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Abstract
We discuss the iron saturation effects in large aperture sep-

arator magnets. A method is introduced that allows the cal-
culation of accurate Taylor transfer maps for iron-dominated
magnetic elements and an arbitrary magnetic rigidity Bρ.
The method is applied to the Super-FRS preseparator 11◦
dipole magnet revealing a significant Bρ-dependency of
some transfer map elements. The convergence of the trans-
fer maps in terms of their order and the number of magnetic
field expansion points along the reference path is discussed.

INTRODUCTION
The Super-FRS (SFRS) is an in-flight projectile fragment

separator being built at GSI for FAIR [1, 2]. Due to the
required high design momentum resolution as well as the
large geometric and momentum acceptance (Ah= ±40mrad,
Av = ±20mrad, ∆p/p= ±2.5%) the dipole magnets of the
SFRS have large apertures of 120 × 14 cm2 for the presepa-
rator and 38× 14 cm2 for the main separator dipole magnets.
The wide design particle magnetic rigidity Bρ range of 2-
20 Tm requires the variation of the main dipole magnetic
field B0 in the range of 0.15-1.6 T and of the coil current I
from 60A to 643A. Since the magnetic field in the pole gap
depends on its distribution in the yoke, a high and constant
relative magnetic permeability µr of the yoke material is
desired. However, in reality µr is a non-linear function of
the magnetic field strength H(I) and approaches unity for
high H values (B-H saturation). Moreover, geometrical non-
uniformities of the yoke like edges or holes affect H and B
locally, which leads to I-dependent local µr changes. These
effects propagate in the field distribution in the pole gap and
influence the nonlinear particle dynamics.
For the particle separators and spectrometers like Super-

FRS it is important to have a highly accurate fast computa-
tional ion-optical model with good predictability, especially
if rare particles with low production rates in high Bρ range
are studied. Thus, it is crucial to take possible saturation
effects into account. Therefore, we have developed an ap-
proach allowing to derive the Bρ-dependent transfer maps.
We calculated transfer maps for the radiation resistant,

normal conducting dipole magnet of the SFRS preseparator
with a deflection angle θ0 = 11◦ and radius R0 = 12.5m [3].
It can be expected that the Bρ dependence is similar for all
SFRS dipole magnets, because they will be operated with
the same B0 range. Our ion-optical model is based on Taylor
transfer maps [4] computed with COSY INFINITY [5]. The
transfer maps were obtained by a numerical integration of
ODEs of motion using a simulated field distribution and the

differential algebraic (DA) Runge-Kutta method of the 8th
order [4, 6].

For the magnetic field simulations a magnetization curve
B-H was measured for the prototype of the considered mag-
net by means of the method described in [7]. In Fig. 1 a) and
b) the B-H and the µr -B curves are shown, respectively.

Figure 1: Measured magnetization curve (red dots) plot-
ted together with its spline interpolation (blue line) as a) B
versus H and b) µr versus B.

MAGNETIC FIELD CALCULATION
The magnetic field was simulated for different excitation

currents using the finite element method (FEM) in CST EMS
[8] and the surface integration Helmholtz method (SIHM)
[9, 10] in COSY INFINITY.
In the SIHM, the Helmholtz vector field decomposition

theorem for a finite volume ®B(®r) = ®∇ · ϕ(®r) + ®∇ × ®A(®r) is
used, where ϕ and ®A are the scalar and the vector potential,
respectively. Utilizing the fact that the magnetic field satis-
fies the Laplace equation, the scalar and vector potentials
inside the volume of interest Ω (surrounded by the surface
∂Ω with given magnetic field data) are calculated by

ϕ(®r) =
1

4π

∫
∂Ω

®n(®rs) · ®B(®rs)
|®r − ®rs |

ds, (1)

®A(®r) = −
1

4π

∫
∂Ω

®n(®rs) × ®B(®rs)
|®r − ®rs |

ds. (2)

Here ®rs is a vector of the position on ∂Ω, ®r = (X,Y, Z) is
a vector of the position inside Ω and ®n(®rs) is a normal to
the surface. The integrands in Eq. (1) and (2) are expanded
in Taylor series in both surface and volume variables. The
integration is performed using the DA antiderivation opera-
tion [4] resulting in a DA vector ®B(X,Y, Z).
For the SFRS dipole magnet we used the magnetic

field vector values on the surface of a box D = {X ∈
[−0.6, 0.6] m, Y ∈ [−0.07, 0.07] m, Z ∈ [−2.2, 2.2] m}
to determine ®B(X,Y, Z) along the horizontally laid reference
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path. Both the reference path and the right handed coordi-
nate system with the origin in the center of the magnet are
shown in Fig. 2 a). The vertical coordinate Y is normal to
the paper plane. The variable S is the path length along the
reference trajectory starting well outside of the dipole where
| ®B | is negligibly small. The entire path of the reference tra-
jectory is placed inside the box D. The field ®B(®rs) on the
surface of D was obtained using FEM and interpolated with
quadratic polynomials via the least square method.

Figure 2: a) Schematic of the dipole magnet coordinate
system with reference path and magnetic field B(S), where
S is the position along the reference path. b) Normalized
magnetic field B(S)/B0 calculated for different B0 values.

In order to generate the transfer map for an arbitrary Bρ by
DA integration, it is necessary to know the I dependence of ®B.
Since 3D simulations or measurements of the magnetic field
are expensive, they can only be performed for a finite number
of I values. Therefore, we simulated ®B for 25 equidistantly
spaced I values covering the required Bρ range. Between
the simulated points we interpolated each component of
®B = (BX, BY, BZ ) piecewise by 3rd order polynomials

Bα(I) ≈ bα0 + bα1 (I − I0) + bα2 (I − I0)
2 + bα3 (I − I0)

3, (3)

where α ∈ {X,Y, Z}, bα0,1,2,3 are fit parameters and I0 is
middle point of the chosen current interval. Using the fact
that the magnetic field in the gap of a dipole is a solution
of the Laplace equation together with the linearity of the
Laplace operator, we can apply the SIHM to the coefficients
bα0,1,2,3 to get their DA values along the reference path.Then
the DA vector ®B(X,Y, Z, I − I0) can be obtained easily using
Eq. (3), where now (I − I0) is an additional DA variable.

CURRENT DEPENDENCE OF MAGNETIC
FIELD AND REFERENCE TRAJECTORY
A well known consequence of the B-H saturation in iron

is the effective shortening of dipole magnets. This is caused
by the drastic local decrease of µr at the edges of the poles
for high B0 values. The effect is illustrated in Fig. 2b) where
relative magnetic field between the entrance and the center
of the magnet is depicted revealing a significant drop of B
of ∼ 1 % at the edge for Bρ > 16Tm (B0 > 1.3T).

The effective length (or length of the equivalent hard-edge
model) of a dipole magnet normally defined as

L0
e f f =

∫ ∞
−∞

B(S)dS

B0
(4)

decreases with increasing Bρ. In case of the SFRS dipole
L0
e f f

drops from 2401mm at Bρ = 2 Tm to 2389mm at
Bρ = 20 Tm as shown in Fig. 3 a). For a standalone magnet
this L0

e f f
difference of 12mm would lead to an under- or

over-deflection of the reference particle of up to 0.5mrad. In
SFRS, the dipolemagnets do not stand alone, but are grouped
in triples. The grouping allows to correct the deflection
angles of the whole triple by empirical tuning of B0 for each
dipole and each Bρ value. The solution of this problem is
not unique as well as the resulting reference trajectory, which
changes the non-linear particle dynamics. Furthermore, the
optimization procedure is time-consuming and has to be
performed during beam time.
Alternatively, one optimal solution with invariant refer-

ence path outside the magnet can be found in advance by
forcing the effective length to equal θ0R0 for each dipole and
Bρ. This can be achieved by using Be f f = Bρ/R0 instead
of B0 in Eq. (4). Then the effective length can be written as

Le f f =

∫ ∞
−∞

B(S)dS

Be f f
=

∫ ∞

−∞

B(S)
Bρ

dS · R0 = θR0, (5)

where θ is the actual deflection angle. In order to achieve
θ(Bρ) = θ0 = const. (⇔ Le f f (Bρ) = const.), the problem
vX (I)

��
Z=0 = 0 should solved numerically for each Bρ, where

vX is the horizontal transversal velocity of the reference par-
ticle. The resulting coil current Iopt defines the optimal B.
For the SFRS dipole magnet a constant Le f f (Bρ) value of
2.4m was obtained as shown in Fig. 3 a). The correspond-
ing reference trajectories for different Bρ values reveal only
slight transversal deviations of ±0.1mm in the middle of the
magnet as shown in Fig. 3 b). These lead to small variations
of the pathlengths below 10 µm, which often can be ne-
glected. The trajectories are identical in the start and the end
points (Z = ±2.1m) due to the symmetry of the magnetic
field around the XY -plane. However, for a non-symmetric
magnetic field, the reference paths will have slightly vary-
ing X-positions for different Bρ values at the exit. In this
case the total effective length of all three magnets should
be forced to be constant. Still it can be expected that the
resulting transfer maps of single dipoles will not change
drastically. Therefore, the stand-alone dipole can be used to
study the Bρ dependences of the transfer maps.

Figure 3: a) Calculated effective lengths L0
e f f

and Le f f as
function of Bρ and b) optimal reference path for different
Bρ values at the center of the magnet.
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Bρ-DEPENDENT TRANSFER MAPS
The transfer maps were generated for the Bρ range of

2-20 Tm by means of numerical integration of the ODEs
of motion using ®B = ®B(X,Y, Z, I − I0). In Fig. 4 selected
transfer map elements in TRANSPORT notation [11] are
plotted as functions of Bρ. A significant Bρ dependence
can be observed already for the 1st order elements (a|x) and
(b|y), which vary about ±0.9% and ±5.5%, respectively.
Alternatively, these elements can be calculated by

(a|x) =
∂

∂x

∫ Smax

0

vY (S)BZ (S) − vZ (S)BY (S)
Bρ

dS, (6)

(b|y) =
∂

∂y

∫ Smax

0

vZ (S)BX (S) − vX (S)BZ (S)
Bρ

dS, (7)

where Smax is the path length, vZ and vX were deduced geo-
metrically, and the Bρ dependence of the reference trajectory
is neglected. The "Map" and "Integral" curves in Fig. 4 ob-
tained from the transfer maps and Eq. (6,7), respectively,
are in good agreement proving that the Bρ dependency orig-
inates from the B-H saturation in the yoke. The form of
the elements (a|x) and (b|y), which is defined by relative ®B
changes (see Eq. 6 and 7), shows that the Bρ dependence
plays a role already for small B0 values. However, the other
1st order elements have only a small Bρ dependence below
±0.1% as shown for (l |δ) exemplarily. For the 2nd order
elements the variation with Bρ can be much higher like for
(a|xx), which falls by 75% in the considered Bρ range.

Figure 4: Transfer map elements of the of 1st and 2nd order
versus Bρ calculated for the SFRS dipole magnet.

TRANSFER MAP’S CONVERGENCE
To measure the convergence of the transfer map M ,

we used the weighted relative norm NW (w) = 〈M(W ·
®dmax)/(W · ®dmax)〉, where ®dmax is the largest allowed de-
viation of a particle with respect to the reference trajectory
in 6D phase space, w ∈ (0, 1] is a weight factor andW is a
diagonal matrix with entries wii = ±w ∀ i = 1,...,6. Thus,
the vectors W · ®dmax are positions at the scaled border of
the phase space.
Assuming that the deviated particles are equidistributed

within the SFRS acceptance, we can define the vector stan-
dard deviation ξ ®dmax in the phase space, where ξ = 1/

√
3.

As shown in Fig. 5 a) the transfer map of the SFRS dipole

converges fast with increasing of the order for w ≤ 0.75ξ,
but diverges for w ≥ ξ . The reason for this norm behavior
is the Taylor expansion nature of the used magnetic field
which becomes less accurate with the increasing distance to
the points of expansion (PoE).

Figure 5: Calculated weighted map norms NW as function
of a) the order for different weights w and b) the number of
the expansion points along the reference path at w = 0.5ξ
and the 7th order.

The long computation times for the higher orders of SIHM
make it impractical to use it online for the transfer map
calculation. Thus, the field has to be precalculated in a set of
PoE along the reference path. Between the points the field
can be estimated from the Taylor polynomial corresponding
to the nearest PoE. The closer the points are, the higher is
the accuracy of the estimation. Figure 5 b) shows NW for
the 7th order in dependence on the number of equidistantly
distributed PoE. Accordingly, the transfer map convergates
already at about 150 (distance 2.8 cm).

CONCLUSION
A universal approach to generate accurate Bρ-dependent

transfer maps for iron-dominated ion-optical elements has
been developed and applied to the SFRS dipole magnet. The
resulting transfer maps revealed a distinct Bρ dependency.
Investigations of the transfer map norm showed a rapid con-
vergence with rising order for weigths of up to 0.5ξ as well
as with increasing density of expansion points.
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