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ABSTRACT

Besides the mere tracking of individual particles through an accelerator lattice, it
is often helpful to study the corresponding phase space map relating initial and final
coordinates. Recent years have seen an advance in the ability to compute high-order
maps for rather complex systems including accelerator lattices. Besides providing in-
sight, the maps allow treatment of the lattice without approximations, allowing thick
elements, fringe-field effects and even radiation, which is often prohibitive in the case
of pure tracking. At the core of the computation of maps for realistic systems are the
differential algebraic (DA) techniques.

Besides the computation of maps, the DA methods have recently proven useful for the
computation of many properties of the maps in a rather direct way. In particular, these
properties include parameter tune shifts, amplitude tune shifts, and pseudo invariants.
The methods presented here do not rely on Lie algebraic methods and are noticeably
more direct and in many cases more efficient. Not relying on canonical techniques, they
are also applicable to non-symplectic systems and allow a study of damping phenomena
in repetitive systems.

1 INTRODUCTION

Beam physics systems can be represented by a map relating final phase-space coor-
dinates �zf to initial coordinates �zi and system parameters �δ in the following way:

�zf =M(�zi, �δ). (1)

Depending on the problem, the phase-space variables can be sets of two or three
positions and momenta, and can contain other quantities like the spin. The system
parameters can include certain multipole strengths and, in the two-dimensional case,
the energy deviation of the particle. Note that the distinction between variables and
parameters is somewhat arbitrary; we consider any quantity of interest a parameter if
it stays constant throughout the system.

The transfer map is the (unique) flow of certain differential equations describing the
evolution of the variables:
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dt
�z = �F (�z, �δ). (2)

The first partial derivatives of the transfer map (1) with respect to the phase-space
variables constitute the so-called transfer matrix. The higher partial derivatives are
called nonlinearities or aberrations, and the ones involving system parameters are called
sensitivities. In this view, the task of beam physics is to find the aberration coefficients
and sensitivities to a certain order, and to try to modify them in such a way that the
map has certain desirable properties.

Transfer maps are infinitely-often differentiable functions in several variables, and so
are the equations of motion determining them, and the fields and potentials that affect
the motion. The class of infinitely-often differentiable functions in v variables is usually
denoted by C∞(Rv).

In a very broad sense, deriving statements about beam physics systems strictly
speaking means manipulating such functions. For example, the derivation of analytic
formulas for the aberrations [13, 11] of a certain element is a formal algorithm involving
operations on these functions. Unfortunately, the operations required in this process
tend to become tremendously complex, and only relatively low orders were accessible
with human endurance levels; Refs. 3 to 12 represent just a few of the relevant papers.

The last years have seen a steady growth of non-numerical computer applications,
and formula manipulators are getting better and better. They are very helpful in an-
swering important questions that would take much longer, or be simply impossible, to
answer with paper and pencil. Unfortunately, for many applications in beam physics,
the commercial formula manipulators are still not satisfactory.

It took a special purpose formula manipulator written in FORTRAN [11, 12] to
obtain closed formulas for the aberrations of regular beamline elements to fifth order.
Higher orders seem impossible to achieve with this technique because of the enormous
growth in complexity for the analytical formulas describing the aberrations. The FOR-
TRAN code for certain elements in the program COSY 5.0 [10, 46] that was generated
by this approach exceeds 30,000 lines, and still provides no explicit formulas for the
sensitivities.

By looking at the analytical algorithms to determine aberrations, we recognize an
important pattern: to determine the map to a certain order, it suffices to know the fields
to the same order, know the differential equations to the same order, etc. The higher
orders, both of the transfer map and of all the intermediate functions, are irrelevant. It
turns out that it is a rigorous understanding and studying of the algebraic implications
of this phenomenon that eventually will allow us to determine the desired transfer maps
in a way that is analytic enough to be accurate and fast, yet numerical enough to be
usable in practice.
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2 DIFFERENTIAL ALGEBRAS

Let us again consider the above function space C∞(Rv). Roughly speaking, this is
an exceedingly large structure, much larger than even the space of all the functions that
can be represented by a formula manipulator. Indeed, C∞(Rv) is an infinite dimensional
vector space.

On this space, we now introduce a relation. For two functions a, b ∈ C∞(Rv), we say
a =n b if a(0) = b(0) and if all the partial derivatives of a and b agree at 0 up to order n.
Note that our choice of 0 as the point of comparison is merely a matter of convenience,
and any other point could be chosen as well.

One readily infers that a =n a, that a =n b entails b =n a and finally that a =n b,
b =n h entails a =n h. So the relation =n is an equivalence relation. For any a, we
now look at all the b that satisfy b =n a. This set is called [a]n, the equivalence class of
a with respect to =n

Indeed, the concept of the equivalence classes describes exactly what we mean by
asking for the aberrations. We are not interested in the transfer map proper, but only
in its derivatives up to order n, i.e., the class in which the transfer map falls. The set of
all equivalence classes introduced by =n on C∞(Rv) we denote by nDv. It will be this
set that will soon allow us to compute aberrations.

We now note that a1 =n a2 and b1 =n b2 implies a1 + b1 =n a2 + b2; for the
derivatives up to order n of a sum of functions, only the derivatives of up to order n
of the summands matter. This means that independent of the choice of elements in
two classes, the sum of the elements is always in the same class. In a similar way one
observes that for any real c, a1 =n a2 implies c · a1 =n c · a2. So we can introduce an
addition and a scalar multiplication on the set of classes nDv in the following way:

[a]n + [b]n := [a+ b]n

c · [a]n := [c · a]n (3)

and the expressions are well defined because, according to the above reasoning, any
representant from [a] or [b] yields the same resulting class. It is straightforward to show
that with the above addition and scalar multiplication, nDv forms a vector space.

But we can introduce more operations on the classes. We observe a1 =n a2 and
b1 =n b2 also implies a1 · b1 =n a2 · b2; for the derivatives up to order n of a product
of functions, only the derivatives of up to order n of the summands matter. Similar to
the above, we thus can also introduce a multiplication on the classes:

[a]n · [b]n := [a · b]n. (4)

Thus we have a vector space with a multiplication, which can be shown to be asso-
ciative, commutative and distributive. So nDv is an algebra. We want to introduce one
more operation here, which is based on the partial derivative. We note that a =n b
implies ∂/∂xνa =n−1 ∂/∂xνb, and thus we can introduce an operation ∂ν on nDv:

∂ν [a]n := [
∂

∂xν
a(�x)]n−1. (5)
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We note that ∂ maps nDv into n−1Dv. It is relatively easy to show that

∂ν([a] · [b]) = [a] · (∂ν [b]) + (∂ν [a]) · [b]. (6)

An operation of this type is called a derivation, and an algebra with a derivation
is called a differential algebra. We note that a differential algebra with at least two
derivations contains a Lie algebra. The Poisson bracket is constructed in the obvious
way using the derivations.

It turns out that our differential algebras are extensions of the real numbers, much
like the complex numbers. We identify any real number r with the class [r] containing
the constant function a(q1, ..., qv) = r. Then we obtain that

[r]n + [s]n = [r + s]n

[r]n · [s]n = [r · s]n (7)

such that the identification is indeed a homomorphism from the reals into nDv. From
now on we write r for the class [r], similar to writing r instead of (r, 0) in the complex
case.

We also introduce special names for the following v classes:

dν = [xν ] (8)

As we will see below, these elements are infinitely small, and the d is chosen to mean
a differential.

The monomials dν allow us to write the elements of the differential algebra in a rather
compact form. First consider all the functions that have only one partial derivative,
namely the one with respect to ∂/∂xj11 ...x

jv
v , and let c = ∂xj11 ...x

jv
v /j1! · ... · jv!. Then

these are the functions in the same class as the monomial c · xj11 ...xjvv . But from Eqs.
(3), (4) and (8), we infer that this is the class c · dj11 · ... · djvv .

Now suppose a function a has all the derivatives ∂j1+...+jva/∂xj11 ...x
jv
v . Now again

let cj1,...jv = ∂xj11 ...x
jv
v /j1! · ... · jv!. Then by Eq. (3) its class can be written as a sum

[a] =
X

cj1,...jv · d
j1
1 · ... · djvv . (9)

The vector space nDv thus has the d
j1
1 · ... · djvv as a basis. It can be shown [3] that

there are exactly (n + v)!/(n!v!) such monomials, so our differential algebra has finite
dimension (n+ v)!/(n!v!).

Equation (9) stresses a central property of the differential algebras: It is possible
to compute more complicated classes from simpler ones. In terms of the underlying
functions, it means that we are able to compute their derivatives arithmetically from
the derivatives of simpler functions.

So far we have only addition and multiplication available in the differential algebras,
and thus we can use this property only to compute polynomials, which are not very
interesting. In the following sections, we will develop the algebraic properties of the
differential algebras and discuss inverses and roots, and we will discuss convergence
problems, which allows the treatment of power series. After this is done, the class of
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functions of which we can compute derivatives will have grown substantially. It then will
include almost all functions that can be represented in finitely many steps by additions,
multiplications, subtractions, divisions, roots, and power series. This is a very large set
of functions: it includes almost all functions that can be represented on a computer.

2.1 Ordering and Nilpotent Elements

It is an interesting and important result that the differential algebras discussed here
can be ordered. To each nonzero DA vector expressed in the basis of Eq. (9), we consider
the monomials that have the lowest sum of exponents of the di that occurs. From all
combinations of these exponents, we find the ones with the highest number of d1, and
from these the highest number of d2, etc. The coefficient of the resulting monomial in
the di we call the leading coefficient. We say

• x ∈ nDv is positive if its leading coefficient is positive,

• x ∈ nDv is negative if its leading coefficient is negative.

It directly follows that x ∈ nDv is positive, negative or zero. We further conclude
that if x and y are positive, so is x + y. This follows directly from the fact that the
leading term of x+y is either the leading term of x or the leading term of y, and if they
are equal, the leading coefficients cannot add up to zero since they are both positive.

We also conclude that if x and y are positive, so is x ·y. This follows directly because
the leading term of x · y is the product of the leading term of x and the leading term of
y, and the leading coefficient is the product of the leading coefficients of x and y.

We now say that x > y, if x − y is positive, and x < y, if x − y is negative. Again
we conclude that for any x, y, either x > y, y > x, or x = y. As an example, we have

1 > 2d1 > d1 > 10d2 > dv > d21 > 10d1d3 > d31 + 2d
3
2 > d42 > 0. (10)

Using the definition of ordering, it is easy to show that

x < y ⇒ x+ z < y + z

x < y, z > 0 ⇒ x · z < y · z. (11)

Thus the ordering is compatible with addition and multiplication in the usual way. Hence
the differential algebras nDv are totally ordered. We call the ordering lexicographic
because in order to compare two numbers one begins with the left most term, working
further and further to the right until a term is found in which the two numbers disagree.

It is a striking property of the ordering that there are infinitely small elements in the
differential algebras. Consider the elements dν , and let r and s be positive reals. Then
we infer from the ordering

0 < s · dν < r (12)
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for all ν. Thus, regardless of how large we choose s, the product s·dν can never exceed r,
but it is always positive. A structure in which this is possible is called non-Archimedean.
We say that dν is infinitely small or alternatively that dν is a differential. Note that
there are no infinitely small numbers in the reals, and that not only the individual dν
are infinitely small or differentials, but indeed every element whose real part vanishes.

We conclude another interesting property of differentials. If a differential in nDv is
raised to a power greater than n, the result vanishes. Such elements are called nilpotent;
note again that there are no nilpotent elements in the real numbers.

Nilpotent elements have other important properties that entail considerable practical
simplifications. In case we multiply two nilpotent elements in nDv, the class of the
product is even uniquely determined in n+1Dv. This is because all contributions to the
(n + 1)st order contain the zeroth order of one or the other of the factors, which both
vanish.

This fact entails an interesting consequence for the Lie algebras generated by the
differential algebra: If we restrict ourselves to elements that vanish up to order 2, so-
called double differentials, then there is no loss in order for Poisson brackets among
them, and the result is also a double differential.

Finally, differentials are very important for the problem of composing maps. It
follows directly that the class of the composed map is defined only by the classes of the
individual map if the first map is a differential, i.e. the underlying function preserves
the origin.

To conclude this section, we want to introduce an absolute value and a norm on the
differential algebras. As in the real number case, we define the absolute value by

|x| =
(

x if x ≥ 0
−x otherwise

. (13)

Thus the absolute value is always positive, and it is an element of the differential
algebra. The usual rules for the absolute value hold, for example |x · y| = |x| · |y| and
|x+ y| ≤ |x|+ |y|.

The norm || || is defined as follows:

||
kX
i=1

ai ·Πnj=1d
ij
j || =

kX
i=1

|ai|. (14)

Thus the norm is just the maximum norm in the basis of the Πnj=1d
ij
j and is a real

number.

2.2 Algebraic Properties

In this subsection we want to study certain algebraic properties of the differential
algebras we have introduced. In particular, we will answer the question of the existence
of inverses and roots. This will eventually allow us to use algebraic manipulations to
compute derivatives of algebraic functions, i.e. functions built up using finitely many
additions, multiplications, subtractions, divisions and roots.
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An important theorem for our future study is the following fixed-point theorem. Let
f be a function on nDv, so f maps one equivalence class into another one, and let f be
contracting with infinitely small contraction factor k, i.e. |f(x)− f(y)| < k · |x− y| for
all x, y innDv. Then f has a unique fixed-point z such that f(z) = z.

The proof is similar to the classic Banach space case of the fixed-point theorem:
begin with any element x in nDv, and iterate f . Since the contraction factor is infinitely
small and infinitely small elements are nilpotent, after ν steps the difference of xν and
xν+1 is less than kν . Since k is a differential and thus nilpotent, xn+2 = xn+1, and thus
xn+1 is the desired fixed-point.

Compared to the Banach space case one here obtains the computational advantage
that the sequence xn actually reaches the fixed-point after finitely many steps and does
not merely approach it as a limit. As we shall see, the fixed-point theorem is a rather
powerful tool and will considerably simplify many arguments about our differential al-
gebras.

We now address the question of multiplicative inverses in the differential algebra.
We first note that infinitely small elements cannot have inverses; because, regardless of
which number we multiply them with, the result always stays infinitely small and can
never be 1, the multiplicative unit.

This already tells us that the differential algebras are not fields: certain nonzero
elements do not have multiplicative inverses. This is not surprising: the famous theorem
of Frobenius tells us that there are only two finite-dimensional vector spaces over the
reals that are fields: the complex numbers, and the quaternions (in which multiplication
is not commutative).

Now suppose that we are given an element of nDv that is not an infinitesimal. We
write this element as x · (1 + r), where x is a real and r is infinitesimal. For the inverse
we try x−1 · (1 + s). The goal is now to find s such that

(1 + r) · (1 + s) = 1⇔
r + s+ r · s = 0⇔

s = −r − r · s = f(s). (15)

Since r is infinitely small, the function f(s) is contracting, and thus there is a unique
fixed-point. Furthermore, this fixed-point can be obtained by iterating f only n times.

Thanks to the framework of infinitesimals and the fixed-point theorem, we are pro-
vided with a rugged and computationally simple algorithm to compute inverses. Note
that we could infer the existence of the inverse to the class [a] if a(0) is nonzero simply
from the fact that the reciprocal of a function that is nonzero at a point is as often dif-
ferentiable as the function itself. However, this is merely an existence proof and of little
practical value because it does not allow the computation of the class of the inverse.

It is worthwhile to point out that using the fixed-point theorem arguments, we actu-
ally have derived a formula to compute the derivatives of the inverse. To do this, we have
used only algebraic properties of differential algebras, and no calculus knowledge. This
replacement of calculus knowledge by algebraic reasoning is typical for many differential
algebraic arguments.
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We will proceed in a similar way for the computation of roots of elements of the
differential algebras. We consider only the case of positive finite elements, and again
write them as x · (1 + r) where x is a real and r is infinitesimal. For the root we try
x1/2 · (1 + s), and obtain

(1 + s)2 = (1 + r)⇔

s = −r
2
− s2

2
= f(s). (16)

Again we are confronted with a fixed-point problem. By restricting s to infinitely
small numbers, we infer that f is contracting, and thus a fixed-point can be found in
finitely many iterations of f . Again we have a robust and efficient way to compute the
derivatives of roots. It is obvious how the reasoning can be extended to cube roots etc.

2.3 Power Series

To continue our study of the algebraic structure of nDv, we want to investigate the
convergence of power series on the differential algebras. This will prove useful in practice
because it allows the computation of derivatives of functions containing power series like
sin and exp, and again shows that the abstract theory of the differential algebras leads
to practical results and convenience.

Let
P∞

i=1 aix
i be a power series in the real numbers with a radius of convergence σ.

Then we will show that this power series converges componentwise for all elements of

nDv whose real part is smaller than σ.
To prove this, we write x = X + r, where X is real and r is infinitesimal. Suppose

we are interested in the coefficient belonging to dj11 · ... ·djvv . Noting that ri = 0 for i > n,
we obtain

∞X
ν=1

aν · (X + r)ν =
nX

ν=1

aν · (X + r)ν +
∞X

ν=n+1

aν · (X + r)ν

=
nX

ν=1

aν · (X + r)ν +
∞X

ν=n+1

aν ·
nX
i=1

ν!

i! · (ν − i)!
Xν−i · ri

=
nX

ν=1

aν · (X + r)ν

+
∞X

ν=n+1

aν · ν · ... · (ν − n+ 1) ·Xν ·
Ã

nX
i=1

ri

Xi · i! · (ν − n) · ... · (ν − i)

!
. (17)

The first sum in the last expression is finite and thus poses no problem. The first
factor in the second term is an infinite sum of real numbers which converges inside
the radius of convergence despite the factor ν · ... · (ν − k + 1). The second factor
is again finite and thus does not represent a problem. Altogether, for ν > n, the
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contributions to any one coefficient consist of the unchanging contribution of the first
term plus the unchanging contribution of the second factor, multiplied with the changing
but converging real number sequence.

Thus we have learned that indeed all real power series can be extended to DA
within their radius of convergence. In practice, it turns out that we often can simplify
the computation considerably by exploiting certain addition theorems. In this case, it
suffices to evaluate the series at infinitesimals, where they converge in finitely many
steps because infinitesimals are nilpotent.

We illustrate this with the sine function. Suppose we are given a DA number which
we write as X + r, X being its real part and r being the infinitely small rest. Then we
obtain

sin(X + r) = sin(X) · cos(r) + cos(X) · sin(r)⇒

= sin(X) ·
∞X
i=0

(−1)i r
2i

(2i)!
+ cos(X) ·

∞X
i=0

(−1)i+1 r2i+1

(2i+ 1)!
⇒

= sin(X) ·
nX
i=0

(−1)i r
2i

(2i)!
+ cos(X) ·

nX
i=0

(−1)i+1 r2i+1

(2i+ 1)!
. (18)

Thus the addition theorem allows us to compute the sine of an element of the dif-
ferential algebra in only finitely many steps.

Having power series available means that a large class of functions can be readily
extended from real numbers to differential algebras. Altogether, we are now able to
compute the derivative classes of all functions that can be expressed in finitely many
steps in terms of elementary operations, divisions, roots, and power series.

2.4 Algebraic Completions

In the previous subsection it became apparent that the differential algebras do have
some algebraic deficiencies in that not all elements have inverses and not all positive
elements have roots. This is a problem that occurs in reality. For example, the direct
computation of the derivative of the electric field of a Gaussian at the origin,

E(r) =

(
[1− exp( r2/σ2)]/r for r 6= 0

0 otherwise
, (19)

which is perfectly well defined, requires us to divide by the infinitesimal d, an operation
which is not defined in nDv.

In such a case, parts of the computations have to be done in larger structures, and
only at the end does everything collapse back to the familiar nDv. So the situation is
perhaps comparable to the computation of real number results using complex numbers
for intermediate work.

This larger structure, which among other things allows us to remedy many of the
algebraic problems in nDv, is an infinite dimensional vector space over the reals and
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contains negative and rational powers of the dν as well. Indeed, formally it is given by
the set of all functions on Qv that are zero except for a set that, for any given number
M , has only finitely many points (q1, ..., qv) ∈ Qv such that q1 + ...+ qv ≤M .

We do not want to dwell on details here, but refer to Ref. 17. As one might
guess, this new set contains also infinitely large quantities, and has beautiful algebraic
properties. For example, it can be shown that every odd-ordered polynomial has a root
in the extended structure with one differential, i.e. the structure is real-closed.

We want to note that these new structures among other things allow a completely
rigorous treatment of delta functions. But they are not only of academic interest: we
do indeed need them for the computation of the derivatives of certain special functions.

In these new structures, the relationship to the equivalence classes of C∞ functions
is lost, and the reasoning from now on is completely algebraic. So it again pays not to
tie oneself too closely to the equivalence class view of differential algebra, but to assume
a more algebraic view.

2.5 A Short Survey of Calculus on Differential Algebras

To conclude our brief discussion of the differential algebras used here, we want to
present an interesting result that sheds light on one of the fundamental problems in
the creation of calculus. When the concepts of calculus as we now know them were
coined by Newton and Leibniz, the concept of the derivative was a differential quotient,
i.e. a quotient of an infinitely small ordinate difference and an infinitely small abscissa
difference.

This intuitive view was then abandoned in the rigorous definition of derivatives using
epsilons and deltas, even though the terminology of the differential quotient still survives
in the symbol df/dx. Here we now want to show that in our structures in which we have
differentials at our disposal, the modern and the intuitive views can be merged.

We say a function is differentiable at x0 if there is a c such that for every � there is
a δ with

|f(x)− f(x0)

x− x0
− c| ≤ � (20)

for all x with |x− x0| ≤ δ. All this terminology makes sense in the algebraic extension
of nDv. If we now demand in addition that the δ can always be chosen to be of the
same order as the � (i.e. δ/� is neither infinitely small nor infinitely large), then we can
indeed infer rather directly that

f 0(x0) =
f(x)− f(x0)

x− x0
+ r (21)

where r is an infinitely small rest if x − x0 is infinitely small. Thus the differential
quotient represents the derivative up to an infinitely small error. If all we are interested
in is the exact real derivative, we can obtain it by taking the real part of the above
expression.
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3 THE COMPUTATION OF MAPS

In this section we will discuss how the differential algebraic methods can be used in
practice to compute the transfer map of arbitrary beam physics systems to arbitrary
order, including the dependence on system parameters.

3.1 Numerical Integration

We note that except for special cases it is not possible to derive analytical formulas for
transfer maps of beam physics systems. But obviously it is still possible to relate final
coordinates to initial coordinates computationally through numerical integration. In
essence, a numerical integration algorithm represents a function that consists of finitely
many elementary operations and functions. Usually this function is incredibly complex
and would be hard write it analytically, let alone differentiate it to high orders with
respect to phase-space coordinates or system parameters.

However, with the differential algebraic approach, it is conceptually straightforward
how these high-order maps can be computed. One simply has to replace each and
every one of the individual operations and functions in the whole algorithm by the
corresponding ones in the differential algebras. In this context it is important that the
differential algebraic computation of derivatives is rather independent of the complexity
of the function to be differentiated, in sharp contrast to a formula manipulator approach
to the problem. In fact, the computer time required is determined just by the number of
elementary operations and functions, as in the case of the original numerical integration.

When replacing the operations in the integration process, the only conceptual sub-
tlety is that of the proper norm required for the numerical integrator. One has to choose
a norm that meets the requirement of the special case. In particular, if all aberrations
are to be known with equal accuracy, the maximum norm of Eq. (14), is the proper
choice. Note that the norm, being different from the real number norm used in the
regular integration process, now usually entails smaller step sizes. Indeed, the higher
the order becomes, the smaller the step sizes get because the norm of any given DA
vector increases with the order.

In many cases, however, one can choose a weighted L∞ norm. This reflects the
fact that while we want to know low order aberrations to many digits, the higher order
aberrations are not as critical because of their reduced influence on the map.

Conceptually these few paragraphs are sufficient to explain the computation of
arbitrary-order maps of arbitrarily many variables, but a great deal of computational
effort is required to make the strategy as transparent in practice as it appears here.

The first problem is that FORTRAN, the most widespread language for optics and
accelerator codes, does not allow the direct substitution of real numbers by differential
algebraic numbers. There are few languages that do, and probably the most promising
will turn out to be C++. It is also rumored that FORTRAN 8x, the contemplated next
FORTRAN release, will have such object-oriented features.

To circumvent this problem, we wrote a precompiler [2, 7] that allows the use of a
new DA data type in regular FORTRAN and turns formulas containing operations with
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this new type into calls to subroutines. This precompiler is particularly helpful for the
conversion of existing numerical integration codes to DA map extraction.

The precompiler has been used for a variety of codes including TEAPOT [36], THIN-
TRACK [29] and a descendent of THINTRACK by the name of SIXTRACK [37]. Usu-
ally the modifications required to allow the extraction of arbitrary-order maps were
limited, and in the above cases the task could be finished within a few hours. Further-
more, this precompiler has been used to create an integrator to compute fringe-field
transfer maps [27] for COSY 5.0 [10] and space-charge effects [28].

A much more general approach is used in the code COSY INFINITY [25-27]. It is
based on a a powerful object-oriented programming language that allows very efficient
use of DA operations as well as other data types. This approach was used to create
a flexible new-generation beam physics code. Besides being able to compute high-
order maps of realistic systems including fringe fields and almost any conceivable field
arrangements, the code also has all the analysis algorithms discussed here to arbitrary
order.

The other difficulties associated with the use of the differential algebraic map com-
putation lie in efficient implementation of the elementary operations. This is a highly
nontrivial computer science problem if it is not restricted to a specific low order DA
with a fixed number of variables. For details we refer to Ref. 26.

3.2 DA-Based Numerical Integrators

In the last section we saw that with DA techniques the computation of aberrations
and sensitivities is mostly reduced to a software problem and can be considered solved
conceptually. In many cases, however, speed is an important issue in simulation codes,
and in this respect any approach based on numerical integration suffers inherent defects.
In this section we will show that even this problem can be overcome by using DA
techniques; indeed, the resulting codes are comparable in speed to the conventional
library-based codes [1,28-30,14].

Suppose we are confronted with a differential equation

d

dt
�x = �f(�x, t) (22)

that has to be solved numerically. Numerical integrators usually attempt to approximate
the function �f by a polynomial in t and thus obtain an approximation of �x at the next
step whose accuracy depends on the step size to a certain power. Typical numerical
integrators use orders of four to eight, but there are also integrators going as high as
eleven. To avoid confusion, we would like to stress that the order of the integrator has
nothing to do with the order of the map. Indeed, high-order maps can be computed
with low-order integrators and vice versa.

In order to estimate the derivatives of �f , several evaluations of �f at different positions
are required; for example, the eighth-order Runge Kutta algorithm used in Ref. 23
requires thirteen evaluations of the function per time step. Doing integration with DA,
these evaluations of the right-hand side of the differential equation are costly, and they
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are indeed the limiting factor for the speed. It turns out that by using DA in a slightly
different way from before, we can readily obtain all the required higher order behaviour
of �f with only one evaluation of �f .

Suppose we are interested in the time dependence of a function g of phase-space, i.e.
we want to know g[�x(t)], where �x(t) is a solution of the equations of motion. Then we
can infer

d

dt
g = �∇ g · d

dt
�x+

∂g

∂t

= �∇ g · �f + ∂

∂t
g

= Lf g. (23)

The operator Lf is usually called the Lie derivative of g, honoring Sophus Lie,
whose work affects beam physics also in the Lie Algebraic methods [31-33,28]. Using
the operator Lf , also higher derivatives of g can be computed:

d2

dt2
g = L2f g,

d3

dt3
g = L3f g etc. (24)

This approach is well known [16] and in fact is even sometimes used in practice to
derive analytical low-order integration formulas for certain functions �f . The limitation
is that unless �f is very simple it is usually impossible to compute the repeated action of
Lf analytically, and this is why this approach has not been useful in practice. However,
using DA, and in particular the operation ∂μ, which distinguishes the differential algebra
from an ordinary algebra, we are able to perform the required operations painlessly. To
this end, one just evaluates �f in DA and uses the ∂μ to compute the gradient.

We have to consider carefully only the possible loss of information by the operators
∂ν . We first consider the case that both g and f do not depend on time, and that f is
infinitesimal. This will always be the case when describing the motion in coordinates
relative to a reference trajectory [5]. In this case, the product ∇g · f can be extended
back to nDv, even though ∇g is known only in n−1Dv. This entails that arbitrary-order
time derivatives of g can be computed without loss of order. On the other hand, if g
or f is time dependent, the situation is different. In this case, losses of order due to ∂t
cannot be avoided, which limits the order to which the technique can be used.

4 REPRESENTATIONS OF MAPS

In this section we will develop the connection between the aberration representation
of the map, which is the natural representation obtained in the differential algebra pic-
ture, and other representations that are used to describe maps of beam physics systems
and that have certain merits of their own.
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We will see that all representation changes that are relevant can be cast into rel-
atively compact algorithms using differential algebraic tools. Thus also in this sense
the differential algebraic techniques prove fruitful, and we not only obtain a complete,
order-independent method to compute aberrations, but also for the first time will be
able to do the same for generating functions and Lie operator factorizations as well.

4.1 The Inversion of Transfer Maps

At the core of many of the operations that follow is the need to invert transfer
maps in their DA representation. Though at first glance this appears to be a difficult
problem, we will see that indeed there is an elegant and closed algorithm to perform
this task. As before, it will prove essential that the maps are origin preserving and thus
the corresponding differential algebra vectors are nilpotent.

We begin by splitting the map [A]n ∈ nD
n
v into its linear and nonlinear nilpotent

parts:

[A]n = [A1]n + [A2]n. (25)

Furthermore, we write the sought-for inverse in nD
n
v as [M ]n:

[A−1]n = [M ]n. (26)

Composing the functions, we obtain

([A1] + [A2]n) ◦ [M ]n = [E]n ⇒
[A1] ◦ [M ]n = [E]n − [A2]n ◦ [M ]n ⇒

[M ]n = [A−11 ] ◦ ([E]n − [A2]n ◦ [M ]n−1). (27)

Here ◦ stands for the composition of maps. In the last step use has been made of
the fact that knowing [M ]n−1 allows us to know A2n ◦ [M ]n in nD

n
v . The necessary

computation of A−11 is a linear matrix inversion and is performed by an off-the-shelf
Gauss eliminator. If the map is symplectic, the linear inverse can also be determined
directly, as discussed below.

Equation (27) can now be used in a recursive manner to compute the Mi order by
order.

4.2 Generating Functions

Historically, many important questions in optics have been answered by using the
generating function representation of the map. Similar to the Lie algebraic representa-
tion, it allows a redundance-free representation of Hamiltonian maps.

Hamiltonian maps satisfy the symplectic condition [26]
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M · J ·M t = J (28)

where M is the Jacobian matrix of partial derivatives ofM, and J has the form

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (29)

Such symplectic maps can be described in a more compact way using the so-called
generating functions [26] in mixed coordinates:

F1 (�qi, �qf )

F2 (�qi, �pf )

F3 (�pi, �qf )

F4 (�pi, �pf ) (30)

which satisfy the following conditions:

(�pi, �pf ) = J1 · �∇F1
(�pi, �qf ) = J2 · �∇F2
(�qi, �pf ) = J3 · �∇F3
(�qi, �qf ) = J4 · �∇F4 (31)

where the Ji resemble the above J , except that a few signs are interchanged. To obtain
the mixed relations which are the gradient of the generating function, we proceed as
follows. We denote withM1 the part of the transfer map describing the final positions,
and with M2 the part describing the final momenta. Thus, we have M = (M1,M2).
We do the same with the identity map: E = (E1, E2). In order to obtain the mixed
relations (�qf , �pi) = F(�qi, �pf ), we start by setting N = (E1,M2). Then

(�qi, �pf ) = N (�qi, �pi). (32)

It turns out that the generating function exists if and only if N is invertible. In case
N is invertible, we obtain

(�qi, �pi) = N−1(�qi, �pf ). (33)

Composing the map (M1, E2) and the map N−1, we finally obtain the desired mixed
relations:

(�qf , �pi) =
³
(M1, E2) ◦N−1

´
(�qi, �pf ) = F(�qi, �pf ). (34)
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Now going to the respective equivalence classes, it is again required that the transfer
mapM be origin preserving. Altogether, the whole process of obtaining the gradient of
the generating function can be performed to arbitrary order using only composition and
inversion of differential algebraic transfer maps. The determination of the generating
function itself is only an integration.

As it turns out, the ease of computing a generating function with differential alge-
bra is one of the strong points of the power series representation of the map. In the
Lie representation, the computation of the generating function can not be done in a
straightforward pattern and gets increasingly cumbersome with high orders.

We note that it is also possible to solve for the generating function directly, with-
out first using the equations of motion. This has been demonstrated by Pusch [35].
While not quite as robust and direct as the power series integration technique, this ap-
proach potentially allows for savings in computer time in that the number of parameters
computed is smaller.

4.3 Lie Operator Factorizations

In this section we will show how it is possible to compute certain Lie operator
factorizations of the transfer map. These will include the Dragt-Finn factorization first
presented in Ref. 32 as well as others that have other merits; in particular, we will
discuss a super-convergent factorization that requires significantly fewer operators for
the factorization of maps of high order.

Dragt and Finn [20] showed that a Hamiltonian beam physics system can be de-
scribed by a combination of Lie operators

exp(: fi :) = 1+ : fi : +
: fi :

2
+ ... (35)

where the colon denotes a Poisson bracket waiting to happen, i.e. : fi : g = {fi, g}.
The map describing the system is given by the action of the operators on the vector
(q1, p1, q2, p2, ..., qn, pn). The factorization proposed by Dragt has the form

M(�x) =n [L exp(: f3 :) exp(: f4 :)... exp(: fn+1 :)] �x (36)

where each of the fi is a homogenous polynomial in the phase-space variables of exact
order i, and L is a linear matrix.

Dragt and coworkers have developed and extensive theory on how such a represen-
tation can be determined for a large class of Hamiltonians. However, the effort required
for this process increases rapidly with the order, so that results could be obtained only
through third order and in some cases to fifth order.

Besides the analytical computation of the fi, it is also possible to compute them
numerically in a large number of circumstances [34, 39]. In these cases, the higher
orders can be more easily obtained, but the algorithms are still not order independent
and are relatively slow. Besides the mere computation of maps, it is important to be
able to combine two maps into one. This is also nontrivial and not yet extended to
arbitrary orders.
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We now show how the Dragt factorization into Lie operators can be obtained from
the map. First we note that the linear map L in the Dragt factorization is just the linear
part of the transfer map. Next we introduce the map

M1 = L−1 ◦M (37)

which is symplectic as a composition of symplectic maps. We now observe that the
operator [exp(: f3 :)] is nilpotent in any differential algebra; in particular, : [f3] :

2=2 0.
Looking at Eq. (36) through order 2, we find

M1�x =2 �x+ {f3, �x}⇒
(M1 − E) =2 �∇f3J ⇒

�∇f3 =2 −(M1 − E)J (38)

and thus f3 can be computed as

f3 =

Z �x

0
− ([M1]2 − E)J(�x 0)d�x 0 (39)

Now we setM2 = exp(: −f3 :) ◦L−1 ◦M. Looking at Eq. (36) through order 3 and
observing that : f4 :

2=3 0, we obtain

M2�x =3 �x+ {f4, �x} (40)

Hence, we have the same situation as for the computation of f3 in Eq. (38). Proceeding
in the same way as above for f4 and then for f5, f6,..., we obtained a recursive procedure
to compute all fi. To conclude, we have both proven Dragt’s factorization theorem and
presented a relatively straightforward algorithm to obtain the fi to arbitrary order.

¿From the algorithm just proposed, it becomes apparent that we do not have to
compute the fi’s only in an order by order manner. If we look at (40), it becomes
apparent that it is correct not only through order 3, but also through order 4, since even
: f4 :

2=4 0. So instead of computing the traditional f4 to take care of order 3 effects, we
can compute a polynomial with order 4 and 5 terms, denoted f4,5, to take care of order
3 and 4 effects of the map.

In the next step, we do not have to worry about terms of order 4 any more and
can work on order 5 directly using a polynomial with nothing below order 6. Since the
Poisson bracket of such a polynomial with itself has no contribution below order 10, the
potential equation for it is correct up to order 9, and thus we can compute one grand
total f6,9 to take care of all effects through order 8 in the map.

Following this approach, we obtain a super-convergent factorization in which the
number of Lie operators does not grow linearly with the order, but logarithmically. The
map then has the form

M(�x) =2n+1 (L exp(: f3,3 :) exp(: f4,5 :) exp(: f6,9 :)... exp(: f(2n+2),(2n+1+1))�x. (41)
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Note that the number of terms required to describe a symplectic map in this way is
exactly the same as in the generating function representation or the original Dragt fac-
torization; it is given by the number of terms in a monomial of order n+1 in v variables.
Whether or not the super-convergent factorization offers any practical advantages over
the regular Dragt factorization depends largely on the problem.

Often it is advantageous to have the Dragt factorization or the super-convergent
factorization in reverse order. Note that the order is relevant since the Lie operators do
not commute. This problem is also rather straightforward using DA tools. We begin by
inverting the map as described in Section 3.3. Then we factor the inverse of the transfer
map in the desired fashion. Then we use that the inverse of a composed map is the
composition of the inverses in reverse order. Finally we note that the inverse of each
exp(: f :) is just exp(: −f :). Thus we obtain the two reversed representations

M(�x) =n (exp(: fn+1 :)... exp(: f5 :) exp(: f4 :) exp(: f3 :)L) �x (42)

and

M(�x) =2n+1 (exp(: f2n+2,2n+1+1)... exp(: f6,9 :) exp(: f4,5 :) exp(: f3,3 :)L) �x. (43)

We note that again within the Lie algebraic framework alone it is difficult and so far
not practically possible to perform such changes in representation.

To conclude this section, we note that the reverse process of the problem discussed
here, namely the computation of the maps from the various Lie operator factorizations
discussed here, is readily possible using the techniques discussed above. To this end, we
note that any factorization of the form

M(�x) =n (L ◦ exp(: f3 :) ◦ exp(: f4 :) ◦ ...)�x (44)

can be viewed as a system consisting of pieces whose Hamiltonians are just given by
the fi, combined with a linear transformation. The map of this system can thus be
computed by using the automatic order control integrator discussed in Section 3.2. We
note here that because of the fact that all fi do not contain any terms of order 2 and
lower, the automatic order control algorithm even truncates after finitely many terms.

5 CHROMATICITIES AND PARAMETER TUNE SHIFTS

In this section we present a technique that allows the computation of the dependence
of the tune of a repetitive system on parameters. In particular, this allows the compu-
tation of the chromaticity in cases where the energy of the system does not change.

The dependence of the tune of a repetitive system on energy and amplitude as well
as on system parameters is one of the most important characteristics of the system and
usually has to be adjusted carefully. Thus the computation of these dependences is of
prime importance. Traditionally, the linear tune of the system is readily calculated from
the linear matrix following the Courant-Snyder theory [17].
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The calculation of the tune dependence on energy, the chromaticity, and the depen-
dence on the amplitude or emittance is more involved and usually requires extensive
tracking and subsequent Fourier analysis. This task is particularly involved if the de-
pendence on energy deviation or amplitude is nonlinear and if the dependence on a
larger number of system parameters is required. In this case, often a large number of
particles has to be analyzed, which significantly increases the effort.

Parallel to the numerical techniques, efforts were made to compute the nonlinear
tune dependences analytically. In this context the main idea was to perform a nonlinear
change of variables to coordinates in which the motion performs a simple rotation with a
frequency that does not change from turn to turn. The dependence of this frequency on
energy, amplitude and perhaps parameters then directly gives the desired chromaticities
and amplitude and parameter tune shifts.

The pioneering idea in this direction was formulated under the name normal form
theory by Dragt and Finn [21] in the Lie algebraic picture, and in a conceptually similar
form by Bazzani et al. [1]. Outside the field of accelerator physics, similar ideas have
been discussed by Hori [25] and Deprit [18]. It took several years for the technicalities
to be refined to allow a first practical use. In 1986 Neri [34], benefitting among other
things from ideas of Forest [24] that simplify the treatment of the linear case, provided
the first implementation of the Lie algebraic Dragt-Finn normal form theory to fifth
order.

Quickly it was realized [23] that it is possible to develop a general normal form algo-
rithm by casting the Lie algebraic algorithm in a differential algebraic form. Although it
was a somewhat unelegant tour de force, the resulting DA-based program was the first
tool to compute the energy, parameter, and amplitude tune shifts for arbitrary systems
to arbitrary order.

In Section 6 we show that it is possible to develop the whole normal form algorithm
in a much more direct and efficient way using differential algebraic techniques alone.
Besides the gain in efficiency, which also entails a noticeable gain in computation speed,
the method also allows the treatment of non-symplectic systems like electron rings with
damping and gives new insight into their behaviour. Since any system has residual
damping, the theory provides a mechanism to suppress the relevance of high order
resonances. This resolves the classic paradox that it is necessary to stay away from any
resonance while the forbidden lines lie dense in tune space.

This differential algebraic normal form algorithm presents a complete solution for
the computation of all tune shifts and, like normal form theory in general, provides
interesting insight. However, as we will show in this section, it is possible to present an
even much more direct algorithm for the computation of some important tune shifts,
namely the chromaticities and parameter tune shifts. The striking simplicity of the
algorithm once more seems to stress the power of the differential algebraic approach.

5.1 Parameter-Dependent Fixed-Points

The first step in the process of computing the tune shifts of the system is to per-
form a transformation to coordinates around the parameter-dependent fixed-point of
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the system. This parameter-dependent fixed-point satisfies

(�zF , �δ) =M(�zF , �δ). (45)

In general, a different set of parameters entails a different fixed-point. The fixed-
point equation can be rewritten in the following way:

(M− EH) (�zF , �δ) = (�0, �δ) (46)

where the map EH contains a unity map in the upper block describing the variables
and zeros everywhere else. This form of the fixed-point equation clearly shows how the
parameter dependent fixed-point �zF can be obtained: it necessary to invert the map
M − EH . Since we are interested only in the properties of the the inverse of up to
order n, we pass to the equivalence class of [M − E ]n of the map, apply the results of
Section 4.1, and obtain the equivalence class [�zF ]n. According to the previous section,
an equivalence class inverse exists if and only if the linear part of the map is invertible.

For transfer maps this is always the case, but here the situation is more subtle;
clearly if the map M is the identity and �δ 6= 0 no solution exists. A closer inspection
reveals that the map is invertible if and only if the phase-space part ofM does not have
1 as an eigenvalue. But since this case corresponds to a fundamental resonance, it is
always avoided in accelerator design. In this case, up to order n, the fixed-point is given
as the upper part of

(�zF , �δ) = (M− EH)−1 (�0, �δ). (47)

In passing we note that if there is no constant part in the transfer map, this is the
exact solution. If this is not the case, it may be necessary to iterate the above equation
a few times.

As the first step in the computation of tune shifts, we perform a transformation to
coordinates around the fixed-point. In these coordinates, the map is origin preserving,
i.e. M(�0, �δ) = �0. This also implies that all partial derivatives of the final coordinates
with respect to parameters vanish.

The key consequence of this is that we can now view the map such that the partial
derivatives of the final phase-space variables with respect to the initial phase-space
variables (the aberrations) depend on the system parameters, but the system parameters
do not influence the map otherwise. So altogether, our map now relates initial phase-
space coordinates to final phase-space coordinates, and the expansion coefficients depend
on the parameters.

5.2 The Decoupling of Planes

In this section we will discuss the decoupling of the linear map around the fixed-
point into separate 2 by 2 blocks. This decoupling provides a stepping stone to the
computation of the relevant accelerator quantities.

In the following we assume that the linear part of the phase-space map has distinct
eigenvalues. Similar to the condition of 1 not being an eigenvalue, imposed in the last
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section, this is commonly the case in repetitive systems, since otherwise the system is
on a linear resonance. If there are 2v distinct eigenvalues, the map can be diagonalized.
Since the underlying matrix is real, complex eigenvalues will always have accompanying
conjugates as eigenvalues. We now group the eigenvalues such that all complex con-
jugate pairs form one pair; any remaining real eigenvalues we group into pairs by just
demanding that the elements of a pair have the same sign. This is possible since the
determinant is positive and thus there is an even number of negative eigenvalues.

Each pair we write as rj · e±iμj . In the case of a complex pair, this is readily
accomplished by choosing rj and μj as the modulus and phase. In the real case, we
choose rj = ±

p
R1jR2j , where the sign is determined to be the same as the one of R1j

and R2j . μj is chosen as i · log(
q
R1j/R2j). Since the determinant is nonzero and R1,

R2 are of the same sign, rj and μj are always well defined.
Denoting the eigenvectors corresponding to rje

±iμ with s±j , we obtain that in the
eigenvalue basis, the linear part of the map has the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

r1e
+iμ1

r1e
−iμ1

. 0
0 .

rve
+iμv

rve
−iμv

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (48)

We note that if the jth eigenvalue pair is complex conjugate, so are the associated
eigenvectors, and if the jth eigenvalue pair is real, so are the eigenvectors.

We now perform another change of basis after which the matrix is real. For each
conjugate pair of eigenvalues, we choose the real part and the imaginary parts as two
basis vectors. For the pairs of real eigenvalues, we choose the two real eigenvectors
directly.

The result of this basis change is a matrix that has 2-by-2 sub-blocks along the
diagonal. A sub-block originating from a complex eigenvalue pair will have four nonzero
entries, and a sub-block originating from a real eigenvalue pair will be diagonal. So
altogether, the matrix has the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1
c1 d1

. 0
0 .

av bv
cv dv

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (49)

We note that if the underlying matrix is symplectic, it is possible to scale the trans-
formation matrix such that it is also symplectic. Since products of symplectic matrices
are symplectic, so is the transformed matrix.
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5.3 The Computation of Dampings, Tunes and Tuneshifts

As a result of the last subsection, the linear 2v by 2v matrix consists of v 2-by-2
blocks along the diagonal. In this section we will review how to compute the linear tunes
from this matrix. The reader will notice that most of the steps of this section could
also be obtained as a byproduct of the eigenvector manipulations outlined in the last
section. The reason why we perform the operations in this section separately is twofold.

First, the eigenvector decomposition outlined in the last section is computationally
expensive compared to the algebra of this section and can be avoided if the matrix is
already in 2-by-2 block form. This however is always the case if the system has midplane
symmetry, as many systems do. Second, the algorithms presented here are illuminating
and extend Courant-Snyder arguments to the non-symplectic case.

We begin by reviewing some analytic formulas about eigenvectors and eigenvalues
of 2 by 2 matrices. Let

M =

Ã
a b
c d

!
. (50)

The characteristic polynomial of M has the form λ2−T ·λ+D = 0, where T and D
are the trace and determinant of the matrix, respectively. Since trace and determinant
are invariant under similarity transformations, so is the characteristic polynomial and
hence the eigenvalues. Thus the eigenvalues assume the form

λ1,2 =
T

2
±
s
(
T

2
)2 −D =

√
D

Ã
T

2
√
D
± i

s
1− ( T

2
√
D
)2

!
(51)

where the last step requires D 6= 0. Introducing

r =
√
D

μ = sign(b) · acos
µ

T

2
√
D

¶
, (52)

where sign(b) = +1 if b ≥ 0, −1 else, the solutions can be written as λ1,2 = r · e±iμ.
Note that μ is always nonzero because otherwise there are two identical eigenvalues,

which we have already excluded in the previous section. It is purely real for |T | ≤
2
√
D and purely imaginary otherwise. In the latter case, μ = i·acosh(T/2

√
D), and

λ1,2 = r · e∓|μ|. For computational purposes it is useful to utilize that for a real x > 1,
acosh(x) = ln[x+

√
x2 − 1].

Now it is useful and customary [17] to introduce new quantities, the so-called Twiss
parameters:

α =
a− d

2r sin μ
, β =

b

r sin μ
, γ =

−c
r sin μ

. (53)

The Twiss parameters satisfy βγ − α2 = 1, so they are not independent. Two of
them, together with r and μ, determine the matrixM . We note that β is never negative,
and it vanishes only for b = 0, which implies real eigenvalues and hence imaginary μ.
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Using the Twiss parameters, the matrix can be written as

M = r ·
Ã
cos(μ) + α sin(μ) β sin(μ)
−γ sin(μ) cos(μ)− α sin(μ)

!
. (54)

For the sake of completeness we note that in the important case of β 6= 0, the
eigenvectors assume the rather compact form

v1,2 = (iβ,−iα∓ 1). (55)

They define the similarity transformation in which the map is diagonal, and alto-
gether we obtain

S M S−1 =

Ã
r · e+iμ 0
0 r · e−iμ

!
(56)

where

S−1 =

Ã
iβ iβ

−1− iα 1− iα

!
S =

Ã
(1− iα)/2iβ −1/2
(1 + iα)/2iβ +1/2

!
. (57)

Note that in the case of T ≥ 2
√
D, the transformation matrices are purely real

since all Twiss parameters are purely imaginary. In the case β = 0, we have T/s
√
D =

(a+d)/2
√
ad > 1 because geometric means never exceed arithmetic means. This entails

that one of the eigenvectors is greater than 1 and hence the motion is unstable and thus
not of primary interest for accelerator physics.

As in the previous section, the total matrix after the similarity transformation will
consist of the pairs of the form r · e±iμ on the diagonal.

5.4 Chromaticities and Parameter Tune Shifts

After having outlined the algebra to compute the tune and dampings in detail, we
now show how to compute the dependence of these quantities on system parameters.
We begin by restating that after the fixed-point computation the map no longer depends
on the parameters alone. Alternatively, this can be interpreted as the matrix elements
being dependent on parameters.

In this view, the matrix elements themselves now become equivalence classes, each
containing the value of the element and its derivatives with respect to the parameters. In
particular, the 2-by-2 sub-blocks of the last section now become matrices of equivalence
classes

M =

Ã
[a]n−1 [b]n−1
[c]n−1 [d]n−1

!
(58)

Note that one order is lost in the process since a was a first derivative and so its (n−1)st
derivatives are certain nth derivatives of the original mapM.
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As advertised in the introduction, the computation of the parameter dependence of
the tunes is now straightforward and almost anti-climactic: following standard DA prac-
tice, we just replace all real operations for the computation of the tunes and dampings
by the corresponding DA operations.

In case the motion is decoupled, i.e. the map is already in 2-by-2 block form, this
merely involves the computation of the class of μ from the determinant and trace; in
particular, we obtain

[μ]m−1 = sign(b) acos
µ

[a]m−1 + [b]m−1
2([a]m−1 · [d]m−1 − [b]m−1 · [c]m−1)

¶
(59)

Thus, as in most DA operations, standard formulas simply get replaced by their
corresponding ones in the proper equivalence classes. The differential algebra software
to manipulate the classes in COSY INFINITY [8, 5, 6] can readily perform all these
operations, and only the inverse cosine required some effort.

In a way similar to the computation of the tunes, the parameter dependences of the
other Twiss parameters can be computed in a similarly straightforward manner. Alto-
gether, the algorithm is very direct, and more efficient than the normal form algorithm.

In the case of coupled motion, conceptually the strategy is the same. In addition one
now blindly replaces all operations in the whole eigenvalue package by the corresponding
ones in DA. Since for low dimensions, good eigenvalue and eigenvector algorithms are
quite efficient, this again results in an algorithm that outperforms the normal form
approach significantly. In this context it is worthwhile to note that for symplectic
systems it is possible to compute the eigenvalues directly as solutions of third order
equations for up to three phase-space pairs. This was discovered by Neri [34] and would
allow a more direct DA computation of the parameter dependences of the tunes for the
symplectic case.

The direct computation of tune parameter dependences has been implemented in
COSY INFINITY [8, 5, 6]. Because of the direct availability of the differential algebraic
data type in the object-oriented language of COSY INFINITY, the implementation is
very straightforward. Clearly it could also be done in a FORTRAN environment by using
the FORTRAN precompiler [7] or even direct calls to DA libraries, but at considerable
loss of the ease of implementation.

The computation of parameter dependences in COSY INFINITY have been checked
in two ways. First the values were compared with the ones obtained by using the
DA normal form algorithm [9]. Not surprisingly, agreement to machine precision was
obtained.

As an independent test, we compared the results with numerically computed tune
shifts using the code DIMAD [38]. To this end, a version of DIMAD that allows DA-
based map extraction [38] was used to compute the map of the Saskatoon EROS ring;
the map was read by COSY INFINITY and analyzed. Remarkably good agreement was
obtained even for some higher order tune dependences, because of the careful implemen-
tation of the numerical methods in DIMAD.
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5.5 The Correction of Chromaticities

In this section we would like to illustrate an immediate and useful application of
the algorithm outlined in the previous sections, namely the correction of chromaticities
using system parameters. To this end, we write the v tunes in terms of the system
parameters:

�μ =n−1 T (�δ). (60)

The map T contains a constant part, the linear tunes, as well as nonlinear parts,
and the algorithm of the last section allowed us to compute the class [T ]m−1 of T .

We now split the parameters into the energy deviation δk and the true system para-
meters. For the further discussion, we are interested only in the case of v true system
parameters, i.e. one for each phase-space pair. Furthermore, we choose the parameters
such that they do not produce tune shifts by themselves, but only in connection with
energy deviations. This can for example be achieved by using the strengths of v suit-
ably chosen hexapoles as parameters. Quadrupole strengths are not useful because they
produce tune shifts even without δk since they obviously affect the linear tune. In this
case, the tune equations reduce to

�μ = �μ0 + δk · �c+ δk · S(�δ) (61)

where S is a nonlinear map. To correct the chromaticities, i.e. make the tune indepen-
dent of δk, now requires satisfaction of

�c+ S(�δ) = 0 (62)

which can be obtained by choosing

�δ = S−1(−�c) (63)

if the inverse exists. From S−1 we now pass to its equivalence classes and use the
inversion algorithm of Section 2. This yields the classes [�δ]n−1 and hence the Taylor
expansion of the strengths of v suitably chosen elements to correct the chromaticities.
Using these Taylor expansion, an approximate value for �δ can be computed. Obviously
the missing terms scale with the nth power of �δ, so iterating the procedure yields fast
convergence, requiring only few steps in practice.
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6 DA NORMAL FORM THEORY

6.1 The DA Normal Form Algorithm

In this section we will show how a map in the eigenvector basis s±j can be subjected
to nonlinear coordinate transformations that considerably simplify the nonlinear terms.
To the eigenvector pair s±j belonging to the eigenvalue rje

±iμj , we associate another pair

t±j of variables as follows:

t+j = (s+j + s−j )/2

t−j = (s+j − s−j )/2i. (64)

In case of complex s±j , which corresponds to the stable case, the t±j are just the

real and imaginary parts and thus are real. In the unstable case, t+j is real and t−j is

imaginary. Obviously the s±j can be expressed in terms of the t
±
j as

s+j = t+j + i t−j

s−j = t+j − i t−j . (65)

In the rest of the paper, it is advantageous to perform the manipulations in the s±j ,

while the results are most easily interpreted in the t±j .
The advertised transformation to the new coordinates is now carried out in an iter-

ative manner. The first step consists of the fixed-point transformation and the linear
diagonalization. All further steps are purely nonlinear and no longer affect the linear
part.

We begin the mth step by splitting the momentary map M into its linear and
nonlinear parts R and Sm, i.e. M = R + Sm. The linear part R has diagonal form.
Then we perform a transformation using a map

Am = E + Tm (66)

where Tm vanishes to order m− 1. Because the linear part of A is the unity map, A is
invertible. Moreover, inspection of the algorithm to invert transfer maps reveals that,
up to order m, we have

A−1m =m E − Tm. (67)

Of course, the full inversion of Am contains higher-order terms, which will turn out
to be the reason why iteration is needed. To study the effect of the transformation, we
now infer up to order m:

A ◦M ◦A−1 =m (E + Tm) ◦ (R+ Sm) ◦ (E − Tm)
=m (E + Tm) ◦ (R+ Sm −R ◦ Tm)
=m R+ Sm + (Tm ◦R−R ◦ Tm) . (68)
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For the first step, we have used Sm ◦ (E − Tm) =m Sm which holds because Sm is
nonlinear and Tm is of order m. In the second step we used Tm ◦ (R+Sm−R ◦ Tm) =m

Tm ◦R which holds because Tm is of exact order m and everything in the second term
is nonlinear except R.

A closer inspection of the last line reveals that Sm can be simplified by choosing the
commutator Cm = {Tm,R} = (Tm ◦R−R ◦ Tm) appropriately. Indeed, if the range of
Cm is the full space, then Sm can be removed entirely. However, as we shall see, most
of the time this is not the case.

Let (T ±mj |k+1 , k−1 , ..., k+n , k−n ) be the Taylor expansion coefficient of Tmj with respect

to (s+1 )
k−1 (s−1 )

k−1 · ... ·(s+n )k
+
n (s−n )

k−n in the jth component pair of Tm+1. So T ±mj is written
as

T ±mj =
X

(T ±mj |k+1 , k−1 , ..., k+n , k−n ) · (s+1 )k
+
1 (s−1 )

k−1 · ... · (s+n )k
+
n (s−n )

k−n . (69)

Similarly we identify the coefficients of Cmj by (C±mj |k+1 , k−1 , ..., k+n , k−n ). Because R
is diagonal, it is easily possible to express the coefficients of Cmj in terms of those of
Tmj . One obtains

(C±mj |k1, k−1 , ..., k+n , k−n )

=

Ã
(
nY
l=1

(rl)
k+
l
+k−

l ) · ei�μ·(�k+−�k−) − rj · e±iμj
!
· (T ±mj |k+1 , k−1 , ..., k+n , k−n )

= C±mj(
�k+,�k−) · (T ±mj |k+1 , k−1 , ..., k+n , k−n ). (70)

Now it is apparent that a term in S±mj can be removed if and only if the factor

C±mj(
�k+,�k−) is nonzero; if it is nonzero, then the required term in T ±mj is just the

negative of the respective term in S±mj divided by C
±
mj(

�k+,�k−).
So the outcome of the whole normal form transformation depends on the conditions

under which the term C±mj(
�k+,�k−) vanishes. This is obviously the case if and only if

the moduli and the arguments of rj · e±iμj and
Qn

j=1 r
(k+j +k

−
j )

j · ei�μ·(�k+−�k−) are identical.
In the next sections we will discuss the conditions of this for various special cases and
draw conclusions.

6.2 Symplectic Systems

As discussed above, in the stable symplectic case all the rj are equal to one, and the

μj are purely real. So the moduli of the first and second terms in C
±
mj(

�k+,�k−) are equal
if and only if their phases agree modulo 2π. This is obviously the case if

�μ · (�k+ − �k−) = ±μj ( mod 2π ) (71)

where the different signs apply for C+mj(
�k+,�k−) and C−mj(

�k+,�k−). This can occur in two
possible ways:
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1. k+l = k−l ∀ l 6= j, and k+j = k−j ± 1

2. �μ · �n = 0 ( mod 2π ) has nontrivial solutions.

The first case is of mathematical nature and lies at the heart of the normal form
algorithm. It yields terms that are responsible for amplitude-dependent tune shifts. We
will discuss its consequences below. The second case is equivalent to the system lying on
a higher-order resonance and is of more physical nature. In case the second condition is
satisfied, there will be resonance-driven terms that cannot be removed and that prevent
a direct computation of amplitude tune shifts.

Before proceeding in the discussion, we note that the second condition entails com-
plications even if it is almost, but not exactly, satisfied. In this case, the removal of
the respective term produces a small denominator that generates terms that are larger
and larger, depending on the proximity to the resonance. In the removal process, this
resonance proximity factor is multiplied by the respective expansion coefficient, and this
product obviously is an excellent characteristic of the significance of the resonance.

With higher and higher orders, i.e. larger k+ and k−, the number of relevant reso-
nances increases. Since the resonances lie dense in tune space, eventually the growth of
terms is almost inevitable and hence produces a map that is much more nonlinear than
the underlying one. As we shall see in the next section, this problem is alleviated by
damping.

We now discuss the form of the map if no resonances occur. In this case, the
transformed map will have the form

M+
j = s+j · fj(s+1 s−1 , ..., s+v s−v )

M−
j = s−j · f̄j(s+1 s−1 , ..., s+v s−v ). (72)

The variables s±j are not particularly well suited for the discussion of the result, and

we express the map in terms of the adjoined variables t±j introduced in Eq. 64. Simple
arithmetic shows that

s+j · s−j = (t+j )2 + (t−j )2. (73)

It is now advantageous to write in terms of amplitude and phase as fj = aj · eiφj .
Performing the transformation to the coordinates t±j , we thus obtain

M±
j =

Ã
1/2 1/2
1/2i − 1/2i

!
·
Ã
(t+ + it−) · fj [(t+1 )2 + (t−1 )2, ...(t+v )2 + (t−v )2]
(t+ − it−) · f̄j [(t+1 )2 + (t−1 )2, ...(t+v )2 + (t−v )2]

!

= aj ·
Ã
cos(φj) − sin(φj)
sin(φj) cos(φj)

!
·
Ã

t+

t−

!
. (74)

Here φj = φj [(t
+
1 )
2 + (t−1 )

2, ...(t+v )
2 + (t−v )

2] depends on a rotationally invariant
quantity.
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So in these coordinates, the motion is now given by a rotation, the frequency of which
depends only on the amplitudes (t+j )

2 + (t−j )
2 and some system parameters and thus

does not vary from turn to turn. As we will show now, these frequencies are precisely
the tunes of the nonlinear motion.

For any repetitive system, the tune of one particle is the limit of the total polar
angle advance divided by the number of turns, if this limit exists. If we now express the
motion in the new coordinates, we pick up an initial polar angle for the transformation
to the new coordinates; then, every turn produces an equal polar angle φj which depends
on the amplitude and parameters of the particle; at the end, we produce a final polar
angle for the transformation back to the old coordinates.

As the number of turns increases, the contribution of the initial and final polar angles
due to the transformation becomes more and more insignificant, and in the limit the
tune comes out to nothing but φj . So altogether, we showed that the limit exists and
that it can be computed analytically as a byproduct of the normal form transformation.

6.3 Damped Systems

In the case of stable, non-symplectic maps, all rj must satisfy rj ≤ 1, because
otherwise at least one of the rje

±iμj is larger than unity in modulus. Since in the normal
form transformation, terms can be removed if and only if the phases or amplitudes for
the two contributions in C±mj(k

+, k−) are different and the amplitudes contribute, more
terms can be removed.

Of particular practical interest is the totally damped case in which rj < 1 for all j.
In this case, an inspection of Eq. (70) reveals that now every nonlinear term can be
removed. In this case an argument similar to that in the previous section shows that
now the motion assumes the form

M±
j = rj ·

Ã
cos(φ) − sin(φ)
sin(φ) cos(φ)

!
·
Ã

t+j
t−j

!
(75)

where the angle φ no longer depends on the phase-space variables but only on the
parameters. This means that the normal form transformation of a totally damped
system leads to logarithmic spirals with constant frequency φj . In particular this entails
that totally damped systems do not have any amplitude-dependent tune shifts, and that
they eventually collapse into the origin.

It is quite illuminating to consider the small-denominator problem in the case of
totally damped systems. Clearly the denominator can never fall below 1 − max(rj)
in magnitude. This puts a limit on the influence of any low-order resonance on the
dynamics; in fact, even sitting exactly on a low-order resonance does not have any
serious consequences if the damping is strong enough. In general, the influence of a
resonance now depends on two quantities: the distance in tune space and the contraction
strength rj . High-order resonances are suppressed particularly strongly because of the
contribution of additional powers of rj .

Because all systems exhibit a residual amount of damping, the arguments here are
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generally relevant. It is especially noteworthy that residual damping suppresses high-
order resonances by the above mechanism, which entails that ultimately high-order
resonances become insignificant.

6.4 Unstable Systems

Clearly the normal form algorithm also works for unstable maps. The number of
terms that can be removed will be at least the same as in the symplectic case, and
sometimes it is possible to remove all terms. Among the many possible combinations of
rj and μj , the most common case, in which the μj are real, is worth studying in more
detail. In this case, all terms can be removed unless the logarithms of the rj and the
tunes satisfy the same resonance condition, i.e.

�n · (log(r1), ..., log(rv)) = 0

�n · �μ = 0 ( mod 2π ) (76)

has simultaneous nontrivial solutions. This situation characterizes a new type of reso-
nance, the coupled phase-amplitude resonance.

Phase-amplitude resonances can never occur if all rj are greater than unity in mag-
nitude. This case corresponds to a totally unbound motion, and the motion in normal
form coordinates moves along growing exponential spirals.

Symplectic systems, on the other hand, satisfy Πnl=1rj = 1. So if there are rj with
both signs of the logarithm, a possibility for amplitude resonances exists. In fact, any
symplectic system lies on the fundamental amplitude resonance characterized by �n =
(1, 1, ...., 1).

Acknowledgements

For several discussions about concepts of normal form theory, I would like to thank
Alex Dragt, Filippo Neri and Etienne Forest. I am also indebted to Roger Servranckx
for some comparisons and valuable comments.

31



References

[1] A. Bazzani, P. Mazzanti, G. Servizi, and G. Turchetti. Normal forms for Hamil-
tonian maps and nonlinear effects in a particle accelerator. Il Nuovo Cimento, 102
B, N.1:51, 1988.

[2] M. Berz. The Differential algebra FORTRAN precompiler DAFOR. Technical
Report AT-3:TN-87-32, Los Alamos National Laboratory, 1987.

[3] M. Berz. Differential algebraic description of beam dynamics to very high orders.
Particle Accelerators, 24:109, 1989.

[4] M. Berz. Analysis auf einer nichtarchimedischen Erweiterung der reellen Zahlen.
Report (in German) MSUCL-753, Department of Physics, Michigan State Univer-
sity, 1990.

[5] M. Berz. Computational aspects of design and simulation: COSY INFINITY.
Nuclear Instruments and Methods, A298:473, 1990.

[6] M. Berz. COSY INFINITY, an arbitrary order general purpose optics code. Com-
puter Codes and the Linear Accelerator Community, Los Alamos LA-11857-C:137,
1990.

[7] M. Berz. Differential algebra precompiler version 3 reference manual. Technical
Report MSUCL-755, Michigan State University, East Lansing, MI 48824, 1990.

[8] M. Berz. COSY INFINITY Version 4 reference manual. Technical Report MSUCL-
771, National Superconducting Cyclotron Laboratory, Michigan State University,
East Lansing, MI 48824, 1991.

[9] M. Berz. Differential algebraic formulation of normal form theory. In M. Berz,
S. Martin and K. Ziegler (Eds.), Proc. Nonlinear Effects in Accelerators, page 77.
IOP Publishing, 1992.

[10] M. Berz, H. C. Hofmann, and H. Wollnik. COSY 5.0, the fifth order code for
corpuscular optical systems. Nuclear Instruments and Methods, A258:402, 1987.

[11] M. Berz and H. Wollnik. The program HAMILTON for the analytic solution of
the equations of motion in particle optical systems through fifth order. Nuclear
Instruments and Methods, A258:364, 1987.

[12] M. Berz and H. Wollnik. Analytical solution of the equations of motion to high
orders: The formula manipulator HAMILTON and the fifth order code COSY. AIP
Conference Proceedings, 177:301, 1988.

[13] K. L. Brown. The ion optical program TRANSPORT. Technical Report 91, SLAC,
1979.

[14] K. L. Brown, R. Belbeoch, and P. Bounin. First- and second- order magnetic
optics matrix equations for the midplane of uniform-field wedge magnets. Review
of Scientific Instruments, 35:481, 1964.

32



[15] D. C. Carey. The Optics of Charged Particle Beams. Harwood, 1987.

[16] S. D. Conte and C. de Boor. Elementary Numerical Analysis. McGraw Hill, New
York, 1980.

[17] E.D. Courant and H.S. Snyder. Theory of the alternating gradient synchrotron.
Annals of Physics, 3:1, 1958.

[18] A. Deprit. Celestial Mechanics, 1:12, 1969.

[19] A. J. Dragt. Lectures on nonlinear orbit dynamics. In 1981 Fermilab Summer
School. AIP Conference Proceedings Vol. 87, 1982.

[20] A. J. Dragt and J. M. Finn. Lie series and invariant functions for analytic symplectic
maps. Journal of Mathematical Physics, 17:2215, 1976.

[21] A. J. Dragt and J. M. Finn. Normal form for mirror machine Hamiltonians. Journal
of Mathematical Physics, 20(12):2649, 1979.

[22] A. J. Dragt, L. M. Healy, F. Neri, and R. Ryne. MARYLIE 3.0 - a program for
nonlinear analysis of accelerators and beamlines. IEEE Transactions on Nuclear
Science, NS-3,5:2311, 1985.

[23] E. Forest, M. Berz, and J. Irwin. Normal form methods for complicated periodic
systems: A complete solution using Differential algebra and Lie operators. Particle
Accelerators, 24:91, 1989.

[24] Etienne Forest. Private communication.

[25] G.Hori. Publications of the Astronomical Society of Japan, 18:287, 1966.

[26] H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, MA, 1980.

[27] B. Hartmann, M. Berz, and H. Wollnik. The computation of fringing fields using
Differential Algebra. Nuclear Instruments and Methods, A297:343, 1990.

[28] B. Hartmann, H. Wollnik, and M. Berz. TRIBO, a program to determine high-
order properties of intense ion beams. Computer Codes and the Linear Accelerator
Community, Los Alamos LA-11857-C:431, 1990.

[29] B. T. Leeman and E. Forest. Brief description of Wrulich’s tracking codes THIN-
TRACK and FASTRACK. Technical Report SSC-133, SSC Central Design Group,
Berkeley, CA, 1988.

[30] H. Matsuda and H. Wollnik. The influence of an inhomogeneous magnetic fringing
field on the trajectories of charged particles in a third order approximation. Nuclear
Instruments and Methods, 77:40, 1970.

[31] H. Matsuda and H. Wollnik. Third order transfer matrices of the fringing field of
an inhomogeneous magnet. Nuclear Instruments and Methods, 77:283, 1970.

33



[32] T. Matsuo and H. Matsuda. Computer program TRIO for third order calculations
of ion trajectories. Mass Spectrometry, 24, 1976.

[33] T. Matsuo, H. Matsuda, and H.Wollnik. Particle trajectories in a toroidal condenser
in a third order approximation. Nuclear Instruments and Methods, 103:515, 1972.

[34] Filippo Neri. Private communication.

[35] G. D. Pusch. Differential Algebraic Methods for Obtaining Approximate Numeri-
cal Solutions to the Hamilton-Jacobi Equation. PhD thesis, Virginia Polytechnic
Institute and State University, Blacksburg, VA, 1990.

[36] L. Schachinger and R. Talman. TEAPOT, a thin element program for optics and
tracking. Particle Accelerators, 22:35, 1987.

[37] Frank Schmidt. Private communication.

[38] Roger Servranckx. Private communication.

[39] Johannes van Zeijts. Private communication.

[40] H. Wollnik. Second order approximation of the three-dimensional trajectories of
charged particles in deflecting electrostatic and magnetic fields. Nuclear Instru-
ments and Methods, 34:213, 1965.

[41] H. Wollnik. Second order transfer matrices of real magnetic and electrostatic sector
fields. Nuclear Instruments and Methods, 52:250, 1967.

[42] H. Wollnik. Image aberrations of second order of electrostatic sector fields. Nuclear
Instruments and Methods, 59:277, 1968.

[43] H. Wollnik. Charged Particle Optics. Academic Press, Orlando, Florida, 1987.

[44] H. Wollnik, J. Brezina, and M. Berz. GIOS-BEAMTRACE, a program for the
design of high resolution mass spectrometers. In Proceedings AMCO-7, page 679,
Darmstadt, 1984.

[45] H. Wollnik and H. Ewald. The influence of magnetic and electric fringing fields
on the trajectories of charged particles. Nuclear Instruments and Methods, 36:93,
1965.

[46] H. Wollnik, B. Hartmann, and M. Berz. Principles behind GIOS and COSY. AIP
Conference Proceedings, 177:74, 1988.

34


