemberVec vCurBestMember FMin;

procedure GetCurBestMemberArr aCurBestMember FMin;

Both of these procedures return the current best member of the population (point in

the search space) and the corresponding value of the function at this point (minimal

since the method is performing a minimization). The di�erence between them is

that the �rst one returns the current best member as a vector while the second

one returns it as an array. The values are returned through the procedures' arguments.

function GetPopulationMember aPopulation iIndex;

Takes the population array and an index of the member of the population and re-

turns the population member (a point in the search space) in vector format. In

the current version of GATool there are two population arrays: g_aCurPopulation

and g_aNextPopulation, The second argument, iIndex, can assume values from 1 to

g_nPopSize.

B.5 Default Parameters Set

The default set of the con�guration parameters is shown on the Figure B.1 It is tested

to work reasonably well for a large class of the optimization problems.
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Reproduction: number of elite = 10, mutation rate = 0.2

Mutation: UNIFORM, gene mutation probability = 0.1

Crossover: HEURISTIC, ratio = 0.8, randomization is on

Fitness scaling: RANK

Selection: STOCHASTIC UNIFORM

Creation: UNIFORM

Areal: initial box = [-10,10] x ... x [-10,10]

global box = [-10,10] x ... x [-10,10]

killing is off

Stopping: max generations = 1000,

stall generations = 25,

tolerance = 1E-5

Figure B.1: GATool's default parameters

B.6 Miscellaneous

procedure SetDumpFValues;

procedure UnsetDumpFValues;

Turns on and o� the mode where all the points where the function is evaluated during

the optimization along with the evaluated function values, are stored in the f_values

log �le in the log �les' directory. It can be used, for example, to plot a function that

is expensive to calculate.

B.7 Advanced Con�guration via Active Blocks

Apart from the COSYScript subroutines, some of the GATool parameters can be

con�gured using Active Blocks (described in detail in Appendix A). Some con�g-

uration parameters are available only through Active Blocks (they de�ne dynamic

variable sizes and internal GATool implementation details, especially experimental

ones), some through both Active Blocks and COSYScript subroutines, and some
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only through COSYScript subroutines. In order to con�gure GATool using Active

Blocks, a user should set the values of the variables described in this section before

adding a library �le to an assembly (as described in section A.3.5).

Con�guration variables that can be set from Active Blocks only, along with their

default values, are:

$COSY::GATool::MaxDim = 20

Speci�es the maximum dimensionality of a problem that can be set via GA_Init.

$COSY::GATool::MaxPopSize = $COSY::GATool::MaxDim * 100;

Speci�es the maximum population size that can be set via GA_Init.

$COSY:GATool::nMaxMutationParams = 3

Speci�es the maximum number of mutation params allowed.

$COSY:GATool::nMaxCrossoverParams = 2

Speci�es the maximum number of crossover params allowed.

$COSY:GATool::IsSuppressIncestCrossover = 1

Determines if incests are suppressed during crossover. Incest refers to the case where

both parents in a crossover correspond to the same point in the search space. By

the nature of the crossover algorithm implemented in GATool, this would result in

a child that is exactly this point which, in turn, leads to a premature convergence

of the search process. Thus this case should be avoided. The incest suppression

is particularly important for small population size settings. The population can be

small, for example, due to the expensiveness of the objective function calculation.

$COSY:GATool::IsShuffleAfterSelection = 1

If this �ag is set to a non-zero value, an additional shu�ing of indices is performed

after selection. This is done to prevent the premature convergence and increase the
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diversity by additionally mixing the population.

$COSY::GATool::nElite = 10

$COSY::GATool::MutationRate = 0.2

$COSY::GATool::MaxInitBoxSize = 10

$COSY::GATool::RelTol = 1E-5

$COSY::GATool::InitPopSize = 10

$COSY::GATool::IsKilling = 0

$COSY::GATool::PopCreationAlg = 1

$COSY::GATool::FitScalingAlg = 3

$COSY::GATool::CrossoverAlg = 1

$COSY::GATool::CrossoverRatio = 0.8

$COSY::GATool::CrossoverIsRandomize = 1

$COSY::GATool::MutationAlg = 1

$COSY::GATool::MutationScale = 0.8

$COSY::GATool::MutationShrinkFactor = 0.6

$COSY::GATool::MutationGeneMutProb = 0.1

$COSY::GATool::SelectionAlg = 2

$COSY::GATool::StoppingMaxGens = 1000

$COSY::GATool::StoppingStallGens = 25

$COSY::GATool::StoppingMinFValue = undef

$COSY::GATool::MaxRunTime = undef

These variables set the default values of the GATool parameters (see Figure B.1).

$COSY::GATool::RandomSeed = -1

This variable sets the random seed used if the last argument to GA_Init is non-

positive. If this variable is set to a positive value, GATool always starts from the

prede�ned seed. Note, however, that a positive argument to GA_Init overrides the

value set from the Active Block. It is not recommended to change the value of this

Active Block COSYScript Random Seed's Value

- - randomly generated
- + COSYScript : from argument to GA_Init

+ - Active Block: from $COSY::GATool::RandomSeed

+ + COSYScript : from argument to GA_Init

variable; this feature is mainly provided for debugging purpose.
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$COSY::GATool::IsDumpFValues = 0

Stored the default value of the �ag that controls the mode of the points and function

values dumping to the log �le, as described earlier.
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APPENDIX C

Test Problems in Unconstrained

Optimization

Every new optimization method has to prove its worthiness and justify the time and

e�ort spent in its development, implementation, and testing. Some of the optimiza-

tion methods aim at achieving a reasonable performance on a larger class of the prob-

lems, others willingly narrow the target class in order to achieve better performance

on it. To assess the performance of di�erent methods, compare their strengths and

weaknesses, reveal the unforeseen aspects of their behaviour, and stress-test them, a

large number of test problems was invented and examined [61]. In order to test the

behaviour of GATool (see section 2.3) we selected some of the most commonly used

test problems representing di�erent aspects of of the di�culty of the optimization

process. In this appendix we present the formulations of these problems along with

their characteristics and example plots for the 2-dimensional cases (most of these

problems are de�ned for a general n-dimensional case).
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C.1 Sphere Function

(a) 3D plot

(b) Contour lines plot

Figure C.1: Sphere function
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# Definition

# f(x) =
∑v
i=1 x

2
i

# Search domain

# xi ∈ [−6, 6], i = 1, 2, . . . , v

# Local minima

# One, same as global

# Global minimum

# x∗ = (0, . . . , 0), f(x∗) = 0

# Description

# The simplest function for the conventional minimization methods: smooth,

# symmetric and unimodal. The gradient is directed towards the global

# minimum at any point. Using a right step size, a conventional minimizer

# can reach the global minimum in one step starting from any initial

# point. This problem is used to test the performance of the global

# optimizer on the simplest case.
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C.2 Rastrigin's Function

(a) 3D plot

(b) Contour lines plot

Figure C.2: Rastrigin's function

280



# Definition

# f(x) = 10v +
∑v
i=1
(
x2
i − 10 cos(2πxi)

)
# Search domain

# xi ∈ [−6, 6], i = 1, 2, . . . , v

# Local minima

# Lots

# Global minimum

# x∗ = (0, . . . , 0), f(x∗) = 0

# Description

# Sphere function with added oscillatory behaviour which leads to a

# large number of the local minima. Conventional methods get stuck at

# one of the local minima.
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C.3 CosExp Function

(a) 3D plot

(b) Contour lines plot

Figure C.3: CosExp function
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# Definition

# f(x) =
∏v
i=1 cos(xi)− 2 exp(−10

∑v
i=1(xi − 1)2)

# Search domain

# xi ∈ [−4, 4], i = 1, 2, . . . , v

# Local minima

# Lots

# Global minimum

# x∗ = (1, . . . , 1)

# n = 2, f(x∗) ≈ −1.7081

# n = 3, f(x∗) ≈ −1.8422

# n = 4, f(x∗) ≈ −1.9147

# n = 5, f(x∗) ≈ −1.9539

# n = 6, f(x∗) ≈ −1.9751

# n = 7, f(x∗) ≈ −1.9865

# n = 8, f(x∗) ≈ −1.9927

# n = 9, f(x∗) ≈ −1.9960

# n = 10, f(x∗) ≈ −1.9978

# Description

# Highly oscillatory function with many local minima and a very

# sharp and well-pronounced global minimum that has a tiny domain

# of attraction. This property makes this minimum extremely hard

# to find especially for high-dimensional formulations.

283



C.4 Rosenbrock's Function

(a) 3D plot

(b) Contour lines plot

Figure C.4: Rosenbrok's function
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Figure C.5: Rosenbrock's function contours near the minimum

# Definition

# f(x) =
∑v−1
i=1

(
100
(
x2
i − xi+1

)2
+ (xi − 1)2)

# Search domain

# xi ∈ [−5, 10], i = 1, 2, . . . , v

# Local minima

# One, same as global

# Global minimum

# x∗ = (1, . . . , 1), f(x∗) = 0

# Description

# Is also called “banana” function for its banana-shaped contour lines

# (see Figure C.5 for magnified contour plots near the minimum).

# It poses difficulties for conventional minimizers due to its flat

# landscape and behaviour near the minimum. In the very narrow contour

# “valleys” around it, the gradient is pointing almost perpendicular

# to the direction towards the minimum. This can result in zigzag

# movements with small step sizes during the optimization. Minimization

# process frequently stops exhausting an allowed number of steps.
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C.5 Ackley's Function

(a) 3D plot

(b) Contour lines plot

Figure C.6: Ackley's function
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# Definition

# f(x) = 20 + 20 exp(−5−1(v−1∑v
i=1 x

2
i )

1/2)− exp(−v−1∑v
i=1 cos(2πxi))

# Search domain

# xi ∈ [−30, 30], i = 1, 2, . . . , v

# Local minima

# Several

# Global minimum

# x∗ = (0, . . . , 0), f(x∗) = 0

# Description

# Oscillations with small amplitude, very sharp global minimum with its

# pit hidden in a large number of the local minima. Conventional methods

# get trapped at one of the local minima.
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C.6 Griewank's Function

(a) 3D plot

(b) Contour lines plot

Figure C.7: Griewank's function
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# Definition

# f(x) = 4000−1∑v
i=1 x

2
i −

∏v
i=1 cos(xi · i−1/2) + 1

# Search domain

# xi ∈ [−600, 600], i = 1, 2, . . . , v

# Local minima

# Several

# Global minimum

# x∗ = (0, . . . , 0), f(x∗) = 0

# Description

# Sphere function modulated by oscillations introduced by the cosine

# component. Number of local minima increases exponentially with

# dimension. It is frequently used as a test problem for the global

# optimization methods. See, however [111] for its criticism due to a

# complexity reduction with the dimension and proposed modifications to

# improve the difficutly.
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C.7 An Function

(a) 3D plot

(b) Contour lines plot

Figure C.8: An function
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# Definition

# f(x) = (x1 − (v + 1)−2)2 +
∑v
i=2(xi − (v + 1)−2)2 − xixi−1

# Search domain

# xi ∈ [−0.25, 0.25], i = 1, 2, . . . , v

# Local minima

# One, same as global

# Global minimum

# n = 2, f(x∗) ≈ −0.0247;

# n = 3, f(x∗) ≈ −0.0273;

# n = 4, f(x∗) ≈ −0.0256;

# n = 5, f(x∗) ≈ −0.0231;

# n = 6, f(x∗) ≈ −0.0208;

# n = 7, f(x∗) ≈ −0.0188;

# n = 8, f(x∗) ≈ −0.0170;

# n = 9, f(x∗) ≈ −0.0156;

# Description

# Similar to the Sphere function but very flat. Poses difficulties

# for conventional optimization methods because of its flatness which

# makes them take very small steps towards the minimum. Hence

# minimization process takes prohibitively many steps to complete.
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C.8 SinSin Function

(a) 3D plot

(b) Contour lines plot

Figure C.9: SinSin function
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# Definition

# f(x) =
∏v
i=1 sin(10xi)

# Search domain

# xi ∈ [−1, 1], i = 1, 2, . . . , v

# Local minima

# Several, same as global

# Global minimum

# Several

# x∗ = (−π/20 + 2πk1, . . . ,−π/20 + 2πkn), ki ∈ Z, i = 1, 2, . . . , n

# f(x∗) = −1

# Description

# Highly oscillatory function with many global minima. Poses significant

# difficulty for the rigorous global minimizers due to a large number of

# the regions of interest which cannot be eliminated from

# the consideration during the search process.
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C.9 Paviani's Function

(a) 3D plot

(b) Contour lines plot

Figure C.10: Paviani's function
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# Definition

# f(x) =
∑v
i=1(ln(xi − 2))2 + (ln(10− xi))2 −

∏v
i=1 x

2/v
i

# Search domain

# xi ∈ [2.001, 9.999], i = 1, 2, . . . , v

# Local minima

# One, same as global

# Global minimum

# n = 2, x∗ ≈ (9.72, 9.72); f(x∗) ≈ −82.883;

# n = 3, x∗ ≈ (9.64, 9.64, 9.64); f(x∗) ≈ −77.396;

# n = 4, x∗ ≈ (9.58, . . . , 9.58); f(x∗) ≈ −72.357;

# n = 5, x∗ ≈ (9.53, . . . , 9.53); f(x∗) ≈ −67.591;

# n = 6, x∗ ≈ (9.49, . . . , 9.49); f(x∗) ≈ −63.013;

# n = 7, x∗ ≈ (9.45, . . . , 9.45); f(x∗) ≈ −58.57;

# n = 8, x∗ ≈ (9.40, . . . , 9.40); f(x∗) ≈ −54.23;

# n = 9, x∗ ≈ (9.38, . . . , 9.38); f(x∗) ≈ −49.97;

# Description

# Is a challenge for interval methods because even though it is flat, it

# has a high level of dependencies. This property makes it hard for the

# interval methods to reject boxes until they are very finely split [27].
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APPENDIX D

Test Problems in Constrained

Optimization with Evolutionary

Algorithms

The set of test problems for single-objective constrained optimization was suggested

as a standard benchmark for EAs by Michalewicz [135] and later adopted to test

the performance of all newly developed methods by the EA community [41, 52, 133,

149,169]. This testbench includes various synthetic problems (G01-G13) that expose

di�erent properties of the constraints, the feasible set, and the sought minimum.

Several real-life design problems originally solved by constrained EAs (vess, tens)

are also used. Problems in this appendix are listed using the conventions from the

optimization problem formulation (1.3.1), (1.3.2), (1.3.3), (1.3.4), (1.3.5). The search

space S is given as a box, i.e. set of ranges for xi, i = 1, . . . , v. The values for global

minima are listed if known. The best known values are given where the true minima

are not known.
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A rough empirical classi�cation of problem di�culty and estimates for the

ρ =
|F |
|S|
· 100

parameter are taken from [128]. Note that generally the most important factors that

increase the di�culty of a constrained optimization problem are the presence of at

least one nonlinear inequality and a high dimensionality. Note also, that even though

any feasible set where one of the constraints is an equality theoretically has a measure

zero, the value of the parameter ρ obtained by a �nite sampling of the search space

to �nd the feasible points can be non-zero. For practical purposes such an estimate

is more useful than a purely theoretical measure. First, because, for the general

set of constraints precise determination of F can be extremely di�cult. Second, for

practical purposes set F that consists of a single point is harder to treat than F that

consists of a single line, which is, in turn harder to treat than F that consists of

a plane. The small deviations of ρ from the theoretical zero obtained by sampling

allow us to make such a distinction (even though only approximately). Values of ρ in

the problem descriptions are obtained by sampling the search space S by 1, 000, 000

random points.
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DIFFICULT

ρ ≈ 0.0003

v = 13

n = 9 (9 linear inequalities; h1, h2, h3, h4, h5, h6 active)

quadratic objective function

f(x) = 5
∑4
i=1(xi − x2

i )−
∑13
i=5 xi

h1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

h2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

h3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

h4(x) = −2x4 − x5 + x10 ≤ 0

h5(x) = −2x6 − x7 + x11 ≤ 0

h6(x) = −2x8 − x9 + x12 ≤ 0

h7(x) = −8x1 + x10 ≤ 0

h8(x) = −8x2 + x11 ≤ 0

h9(x) = −8x3 + x12 ≤ 0

xi ∈ [0, 1], i = 1, . . . , 9

xi ∈ [0, 100], i = 10, . . . , 12

x13 ∈ [0, 1]

x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)

f(x∗) = −15

Figure D.1: g01 Test problem
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DIFFICULT

ρ ≈ 99.9973

v = 20

n = 2 (1 linear inequality, 1 nonlinear inequality; h1 almost

active (−10−8))

nonlinear objective function

f(x) = −
∣∣(∑v

i=1 cos4(xi)− 2
∏v
i=1 cos2(xi)

)(∑v
i=1 ix

2
i

)−0.5∣∣
h1(x) = 0.75−

∏v
i=1 xi ≤ 0

h2(x) =
∑v
i=1 xi − 7.5v ≤ 0

xi ∈ [0, 10], i = 1, . . . , v

best known f(x∗) = −0.803619

Figure D.2: g02 Test problem (best known value from [163])

DIFFICULT

ρ ≈ 0.0026

v = 10

n = 1 (1 nonlinear equality; g1 active)

nonlinear objective function

f(x) = −v2/v∏v
i=1 xi

g1(x) =
∑v
i=1 x

2
i − 1 = 0

xi ∈ [0, 10], i = 1, . . . , v

x∗ = 1/
√
v(±1,±1, . . . ,±1), any combination of ±1’s such that their product

is positive

f(x∗) = −1

Figure D.3: g03 Test problem
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AVERAGE

ρ ≈ 27.0079

v = 5

n = 6 (4 linear inequalities, 2 nonlinear inequalities; h1, h6 active)

quadratic objective function

f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

h1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

h2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

h3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0

h4(x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0

h5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

h6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

x1 ∈ [78, 102]

x2 ∈ [33, 45]

xi ∈ [27, 45], i = 3, . . . , 5

x∗ = (78, 33, 29.995256025682, 45, 36.775812905788)

f(x∗) = −30665.539

Figure D.4: g04 Test problem
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VERY DIFFICULT

ρ ≈ 0.0000

v = 4

n = 5 (2 linear inequalities, 3 nonlinear equalities; g1, g2, g3 are active)

nonlinear objective function

f(x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2

h1(x) = −x4 + x3 − 0.55 ≤ 0

h2(x) = −x3 + x4 − 0.55 ≤ 0

g1(x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4− 0.25) + 894.8− x1 = 0

g2(x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8− x2 = 0

g3(x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0

xi ∈ [0, 1200], i = 1, 2

xi ∈ [−0.55, 0.55], i = 3, 4

best known x∗ = (679.9453, 1026.067, 0.1188764,−0.3962336)

f(x∗) = 5126.4981

Figure D.5: g05 Test problem

301



AVERAGE

ρ ≈ 0.0057

v = 2

n = 2 (2 nonlinear inequalities; h1, h2 active)

nonlinear objective function

f(x) = (x1 − 10)3 + (x2 − 20)3

h1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

h2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

x1 ∈ [13, 100]

x2 ∈ [0, 100]

x∗ = (14.095, 0.84296)

f(x∗) = −6961.81388

Figure D.6: g06 Test problem
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AVERAGE

ρ ≈ 0.0000

v = 10

n = 8 (3 linear inequalities, 5 nonlinear inequalities; h1, h2, h3, h4, h5,

h6 active)

quadratic objective function

f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

h1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

h2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

h3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

h4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

h5(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

h6(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

h7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

h8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

xi ∈ [−10, 10], i = 1, . . . , 10

x∗ = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,

9.828726, 8.280092, 8.375927)

f(x∗) = 24.3062091

Figure D.7: g07 Test problem
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EASY

ρ ≈ 0.8581

v = 2

n = 2 (2 nonlinear inequalities)

nonlinear objective function

f(x) = − sin3(2πx1) sin(2πx2)
(
x3

1(x1 + x2)
)−1

h1(x) = x2
1 − x2 + 1 ≤ 0

h2(x) = 1− x1 + (x2 − 4)2 ≤ 0

xi ∈ [0, 10], i = 1, 2

x∗ = (1.2279713, 4.2453733)

f(x∗) = −0.095825

Figure D.8: g08 Test problem

AVERAGE

ρ ≈ 0.5199

v = 7

n = 4 (4 nonlinear inequalities; h1, h4 active)

nonlinear objective function

f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5 + 7x2
6 + x4

7 − 4x6x7
−10x6 − 8x7

h1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

h2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

h3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

h4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

xi ∈ [−10, 10], i = 1, . . . , 7

x∗ = (2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131, 1.594227)

f(x∗) = 680.6300573

Figure D.9: g09 Test problem
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DIFFICULT

ρ ≈ 0.0020

v = 8

n = 6 (3 linear inequalities, 3 nonlinear inequalities; h1, h2, h3 active)

linear objective function

f(x) = x1 + x2 + x3

h1(x) = −1 + 0.0025(x4 + x6) ≤ 0

h2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

h3(x) = −1 + 0.01(x8 − x5) ≤ 0

h4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

h5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

h6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

x1 ∈ [100, 10000]

xi ∈ [1000, 10000], i = 2, . . . , 3

xi ∈ [10, 1000], i = 4, . . . , 8

x∗ = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979)

f(x∗) = 7049.3307

Figure D.10: g10 Test problem
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EASY

ρ ≈ 0.0973

v = 2

n = 1 (1 nonlinear equality; g1 active)

linear objective function

f(x) = x2
1 + (x2 − 1)2

g1(x) = x2 − x2
1 = 0

xi ∈ [−1, 1], i = 1, 2

x∗ = (±1/
√

2, 1/2)

f(x∗) = 0.75

Figure D.11: g11 Test problem

EASY

ρ ≈ 4.7697

v = 3

n = 1 (93 nonlinear inequalities joined by logical OR instead of AND,

disjoint F)

quadratic objective function

f(x) = −100−1(100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2)

hi(x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0, i = 1, . . . , 93,

p, q, r = 1, . . . , 9

x is feasible if it satisfies one of hi

xi ∈ [0, 10], i = 1, 2, 3

x∗ = (5, 5, 5)

f(x∗) = −1

Figure D.12: g12 Test problem
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VERY DIFFICULT

ρ ≈ 0.0000

v = 5

n = 3 (1 linear equality, 2 nonlinear equalities; g1, g2, g3 active)

nonlinear objective function

f(x) = ex1x2x3x4x5

g1(x) =
∑5
i=1 x

2
i − 10 = 0

g2(x) = x2x3 − 5x4x5 = 0

g3(x) = x3
1 + x3

2 + 1 = 0

xi ∈ [−2.3, 2.3], i = 1, 2

xi ∈ [−3.2, 3.2], i = 3, 4, 5

x∗ = (−1.717143, 1.595709, 1.827247,−0.7636413,−0.763645)

f(x∗) = 0.0539498

Figure D.13: g13 Test problem
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AVERAGE

ρ ≈ 39.6762

v = 4

n = 4 (3 linear inequalities, 1 nonlinear inequality)

quadratic objective function

f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

h1(x) = −x1 + 0.0193x3 ≤ 0

h2(x) = −x2 + 0.00954x3 ≤ 0

h3(x) = −πx2
3x4 − 4/3πx3

3 + 1296000 ≤ 0

h4(x) = x4 − 240 ≤ 0

xi ∈ [1, 99], i = 1, 2

xi ∈ [10, 200], i = 3, 4

best known: f(x∗) = 6059.946341

Figure D.14: Design of a Pressure Vessel (vess) [100] (best known value from [41])
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EASY

ρ ≈ 0.7537

v = 3

n = 4 (1 linear inequality, 3 nonlinear inequalities)

quadratic objective function

f(x) = (x3 + 2)x2x
2
1

h1(x) = 1− x3
2x3(71785x4

1)−1 ≤ 0

h2(x) = (4x2
2 − x1x2)(12566(x2x

3
1 − x

4
1))−1 + (5108x2

1)−1 − 1 ≤ 0

h3(x) = 1− 140.45x1x
−2
2 x−1

3 ≤ 0

h4(x) = (x2 + x1)1.5−1 − 1 ≤ 0

x1 ∈ [0.05, 2]

x2 ∈ [0.25, 1.3]

x3 ∈ [2, 15]

best known: f(x∗) = 0.012681

Figure D.15: Design of a Tension/Compression Spring (tens) [9] (best known value from [41])
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