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ABSTRACT

HIGH-ORDER COMPUTER-ASSISTED

ESTIMATES OF TOPOLOGICAL ENTROPY

By

Johannes Grote

The concept of Taylor Models is introduced, which offers highly accurate C0-

estimates for the enclosures of functional dependencies, combining high-order Taylor

polynomial approximation of functions and rigorous estimates of the truncation er-

ror, performed using verified interval arithmetic. The focus of this work is on the

application of Taylor Models in algorithms for strongly nonlinear dynamical systems.

A method to obtain sharp rigorous enclosures of Poincaré maps for certain types of

flows and surfaces is developed and numerical examples are presented.

Differential algebraic techniques allow the efficient and accurate computation of poly-

nomial approximations for invariant curves of certain planar maps around hyperbolic

fixed points. Subsequently we introduce a procedure to extend these polynomial

curves to verified Taylor Model enclosures of local invariant manifolds with C0-errors

of size 10−10 − 10−14, and proceed to generate the global invariant manifold tangle

up to comparable accuracy through iteration in Taylor Model arithmetic.

Knowledge of the global manifold structure up to finite iterations of the local manifold

pieces enables us to find all homoclinic and heteroclinic intersections in the generated

manifold tangle. Combined with the mapping properties of the homoclinic points

and their ordering we are able to construct a subshift of finite type as a topological

factor of the original planar system to obtain rigorous lower bounds for its topologi-

cal entropy. This construction is fully automatic and yields homoclinic tangles with

several hundred homoclinic points.



As an example rigorous lower bounds for the topological entropy of the Hénon map

are computed, which to the best knowledge of the authors yield the largest such

estimates published so far.
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2.1 Poincaré maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Invariant manifolds, hyperbolicity and homoclinic points . . . . . . . 7

2.3 Topological entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Shift maps, subshifts of finite type and symbolic dynamics . . . . . . 14

2.5 Taylor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Applications of Taylor Models . . . . . . . . . . . . . . . . . . 23

2.5.2 Implementation of Taylor Models . . . . . . . . . . . . . . . . 30

3 Verified Enclosure of Poincaré Maps 32
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CHAPTER 1

Introduction

Ever since the first computers were used to simulate mathematical models and de-

velop an intuitive understanding of their behavior, numerical mathematics has been

concerned with the question of the accuracy of these computational results,

Interval methods, first conceptualized by Moore [49, 50], offer a way to imple-

ment self-contained numerical algorithms that compute interval range bounds of the

solution of a computation, thus automatically obtaining C0 error estimates. While

interval arithmetic works fine for specific problems in e.g. linear algebra, global op-

timization or verified integration of ODEs, in general this approach has only limited

practicality as interval arithmetic has to cope with fundamental problems that limit

the accuracy of the interval range enclosure of solutions, among which are the depen-

dency problem and the wrapping effect (explained in more detail in Appendix A), and

a particularly unfavorable scaling of the computational effort with the dimensionality.

Taylor Models have been conceived in the 1990s [5,41] as an approach to verified

computing that would alleviate the problems of interval arithmetic while still yielding

valid C0 error estimates in an automated fashion. In spirit, they originated in the

map methods which had been successfully applied in particle accelerator simulations

for decades. Transfer maps, i.e. the action on the beam of a particular particle
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optical element like magnets, drifts or absorbers, were computed as polynomial Taylor

expansions to high order, and the suitable composition of transfer maps allowed

accurate predictions about the stability of the beam for very long times.

Frameworks were developed that made these complex polynomial manipulations

fast and efficient, like the differential algebraic picture of Taylor polynomial arithmetic

presented in Appendix B. But the question about the convergence of these high-order

Taylor expansions was of secondary interest. The reason for this was that in the

high-energy beam physics field, the equations of motion were typically only weakly

nonlinear and Taylor expansions of the associated transfer maps had a very beneficial

convergence behavior.

The picture changes dramatically if one wants to use Taylor approximations in a

strongly nonlinear setting. Here, the question of bounding the truncation errors and,

after algorithm implementation, also round-off errors in floating point arithmetic be-

comes paramount. Taylor Models are based on efficient polynomial manipulation

techniques to obtain highly acurate polynomial approximations and combine them

with rigorous interval arithemetic to bound the Taylor remainder errors. Since the

truncation error scales favorably in displacement from the expansion point with the

polynomial expansion order plus one, the fundamental drawbacks of interval arith-

metic can be mitigated by bounding the truncation error over small, but still suffi-

ciently large, domains.

Chapter 2 presents and reviews important mathematical concepts to the extent

to which they are relevant for this present work. Introductions to Poincaré maps,

invariant manifolds, topological entropy and symbolic dynamics are covered by citing

the key concepts and results, while the treatment of Taylor Models is more in-depth

and their definitions and properties are presented in a more detailed and exhaustive

manner.

In chapter 3 we present a technique to obtain Taylor Model enclosures of Poincaré
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maps of flows for quite general types of Poincaré sections. The technique rests on

the availability of high-order inversion of polynomial functional dependencies, and

the ability to Taylor expand solutions of implicit equations. This yields quite ac-

curate Taylor polynomial approximations of Poincaré maps which can be outfitted

with rigorous remainder bounds a posteriori with derivative information given by the

underlying ODE of the system. Examples for both nonverified polynomial approxi-

mations and verified Taylor Model enclosures of the Poincaré maps are provided.

Chapter 4 introduces us to invariant manifolds of discrete dynamical systems, or

to be more precise of planar diffeomorphisms, and the problem of accurately repre-

senting them numerically. Since invariant manifolds are of high significance in the

determination of long-term behavior of a multitude of dynamical systems, from forced

oscillations to the Lorenz system to mission design in astrophysics, and in particular

in strongly nonlinear settings, obtaining accurate approximations of the global man-

ifold tangle structure is desirable. We present an approach in which Taylor Model

enclosures of invariant manifolds can be found with C0 error sizes of 10−12 and

smaller.

In chapter 5 we develop a novel automated approach to finding rigorous lower

bounds of the topological entropy for certain planar systems. This is achieved by

determining symbolic dynamics in a constructive manner. The technique combines

many results and algorithms from the previous sections, using homoclinic points and

invariant manifold segments to define topological rectangles and rigorously deter-

mining their mapping properties, thus constructing a subshift of finite type as a

topological factor of the original system.

A short overview of the fundamentals of interval arithmetic and differential alge-

braic structures for the manipulation of Taylor polynomials is given in the appendices

A and B.

3



CHAPTER 2

Fundamental Concepts

In this chapter we introduce fundamental mathematical concepts from dynamical

systems theory to the extent that they are featured in the Taylor Model based verified

algorithms in later chapters. Most of the material is canonical and presented without

proof, more in-depth treatment of the topics is provided by the cited references.

Sections 2.2, 2.3 and 2.4 in particular draw on [55].

In the last section, we introduce the notion of Taylor Models in a somewhat more

exhaustive manner, as Taylor Models are still a relatively novel concept.

2.1 Poincaré maps

Poincaré maps, first conceived by Henri Poincaré [58] in the 1880s, are a classical

tool for the analysis of the stability of certain periodic or near-periodic orbits that

a continuous dynamical system might exhibit. Instead of analyzing the orbit struc-

ture of the corresponding flow in the entire phase space, using Poincaré maps one

only looks on the action of the system on suitably chosen surfaces (typically planes,

or hyperplanes, but also more general classes of differentiable manifolds) that are

transverse to the flow. The fundamental advantage which the Poincaré map offers is

that the dynamics can now be analyzed in a space that has a dimension which has

4



Π

q

P (q)
S

Figure 2.1. The Poincaré map P describes the first return of an orbit in the neigh-

borhood of a periodic orbit Π to a surface S which is transversed by both.

been reduced by one compared to the original phase space, while still preserving all

the ’interesting’ qualities of the orbit structure. In low-dimensional dynamics, this

dimension-reduction is a significant simplification and Poincaré maps have become a

successfully applied tool both in a more purely mathematical context (like forced os-

cillations) as well as in physics and astrophysics problems, like the three body problem

or particle accelerators.

The underlying idea of Poincaré maps is a simple one. Consider the autonomous

system

ẋ = f (x) , (2.1)

where f : Rn −→ Rn is C1, and we assume for simplicity that the flow ϕ : Rn×R −→
Rn of (2.1) exists globally, and assume now that there is a periodic orbit Π ⊂ Rn of

period T > 0. Consider a hyperplane S of dimension n − 1 that is transverse to Π,

i.e. Π ∩ S = {p} and f (p) is not tangent to S at p. Then naturally ϕ (p, T ) = p ∈ S
again, because of the periodicity. However, one can show that in this situation also

the orbits starting at points q sufficiently close to p, which are then typically not
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periodic anymore, will also intersect S transversely, say at a point P (q), as shown in

Figure 2.1. The mapping q −→ P (q) is called the Poincaré map.

2.1 Theorem. Let E ⊂ Rn be open, let f ∈ C1 (E) and let ϕ : E × R −→E be the

flow of (2.1). Assume that for some p ∈ E the orbit Π := {ϕ (p, t) : 0 ≤ t ≤ T} is

periodic with period T such that Π ⊂ E. Consider now a C1-manifold S which is

transverse to Π at p, i.e. f(p) does not lie in the tangent space TpS.

Then there exists ε > 0 and a C1- function τ : Bε (p) −→ R such that

ϕ (q, τ (q)) ∈ S ∀ q ∈ Bε (p)

and τ (p) = T .

This function τ denotes the crossing time for the choice of initial condition q until

the orbit first intersects S.

2.2 Definition. In the situation of the preceding theorem, we define the Poincaré

map P : Bε (p) ∩ S −→ S as

P (q) := ϕ (q, τ (q)) ∀ q ∈ Bε (p) ∩ S .

Evidently this definition could be generalized to allow nonperiodic reference orbits

ϕ (p, t), as long as the return to S is again transverse.

Intuitively, statements about the qualitative properties of the reference orbit Π,

e.g. whether it is attracting or repelling or has a saddle point in p ∈ S , can now be

derived from looking at the derivative of the Poincaré map at p: the orbit Π ⊂ E is

hyperbolic (attracting, repelling, saddle) if and only if p is a hyperbolic fixed point

(sink, source, or saddle, respectively) of the Poincaré map P .
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2.2 Invariant manifolds, hyperbolicity and homo-

clinic points

2.3 Definition. (Topological and Cr-manifolds) A topological n-manifold X is a

second-countable Hausdorff topological space with a collection {(Ui, ϕi)}i∈I such that

1. Ui is open ∀ i ∈ I and X ⊂ ⋃i∈I Ui .

2. ϕi : Ui −→ ϕi(Ui) ⊂ Rn is a homeomorphism ∀ i ∈ I such that ϕi(Ui) is open.

3. if Ui ∩ Uj 6= ∅ for some i, j ∈ I, the transition map
(
ϕi ◦ ϕ−1

j

)
:

ϕj

(
Ui ∩ Uj

)
−→ ϕi

(
Ui ∩ Uj

)
is a homeomorphism.

In this case we call {(Ui, ϕi)}i∈I an atlas and the ϕi charts.

A Cr n-manifold is a topological n-manifold where the transition maps in 3. are

Cr.

Of particular interest to us are, of course, differentiable submanifolds (curves,

surfaces, hypersurfaces etc.) of Rn .

2.4 Definition. (Immersed and embedded manifold) Let X and Y be two Cr nX -

and nY -manifolds, respectively, and let f : X −→ Y be a Cr-map such that the

linearization Lx : TxX −→ Tf(x)Y of f at x is injective on the tangent spaces

∀x ∈ X. In this case we call f an immersion, and the image f (X) ⊂ Y is called an

immersed Cr submanifold of Y .

f (X) is called an embedded submanifold if additionally f is injective and the

relative topology on f (X) inherited from Y equals the topology induced by f on f (X).

Note that in the definition of an immersed manifold, the immersion f itself need

not be injective (see Figure 2.2), just its derivative acting on a tangent space.

In the following let X be a smooth n-manifold and let f : X −→ X be a Cr-

diffeomorphism from X into itself.
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Figure 2.2. A non-injectively immersed curve in the plane, together with examples

for its tangent vectors (dashed).

2.5 Definition. (Hyperbolic fixed and periodic points)

A fixed point p ∈ X of f is called hyperbolic iff the Jacobian Df (p) has no

eigenvalues of norm one. We also say that p is

1. a sink if all eigenvalues have norm less than 1,

2. a source if all eigenvalues have norm greater than 1,

3. a saddle if there exist eigenvalues of both types.

A periodic point q of f with period N is accordingly called a hyperbolic sink (source,

saddle) if it is a hyperbolic sink (source, saddle) fixed point of fN .

The significance of hyperbolic fixed and periodic points is that in their neighbor-

hoods the tangent spaces (and the dynamics) can be classified according to certain

invariant subspaces:

2.6 Theorem. (Hyperbolic splitting) Let p ∈ X be a hyperbolic fixed point of f , then

there exists a direct sum decomposition TpX = Eup ⊕ Esp such that

1. Eup and Esp are invariant under Df (p) .
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2. Df (p) |Esp has eigenvalues of norm less than 1.

3. Df (p) |Eup has eigenvalues of norm greater than 1.

In the situation of the theorem we also call Eup and Esp the unstable and stable

eigenspaces at p. One can now ask if there are generalizations to the concept of

eigenspaces that stay invariant under the map f itself and not just the linearization.

To this end we define the stable and unstable sets

W s (p) :=
{
x ∈ X : fn (x) −→

n→∞ p
}

and

Wu (p) :=
{
x ∈ X : f−n (x) −→

n→∞ p
}

of points diverging from or converging to p. The next theorem, also known as the

Invariant Manifold Theorem, asserts that these sets in fact have a nice differentiable

structure, as depicted in Figure 2.3:

2.7 Theorem. (Hadamard-Perron) Let p ∈ X be a hyperbolic fixed point of f and

let TpX = Eup ⊕ Esp as per the previous theorem. Then Wσ (p) is a Cr injectively

immersed copy of Eσp tangent to Eσp at p for σ = u, s.

In light of the last theorem we call the sets Wu (p) and W s (p) the unstable

and stable manifold of p, respectively. Intuitively, one might think that Wu (p)

and W s (p) are not only injectively immersed manifolds, but even embedded with a

nice topology. The counterexamples to this conjecture are precisely the complicated

manifold structures connected to hyperbolic and horseshoe dynamics which we will

be concerned with in the later chapters of this work.

2.8 Definition. (Homoclinic and heteroclinic points) Let p1, p2 ∈ X be hyperbolic

fixed points of f .

1. If Wu (p1) ∩ W s (p1) 6= ∅, then any point in Wu (p1) ∩ W s (p1) is called a

homoclinic point (of p1).
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Figure 2.3. Unstable and stable manifolds Wu(p) (dashed) and W s(p) (dash-dotted),

tangential to the respective eigenspaces Eup and Esp at the hyperbolic fixed point p.

2. If Wu (p1) ∩ W s (p2) 6= ∅ (or Wu (p2) ∩ W s (p1) 6= ∅), then any point in

Wu (p1) ∩W s (p2) (or Wu (p2) ∩W s (p1)) is called a heteroclinic point (of p1

and p2).

A homo-/heteroclinic point q is called transverse if the tangent spaces of the in-

variant manifolds intersecting at q are transverse.

For ease of expression we will mosly restrict ourselves to homoclinic points, even

though corresponding statements usually apply to heteroclinic points. Homoclinic

points are of great interest, since they can be viewed, depending on the angle, as a

cause or symptom of chaotic motion. Let q ∈ (Wu (p) ∩W s (p)) be a homoclinic

point for f of the fixed point p. Then it is obvious that also every image or preimage

of q is going to be such a homoclinic point, i.e.

fk (q) ∈ (Wu (p) ∩W s (p)
) ∀ k ∈ Z.

So the existence of one homoclinic point implies a countably infinite number of ho-

moclinic points. Since by definition images and preimages of q converge to p, we

10



thus have an ever finer accumulation of manifold intersections near p and accord-

ingly a very complicated bunching up of the corresponding manifold branches. This

in essence is the sign of chaos, since any two points arbitrarily close to p will have

rapidly diverging orbits under f .

2.3 Topological entropy

2.9 Definition. (Topological entropy) Let (X, d) be a compact metric space and let

Φ : X −→ X be a topological endomorphism, i.e. a continuous self-map of X. Let

x, y ∈ X and n ∈ N0. Then an n-orbit O (n, x) of x is the sequence
{

Φk (x)
}n−1

k=0
.

For ε > 0, we say that two n-orbits O (n, x) and O (n, y) are ε-separated if ∃ k ∈
{0, ..., n− 1} such that

d
(

Φk (x) ,Φk (y)
)
> ε .

Let now r (n, ε,Φ) ∈ N0 denote the maximal number of ε-separated n-orbits of Φ in X

(note that this number is well-defined due to the compactness of X). Then we define

the topological entropy h (Φ) of Φ as

h (Φ) := lim
ε→0

lim sup
n→∞

1

n
max{0, log (r (n, ε,Φ))}.

This definition appears cumbersome at first, in particular it does not seem to

lend itself to a straightforward implementation in a computer environment due to the

double limit in the definition. However, one can develop an intuitive understanding

of the meaning of the entropy as a measure of the chaoticity of the underlying map

Φ. For example, for small ε there are approximately eh(Φ)n different ε-separated

n-orbits in X, i.e. the number of separated orbits grows exponentially with the map

iterate.

The topological entropy has numerous interesting properties, of which we will

state some of the most useful :
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2.10 Remark. In the following (X, dX), (Y, dY ) are compact metric spaces.

1. Let Φ : X −→ Y be a homeomorphism, then for its inverse Φ−1 we have

h
(

Φ−1
)

= h (Φ) .

2. For an isometric endomorphism Φ : X −→ X, i.e. dX (Φ (x1) ,Φ (x2)) =

dX (x1, x2) holds ∀x1, x2 ∈ X, it follows

h (Φ) = 0 .

3. If for an endomrphism Φ : X −→ X and a subset Σ ⊂ X we have that Φ (Σ) ⊂
Σ, then

h (Φ|Σ) ≤ h (Φ) .

4. For an endomorphism Φ : X −→ X and n ∈ N0, we have

h
(
Φn
)

= nh (Φ) .

5. For any continuous flow ϕt : X −→ X, t ∈ R, likewise

h (ϕt) = |t| h (ϕ1) .

6. If Φ : X −→ X and Ψ : Y −→ Y are topological endomorphisms, then Φ×Ψ :

X × Y −→ X × Y is a topological endomorphism and

h (Φ×Ψ) = h (Φ) + h (Ψ) .

We are interested in how the topological entropy changes if we project the action

of a map onto a simpler space:

2.11 Definition. Let X, Y be compact metric spaces and let Φ : X −→ X , Ψ : Y −→
Y be topological endomorphisms,, respectively. If there is a continuous surjection
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π : X −→ Y such that Ψ ◦ π = π ◦ Φ, then we say that Ψ is a (topological) factor of

Φ.

If Φ and Ψ are mutually factors of each other, we say that they are topologically

conjugate.

In the setting of the last definition, if Ψ is a factor of Φ, then the dynamics of

Ψ mimic the dynamics of Φ, albeit they are simplified by the projection onto the

domain of Ψ. This results in immediate estimates for the entropy:

2.12 Theorem. In the setting of Definition 2.11, if Ψ is a topological factor of Φ,

then

h (Ψ) ≤ h (Φ) .

It follows that if Ψ and Φ are conjugate, then

h (Ψ) = h (Φ) .

The last theorem means that we can find lower bounds for the topological entropy

of complicated maps if we manage to find topological factors for which the entropy

can be computed more easily. This will constitute the main idea for rigorous entropy

estimates in the later chapters of this work. Furthermore, the topological entropy is

a dynamical invariant, an intrinsic quantity that remains constant under coordinate

transformations, and as such is particularly interesting.

In the case of planar dynamics on a 2-dimensional manifold we can get a good

intuition for the topological entropy by seeing its similarity to the concept of Lyapunov

exponents. Let X be a two-dimensional C1-manifold and let γ : [a, b] −→ X be a

smooth curve defined on the real interval [a, b]. Let |γ| denote the arclength of γ. For

a C∞-endomorphism Φ : X −→ X we define the growth factor of γ under Φ as

G (γ,Φ) := lim sup
n−→∞

1

n
max

{
0, log

(∣∣Φn (γ)
∣∣)} ,

i.e. asymptotically, the iterates of γ grow by a factor of eG(γ,Φ) in length with every

iteration of Φ. Then the following theorem can be shown [53,54,65,66]:
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2.13 Theorem. Let X be a two-dimensional C1-manifold and Φ : X −→ X be a

C∞-endomorphism. Then

h (Φ) = sup
C∞-curves γ⊂X

G (γ,Φ) .

If X is additionally compact with piecewise smooth boundary, and Φ is area-

decreasing, then

h (Φ) = max
γ⊂∂X

G (γ,Φ) .

2.4 Shift maps, subshifts of finite type and sym-

bolic dynamics

In this section we introduce the notion of symbolic dynamics, which denotes the

concept of imitating the qualitative behavior of a dynamical system defined on a

general metric space with a derived system defined on a much simpler phase space

with a finite number of possible system states.

2.14 Definition. (Shift map) Let N > 0, and let α := {1, 2, ..., N}. We call the set α

an alphabet of length N . Consider now the space of right-infinite sequences consisting

of elements in N

Σ+
N :=

{
a = (an)n∈N0

: an ∈ α ∀n ∈ N0
}

.

Note that Σ+
N can be made into a compact metric space with the introduction of the

metric d given by

d (a,b) :=
∑
n∈N0

|an − bn|
2n

.

We now define the left shift map σ : Σ+
N −→ Σ+

N as

(σ (a))n := an+1 ∀ a = (an)n∈N0
∈ Σ+

N .
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It is easy to see that σ is surjective and continuous and thus a topological endomor-

phism. Also one can generalize Σ+
N to the set ΣN =

{
a = (an)n∈Z : an ∈ α ∀n ∈ Z

}
of doubly infinite sequences over the alphabet α with the corresponding metric, in

which case we can also consider the right shift map, but we shall only be concerned

with the left shift.

While the study of the dynamics of shift maps on general sequence spaces is

interesting in of itself, we are interested in particular invariant subsets of Σ+
N :

2.15 Definition. (Subshift of finite type) Assume that α,Σ+
N and σ are given as

in the previous definition, and let A ∈ {0, 1}N×N be an N × N-matrix with Aij ∈
{0, 1} ∀ i, j ∈ α. Consider the subset Σ+

A ⊂ Σ+
N given by

Σ+
A :=

{
a ∈Σ+

N : Aanan+1 6= 0∀n ∈ N0
}

.

Clearly Σ+
A is invariant under σ and we call the pair

(
σ,Σ+

A

)
a subshift of finite type

or topological Markov chain of Σ+
N , and we call the matrix A the incidence matrix of(

σ,Σ+
A

)
.

The motivation to introduce such subshifts is that, unlike general maps, the com-

putation of their topological entropy is straightforward, as we will see. An N × N -

matrix A is called irreducible if for every index (i, j) ∈ α × α there exists a power

k (i, j) ∈ N such that
(
Ak(i,j)

)
ij
> 0 .

2.16 Theorem. (Perron-Frobenius) Let A be an irreducible nonnegative real matrix.

Then there is a unique simple, real, positive eigenvalue λA ∈ R+ that has maximal

absolute value. This λA is also called Perron-number and equals the spectral radius

of A.

For an irreducible incidence matrix A and the corresponding subshift
(
σ,Σ+

A

)
according to Definitions 2.14 and 2.15, we also call

(
σ,Σ+

A

)
an irreducible subshift.

Now for the statement about the topological entropy of subshifts:
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2.17 Theorem. Let
(
σ,Σ+

A

)
be an irreducible subshift. Let λA be the Perron number

of A. Then for the topological entropy of σ we have

h (σ) = log λA .

So for subshifts the entropy can be obtained easily by doing an eigenvalue analysis

of the incidence matrix. We also get another intuitive idea of thinking about the

entropy of a subshift of finite type: A fixed point a∗ of
(
σ,Σ+

A

)
is a sequence where

a∗n = a∗n+1 ∀n. Correspondingly, a fixed point a∗∗ of order m > 1 of
(
σ,Σ+

A

)
is a

sequence where a∗∗n = a∗∗n+m∀n.

2.18 Theorem. Let N (σ, k) denote the cardinality of the set of all fixed points of

order k of the subshift
(
σ,Σ+

A

)
. Then

h (σ) = lim sup
k−→∞

1

k
logN (σ, k) .

To put it differently, for a subshift
(
σ,Σ+

A

)
with positive topological entropy there

exist fixed points of any order and their number grows exponentially with the order.

In light of Theorems 2.12 and 2.17 it is now clear how to find entropy estimates

for complicated general maps: If possible, determine a subshift of finite type as a

topological factor of the original map, and a lower bound of the original map’s entropy

can be obtained from the spectral radius analysis of the SFT’s incidence matrix.

2.19 Definition. (Symbolic dynamics) Let X be a compact metric space and let

Φ : X −→ X be a topological endomorphism . We say that Φ exhibits symbolic

dynamics if there are subsets Λ ⊆ X such that Φ|Λ has a subshift of finite type(
σ,Σ+

A

)
as a topological factor.

The question remains whether a given map exhibits symbolic dynamics, and how

close the lower entropy bounds stemming from the SFT analysis are. The following

surprising result due to Katok [26,33] confirms that this approach is indeed viable for

typical maps of interest to us:
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2.20 Theorem. Let f be a Cr-diffeomorphism, r ≥ 2, on a compact surface M . f

has nonzero topological entropy if and only if it exhibits symbolic dynamics.

Furthermore, ∀ ε > 0 exists a subshift σε such that

h(σε) > h(f)− ε.

2.5 Taylor Models

In this section we present the concept of Taylor Models (TM), which have first been

introduced in the 1990s by Berz and Makino [44]. Taylor Model techniques were mo-

tivated from particle beam research, which has long successfully applied high-order

multivariate polynomial manipulation to model transfer maps of particle optical ele-

ments in accelerators. This technique works exceptionally well because the equations

of motion governing the dynamics of high-energy particle beams are usually only

weakly nonlinear, and in practice the question of convergence of the power series

expansions of the transfer maps is rarely a main focus.

Taylor’s Theorem asserts that any sufficiently smooth real-valued function on Rv

can be approximated by a Taylor polynomial of finite order n, where the truncation

error term scales with the (n + 1)st power in the displacement from the expansion

point. If we wish to apply polynomial approximations of functional dependencies in

a strongly nonlinear setting, of course the size of the error term becomes a central

problem that one wishes to estimate. Taylor Models offer a framework in which

self-contained bounds of the truncation error can be found in an automated fashion,

thus yielding rigorous C0-estimates and allowing Taylor Models to be used in verified

algorithms and computer-assisted theorem proving.

2.21 Definition. (Taylor Model) Let D ⊂ Rv be compact, let G ⊂ Rv be open such

that D ⊂ G, and let f : G −→ R be a real-valued Cn+1-function. Assume a point

x0 ∈ D, and let P : Rv −→ R be the Taylor polynomial of order n of f around the

17



expansion point x0. If there is a closed real interval I ⊂ R such that

f (x)− P (x− x0) ∈ I ∀x ∈ D,

then the pair T = (P, I) is called a Taylor Model (of order n) of f around x0. For

intuitive reasons we also write T = (P, I) = P + I.

In the situation of the previous definition, we also say that f is contained in T , or

that T encloses f , or that T is an enclosure for f . The interval I is simply an interval

bound of the truncation error f − P over D. Naturally, in practice we wish I to be

as narrow as possible, and we will see results about the scaling propety of I later on.

2.22 Remark. Another way to think about Taylor Models is as a quotient space of

Cn+1 (G,R). We call two functions f, g ∈ Cn+1 (G,R) equivalent if they both are

contained in the same Taylor Model T = (P, I). It is clear that this constitutes an

equivalence relation between f and g and T is the equivalence class for all functions

contained in it.

Now that Taylor Models have been defined, the question is whether operations can

be defined on these objects that are compatible with the arithmetic on the functions

which are contained in the Taylor Models. For example, can we define an addition

in such a way that the sum T1 + T2 of two TMs T1 and T2 is again a Taylor Model

for the sum of any two functions contained in the original T1 and T2, respectively. In

the following we assume the conventions

A+B := {a+ b : a ∈ A ∧ b ∈ B} ,

A ·B := {a · b : a ∈ A ∧ b ∈ B} ,

x+ A := {x+ a : a ∈ A} ,

x · A := {x · a : a ∈ A} ,

for two sets A,B ⊂ R and x ∈ R :
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2.23 Definition. (TM-Addition and Multiplication) Let D,G and x0 as in the pre-

vious definition. Consider two Cn+1-functions f, g : G −→ R and their respective

n-th order Taylor Models Tf =
(
Pf , If

)
and Tg =

(
Pg, Ig

)
around x0. We define

1. the addition

Tf + Tg :=
(
Pf + Pg, If + Ig

)
,

2. the scalar multiplication by c ∈ R

c · Tf :=
(
c · Pf , c · If

)
,

3. the multiplication

Tf · Tg :=

((
Pf · Pg

)
≤n , If ·g

)
,

where
(
Pf · Pg

)
≤n are all terms of the polynomial Pf · Pg =

(
Pf · Pg

)
≤n +(

Pf · Pg
)
>n

of order at most n, and
(
Pf · Pg

)
>n

is the part of the polynomial

Pf · Pg containing all terms of order n + 1 through 2n. The remainder interval is

defined as

If ·g := B
((
Pf · Pg

)
>n

)
+B

(
Pf

)
· Ig +B

(
Pg
) · If + If · Ig .

Here B (P ) denotes any interval range bound of a polynomial P over D, i.e. B (P )

is a closed real interval such that

P (x) ∈ B (P ) ∀x ∈ D.

The generalization of Taylor Models and their arithmetic to higher dimensions is

straightfoward by performing the function enclosure and operations from Definitions

2.21 and 2.23 componentwise.

Indeed, the definition of Taylor Model operations 2.23 is compatible with the

corresponding operations on the contained functions:
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2.24 Theorem. Let D,G and x0 as before, let f, g : G −→ R be Cn+1-functions

contained in the n-th order TMs Tf and Tg. Then the functions f + g and f · g are

contained in the Taylor Models Tf + Tg and Tf · Tg as defined in Def. 2.23.

Proof. We show the statement for the multiplication, the proofs for the addition and

scalar multiplication work analogously. Let x ∈ D, then f (x) = Pf (x) + δf (x) and

g (x) = Pg (x) + δg (x), where δf (x) ∈ If and δg (x) ∈ Ig.

Then

(f · g) (x) = f (x) · g (x) =
(
Pf (x) + δf (x)

)
· (Pg (x) + δg (x)

)
= Pf (x) · Pg (x) + Pg (x) · δf (x) + Pf (x) · δg (x)

where
(
Pf · Pg

)
is a polynomial which is the sum of two polynomials

(
Pf · Pg

)
≤n

and
(
Pf · Pg

)
>n

that contain all terms of order up to and including n and terms of

order n+ 1 to 2n, respectively. Hence

(f · g) (x) =
(
Pf · Pg

)
≤n (x) +

(
Pf · Pg

)
>n

(x) + Pg (x) · δf (x) + Pf (x) · δg (x)

=
(
Pf · Pg

)
≤n (x) + δf ·g (x)

where

δf ·g (x) ∈ B
((
Pf · Pg

)
>n

)
+B

(
Pf

)
· Ig +B

(
Pg
) · If + If · Ig = If ·g ∀x ∈ D,

where again B (P ) denotes any interval range bound of a polynomial P over D. It

follows that

(f · g) (x) ∈
(
Pf · Pg

)
≤n (x) + If ·g.

Now that addition and multiplication of TMs have been introduced, the next

question is if we can define elementary functions for TMs and their composition.
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2.25 Remark. (Elementary functions for TMs) We do not want to go into detail

here regarding the definition of intrinsic functions for Taylor Models and refer to [41]

for details. Instead, we will demonstrate the procedure using the exponential function

as an example, and the definition of TM-analogs of other elementary functions follows

in much the same spirit. The idea is to Taylor expand the elementary function (note

that elementary functions are, on suitable domains, smooth) in the same way as the

TM at which you want to evaluate the elementary function, and take care of the

truncation error term again.

Let T = PT + IT be an n-th order real TM over the domain D ⊂ Rv, and write

T = CT + T≥1 = CT +
(
P≥1 + IT

)
. Here CT denotes the constant part of the TM,

and T≥1 := T − CT . Let k ≥ n. Then

exp (T ) = exp
(
CT + T≥1

)
= exp (CT ) · exp

(
T≥1

)
= exp (CT ) ·

 n∑
m=0

(
T≥1

)m
m!

+
k∑

m=n+1

(
T≥1

)m
m!

+

(
T≥1

)k+1

(k + 1)!
exp

(
θ · T≥1

) ,

(2.2)

with θ ∈ [0, 1] ,

⊂ Pexp(T ) + Iexp(T )

We define Pexp(T ) to be the polynomial part of order n of the right hand side of (2.2).

For the interval remainder Iexp(T ) observe the following:

All expressions in (2.2) can be evaluated with TM-operations as in (2.23) with

the exception of the last summand in the parantheses, which can be estimated using

interval arithmetic:(
T≥1

)k+1

(k + 1)!
exp

(
θ · T≥1

) ⊂ (B (P≥1
)

+ IT
)k+1

(k + 1)!
exp

(
[0, 1] · (B (P≥1

)
+ IT

))
,

where the last exponential can be bounded using the interval methods. The first sum

in the parantheses in Def.2.2 produces both the polynomial part Pexp(T ) of exp (T ) as
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well as contributions to the interval bound Iexp(T ), the second sum and error term

only contribute to Iexp(T ).

2.26 Remark. (Antiderivation) If a Taylor Model
(
Pf , If

)
contains a function f ,

we want to be able to find the Taylor Model which contains the integral of f . This

very useful operation on
(
Pf , If

)
is called the antiderivation ∂−1

i .

Let G ⊂ Rv open, let f : G −→ R be Cn+1, and let Tf =
(
Pf , If

)
be an n-

th order Taylor Model for f around the origin over the interval box [a1, b1] × ... ×
[av, bv] ⊂ G ⊂ Rv. Write Pf as the sum of two polynomials Pf,n of exact order n

and Pf,<n := Pf − Pf,n of order up to and including n− 1. Then define

∂−1
i

(
Tf

)
:=

(
P
∂−1
i

(
Tf

), I
∂−1
i

(
Tf

))

where

P
∂−1
i

(
Tf

) :=

∫ xii

0
P<n (x′) dx′i

and

I
∂−1
i

(
Tf

) :=
(
B
(
Pf,n

)
+ If

)
· (bi − ai) .

It is easy to show that with these definitions

f ⊂
(
Pf , If

)
=⇒

∫
f dxi ⊂ ∂−1

i

((
Pf , If

))
.

The great success of Taylor polynomial approximation has always been based on

the high-order scaling of the error term with the, usually small, displacement from the

expansion point. It is important to see that the Taylor Model operations introduced

above maintain that beneficial scaling property for the TM remainder bounds:

2.27 Theorem. (Taylor Model Scaling Theorem) Let G ⊂ Rv open, x0 ∈ G, and

h > 0 such that x0 + [−h, h]v ⊂ G. Let f, g : G −→ R be Cn+1-functions contained

in the n-th order TMs Tf = Pf + If and Tg = Pg + Ig around x0 over the domain

x0 + [−h, h]v with scaling properties If = O
(
hn+1

)
and Ig = O

(
hn+1

)
. Let
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(
Pf+g, If+g

)
and

(
Pf ·g, If ·g

)
be the addition and multiplication TMs of Tf and

Tg according to Definition 2.23, and let
(
Ps(f), Is(f)

)
be a TM for any intrinsic

function s defined for Taylor Models in the fashion of remark (2.25). Then

If+g = O
(
hn+1

)
,

If ·g = O
(
hn+1

)
,

Is(f) = O
(
hn+1

)
.

The essential property of all Taylor Model operations is of course that they are

compatible with the corresponding operations on the functions contained.

2.28 Theorem. (Fundamental Theorem of Taylor Model Arithmetic) Let Gf ⊂ Rv

open and let the Cn+1-function f : Rv −→ Rv be contained in the v-dimensional n-th

order TM Tf =
(
Pf , If

)
over the compact domain Df ⊂ Gf . Likewise, let Gg ⊂ Rv

open, let Dg ⊂ Rv be compact such that the range bound B
((
Pf , If

))
⊂ Dg, and let

the Cn+1-function g : Rv −→ R be given as a finite code list of binary operations and

elementary functions. Now let Tg◦f =
(
Pg◦f , Ig◦f

)
be the n-th order TM obtained

by executing the code list of g in TM arithmetic starting with the TM Tf .

Then we have that

g ◦ f ⊂ Tg◦f

and if If has the n + 1st order scaling property as in Theorem 2.27, then so does

Ig◦f .

Proof. The proof follows immediately by induction over the finite code list of g using

Theorems 2.24 and 2.27.

2.5.1 Applications of Taylor Models

In the introduction to this section it has already been hinted at that Taylor Models

are suitable objects to construct a self-verified computing framework. Essentially,
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Taylor Models can be used in the same spirit as interval arithmetic, but the most

fundamental drawbacks of intervals are alleviated significantly by the use of Taylor

Models:

1. the dependency problem can not occur in Taylor Model problems by design, as

the multiple occurence of identical monomials in the code list for a function is

immediately accounted for in the Taylor polynomial of said function.

2. wrapping effect: the cause for the overestimation of an interval enclosure of a

set is the nonlinear distortion of said set, the bulk of which is represented by

the high-order polynomial part of the Taylor Model.

3. dimensionality curse: if over a certain domain a function is to be enclosed up

to a fineness 0 < δ < 1 by a set of interval boxes {Ij}Nj=1 of maximal width δ,

then the number of boxes required scales as

N v

(
1

δ

)v
with the dimensionality v of the problem.

In contrast, a Taylor Model enclosure of the function up to the same accuracy

can often be achieved with a single Taylor Model. The amount of memory

storage a Taylor Model of a given expansion order N and dimensionality v

requires is mostly given by the number of monomial coefficients it needs to store.

The maximal number of polynomial coefficients M (N, v) is for a polynomial of

order N and dimensionality v is

M (N, v) =
(N + v)!

N !v!
,

which grows much slower with v than the exponential growth of the numbers

of boxes.
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Of course, the interval problems still persist in principle in the manipulation of

the remainder bounds of the Taylor Models, but the remainder bounds are usually so

small that even the overestimation effects do not come significantly into play.

We next list two applications for which Taylor Models have proven to be very

successful, and which are required for some of the algorithms later in this work.

Taylor Model Verified Flows for ODEs

We consider the standard autonomous intial value problem

ẋ = f (x) , (2.3)

x (0) = x0,

where f : Rv −→ Rv is a function, at least C1, given as a finite code list of binary op-

erations and intrinsic functions available in Taylor Model arithmetic (in particular, f

is locally Lipschitz and uniqueness and existence of solutions to (2.3) are guaranteed).

The Picard-Lindelöf Theorem shows that the Picard iteration

ϕ0 := x0,

ϕn+1 (t) := x0 +

∫ t

0
f (ϕn(s)) ds

converges uniformly to the flow ϕ (x, t) of the IVP. Based on Schauder’s Fixed

Point Theorem, we can design an algorithm to compute verified Taylor Model repre-

sentations of the flow which is in the same spirit:

2.29 Theorem. (Schauder) Let X be a topological vector space and O : X −→ X a

continuous map. Let Y be a compact convex subset of X such that O (Y ) ⊂ Y . Then

there exists a fixed point of O in Y .
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2.30 Algorithm. (Taylor Model flows) Let N ∈ N be a fixed computation order. The

total integration time is set to T > 0. Set the midpoint of the initial condition box to

X0 ∈ Rv and let x ∈ [−d, d]v for d > 0.

1. The first time step: Let the polynomial P0 := X0 + x and the TM ϕ0 :=

P0 + [0, 0]. Let δt1 be the integration step size for the first step.

(a) The polynomial part P0 is stored in a DA-vector, and define the DA-vector

Picard operator

ΠDA (.) := P0 + ∂−1
t f (.)

(refer to Appendix B for details on the antiderivation operation) and iter-

atively compute

Pn+1 (x, t) := ΠDA (Pn (x, t)) .

After N steps, a polynomial PN invariant up to order N is obtained, i.e.

PN =N PN+1 = ΠDA(PN ).

(b) Define the Picard operator for Taylor Models

ΠTM (.) := P0 + ∂−1
t f (.)

where now ∂−1
t denotes the antiderivation in TM-arithmetic as per remark

(2.26). Heuristically, find an interval remainder bound Iτ such that for the

Taylor Model

τ (x, t) := PN (x, t) + Iτ

we have

PN + Ĩ := ΠTM (τ) ⊂ τ, (2.4)

i.e. that

Ĩ ⊂ Iτ .
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If this is the case, then the Schauder Theorem asserts that there exists a

fixed point τ? such that

τ? =
(
P?, I?

)
= ΠTM

(
τ?
)
,

and τ? can be reached through successive iteration of ΠTM .

(c) Iterate ΠkTM (τ?) until I? is sufficiently refined.

(d) Insert the timestep δt1 into τ? and obtain the flow

ϕ1 (x) := Pϕ1 (x) + Iϕ1 = τ? (x, δt1) .

2. For the (n + 1)st timestep, suppose the flow ϕn (x) = Pϕn (x) + Iϕn has been

computed in inetgration step n, and the step size for the (n+1)st step is δtn+1.

Then set the initial condition to ϕn (x) and repeat from step 1.

3. Terminate the algorithm after KT steps when
∑KT
k=1 δtk = T .

It can now be shown [41] that ϕKT
(x) indeed yields a rigorous TM-enclosure of

the flow ϕ (X0 + x, T ) for all initial conditions in X0 + [−d, d]v.

As a remark, the heuristics in step 1b) of the previous algorithm are educated. Since

the bulk of Iτ that satisfies the inclusion (2.4) will be given by the truncation error,

we simply set the initial test interval Iτ as the polynomial part of the Taylor Model

ΠTM
(
PN + [0, 0]v

)
.

The simple Algorithm 2.30 forms the basis for more sophisticated approaches using

preconditioning and remainder bound manipulation techniques which offer superior

control of remainder interval blow-up [7, 46, 47]. Taylor Model integrators of this

type have been successfully applied to Astro- and Beam Physics problems [30, 43],

and extensions of the theory allow rigorous enclosure of solutions of implicitly given

ODEs or differential algebraic equations [28,29].
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Global Optimization

The global optimization problem, in its simplest form without constraints etc., can

be phrased as follows:

Let D ⊂ Rv, D = [a1, b1] × ... × [av, bv], be an interval box and let f : D −→ R

be continuous. Find the global infimum of the function f over the domain D. Note

that here D is compact, so the infimum of the range is actually assumed in D,

inf
x∈D f (x) = min

x∈D f (x) .

Unlike gradient-based methods, which are fast but tend to fall into local minima, a

global optimizer is able to find the absolute minimal value of f (D) or at least a sharp

upper bound for it through e.g. a Branch and Bound algorithm [34]:

2.31 Algorithm. (Branch and Bound) Let D ⊂ Rv and f be as above. Then we

can inductively define a procedure to find rigorous upper bounds for the minimum

min
x∈D f (x):

1. Let the midpoint m ∈ D, mi = bi − ai ∀ 1 ≤ i ≤ v and set the minimum upper

bound S := f (m).

2. In the first step: subdivide B0 := D along the coordinate axis of greatest width

and obtain B1,1 and B1,2 such that B0 ⊂ B1,1∪B1,2, and the interiors B̊1,1∩
B̊1,2 = ∅. Set B1 :=

{
B1,1, B1,2

}
.

3. In the k-th step, assume you have a collection of Nk boxes Bk ={
Bk,1, ..., Bk,Nk

}
, Bk,j ⊂ D ∀ 1 ≤ j ≤ Nk.

(a) j=1: if max f
(
Bk,1

)
< S, reset S := max f

(
Bk,1

)
. Discard all boxes

Bk,j ⊂ Bk which satisfy min
(
Bk,j

)
> S. Else bisect Bk,1 along the

coordinate axis of greatest width into two interval boxes Bk+1,1 and Bk+1,2

such that Bk,1 ⊂ Bk+1,1∪Bk+1,2 and the interiors B̊k+1,1∩B̊k+1,1 = ∅.
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(b) for 1 < j ≤ Nk: assume that so far Bk+1,1, ..., Bk+1,l have been created.

If max f
(
Bk,j

)
< S, reset S := max f

(
Bk,j

)
. Discard all boxes Bk,j ⊂

Bk which satisfy min
(
Bk,j

)
> S. Else bisect Bk,j along the coordinate

axis of greatest width into two interval boxes Bk+1,l+1 and Bk+1,l+2 such

that Bk,j ⊂
(
Bk+1,l+1 ∪Bk+1,l+2

)
, and B̊k+1,l+1 ∩ B̊k+1,l+2 = ∅.

4. Set Bk+1 =
{
Bk+1,1, ..., Bk+1,Nk+1

}
, Bk+1,j ⊂ D ∀ 1 ≤ j ≤ Nk+1 and

repeat from point (3) until either S is less than a prespecified threshold MS > 0,

or the volume of
⋃Nk+1
j=1 Bk+1,j is less than a threshold MV > 0.

This algorithm is straightfoward, and it is clear that it yields ever sharper interval

enclosures of both the minimum min
x∈D f (x) and the points in X where that mininum is

assumed. It can also be fully verified by using interval based methods to find the range

bound estimates for f over a specific box Bk,j , and numerous other approaches to

implement interval-based global optimization routines have been investigated [13,24,

25,32,60]. The practical issues with this algorithms are the slow convergence rate and

the possibly large memory requirement for box storage, since the discarding process

is slowed down by overestimation in function range bounding. For both problems,

it is thus paramount to find methods that minimize overestimation in order to find

sharp updates to S that allow us to quickly discard boxes.

This is a strength of Taylor Models, where in step 3 of the above algorithm we

can find sharp Taylor Model enclosures for the range of the objective function f over

the box Bk,j expanded around the midpoint by simply evaluating the code list of

f . Once this step is performed, sophisticated range bounding procedures for Taylor

Models exist [45] which allow range bounding with minimal overestimation.

Additional benefits of the Taylor Model approach is that (nonverified, but highly

accurate) information about the gradient of the f is immediately available and can

guide more informed box splitting and selection procedures than the purely chrono-

29



logical ordering of new boxes as in algorithm (2.31), potentially accelerating the

discarding process substantially.

2.5.2 Implementation of Taylor Models

Taylor Models and their arithmetic have been implemented as a data type in the

programming language COSY Infinity [1, 15], which has been used to perform all

computations found in later chapters.

COSY Infinity was conceived as a beam physics code designed for particle optical

simulations, incorporating arbitrary order polynomial manipulation for the accurate

approximation of Poincaré transfer maps of the beam line elements [14]. The efficient

framework for polynomial arithmetic rests on the ideas of DA-vectors presented in

Appendix B.

It is thus a natural progression to implement Taylor Models as an extension of

this framework, such that the polynomial portion of a Taylor Model operation is

performed within the DA-vector picture, and the remainder bound portion of the

Taylor Model operation is executed in interval arithmetic (see Appendix A) for the

rigorous estimation of truncation errors.

In practice, this implementation step is nontrivial, since so far in the definition

of Taylor Models and their operations we have assumed exact arithmetic. However,

on the computer we have to make a transition to floating point arithmetic, and it is

not immediately clear how the rigorous enclosure properties of Theorems 2.24 and

2.28 translate into the floating point environment. In other words, suppose the Cr-

function f : [−1, 1] −→ R is contained in the n-th order Taylor Model T = (P, I),

where r ≥ n, i.e. the enclosure property

f (x) ∈ P (x) + I ∀x ∈ [−1, 1]

holds. Does then the floating point implementation T̃ =
(
P̃ , Ĩ

)
of T satisfy the same
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enclosure property

f (x) ∈ P̃ (x) + Ĩ ∀x ∈ [−1, 1] (2.5)

in exact arithmetic? It has been shown in [61] that the Taylor Model implementation

in COSY Infinity indeed satisfies (2.5). An in-depth discussion of this issue is beyond

the scope of this work, but in essence the verification in the floating point picture relies

on outward rounding in the interval arithmetic and the absorption of a pessimistic

floating point error into the remainder bound interval in every operation.

Furthermore, for computational efficiency COSY supports sparsity procedures in

the polynomial operations and only keeps monomials with coefficients above a cutoff

threshold comparable to the floating point accuracy. Monomial terms below this size

are discarded and absorbed into the remainder bound, as well.

It is worth stressing that the Taylor Model data type in COSY Infinity, and in

particular its polynomial part, only contains floating point information. This means

e.g. that a Picard iteration as in Algorithm 2.30, which in exact arithmetic leaves the

polynomial expansion invariant in every step except for the highest order, also will

leave the floating point polynomial invariant up to the highest order when performed

in floating point arithmetic.
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CHAPTER 3

Verified Enclosure of Poincaré

Maps

Poincaré maps [58] are a standard tool in general dynamical systems theory to study

qualitative properties of continuous dynamical systems (e.g. the flow generated by an

ordinary differential equation), most prominently the asymptotic stability of periodic

or almost periodic orbits (see e.g. [23] [2] [62]). A Poincaré map essentially describes

how points on a plane S (the Poincaré section) which is transversed by such an orbit

O (the reference orbit) and which are sufficiently close to O get mapped back onto S

by the flow. The two key benefits in this approach are that long-term behaviour of the

the flow close to O can be analyzed through the derivative of the Poincaré map at the

intersection point of S and O, which is available after just one revolution of O, and

that the dimensionality of the problem has been reduced by one, since the Poincaré

map is defined on S and neglects the ”trivial” direction of the flow purpendicular to

the surface.

We will actually consider a somewhat generalized notion of Poincaré maps, by

dropping the restriction that the flow exhibit a periodic reference orbit. Assuming

we are given a smooth surface in phase space, the Poincaré section S, and an initial
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condition X0 for the flow such that the orbit originating at X0 actually transverses

the section S at some crossing time T0, then by a Poincaré map we understand a map

that projects all flows originating in a neighborhood of X0 directly to the section S.

Seeing that the Poincaré map itself is given implicitly, it seems like a logical

progression to tackle the problem of computing Poincaré maps in the Differential

Algebraic (DA) framework of polynomial approximations (see Appendix B), since

under quite general assumptions high-order polynomial approxiations to inverse or

implicitly given functions are available in an automated fashion.

Finding rigorous Taylor Model enclosures for the Poincaré map is a priori chal-

lenging, since the issue of verified functional inversion is very subtle. Here however,

we can use the vector field of the differential equations as an additional tool to esti-

mate trunctation errors, which leads to quite natural geometric condtions, which can

be checked

The key question that will be discussed is how to project a domain box exactly to

a given surface under the action of the flow. In the above setting, where a reference

orbit starting at the initial condition X0 transverses a surface S at time T0 , then

for all points x in a sufficiently small region containing X0 a unique crossing time

for the surface also exists, and can be represented as a Taylor expansion in terms of

small variations (X0 − x0) around the reference crossing time T0. We will present a

method to obtain nonverified and verified polynomial representations of this crossing

time and the subsequent construction of a Poincaré map.

3.1 The nonverified method

Consider a system

ẋ(t) = f(x(t), t), (3.1)

x(0) = X0 + x0,
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ϕ(X0 + x0, 0)

ϕ(X0 + x0, t)

0 x1

x2

X0

x0

x0 ∈ [−d , d ]2

d

Figure 3.1. Forward propagation of the box X0 + [−d, d]2 from time 0 to time t using

the DA-integration method.

where f : Rν ⊃ Uopen −→ Rν , ν ∈ N, is a finite code list of binary operations

and intrinsic functions available for DA-vectors. Suppose we are given a surface S

which is transversed by the reference orbit (where x0 = 0) at a crossing time T0. This

crossing time needs to be known to high accuracy (however, a non-verified result for

T0 is sufficient) and we assume that it is known. Typically the computation of T0 can

be formed as a scalar constraint satisfaction problem and can be determined using a

high-order Runge-Kutta integrator.

We assume that a DA-integration as in Appendix B of the domain box X0 + D,

where D := [−d1, d1] × ... × [−dν , dν ], has been performed until the time T0 (cf.

Figure 3.1). In the last integration step, the time dependence has been retained, and

we have a polynomial expansion ϕ(x0, t) of the flow.

We want to consider as large a class of surfaces as Poincaré sections as possible.

A suitable assumption is that locally around the point ϕ(0, T0) the Poincaré section
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S ⊂ R is given implicitly in terms of a function σ : Rν −→ R as

S := {x ∈ Rν : σ(x) = 0}.

Since the function σ also needs to be expressed in terms of binary opertions and

elementary functions available in the computer environment for DA-arithmetic, it is

necessarily smooth, and hence also the surface S. This contains most surfaces which

are of practical interest, in particular the most common case where S is an affine

plane of the form S := {x ∈ Rν : x1 = c} where the first component x1 of the vector

x is set to the fixed value c ∈ R; here σ(x) = x1 − c.
The other condition which needs to be met by S is that the flow is transverse to

it for all possible initial conditions x0 ∈ D, i.e. that

0 6= 〈∇σ(ϕ(x0, t)), f(ϕ(x0, t), t)〉∀x0 ∈ D.

Without this assumption a Poincaré map cannot be defined meaningfully, since for

its definition the existence of a uniquely defined crossing time for each initial con-

dition is required. However, for our method this question can be neglected. In the

’pathological’ case that the vectorfield is in the tangent space of the surface at any

point, the functional inversion step described in the following will fail.

The interesting question is how the object {ϕ(x0, t) : x0 ∈ D} can be projected

to S by insertion of a suitable crossing time. For every possible initial condition,

we wish to derive an expression of the crossing time tc(x0) at which the trajectory

originating at the said initial value traverses the section S, and then reinsert this time

tc(x0) back into the DA vector ϕ(x0, t) describing the flow. This yields a polynomial

ϕ(x0, tc(x0)) only depending on the initial conditions x0 which projects these values

almost exactly onto the Poincaré section, up to accuracy restrictions depending on

the approximation order. The information about this crossing time is contained in

the flow and the geometry of S in an implicit way, hence we need to use suitable

tools for functional inversion in the DA context as has been described above. The
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function ϕ(x0, t) as such cannot be invertible, since the dimensionality of its domain

and range do not even agree. Instead, we will introduce an auxiliary function ψ

which is substantially easier to handle and yields all relevant results. For ψ(x, t) to

be invertible in the first place we need ψ to map into Rν+1.

This motivates the following construction: Define a function ψ : Rν+1 −→ Rν+1

by

ψk(x0, t) := x0,k∀k ∈ {1, ..., ν} (3.2)

ψν+1(x0, t) := σ(ϕ(x0, t))

where the indices k denote components of the respective vectors. To get an idea

how the construction of ψ comes about, we remark that a functional inversion step is

expected because of the implicit occurrence of the tc(x0) in the problem, and hence

ψ needs to map between spaces of equal dimension. Furthermore tc(x0) depends on

the variables x0 and is determined by the constraint condition

σ(ϕ(x0,tc(x0))) = 0. (3.3)

Because of the last statement tc(x0) satisfies

ψ(x0, tc(x0)) = (x0, 0)

and assuming that ψ is invertible we can evaluate

ψ−1(x0, 0) = ψ−1(ψ(x0, tc(x0))) = (x0, tc(x0))T

and immediately extract the DA-vector representation of tc(x0) in terms of the x0 in

the last component. In this case the invertibility of ψ at the point (x0, tc(x0)) is ac-

tually guaranteed by the condition of transversality. This proves the next statement:

3.1 Theorem. Suppose for the system (3.1) and a surface S given by a smooth

function σ : Rν −→ R as S := {x ∈ Rν : σ(x) = 0}, the crossing time T0 of
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the reference orbit is known. Assume that (3.1) has been integrated until T0 and let

ϕ(x0, t) be the local flow. Then the function ψ defined as in (3.2) is invertible, and

the function

tc(x0) := ψ−1
ν+1(x0, 0) (3.4)

projects the flow directly onto the surface S, i.e. ϕ(x0, tc(x0)) satisfies (3.3) for all

x0 ∈ D.
Performing the inversion of ψ to ψ−1 as in section (2.3) and the evaluation (3.4)

in DA-arithmetic yields a DA-vector that contains the Taylor expansion coefficients

of tc(x0) up to the desired order.

Now the DA-vector representation of the Poincaré map P(x0) is simply con-

structed by inserting tc(x0) into the flow:

P(x0) := ϕ(x0, tc(x0)).

In figure 2 it is illustrated how P(x0) projects the original transported box {ϕ(x0, t) :

x0 ∈ D} almost exactly onto the surface S.

3.1.1 Summary of the nonverified algorithm

1. For the system (3.1) and a given surface S, find the crossing time T0 of the

reference orbit, i.e. ϕ(X0, T0) ∈ S

2. Integrate (3.1) until the time T0, perform one extra integration step in which

the time dependence is preserved. This yields a time-dependent flow ϕ(x0, t).

3. Expand the parametrization σ(x) of S around the point ϕ(0, T0)

4. Set up and invert the auxiliary function ψ using DA functional inversion to

obtain a DA-vector represenation of ψ−1.

5. Evaluate tc(x0) := ψ−1(x0, 0).
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ϕ(x0, tc(x0))

ϕ(x0, 0)

x1

x2

0

S :=
{
x ∈ R2 : x1 = σ(x2)

}

Figure 3.2. Projection of {ϕ(x0, t) : xo ∈ D} onto the surface S by insertion of the

crossing time tc(x0).

6. Evaluate P(x0) := ϕ(x0, tc(x0)).

3.2 Verification

In the same way that Taylor Models offer a somewhat natural extension to DA-

methods to a verified setting, one can ask whether it is possible to modify the previ-

ously described algorithm to obtain verified interval bounds for the truncation error of

the polynomial representation of both the crossing time tc(x0) as well as the Poincaré

map P(x0) itself. We will see that indeed this is possible. Again the objective will

be to compute a TM for the crossing time to be inserted into the TM for the local

flow in order to construct a TM-representation of the Poincaré map.
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3.2.1 Specification of the surface parameterization

We now assume that for a given reference initial condition X0 the crossing time T0

at a surface S is well-known. Let S be parametrized as

S := {x ∈ Rv : x1 = g(x2, ..., xv)}; (3.5)

comparing this to section 3.2, we see that in this case σ(x) = x1 − g(x2, ..., xv). For

simplicity we will write x1 = g(x), but indeed g does not have any x1-dependence;

the x1-component of a point x on S is uniquely specified by its last v−1 components.

We demand that g : Rv −→ R is a function comprised of a finite code list of binary

operations and instrinsic functions which are available in Taylor Model arithmetic,

which entails smoothness for g and hence also for S just like in section 3.1 . We

will denote the TM-representation of g also by g(x) + Ig, it should be clear from the

context whether the parametrization g or the DA-part of its Taylor Model is meant.

3.2.2 Interval enclosure of feasible crossing times

Assume that a TM-based verified integration of the system (3.1) has been performed

until the time T0, and the final coordinates are given by a TM-flow of the form

ϕ(x0, T0) + Iϕ. This means that the trajectory ϕ(0, T0) originating at the midpoint

X0 exactly coincides with the surface S, i.e. ϕ1(0, T0) = g(ϕ(0, T0)). Also note that

there is no time-dependence in ϕ(x0, T0) + Iϕ anymore after the time T0 has been

inserted into the flow.

Just like in the nonverified method, we need an extra integration step in which we

keep the full local time dependence in the flow ϕ(x0, t). This is obtained by the same

verified TM-integration procedure with initial conditions x(0) = (ϕ(x0, T0) + Iϕ),

except the insertion of the time step is not carried out.

However, the time domain of the extra interation step explicitly enters the calcu-

lation of the remainder bound. So it is mandatory to get a good guess about a time
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interval [−t̃, t̃] , where t̃ > 0, such that all true crossing times t?c(x0) of all trajectories

originating in the box X0 +D are contained in the time interval T0 + [−t̃, t̃].
To obtain this estimate, we first take the DA-part ϕ(x0, T0) of the verified solution

at time T0 and use it as the initial condition for one extra nonverified integration

step in DA-arithmetic (as in section 2.1). This yields a DA-representation of the

local time-dependent flow, which we can use, together with the DA-part g(x) of the

surface parametrization, to compute a polynomial of the local crossing time tc(x0)

as described in the previous section. This polynomial, albeit not verified, already

represents the functional dependency of the true crossing time t?c(x0) on x0 to a high

degree, and so a range bound of tc(x0) over all x0 ∈ D will yield an interval enclosure

[tl, tu], with tl < 0 < tu, which is a very good estimate of the range of t?c(x0) around

T0 . Inflating the interval bounds (say by p per cent, where p is typically around 10

to 20) and taking the bigger modulus, we see by setting

t̃ := (1 +
p

100
) ·max{|tl|, tu} (3.6)

that the time interval T0 + [−t̃, t̃] has very good chances to satisfy the crossing time

enclosure stated above. We can actually verify that T0 + [−t̃, t̃] constitutes a rigorous

interval bound of t?c(x0)∀x0 ∈ D by a somewhat involved but straightforward argu-

ment that g(ϕ(x0, T0 − t̃)) < 0∀x0 ∈ D and g(ϕ(x0, T0 + t̃)) > 0∀x0 ∈ D or vice

versa.

3.2.3 TM-enclosure of the Poincaré map

Now we are able to integrate the system

ẋ(t) = f(x(t), t), (3.7)

x(0) = ϕ(x0, T0) + Iϕ

in TM-arithmetic as in section 2.5.1 with full local time dependence of the time

domain [−t̃, t̃]. Again, for simplicity we will just call the resulting flow ϕ(x0, t) + Iϕ,
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though the interval bound Iϕ has changed.

Observe that the set B := {ϕ(x0, t) + Iϕ : (x0, t) ∈ D × [−t̃, t̃]} contains all

trajectories satisfying (3.7) over the time interval [−t̃, t̃]. Thus we are able to obtain

an interval bound Ig for the TM of g by expanding g in TM-arithmetic over a B̃,

where B̃ is an interval vector which contains B. B̃ can be obtained, e.g. by range

bounding ϕ(x0, t) + Iϕ over all (x0, t) ∈ D× [−t̃, t̃]. Note that in typical applications

the curvature scale of the surface S is several orders of magnitude bigger than the

scale of the transported box B (or B̃ respectively), and hence the range of g over B̃

is very small, typically smaller than the remainder bounds Iϕ. In fact, in the case

where g is a polynomial of order less than or equal to the computation order in the

TM-arithmetic, g will have a zero remainder bound, up to small floating point errors.

We proceed by first obtaining the polynomial part of the TM-representation of

the crossing time, tc(x0). We extract the polynomial ϕ(x0, t) from the TM-solution

of the local flow, and use the DA-part g(x) of the parameterization of S to compute

a nonverified DA-representation for the polynomial part tc(x0) of the crossing time

exactly as described in section 3.1 .

We are allowed to insert any Taylor Model with a range in T0+[−t̃, t̃] into the time

dependence of the flow-TM ϕ(x0, t) + Iϕ in an attempt to project the flow onto the

surface S. In particular, we are allowed to insert our best educated guess for a TM

which approximates the true crossing time t?c(x0), namely the DA-approximation

tc(x0) outfitted with a zero remainder bound. Note that the TM tc(x0) + [0, 0]

approximates t?c(x0), but does not necessarily contain t?c(x0) for all x0 ∈ D, or any

x0 ∈ D for that matter. We will actually be able to find a rigorous interval bound

for t?c(x0) later.

Insertion of tc(x0)+ [0, 0] into ϕ(x0, t)+ Iϕ yields a Taylor Model which describes

a curvilinear rectangle that ’hugs’ the surface S narrowly, i.e. the displacement of the

set ϕ(x0, tc(x0) + [0, 0]) + Iϕ in the transverse x1-direction from the surface is almost
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ϕ(x0, tc(x0))

0 x1

x2

0 x1

x2

=⇒

S :=
{
x ∈ R2 : x1 = σ(x2)

}

I∆

(∆(x0), ϕ2(x0, tc(x0)))

Figure 3.3. Calculation of maximal displacement of ϕ(x0, tc(x0)) with respect to S.

zero. However, we cannot expect the inclusion

{g(ϕ(x0, tc(x0) + [0, 0])) + Ig : x0 ∈ D} ⊂ {ϕ(x0, tc(x0) + [0, 0]) + Iϕ : x0 ∈ D}.

To obtain a TM-enclosure P1(x0) + IP1 of the first component of the true Poincaré

map P?(x0), we first introduce the Taylor Model

∆(x0) := (ϕ1(x0, tc(x0) + [0, 0]) + Iϕ1)− (g(ϕ(x0, tc(x0) + [0, 0])) + Ig). (3.8)

∆(x0) is a measure of the displacement parallel to the first coordinate axis of

ϕ1(x0, tc(x0) + [0, 0]) relative to the surface (cf. Figure 3.3), so range bounding

∆(x0) over all x0 ∈ D yields an interval bound I∆, which is very narrow, basically

the order of magnitude of the remainder bound Iϕ1 of the original TM-flow. Thus

we have already found a TM-enclosure of the first component of the Poincaré map

by setting

P1(x0) + IP1 := ϕ1(x0, tc(x0) + [0, 0]) + I∆. (3.9)
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x2

vmin vmax

Iv0

B

Figure 3.4. Range bound of the vector field f1 and f2 over the box B.

We are now able to also find the remaining, ’tangential’ components P2(x0) +

IP2 , ...,Pν(x0) + IPν of the TM-enclosure of P?(x0). In order to outfit the TMs

ϕj(x0, tc(x0) + [0, 0]), j ∈ {2, ..., ν} with suitable remainder bounds IPj , we need to

make use of the vectorfield of the system (3.7) and make ’velocity’-type arguments.

We first observe that an interval bound Ivel,⊥ of the velocity in x1-direction, i.e. the

function f1, over the entire set B can be found by simply range bounding the TM

f1(ϕ(x0, t), t)∀(x0, t) ∈ D × [−t̃, t̃] as in figure 3.4.

Note that except in pathological cases Ivel,⊥ does not contain zero and its upper

and lower bounds are typically of similar size since the vectorfield f(x, t) does not

vary significantly over the the set B. If we consider the interval

Itc :=
I∆

Ivel,⊥
(3.10)

we see that It is very narrow due to the smallness of I∆ and that it contains the largest

possible time duration that it can take the flow to traverse the surface in x1-direction.
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Bounding the tangential velocities, i.e. the TMs fj(ϕ(x0, t), t)∀ (x0, t) ∈ D × [−t̃, t̃]
for j ∈ {2, ..., ν}, we get interval bounds Ivel,j,‖∀j and can define the intervals

Ij,‖ := It · Ivel,j,‖∀ j ∈ {2, ..., ν}, (3.11)

which allow the rigorous bounding of the tangential components of the Poincaré map

by

Pj(x0) + IPj := ϕj(x0, tc(x0) + [0, 0]) + (Iϕj ∪ Ij,‖)∀ j ∈ {2, ..., ν}. (3.12)

We can summarize the construction of a validated TM-enclosure of the Poincaré map

in the following theorem:

3.2 Theorem. Suppose that for the system (3.1), with x0 ∈ D, and a surface S as

given in (3.5) the crossing time T0 of the true reference trajectory ϕ?(X0, t) is known

approximately, and that a TM-integration has been performed until T0. Suppose fur-

ther that a time interval T0 + [−t̃, t̃] that encloses all true crossing times has been

constructed as in (3.6) and that a verified time-dependent TM-representation of the

flow of (3.7) has been obtained over D × (T0 + [−t̃, t̃]) as in section 2.2.

Then, a TM P(x0) + IP constructed as in (3.9) and (3.12) using the interval

estimates (3.8), (3.10) and (3.11) has the property that for the true Poincaré map

P?(x0) we have the enclosure

P?(x0) ∈ P(x0) + IP ∀x0 ∈ D.

We conclude the discussion by remarking that there is an alternative route to

obtaining a suitable TM-representation P(x0) + IP of P?(x0), namely by simply

finding a sharp remainder bound Itc for the crossing time tc(x0) such that the true

crossing time t?c(x0), for x0 ∈ D, is enclosed by the TM tc(x0) + Itc∀x0 ∈ D. We

indeed have already found such an interval enclosure for the crossing time, namely

the interval It as computed in (3.10). Insertion of this TM tc(x0) + It into the time-

dependence of the flow ϕ(x0, t)+Iϕ yields a TM for the Poincaré map as well, but we

expect the aforementioned construction to have slightly sharper bounds for P?(x0).
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3.2.4 Summary of the verified algorithm

1. For the system (3.1) and a given surface S, find the crossing time T0 of the

reference orbit, i.e. ϕ(X0, T0) ∈ S

2. Integrate (3.1) in TM-arithmetic until the time T0 and obtain a verified flow

ϕ(x0, T0) + It

3. Expand the parametrization g(x) + Ig of S around the point ϕ(0, T0)

4. Extract the polynomial part ϕ(x0, T0), perform one extra integration step in

DA-arithmetic with full local time-dependence

5. Compute a DA-approximation tc(x0) of the crossing time like in section 2.3

6. Perform a range bound [tl, tu] of tc(x0) over x0 ∈ D, construct the time domain

T0 + [−t̃, t̃] as in (3.10)

7. Perform a TM-integration of the system (3.7) over the time domain T0 +[−t̃, t̃] ,

keep local time dependence. This yields a verified time-dependent flow ϕ(x0, t)+

Iϕ . Extract the remainder interval of the code list evaluation g(ϕ(x0, t) + Iϕ)

as a remainder interval Ig for the TM-representation of g.

8. Extract the polynomial part ϕ(x0, t), together with g(x0) perform the nonvali-

dated computation of the crossing time tc(x0) like in section 2.3

9. Find interval bound I∆ for the displacement (3.8) over the set D

10. Find interval bound Ivel,⊥ of the vector field component f1(x, t)

11. Find interval bound Itcas in (3.10)

12. Find interval bounds Ivel,j,‖ of the tangential vector field components fj(x, t)

as in (3.11)
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13. Construct the TM-enclosure P(x0) + IP of the true Poincaré map Ptrue(x0)

as in (3.9) and (3.12)

3.3 Numerical Example: the Volterra-Lotka equa-

tions

We consider the Volterra-Lotka equations

ẋ1 = 2x1(1− x2) (3.13)

ẋ2 = −x2(1− x1)

with the initial conditions (x1(0), x2(0)) = (1, 3). These initial conditions leads to a

periodic trajectory with a period of T0 ≈ 5.488138468035. For testing purposes it is

furthermore beneficial that actually all trajectories in the first quadrant are periodic,

and the closed orbits are the level sets of the function

f(x1, x2) = x1x
2
2e
−x1−2x2 ,

as shown in figure 3.5. This means that f stays constant along a single trajectory.

The Poincaré section onto which we want to project is S := {(x1, x2) : x1 =

1}, i.e. g(x) = x1 − 1 exactly and we may assume that Ig = [0, 0]. Note that

all nonconstant trajectories traversing this surface do so horizontally, since the x2-

component of the vectorfield vanishes on S. Furthermore, one can easily show that

at the points (1, x2) ∈ S the maximal x2-value of the corresponding orbit is assumed.

We consider a domain box X0+[−d, d]2, where X0 := (x1(0), x2(0)) = (1, 3) and d :=

10−3. We perform a 16th order verified TM-integration over the time interval [0, T0]

using the arbitrary-order code COSY Infinity [1, 15], which fully supports verified

operation using interval and Taylor Model data types. We will not review steps 1-6

in the verified algorithm, since for the most parts they need to be repeated in the later
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Figure 3.5. Periodic orbits of the Volterra-Lotka system plotted as level sets of

f(x1, x2) = x1x
2
2e
−x1−2x2 .

steps, and just state the fact that we obtained an interval enclosure of all crossing

times for trajectories originating in X0 + [−d, d]2 as T0 + [−t̃, t̃], where

t̃ = 0.3488916233200980.

Using the TM-integration scheme from section 2.2, we obtained time-dependent TMs

ϕ(x0, t) + Iϕ for the flow over the time-domain T0 + [−t̃, t̃]. The ϕ1(x0, t) + Iϕ1-

component is
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TM VARIABLE: NO=16 NV=3

I COEFFICIENT ORDER EXPONENTS

1 1.000000000416704 0 0 0 0

2 0.1000000000363324E-02 1 1 0 0

3 0.3187097194452020E-02 1 0 1 0

4 -.1584341969869541 1 0 0 1

5 0.1195161448703009E-05 2 2 0 0

6 0.3187097199172751E-05 2 1 1 0

7 0.6983455150714117E-05 2 0 2 0

8 -.1584341969567188E-03 2 1 0 1

9 -.5841622829368688E-03 2 0 1 1

10 0.1255069738025934E-01 2 0 0 0

...

264 -.2772494477873786E-19 16 1 0 15

265 -.1205045114232825E-18 16 0 1 15

266 0.2745362100462193E-18 16 0 0 16

REMAINDER BOUND INTERVAL:

[-.2812625244546855E-009,0.2827141034585959E-009]

and the ϕ2(x0, t) + Iϕ2-component is
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TM VARIABLE: NO=16 NV=3

I COEFFICIENT ORDER EXPONENTS

1 2.999999999998760 0 0 0 0

2 -.2749150733449834E-12 1 1 0 0

3 0.9999999991337136E-03 1 0 1 0

4 0.4951517601531404E-10 1 0 0 1

5 -.8889349260011417E-15 2 2 0 0

6 -.2390322899443805E-05 2 1 1 0

7 -.3809095702117611E-05 2 0 2 0

8 0.1188256477338971E-03 2 1 0 1

9 0.3787088884005587E-03 2 0 1 1

10 -.9413023036667367E-02 2 0 0 0

...

254 0.3499033280718983E-17 15 0 0 15

255 0.6881983195065229E-19 16 0 1 15

256 -.1623038355645917E-18 16 0 0 16

REMAINDER BOUND INTERVAL:

[-.1509589656350207E-009,0.1465844505110771E-009]

The exponent notation refers to the expansion in terms of x0,1, x0,2 and t. Note

here that for internal purposes supporting the verified computation COSY Infinity

rescales all variables to the domain [−1, 1]. Indeed, the coefficient 3 in the expansion

of the flow in x2-direction should be the identity in x0,2, which is the case taking

into account the rescaling (recall the domain size for the x0,j is [−10−3, 10−3] for

j = 1, 2).

Extracting the DA-part of ϕ(x0, t) + Iϕ, we can set up the auxiliary function ψ

as in step 8 and invert it using DA-methods. This yields the DA-part tc(x0) of the

crossing time:
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TM VARIABLE: NO=16 NV=3

I COEFFICIENT ORDER EXPONENTS

1 0.2630142082556787E-08 0 0 0 0

2 0.6311768667250960E-02 1 1 0 0

3 0.2011622020280193E-01 1 0 1 0

4 0.4387698247913437E-05 2 2 0 0

5 -.3155884300401868E-05 2 1 1 0

6 0.1963668821309683E-05 2 0 2 0

7 -.3714103288167166E-08 2 0 2 0

8 0.1793429553434871E-08 2 0 2 0

9 0.1577940909990520E-08 2 0 2 0

10 -.4277865429354660E-09 2 0 2 0

...

27 0.6212283471025129E-18 7 5 2 0

28 -.2159517257712372E-18 7 4 3 0

29 0.1677381555981327E-18 7 2 5 0

We next perform step 9 by outfitting this polynomial part of the crossing time

with a zero remainder bound and inserting it into ϕ(x0, t) + Iϕ, and subsequently

we construct the TM ∆(x0) from (3.8)

TM VARIABLE: NO=16 NV=3

I COEFFICIENT ORDER EXPONENTS

1 0.1738810083033253E-18 1 0 1 0

REMAINDER BOUND INTERVAL:

[-.2812625477812596E-009,0.2827141267851699E-009]

which can be range bounded by

I∆ = [−.2812625479551414E − 009, 0.2827141269590517E − 009].

Next we can find remainder bounds for the transverse and tangential velocity as in
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steps 10 and 12, by inserting ϕ(x0, t)+Iϕ into (3.13), which leads to the range bounds

Ivel,⊥ = [−4.683179956640803,−3.383171090471566]

Ivel,2,‖ = [−.4478418602052703, 0.5274061209170990].

Then, according to step 11 we can use I∆ and Ivel,⊥ to compute

Itc = [−.8356483293301176E − 010, 0.8313577422888692E − 010].

This allows us to estimate the remainder bounds I∆ and

I2,‖ = Itc · Ivel,2,‖ = [−.4407260438228519E − 010, 0.4384631619549699E − 010]

for the TM-representation of the Poincaré map and finally complete step 13 by com-

puting, according to (3.9) and (3.12), the TM-representation P1(x0) + IP1 :

TM VARIABLE: NO=16 NV=3

I COEFFICIENT ORDER EXPONENTS

1 1.000000000000000 0 0 0 0

2 0.1738810083033253E-18 1 0 1 0

REMAINDER BOUND INTERVAL:

[-.2812636815047402E-009,0.2827152370081946E-009]

and for P2(x0) + IP2 :
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TM VARIABLE: NO=16 NV=3

I COEFFICIENT ORDER EXPONENTS

1 2.999999999998760 0 0 0 0

2 0.3761326318189197E-13 1 1 0 0

3 0.1000000000129772E-02 1 0 1 0

4 0.3749999994446287E-06 2 2 0 0

5 -.3783981671657100E-14 2 1 1 0

6 -.5693365190215309E-14 2 0 2 0

...

25 -.3816772356026731E-19 7 5 2 0

26 0.7400323546967589E-19 7 4 3 0

27 -.4375766016780720E-19 7 2 5 0

REMAINDER BOUND INTERVAL:

[-.1509623028476050E-009,0.1509623028476049E-009]

The two Taylor Models constitute an enclosure of the true Poincaré map P?(x0)

for all x0 ∈ D. It is indeed more intuitive to analyze the result as a function mapping

the initial conditions X0 + x0 from the surface S back to S, which can be performed

by simply setting x0,1 = 0. Note that the result is still verified, since we are allowed

to insert any Taylor Model with a range in [−1, 1]3 into P(x0) + IP .

Performing the restriction x0,1 = 0 yields for P1(x0) + IP1 the same as above (no

x0,1-dependence), and for P2(x0) + IP2 :

TM VARIABLE: NO=16 NV=3

I COEFFICIENT ORDER EXPONENTS

1 2.999999999998760 0 0 0 0

2 0.1000000000129772E-02 1 0 1 0

3 -.5693365190215309E-14 2 0 2 0

4 0.1311936146646892E-15 3 0 3 0

5 -.1609031863045520E-17 4 0 4 0

6 0.9437249062120226E-19 5 0 5 0

REMAINDER BOUND INTERVAL:

[-.1509623028476050E-009,0.1509623028476049E-009]
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We see that the first component is exactly 1 up to small floating point errors,

which means that P(x0) + IP indeed projects onto S. The second component offers

an illuminating validation of our argument: Since all orbits of the Volterra-Lotka-

system are periodic, the Poincaré map acting only on the surface S necessarily needs

to be the identity map, a characteristic which is nicely reproduced here. The constant

part of P2(x0) + IP2 is three, i.e. the same as the initial condition, and the identity

map in the vertical shift is represented by the coefficient number 2, the linear identity

in x0,2 (recall the rescaling from x0,2 ∈ [−10−3, 10−3] to [−1, 1]).

3.4 Summary and Outlook

The Differential Algebraic framework is a natural tool to address implicitly posed

problems like the computation of Poincaré maps due to the availability of automatic

and efficient functional inversion tools. We presented an algorithm which generates

a polynomial approximation of the crossing time for orbits in the neighborhood of a

reference orbit which transverses a given surface.

Starting with the nonverified polynomial expansion of the crossing time, a rigorous

Taylor Model enclosure of the true crossing time can be obtained by applying velocity-

type arguments using the vector field in the vicinity of the Poincaré section. Once

a valid crossing time enclosure is obtained, inserting this into the Taylor Model flow

yields a verified Taylor Model enclosure of the true Poincaré map.

It is a logical progression to combine the techniques for rigorous Poincaré maps

presented in this chapter and the methods for invariant manifolds and related phe-

nomena in the plane in the subsequent chapters. One can think of the Lorenz or

Roessler systems, continuous three-dimensional systems, which could be restricted

to a suitably chosen surface via the Poincaré map algorithm, and subsequently the

restricted dynamics on the surface could be analyzed through their invariant manifold
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tangle.

Lastly, we note that the construction of the crossing time as in (3.2) can be posed

as a constraint satisfaction problem, and similar techniques have been applied in

constrained optimization problems to model feasible sets with dramatically reduced

search volume.
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CHAPTER 4

Verified Representations of

Invariant Manifolds

The study of stable and unstable manifolds is naturally a very rich topic, given the

significance of the invariant manifold structure for the dynamical properties of a dy-

namical system, ranging from questions as diverse as the determination of topological

invariants and hyperbolicity to applications in the description of long-term behavior

of physical systems, e.g. in the three-body problem or particle optics.

Of particular interest in the present work is the study of the invariant manifold

tangle with respect to the existence and the properties of the homo- and heteroclinic

intersections contained in it, and the resulting implication of horseshoe dynamics [63]

or similar hyperbolic phenomena. In this case, the manifold structure can be arguably

complicated and it has long been a challenge to develop quality numerical tools to

investigate them.

In the following we develop an approach to find Taylor Model enclosures of the

local invariant manifolds for planar diffeomorphisms around a hyperbolic fixed point

(in this case the existence of local invariant manifolds as injectively immersed curves

is guaranteed by the Invariant Manifold Theorem 2.7. As the global manifolds are
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generated as images (or preimages) of the local unstable (or stable) manifolds, likewise

Taylor Model enclosures of the global manifold structure are iteratively generated by

mapping the Taylor Model representations of the local manifolds in TM-arithmetic.

The technique consists of two steps: initially, a polynomial approximation of the

local invariant manifolds is obtained, via various techniques as presented in section

(4.1).

In the second step, these polynomials are extended to Taylor Model enclosures

of the true local manifolds by heuristically outfitting them with remainder inter-

vals bounding the truncation error. The algorithm confirms the validity of the C0-

estimates in a self-verified enclosure check.

After the TM-enclosures for the local manifolds have been constructed, we com-

pute sharp verified TM-enclosures of significant pieces of the global manifold tangles.

Subsequently we compute rigorous interval enclosures for homoclinic points in the

tangle, and give numerical examples that support the accuracy claims.

4.1 High-order approximation of the local mani-

fold

The first step to obtaining rigorous Taylor Model enclosures of local invariant man-

ifolds is the construction of nonverified, yet highly accurate polynomial approxima-

tions. We present three DA-based approaches which can be used to generate the

polynomial expansions in the neighborhood of the fixed point. All three techniques

are somewhat similiar in spirit, essentially based on normal form arguments, but with

different intuitions and realms of applicability.
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4.1.1 Normal form transformation

Let f : Rν ⊇ D −→ Rν be a Cr-map on an open set D with a fixed point p ∈ D
such that there is a hyperbolic splitting TpRν = Rν = Eup ⊕Esp at p. For simplicity,

we also assume p to be at the origin, which can be achieved through a suitable affine

transformation. Suppose now that there exists a normal form transformation N
: Rν −→ Rν that fully linearizes f around p, i.e.

(
N−1 ◦ f ◦ N

)
(x) = Df (p) · x = L (x) .

in the neighborhood of p. A prerequisite for this is that the eigenvalues satisfy the

nonresonance conditions

λj − λ
k1
1 · ... · λ

kν
ν 6= 0∀ 1 ≤ j ≤ ν and k1, ..., kν ∈ N. (4.1)

We now have a way of representing the local stable and unstable manifolds of f at

the origin through those of L. Consider the unstable manifold Wu (p), and let Eu be

the unstable eigenspace of the linearized map L:

Wu (p) = {x ∈ Rν : fk(x) −→
k→−∞

0} = {x ∈ Rν :
(
N ◦ L ◦ N−1

)k
(x) −→

k→−∞
0}

= {x ∈ Rν :
(
N ◦ Lk ◦ N−1

)
(x) −→

k→−∞
0} = {x ∈ Rν : Lk(N−1(x)) −→

k→−∞
0}

= {x ∈ Rν : N−1(x) ∈ Eu}

We are thus able to approximate the local unstable manifold Wu (p) of f as

Wu (p) = N (Eu).

The technique works likewise for the stable manifold W s (p) as the image of Es under

N . For the fully linearized map, the eigenspaces are hypersurfaces parametrized by

coordinate axes at the fixed point.
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In the case where Wu or W s are just curves, Eu or Es correspond to the coor-

dinate axes and we have e.g. Wu = N
({

(0, ..., 0, xi, 0, ..., 0)T : xi ∈ R
})

for some

index 1 ≤ i ≤ ν.

While the nonresonance condition (4.1) is merely necessary, but not sufficient

for the convergence of the NFT construction, it guarantees that we may perform

the construction in DA-arithmetic, as presented in section B.5 of Appendix B. In the

case of nonconvergence, the thus obtained polynomial approximations of the invariant

manifolds would possibly fail the automated validation tests in the verification steps

presented in the following section.

To this end it is important to note that for a finite computation order N in the DA-

framework, where N < r, condition (4.1) only needs to be satisfied for multiindices

|k| = k1 + ... + kν ≤ N . Assume now a DA-vector representation [N ] of the normal

form transformation has been obtained as in section B.5 . Suppose the unstable

eigenspace is spanned by the coordinate axes unit vectors, say

Eu := span {ê1, ..., êM} ,

for some M ∈ N. Then the natural parametrization of Eu in DA-arithmetic is

[
Eu
]

= ([x1] , ..., [xM ] , [0] , ..., [0]) ∈ ND
ν
ν

and locally we can get a polynomial approximation for a parametrization of Wu
loc (p)

as

[W loc
p ] = [N ] ◦ [Eu] ∈ ND

ν
ν .

4.1.2 Hubbard’s method

In the special case of a planar analytic (so in particular smooth) map Hubbard’s

method [31] provides an approach that can be implemented in a straightforward

fashion.
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4.1 Theorem. (Hubbard) Let f : C2 −→ C2 be a complex analytic diffeomorphism

with a hyperbolic saddle point at p. Let λu and λs be the unstable and stable eigen-

values of Df(p) with corresponding eigenvectors vu and vs. For t ∈ C, define the test

curves

γun(t) := fn(p+
t

λnu
vu), (4.2)

γsn(t) := f−n(p+ tλns vs).

Then the sequences {γun}n≥1 and {γsn}n≥1 converge uniformly on compact sets to

limit functions γu and γs, and the following properties hold:

1. f(γu(t)) = γu(λut) and f(γs(t)) = γs(λst) for all t ∈ C

2. The maps γu and γs are injective immersions.

3. The images of γu and γs coincide with the unstable and stable manifolds, re-

spectively, of f containing p.

Since typically fixed points and eigenvalues can be determined well, the functions

in (4.2) can be constructed to the desired order with high accuracy.

For a finite computation order N , straightforward application of DA-arithmetic

yields the curves

[
γuN (t)

]
:= fN

(
p+

[
λ−Nu t vu

])
,[

γsN (t)
]

:= f−N
(
p+

[
λNs t vs

])
,

as local DA-vector representations, and taking the real part if necessary. Here we

may actually relax the assumption that f be complex analytic and just demand that

f is Cr for some r ≥ N + 1.
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4.1.3 Polynomial parametrization from functional equation

Another technique for the explicit construction of polynomial approximations of in-

variant manifolds can be obtained from the fact that the manifold parametrizations

can be chosen in such a way that they obey an eigenvalue scaling law, described below

in (4.3). In the plane one can relatively simply derive the coefficients of the polyno-

mial expansions of the manifolds. These techniques are standard and are covered in

great detail in [9, 10,16,17,35,67].

In the following let again f : R2 ⊇ D−→ R2 denote a planar analytic diffeomor-

phism with a hyperbolic saddle point p ∈ D, here assumed to be at the origin. We

further assume that the eigenvector corresponding to the unstable eigenvalue λu with

|λu| > 1 coincides with the x1-axis, and the eigenvector of the stable eigenvalue λs

satisfying |λs| < 1 with the x2-axis. Let the eigenvalues satisfy the nonresonance

condition (4.1).

Let fn denote the Taylor expansion of f around (0, 0) to order n ≤ k, and let

f =n g for two sufficiently differentiable functions f and g denote agreement of their

Taylor expansions around (0, 0) up to order n (for more detail refer to Appendix B,

esp. Def. B.1 and following).

The following outlines the construction of a polynomial curve γu = (γu1 , γ
u
2 )

parametrizing the unstable manifold, again an analogous algorithm can be performed

for the stable manifold. We seek a curve γu : R −→ R2 such that

f(γu(t)) = γu(λut), (4.3)

a scaling property of the unstable manifold which stems directly from the Invariant

Manifold Theorem (2.7). We make the polynomial Ansatz
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γ
u,n
1 (t) = t+

n∑
i=2

αi t
i = γ

u,n−1
1 (t) + αn t

n,

γ
u,n
2 (t) = 0 +

n∑
i=2

βi t
i = γ

u,n−1
2 (t) + βn t

n,

and see that in fact γ̇u,n (0, 0) = (1, 0)T is tangent to the x1-axis at the origin for

every n ∈ N. Rewriting the diffeomorphism we obtain

f1(x1, x2) = λux1 + f̃1(x1, x2),

f2(x1, x2) = λsx2 + f̃2(x1, x2),

where f̃ =
(
f̃1, f̃2

)
denotes the nonlinear part of f . Note in particular that f̃ can be

written as a power series expansion because of the analyticity of f . By inserting the

above expressions into the condition (4.3) we obtain

λu t+ λu

n∑
i=2

αi t
i + f̃1

(
γ
u,n
1 (t) , γ

u,n
2 (t)

)
= λu t+

n∑
i=2

λiu αi t
i, (4.4)

λs

n∑
i=2

βi t
i + f̃2

(
γ
u,n
1 (t) , γ

u,n
2 (t)

)
=

n∑
i=2

λiu βi t
i.

For the determination of αn, βn we are interested in the terms of (4.4) of exact order

n in t, or in other words the part of (4.4) which is homogeneous of order n in t. To this

end we observe that the part of f̃
(
γ
u,n
1 (t) , γ

u,n
2 (t)

)
which is homogeneous of order n

in t is identical to the part homogeneous of order n in t of f̃
(
γ
u,n−1
1 (t) , γ

u,n−1
2 (t)

)
.

Indeed this is the case since f̃ is a power series expansion of order 2 and greater, and

so the n-th order terms of γu,n do not contribute to the terms of f̃
(
γ
u,n
1 (t) , γ

u,n
2 (t)

)
homogeneous of order n.

Inserting this into the equations (4.4) and rearranging terms we obtain

61



(λu − λnu) · αn tn =
n−1∑
i=2

λiu αi t
i − f̃1

(
γ
u,n−1
1 (t) , γ

u,n−1
2 (t)

)
,

(λs − λnu) · βn tn =
n−1∑
i=2

(
λiu − λs

)
βi t

i − f̃2
(
γ
u,n−1
1 (t) , γ

u,n−1
2 (t)

)
,

and hence, because (λσ − λnu) 6= 0∀n ∈ N, σ = u, s due to the nonresonance,

αn =
S

(n)
1

(λu−λnu) , βn =
S

(n)
2

(λs−λnu) ,
(4.5)

where S
(n)
1 and S

(n)
2 denote the sum of the coefficients of terms of exact order

n in f̃1
(
γ
u,n−1
1 (t) , γ

u,n−1
2 (t)

)
and f̃2

(
γ
u,n−1
1 (t) , γ

u,n−1
2 (t)

)
. The construction

(4.5) is fully explicit and inductive, since computation of αn and βn only requires

knowledge of the αi, βi for 1 ≤ i ≤ n− 1.

Making the transition to DA-arithmetic is again straightforward here. Again we

may relax our assumption that f is analytic and just demand that f is Cr for some

r ≥ N + 1, where N is the desired expansion order of the DA-vector-computation.

Additionally, the nonresonance condition (4.1) only needs to hold up to order N as

well. We get

[
γ
u,n
1
]

=
[
γ
u,n−1
1

]
+
[
αnt

n] ,[
γ
u,n
2
]

=
[
γ
u,n−1
2

]
+
[
βnt

n] ,
where

[αnt
n] = 1

(λu−λnu)

[
S

(n)
1 tn

]
, [βnt

n] = 1
(λu−λnu)

[
S

(n)
2 tn

]
,

and[
S

(n)
i tn

]
:=
[
f̃i

(
γ
u,n−1
1 (t) , γ

u,n−1
2 (t)

)]
N
−
[
f̃i

(
γ
u,n−1
1 (t) , γ

u,n−1
2 (t)

)]
N−1

for i = 1, 2 is homogeneous of order n in t.
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4.2 Verified enclosure of the local manifold

4.2.1 Construction of verified local invariant curve enclo-

sures

In the previous section techniques to find a nonverified polynomial approximation for

the unstable curve near a fixed point were introduced. In the following we describe

how such a polynomial approximation can be extended to a two-dimensional Taylor

Model ’tube’ that rigorously encloses the true invariant manifold.

Again, throughout this section let f : R2 ⊃ D−→ R2 be Cr with a hyperbolic

fixed point at the origin, and such that the dominating eigenvector with eigenvalue

λu with |λu| > 1 coincides with the x1-axis, and the minor one with eigenvalue λs

(|λs| < 1) with the x2-axis. For simplicity we will also assume that in fact λu > 1,

else consider the squared map.

We first introduce the notion of slopes:

4.2 Definition. A differentiable curve γ ⊂ R2 parametrized as γ(t) = (γ1(t), γ2(t)),

with t ∈ [−1, 1], such that |γ̇1(t)| 6= 0∀ t is called regular. For regular curves, we

define the slope sγ as

sγ(t) =
γ̇2(t)

γ̇1(t)
.

4.3 Remark. We can find simple transformation laws how the slope of a curve

changes under iteration by a map f ∈ C2(R2). For a regular initial curve γi, we

denote the tranformed curve γf := f(γi) and observe that

γ̇f (t) := Df(γi(t)) · γ̇i(t)

or componentwise

γ̇f,k(t) = ∂1fk(γi(t)) · γ̇i,1(t) + ∂2fk(γi(t)) · γ̇i,2(t) for k = 1, 2
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f(E)

E

U

Figure 4.1. A parametrized rectangle E (black, dashed), and its image (blue, dotted).

In the situation of Theorem 4.4, the true unstable manifold U (red, dash-dotted) is

narrowly bound in its transverse direction by both E and f(E).

and thus we obtain the new slope

sγf (t) =
∂1f2(γi(t)) · γ̇i,1(t) + ∂2f2(γi(t)) · γ̇i,2(t)

∂1f1(γi(t)) · γ̇i,1(t) + ∂2f1(γi(t)) · γ̇i,2(t)
(4.6)

=
∂1f2(γi(t)) + ∂2f2(γi(t)) · sγi(t)
∂1f1(γi(t)) + ∂2f1(γi(t)) · sγi(t)

.

Let E be a parametrized curvilinear rectangle, i.e. the image of the unit square

under an injective polynomial P : [−1, 1]2 −→ R2 . We denote the left and right

boundaries ∂lE and ∂rE of E by ∂lE = P ({−1}×[−1, 1]) and ∂rE = P ({1}×[−1, 1]),

and call ∂vE := ∂lE ∪ ∂rE the vertical boundary of E.

Likewise we introduce the horizontal boundary ∂hE := P ([−1, 1]× ({−1}∪ {1}))
of E. To visualize these notions an example for such a parametrized rectangle is

depicted in Figure 4.1. We are now able to formulate conditions under which such a

set can enclose the unstable curve in the vicinity of the origin:
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4.4 Theorem. Let E and P be as above such that E contains the hyperbolic fixed

point at the origin. If

f (E) ∩ ∂hE = ∅, (4.7)

then the unstable manifold is disjoint from ∂hE. If furthermore there exists M > 1

and S > 0 such that

|∂1f2 (x)− ∂2f2 (x) · s| < S ∀ |s| ≤ S, (4.8)

|∂1f1 (x)− ∂2f1 (x) · s| > M ∀ |s| ≤ S, (4.9)

then the unstable manifold is disjoint from ∂hE and leaves E through both ∂lE and

∂rE.

Proof. First suppose that the unstable manifold intersects ∂hE, then there exists a

first such point, say p, such that the entire manifold arc A from the origin to p lies

inside E. Consider the preimage p̃ := f−1(p). Since this lies in the interior of A, we

have p̃ ∈ E. But then p = f(p̃) ∈ f(E), which is in contradiction to assumption (4.7)

above.

To prove the second claim, consider the open cone

CS :=
{
v = (v1, v2) ∈ R2 : v2 = σv1 where |σ| < S

}
,

see also Figure 4.2.

We first note that the image of any regular curve in CS ∩E which has slope less than

S again has slope less than S, by virtue of the slope transformation law (4.6) and the

conditions (4.8,4.9). In particular, this also entails that (f(CS) ∩ E) ⊂ (CS ∩ E).

Let now x be an element in the connected component of U ∩ E containing the fixed

point. Then x ∈ CS , because the entire manifold segment between the origin and

x has slope less than S. For if not, then there would be a point x̃ on that segment

such that sU |x̃ ≥ S. At the origin sU (0) = 0, so because of continuity of sU we
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have that for a positive ε < S there exists a neighborhood B(ε) of the origin in CS

such that sU |ζ < ε < S ∀ ζ ∈ B(ε). But x̃ is an element of the unstable manifold,

so ∃ k(ε) ∈ N such that f
−k(ε)

(x̃) ∈ B(ε), and hence sU |
f
−k(ε)

(x̃)
< ε < S. Since

as stated above, slopes of less than S get transformed to slopes less than S under

iteration, we most also have sU |x̃ < S, in contradiction to our earlier choice.

So since x ∈ CS , we may write x2 = σx1 for some |σ| < S. Consider the

parametrized line G(t) := (x1, x2)T · t, then we have that G(0) = 0, G(1) = x and

hence by the Mean Value Theorem for some ξ ∈ [0, 1] :

f1(x) = f1(G(1)) = D (f1(G(ξ)))

= 〈∇f1(G(ξ)), (x1, x2)T 〉

= ∂1f1(G(ξ)) · x1 + ∂2f1(G(ξ)) · x2

= (∂1f1(G(ξ)) + ∂2f1(G(ξ)) · σ) · x1 ,

and thus

|f1(x)| = |∂1f1(G(ξ)) + ∂2f1(G(ξ)) · σ| · |x1 | > M · |x1|

by assumption (4.9). So the x1-component of the image of any point x on the con-

nected component of U ∩E containing the origin has its modulus inflated by at least

M > 1, and consequently the unstable manifold must leave E. Since U cannot leave

through the horizontal boundary, it must leave through ∂lE and ∂rE. Note that a

horseshoe-shape of U such that it leaves E through only one of its vertical boundaries

cannot happen, since in this case the slope of U would be unbounded in CS ∩E.

Let now γ0 : [−1, 1] −→ R2 be a polynomial curve approximating the unstable

manifold near the origin, γ0(0) = (0, 0), and assume that γ0 is regular, a natural

condition which can easily be checked rigorously. We will now use γ0 as the basis

to construct a curvilinear rectangle as in the preceding theorem, and then employ

Taylor Model arithmetic to rigorously check the assumptions in guaranteeing the

valid unstable curve enclosure.
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E

CS

Figure 4.2. The parametrized rectangle E (blue, dashed), and the cone CS (red,

dotted) with an opening slope S such that (f(CS) ∩ E) ⊂ (CS ∩ E).

E(t, s)

f(E(t λ−1
U , s))

�
�
�
�
��

D1

D2

ε

Figure 4.3. The parametrized rectangle E (blue, dashed) is constructed around its

center curve γ0. The difference between γ0 and the rescaled iterate f(E) (red, dotted)

can be bounded by the interval box D = (D1, D2) (green, dash-dotted) such that

f(E) ⊂ γ0 +D.
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4.5 Lemma. Let ε > 0, define the polynomial P : [−1, 1]2 −→ R2 as

P (t, s) :=

(
γ0,1 (t)

γ0,2 (t) + ε · s
)
, (4.10)

and let Is, D1, D2 ⊂ R be closed intervals (cf. Fig(4.3)) such that for the slope of γ0

we have

sγ0 (t) ∈ Is ∀ t ∈ [−1, 1] (4.11)

and furthermore

fi

(
P

(
t

λu
, s

))
− γ0 (t) ∈ Di ∀ (t, s) ∈ [−1, 1]2. (4.12)

Consider the parametrized rectangle E := P
(

[−1, 12]
)

. If there exists a positive

K < ε such that

Is ·D1 +D2 ⊂ [−K,K] , (4.13)

then f (E) ∩ ∂hE = ∅ and condition (4.7) is satisfied.

4.6 Remark. The intuition behind the lemma is the following: if a polynomial curve

γ0 approximates the true local unstable manifold U well, then by thickening it slightly

by a width ε, which in practice will be very small (10−12 and smaller), we obtain a

thin parametrized rectangle P which has a chance to rigorously contain U . P mirrors

the functional equation f(U(t)) = U(λut) of the true local manifold U = U(t), i.e.

f(P (t, s)) ≈ γ0(λut),

up to some small contributions of size less than ε, and the difference bounds Di in

(4.12) can be very sharp.

Proof. First note that E is indeed an embedded rectangle, since P is bijective and

smooth. Further note that the set γ0 ([−1, 1]) + (D1, D2)T contains the connected

component of the unstable manifold in E containing the fixed point. Now suppose
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f (E)∩ ∂hE 6= ∅, then pick a point p in that intersection, and assume without loss of

generality that p ∈ ∂uE. Then by (4.12) we know p = γ0 (t0)+δ for some t0 ∈ [−1, 1]

and δi ∈ Di for i = 1, 2.

There exists a curve segment C ⊂ ∂uE connecting p and ζ :=(
γ0,1(t0), γ0,2(t0) + ε

)
. By the Mean Value Theorem we have a point q =(

γ0,1 (t2) , γ0,2 (t2) + ε
)
∈ C , with t2 ∈ (min {t0, t1} ,max {t0, t1}), such that with

the slope σq of the boundary ∂uE at q we have

ζ2 − p2 = ε− δ2 = σq · (ζ1 − p1) = σq · δ1.

Since ∂uE is γ0 shifted vertically by ε, we simply have σq = sγ0 (t2) and hence

σq · δ1 + δ2 = sγ0 (t2) · δ1 + δ2 = ε,

in contradiction to (4.13).

With the last result we are now ready to verify the conditions in Thm. 4.4 using

Taylor Model methods:

4.7 Corollary. Let ε, γ0 and P as in Lemma 4.5, and consider the Taylor Models

T (t, s) := P (t, s) +

(
[0, 0]

[0, 0]

)
=

(
γ0,1 (t)

γ0,2 (t) + ε · s
)

+

(
[0, 0]

[0, 0]

)
,

Γ̇i (t) := γ̇0,i (t) + [0, 0] for i = 1, 2.

Let I∗s , D∗1, D∗2 ⊂ R be interval range bounds such that

Γ̇2 ([−1, 1])

Γ̇1 ([−1, 1])
⊂ I∗s ,

fi

(
T

(
[−1, 1]

λu
, [−1, 1]

))
− γ0 ([−1, 1]) ⊂ D∗i for i = 1, 2.

If

max
{∣∣min

(
I∗s ·D∗1 +D∗2

)∣∣ ,max
(
I∗s ·D∗1 +D∗2

)}
< ε

then f (E) ∩ ∂hE = ∅.
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Proof. First note that T (t, s) and Γ̇i (t) are exact Taylor Model representations of

the parametrized rectangle E and the curve derivatives γ̇0,i for i = 1, 2, as the test

curve γ0 is constructed as a finite order polynomial. The rest follows directly from

applying Lemma 4.5 using Taylor Model arithmetic.

4.8 Proposition. In the setting of Thm. 4.4, let again

T (t, s) := P (t, s) +

(
[0, 0]

[0, 0]

)
=

(
γ0,1 (t)

γ0,2 (t) + ε · s
)

+

(
[0, 0]

[0, 0]

)
,

be a Taylor Model representation of the set E. Assume that there are S > 0 and

M > 1 such that there are interval range bounds on the derivatives over T given by

max
(∣∣∣∂1f2

(
T
(

[−1, 1]2
))∣∣∣− ∣∣∣∂2f2

(
T
(

[−1, 1]2
))
· [−S, S]

∣∣∣) < S,

min
(∣∣∣∂1f1

(
T
(

[−1, 1]2
))∣∣∣− ∣∣∣∂2f1

(
T
(

[−1, 1]2
))
· [−S, S]

∣∣∣) > M.

Then the conditions (4.8,4.9) hold.

Proof. Straightforward application of Taylor Model arithmetic on (4.8,4.9).

4.9 Remark. Finding a suitable slope bound S is not hard in practice. Due to the

hyperbolic structure in the vicinity of the fixed point the derivative ∂1f1 typically is

large, and ∂2f2 typically is small in absolute value, so that the relations (4.8,4.9)

may hold true even for large test values S > 1. A good first candidate for S could be

constructed as max
t∈[−1,1]

∣∣∣sγ0 (t)
∣∣∣ and subsequent inflation by some factor greater than

one.

Summing up this section, given an approximate test polynomial γ0 and a thick-

ening ε > 0 such that the Taylor Model interval range bounds in Corollary 4.7 and

Proposition 4.8 are satisfied, then the true unstable curve leaves the thin parametrized

rectangle constructed as in (4.10) through its vertical, and not its horizontal bound-

ary.
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4.2.2 Example: the Hénon map

As an example for the constructions we have developed so far we consider the Hénon

map

Ha,b(x1, x2) :=
(

1 + x2 − a x2
1, bx1

)
. (4.14)

Depending on the parameter choices for a and b, the map exhibits a wide range of

dynamics (e.g., since det(DH) = −b everywhere, the parameter b determines volume-

preservation etc.). The standard parameter values proposed by Hénon originally are

a = 1.4 and b = 0.3. In this situation, H exhibits seemingly hyperbolic dynamics

and a strange attractor. There are two hyperbolic saddle points p1 and p2, and we

consider the manifold structure near p1 ≈ (0.631354477089, 0.1894063431265).

Subsequently we reexpand the Hénon map around p1 and shift it to the origin to

obtain an origin-preserving version of H around p1:

H̃a,b(t1, t2) := Ha,b(p1,1 + t1 , p1,2 + t2)− (p1,1 , p1,2)

= (−2 a p1,1 t1 + t2 − a t2, b t1)

For convenience, we will switch to diagonal coordinates at p1, the construction of

which can still be performed analytically in dependence on the parameters a and b.

The Jacobian of H̃a,b is

DH̃a,b(t1, t2) =

(
−2 a p1,1 − 2 a t1 1

b 0

)
and evaluated at the origin, this yields the eigenvalues

λ1,2 = a p1,1 ∓
√(

a p1,1
)2

+ b =⇒ λ1 ≈ −1.92 , λ2 ≈ 0.155

with corresponding normalized eigenvectors

ei =

(
λi
b
ηi , ηi

)T
, i = 1, 2,
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where ηi :=

((
λi
b

)2
+ 1

)−1
2

. With these, we can set up the transformation

matrices

Ma,b :=
(
e1 e2

)
=

(
λ1
b η1

λ2
b η2

η1 η2

)
=:
[
Mi,j

]
i,j=1,2

and the inverse

M−1
a,b =

b

(λ1 − λ2) η1 η2

(
η2 −λ2

b η2

−η1
λ1
b η1

)
=:
[
M−1
i,j

]
i,j=1,2

which will provide that M−1
a,b ◦ H̃a,b ◦ Ma,b has diagonal linear part. We can

perform the compositions explicitly as

(
H̃a,b ◦Ma,b

)
(t1, t2) =

(
K1 t

2
1 + K2 t1 + K3 t1 t2 + K4 t2 + K5 t

2
2

K6 t1 + K7 t2

)
,

where

K1 := −aM2
11 K5 := −aM2

12
K2 := −2 a p1,1M11 +M21 K6 := bM11
K3 := −2 aM11M12 K7 := bM12
K4 := −2 a p1,1M12 + M22

and subsequently

(
M−1
a,b ◦

(
H̃a,b ◦Ma,b

))
(t1, t2) =

(
λ1 0

0 λ2

)
·
(
t1
t2

)
+

(
J1 t

2
1 + J2 t1 t2 + J3 t

2
2

J4 t
2
1 + J5 t1t2 + J6 t

2
2

)
(4.15)

where

J1 := M−1
11 K1 J4 := M−1

21 K1
J2 := M−1

11 K3 J5 := M−1
21 K3

J3 := M−1
11 K5 J6 := M−1

21 K5

.

For convenience, we again denote the transformed map
(
M−1
a,b ◦ H̃a,b ◦Ma,b

)
by H̃a,b. Note that the linear part of H̃a,b is now diagonal, due to the first order
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normal form transformation, and furthermore that all coefficients Ji are still analytic

expressions solely in terms of a and b. For the cone type argument we consider the

Jacobian of the transformed map

DH̃a,b(t1, t2) =

(
2 J1 t1 + λ1 + J3 t2 J3 t3 + 2 J4 t2

2 J5 t1 + J6 t2 J6 t1 + λ2 + 2 J8 t2

)
Evaluating the formula (4.15) with our parameters yields the approximate linearly

diagonalized Hénon map in the new coordinates as

H̃a,b(t1, t2) ≈
(
−1.92 0

0 0.16

)
·
(
t1
t2

)
+

(
−1.28 t21 + 1.19 t1 t2 − 0.29 t22

0.22t21 + 0.21 t1t2 − 0.05 t22

)
.

We performed a 20th order computation as outlined in section 4.2 for TM-

enclosures for the local stable and unstable manifolds over parameters (t, s) ∈
[−0.2, 0.2]2. Linearly transforming back into the natural coordinate system, we ob-

tain Taylor Model enclosures Tu and Ts for pieces of the local unstable and stable

manifolds of finite length as depicted in Figure ??.

In the following we list the actual Taylor Models for manifold enclosures. Note

that per the construction in Corollary 4.7 and Proposition 4.8, they are outfitted

with a zero-width remainder bound, however due to the implementation of rigorous

outward rounding in COSY Infinity [15], the depicted remainder bound has a width

just above the machine accuracy threshold.

The Taylor Models for Tu,1 is:
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TM VARIABLE: NO=20 NV=2

I COEFFICIENT ORDER EXPONENTS

1 0.6313544770895047 0 0 0

2 -.1976115511989409 1 1 0

3 -.1014764915954764E-01 2 2 0

4 0.1057527102942118E-02 3 3 0

5 0.2855780728643021E-04 4 4 0

6 -.1866238471492046E-05 5 5 0

...

REMAINDER BOUND INTERVAL:

[-.6012505080026924E-291,0.6012505080026924E-291]

We see Tu,1 is centered at the fixed point, has a dominant linear part and only

dependence on the longitudinal parameter t.

For the vertical component Tu,2:

TM VARIABLE: NO=20 NV=2

I COEFFICIENT ORDER EXPONENTS

1 0.1894063431268514 0 0 0

2 0.3081679465402512E-01 1 1 0

3 0.3200000000000000E-14 1 0 1

4 -.8226109067472505E-03 2 2 0

5 -.4456299883934181E-04 3 3 0

6 0.6255494451670481E-06 4 4 0

...

REMAINDER BOUND INTERVAL:

[-.6012505080026924E-291,0.6012505080026924E-291]

Again Tu,2 has no s-dependence except for the linear term 0.32 ·10−14 ·s according to

the choice in Eq.(4.10). So in this case the accuracy with which Tu encloses Wu
loc (p)

is ε = 0.32 · 10−14.

Analogously we have the component Ts,1:
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TM VARIABLE: NO=20 NV=2

I COEFFICIENT ORDER EXPONENTS

1 0.6313544770895047 0 0 0

2 0.1024000000000000E-12 1 1 0

3 -.9224555310786783E-01 1 0 1

4 0.1129853346959211E-02 2 0 2

5 -.3773693602439372E-05 3 0 3

6 0.5463903367657585E-08 4 0 4

...

REMAINDER BOUND INTERVAL:

[-.6012505080026924E-291,0.6012505080026924E-291]

This time Ts,1 has no t-dependence except in the linear term, analogous to Tu,2,

except in ê1-direction.The obtained enclosure accuracy is ε = 0.1024 · 10−12, signif-

icantly worse than in the unstable case. This is likely a consequence of the much

stronger expansion of the inverse Hénon map near p than the map itself.

Lastly, the component Ts,2:

TM VARIABLE: NO=20 NV=2

I COEFFICIENT ORDER EXPONENTS

1 0.1894063431268514 0 0 0

2 -.1774563550054591 1 0 1

3 0.1393776240096155E-01 2 0 2

4 -.2985124704889843E-03 3 0 3

5 0.2771556369100959E-05 4 0 4

6 -.1335693482088341E-07 5 0 5

...

REMAINDER BOUND INTERVAL:

[-.6012505080026924E-291,0.6012505080026924E-291]

4.3 Global manifold tangles

In the previous section we have demonstrated how the local invariant manifolds near

a hyperbolic fixed point can be enclosed sharply using Taylor Model approximations.
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Figure 4.4. In a) the enclosures of the local unstable (solid) and stable (dashed)

manifold near the origin are plotted. In b) we see the local manifold enclosures Tu
and Ts from section 4.2.1 around the fixed point p0 ≈ (−.63, 0.18) and retransformed

into the original coordinate system.
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We can now proceed to generate significant pieces of the global manifold structure

simply by iteration. Iterating the Taylor Model enclosures of the unstable manifold

through the map f or the stable manifold enclosures through the inverse f−1 in Taylor

Model arithmetic will yield valid Taylor Model enclosures of successively larger global

manifold pieces.

In practice, this approach requires a bisection and reparametrization of the Taylor

Model enclosures of the manifolds, even though the initial basic premise is retained

in spirit. The fundamental problem is the blow-up of the remainder bound size under

iteration, which is caused by two main factors.

1. If the map f (or its inverse) is volume-expanding and the unstable (or stable)

manifold is repelling, then the Taylor Model enclosure of said manifold must also

expand, by the inclusion property. In this case actually not only the remainder

bound increases in size, but the polynomial part as well.

2. The remainder bound grows disproportionally if the truncation error between

the true manifold and the polynomial part of the Taylor model enclosure be-

comes large. This is the case when the manifold parametrization can only un-

satisfactorily be modeled by a polynomial of finite order, for instance when the

true manifold grows exponentially in length under iteration, or if it makes sharp

turns. Thus, the truncation error is primarily scaling with the longitudinally

parametrizing variable of the Taylor model.

The first issue can not be controlled through any sophisticated manipulation of

the TM manifold enclosure, since the expansion is an intrinsic property of the map.

The only way to obtain sharp estimates even for higher iterates is to increase the

computation order and to employ high-precision or arbitrary-precision arithmetic, so

that the initial Taylor Model enclosure of the local invariant manifold is sharper to

begin with.
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The second problem, however, can be remedied. The solution to keeping the

truncation error size in check is to rescale and locally reexpand the polynomial ap-

proximation:

4.10 Algorithm. Let T = PT (t, s) + IT be a Taylor Model enclosure containing a

piece of unstable manifold, and parametrized longitudinally by the variable t . Let

δ > 0 be the desired threshold of the C0-approximation of the unstable manifold by

the TM-enclosures, i.e. the maximal size of the remainder bounds. Let M ∈ N be the

maximal number of bisection steps (typically M < 10). To generate TM-enclosures

of new pieces of unstable manifold, execute the following algorithm:

1. Compute f (T ) =: Pf(T ) + If(T ) in Taylor Model arithmetic. If
∣∣∣If(T )

∣∣∣ ≤ δ,

the iteration is successful.

2. If
∣∣∣If(T )

∣∣∣ > δ, split and reparametrize the TM T as T1 := PT

(
−1

2 + t
2

)
+ IT

and T2 := PT

(
1
2 + t

2

)
+ IT , with t ∈ [−1, 1].

3. Compute f (T1) =: Pf(T1) (t, s) + If(T1) and f (T2) =: Pf(T2) (t, s) + If(T2).

If
∣∣∣If(T1)

∣∣∣ ≤ δ and
∣∣∣If(T2)

∣∣∣ ≤ δ, the iteration is successful.

4. If
∣∣∣If(T1)

∣∣∣ > δ or
∣∣∣If(T2)

∣∣∣ > δ, repeat iteration from step 2.

5. If after M subdivisions not all remainder bounds are of width less than δ, either

stop iteration or increase δ.

The algorithm can be performed analogously for the stable manifold enclosures

with the inverse map.

This algorithm generates an ordered list of local Taylor Model enclosures

{T1, ..., TK}, the union of which still contains the true manifold f (U) ⊂
K⋃
j=1

Tj ,

instead of one big Taylor Model which fails to sharply enclose the manifold iterate.
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While this particular algorithm only factors in the remainder bound size of the iter-

ated manifold enclosures as the benchmark of where and how to bisect and reexpand

the Taylor Model pieces, more sophisticated bisection methods can be implemented

that take into account information like length, length growth or curvature.

We infer that under repeated iteration this algorithm inductively computes an

ordered list of K (n) Taylor Models
{
Tj

}K(n)

j=1
such that for the n-th iterate we have

fn
(
Wu
loc (p)

) ⊂ K(n)⋃
j=1

Tj .

4.3.1 Discarding manifold pieces

In this section we discuss a criterion which allows us to discard large subsets of the

global manifold tangle in certain special cases, easing the computational workload

and memory requirement substantially.

In the following let f : Rv ⊇ D −→ D, where D is open, be a Cr-diffeomorphism.

We first introduce the notion of an attractor:

4.11 Definition. (Attractor) An attractor for f is a compact set A ⊂ Rv that has

an open neighborhood V ⊆ Rv such that fK (V ) ⊂ V for some K ∈ N and A =⋂
k∈N fk (V ).

The set BA :=
⋃
k∈N f−k (V ) is called the basin of A.

It is clear that A is invariant under f and that all orbits starting in BA converge

to A.

Consider now the case where f is volume-decreasing, i.e. the determinant

‖det (Df (x))‖ < 1∀x ∈ D. In this case, the unstable manifolds may be bounded (in

particular they may be contained in an attractor), but in turn this means that the

inverse map is expanding and the stable manifolds can be unbounded. An example

for this phenomenon is the Hénon map Ha,b with standard parameters a = 1.4 and
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a)

b)

Figure 4.5. (a a local stable manifold segment (solid) of the Hénon map Ha,b for

a = 1.4, b = 0.3, together with the unstable manifold (dashed). The actual Taylor

Model enclosures are several orders of magnitude below printer resolution in size. In

(b) the 3rd preimage of the stable segment is shown.
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a)

b)

Figure 4.6. 4th (a) and 6th (b) preimages of the local stable manifold segment (solid),

together with the unstable manifold (dashed).
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a)

b)

Figure 4.7. 8th (a) and 10th (b) preimages of the local stable manifold segment

(solid), together with the unstable manifold (dashed).
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b = 0.3, in which the determinant of the Jacobian
∥∥∥det

(
DHa,b

)∥∥∥ = b < 1 every-

where. Here, numerical experimentation suggests that the unstable manifold of both

fixed points is bounded and contained in an attractor with an unbounded basin. The

stable manifold is contained within the basin, but extends very far, loosely speaking

’to near-infinity’ (the Lipschitz constant of Ha,b is unbounded) , before returning to

the attractor to form homo-/heteroclinic intersections and running off again. From

a practical point of view, in particular with respect to a verified Taylor Model en-

closure of the stable manifold, this behavior is disheartening, as there is little chance

to sharply bound truncation errors of polynomial approximations for curves which

exhibit accelerating length-growth.

However, in the volume-decreasing case we may be able to determine a trapping

region in the neighborhood of an attractor:

4.12 Definition. (Trapping region) A trapping region is a nonempty compact subset

E ⊆ D such that f (E) ⊂ E.

A trapping region E always contains a fixed point by Schauder’s Theorem (2.29),

and in particular contains the global unstable manifold Wu (p) for any hyperbolic

fixed point p ∈ E. If we are interested in the homoclinic intersections of W s (p) ∩
Wu (p), and we iteratively generate W s (p) as f−n

(
W s
loc (p)

) −→
n→∞ W s (p), we

indeed only need to iterate stable manifold segments which are contained in E:

4.13 Proposition. Let f,D,E as above, let p ∈ E be a hyperbolic fixed point, and

let x ∈ W s (p). If f−k0 (x) /∈ E for some k0 ≥ 0, then also f−k (x) /∈ E ∀ k > k0.

Proof. If there were any k > k0 such that f−k (x) ∈ E, then also every image

of f−k (x) is contained in E, in particular fk−k0
(
f−k (x)

)
= f−k0 (x) ∈ E, a

contradiction.

In practice this means that in order to generate branches of the stable manifold for

the purpose of studying the homoclinic tangle, we may discard any stable manifold
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branch which gets mapped outside the trapping region, or in particular outside any

superset of a trapping region.

In the case of the Hénon map Ha,b, a set of three parallelepipeds E1-E3 (cf. Figure

4.8a) was identified by K. Makino which could be shown to contain its fifth Hénon

iterate (cf. Figures 4.8b and 4.9). We will not denote the exact specifications of the

parallelepipeds here, but instead state the following result which has been verified

using Taylor Model iteration:

4.14 Proposition. The sets E1-E3 satisfy

H5
a,b (E1 ∪ E2 ∪ E3) ⊂ (E1 ∪ E2 ∪ E3) ,

and hence the set

E :=
4⋃
i=0

Hia,b(E1 ∪ E2 ∪ E3)

is a trapping region for Ha,b.

It can be shown that the set E is contained within the interval box ID :=

[−1.5, 1.5] × [−0.5, 0.5], and in the generation of the stable manifolds from Figures

4.5-4.7 one is allowed to discard and not further propagate all Taylor Model pieces

getting mapped outside ID. We note that this discarding criterion is still somewhat

crude, and a more sophisticated test to discard stable manifold segments outside the

region of interest can be formulated: Since the set E consist essentially of the par-

allelepipeds E1-E3, it can be bounded sharply by a superset consisting of slightly

inflated parallelepipeds which capture the structure of E more finely than ID. The

rigorous test which segments of a Taylor Model curve lie outside a parallelepiped is

however only marginally more difficult than the same test for an interval box.
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Figure 4.8. a) The parallelepipeds E1 (red), E2 (green, dashed) and E3 (black,

bold) contain the Hénon attractor and form the basis for a trapping region. b) The

fifth iterate H5
a,b(E1) (red) is contained in (E1 ∪ E2 ∪ E3). (Pictures courtesy of K.

Makino)

85



-0.4

-0.2

 0

 0.2

 0.4

-1.5 -1 -0.5  0  0.5  1  1.5

rhenon. step 5. box2. 3/3/08

box2

a)

-0.4

-0.2

 0

 0.2

 0.4

-1.5 -1 -0.5  0  0.5  1  1.5

rhenon. step 5. box3. 3/3/08

box3

b)

Figure 4.9. a) The fifth iterate H5
a,b(E2) (green, dashed) is contained in

(E1 ∪ E2 ∪ E3). b) The fifth iterate H5
a,b(E3) (black, bold) is contained in

(E1 ∪ E2 ∪ E3). (Pictures courtesy of K. Makino)
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4.4 Computation of homoclinic point enclosures

In the preceding sections we have presented a technique to get verified TM-enclosures

of the invariant manifolds near a hyperbolic fixed point p, as well as a propagation

scheme which yields an ordered list of TMs which rigorously enclose finite forward

(inverse) images of the unstable (stable) manifold pieces at p, up to a finite number

of iterates.

In the following we will describe a simple way of computing sharp interval bounds

of the homoclinic intersection points of these parts of the invariant manifolds of p,

with the added advantage that the compuation can be automated in a straightfor-

ward fashion. In other words, we are confident that this technique is suitable to

compute all intersection points of particularly long pieces of the invariant manifolds

of p. Naturally, the approach can readily be extended to compute heteroclinic inter-

section points of two stable and unstable manifold pieces belonging to two different

hyperbolic fixed points, but for brevity we will only consider homoclinic intersections

of the manifold tangle of a single fixed point p.

The knowledge about homoclinic points is of course valuable in itself, since there

are numerous deep questions in the study of hyperbolic and chaotic dynamics directly

related to their existence, abundance and mapping properties. But for the purpose of

this presentation, the added benefit is that the quality of a numerical approximation

of a homoclinic point can readily be checked through various quantitative techniques,

which will give us good tests to assess the accuracy of the TM-manifold-enclosures

that are used to compute the homoclinic points in the first place.

4.4.1 Verification of existence of homoclinic points

Assume we are given TM-enclosures of two pieces of the planar unstable and stable

manifold which are known to intersect. Let these TMs be parametrized as T1(t, s) =
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T1

T2

B = B1 ×B2

A
A
A
A

Figure 4.10. Transverse crossing of two Taylor Models T1 (dash-dotted) and T2
(dashed). Their intersection can be enclosed into an interval box B (red, solid) which

contains the homoclinic intersection of the true manifold pieces contained in T1 and

T2.

P1(t, s) + I1 and T2(t, s) = P2(t, s) + I2, with t and s as longitudinal parameters

respectively, where (t, s) ∈ [−1, 1]2.

We note that as representations of two-dimensional sets, P1 and P2 overlap over

a range of parameters, as depicted in Figure 4.10. However, as the Taylor Models

enclosing the manifold pieces are very thin (transverse width is several orders of mag-

nitudes smaller than length), as a first step we may assume there is a single point

(t0, s0) at which P1(t0, s0) ≈ P2(t0, s0). There are straightforward ways how (s0, t0)

can be determined sharply, for example as a two-dimensional global optimization

problem minimizing the distance between T1 and T2, or a suitable Newton-type it-

eration once one is near the intersection point of the polynomial parts. Note that

(t0, s0) need not be known rigorously.

Let us furthermore assume that T1 and T2 have been reexpanded around (t0, s0),

so that their intersection point is close to the origin, and that we have performed a

linear transformation on T1 and T2 with their inverse linear parts, which means that
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T1 and T2 are tangent to the x1- and x2-axes at the origin, respectively.

For easy of notation we also assume orientation such that

T1,1(−1, s0) < T1,1(t0, s0) < T1,1(1, s0),

T2,2(t0,−1) < T2,2(t0, s0) < T2,2(t0, 1),

but the following algorithm can easily be generalized to arbitrary orientations. We

use Ti,j for the j-th component of the TM Ti, i.e. Ti,j = Pi,j (t, s) + Ii,j .

4.15 Algorithm. First check that

(
max

(
T1,1 ({−1} × [−1, 1])

)
< min

(
T2,1

(
[−1, 1]2

)))
∧
(

max
(
T2,1

(
[−1, 1]2

))
< min

(
T1,1 ({1} × [−1, 1])

))
and that

(
max

(
T2,2 ([−1, 1]× {−1})

)
< min

(
T1,2

(
[−1, 1]2

)))
∧
(

max
(
T1,2

(
[−1, 1]2

))
< min

(
T2,2 ([−1, 1]× {1})

))
Then the intersection contains a homoclinic point h. Furthermore, we can sharpen

the interval enclosure of h by iterating the following algorithm:

1. Compute the range bound in x1-direction T2,1
(

[−1, 1]2
)

.

2. If there are −1 < θl < θu < 1 such that

(
max

(
T1,1 ([−1, θl]× [−1, 1])

)
< min

(
T2,1

(
[−1, 1]2

)))
∧
(

max
(
T2,1

(
[−1, 1]2

))
< min

(
T1,1 ([θu, 1]× [−1, 1])

))
reexpand T1 around t1 −→

θu−θl
2 +

θu−θl
4 t1.

3. Repeat from step 1, but switch the indices 1 and 2 in both the TMs T1, T2 and

their components, and the variables t and s.
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4. Stop the algorithm if step 2 cannot be performed successfully or if the widths of

T1,1
(

[−1, 1]2
)

and T2,2
(

[−1, 1]2
)

undercut the desired accuracy threshold.

It is of note that the heuristic determination of θl,u in step 2 can be done somewhat

’optimally’ if we use the map inversion tools which are available in DA-arithmetic.

The values

θl ≈ P−1
1,1

(
min(T2,1([−1, 1])2), 0

)
θu ≈ P−1

1,1

(
max(T2,1([−1, 1])2), 0

)
are a good initial guess for θl,u, possibly after a slight inflation by 10 percent or so.

To give an example for the performance of the last algorithm we return to the

Hénon map. It is not immediately clear what it means to rigorously enclose homoclinic

points in this case, as these are dense in the unstable manifold and hence any interval

enclosure with nonempty intersection with the unstable manifold contains homoclinic

points. However, we can enclose specific homoclinic points, as follows:

In the global manifold tangle constructed in the previous section we see that successive

iteration of the TM-enclosures of the local stable and unstable manifolds at the fixed

point p1 through the map Ha,b or the inverse H−1
a,b seems to generate the ’first’ (in

the sense of arclength) homoclinic intersection point of the iterated TM-enclosures,

which we call q1, at about (0.33,−0.25). Applying the above sharpening algorithm,

we are able to assert existence of such a point in a quite sharp interval box enclosure

of width ≈ 10−12:

4.16 Theorem. In the standard Hénon map (4.14), the transverse homoclinic inter-

section q1 of Wu and W s of the hyperbolic fixed point p1 ≈ (0.63, 0.18) is contained

within the interval box

([0.338852549387, 0.33885254939] , [−0.255112629783,−0.2551126297832]) . (4.16)
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4.4.2 Numerical tests

The rigorous homoclinic point enclosures from the last section serve as an excellent

litmus test for the claimed accuracy of the manifold enclosure themselves, and var-

ious a posteriori tests to check the quality of the homoclinic point enclosure can

be performed to support the sharpness of the interval enclosure. Unfortunately, no

analytic formula for the coordinates of the true homoclinic point of the Hénon map

near (0.35,−0.25) exist, so we have to resort to some nonverified, but quantitative

numerical experiments to corroborate the statement 4.16.

In the following we assume that p is a hyperbolic fixed point of a planar diffeo-

morphism f : R2 −→ R2 with eigenvalues 0 < |λ1| < 1 < |λ2| of Dfp(0), ht is a true

homoclinic point in W s
p ∩Wu

p , and hc is a computed numerical approximation of ht.

It is clear that there are completely analogous method to estimate the displacement

of hc from the unstable manifold by correspondingly using f−1 instead of f .

Theorem 4.16 must hold true by virtue of every step in algorithm 4.15 having been

performed in Taylor Model arithmetic. However, there are nonverified numerical

techniques that can substantiate the claim of the theorem in an intuitive manner.

Define the midpoint of the homoclinic point enclosure (4.16) as

hc := (0.3388525493875,−0.25511262978315) , (4.17)

and let ht be a the true homoclinic point q1 contained in (4.16).

Number of forward iterates near fixed point as a measure

The first very simple and straightforward method to measure the quality of hc is the

number of forward iterates that stay within a neighborhood of p. Since hc is close to

ht, the images fk(hc) first converge to p1 along the stable manifold and, once near

p1, get pulled away from p1 again along Wu
p with a factor of ≈ |λ1| in every iteration

for the distance to W s
p . If we consider the maximal number K of iterations such
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that the forward iterates fk(hc) do not leave a ball Bδ(p) for k ≤ K (where δ is

reasonably small, say δ ≈ 0.1), then we know that the original displacement of hc

from W s
p , or from ht respectively, can be approximately be expressed as

d(hc, ht) ≈ dist(hc,W
s
p ) ≈ δ

|λ1|K
. (4.18)

In the example above with f = Ha,b , |λ1| ≈ 1.92 and δ = 0.1, we get K = 40, i.e.

d(hc, ht) ≈ 0.1/(1.92)40 ≈ 0.4655 · 10−13 (4.19)

which is compatible with the claimed sharpness of the enclosure from Theorem 4.16.

Monitoring of distance to stable manifold under forward iteration

The second method is very much similar in spirit to the first one, but with a more

accurate numerical result for the original displacement of hc from W s
p , and hence ht.

The reason why the first method only gives a rough estimate about d(hc, ht) is that

the expansion of the distance of fk(hc) to the stable manifold only goes with a factor

of |λ1| in the higher iterates where k ≈ K, i.e. where fk(hc) is near p. For the lower

iterates with small k, while there still is expansion of dist(fk(hc),W
s
p ) in principle

due to the hyperbolic structure of the system near W s
p , that expansion factor need

not be |λ1|, which when combined as in eq.(4.18) can produce errors in the range of

one order of magnitude.

The approach for a more plausible estimate of d(hc, ht) is to monitor the contrac-

tion of dist(fk(hc),W
s
p ) for every iterate 0 ≤ k ≤ K, and keep track of all shrinking

factors. In the following we outline the algorithm:

1. Let γ(t) be the polynomial part of the TM-enclosure of W s
p between ht and p.

Define h0 := hc.

2. For 0 ≤ n ≤ K − 1: Let hn := f(hn−1). Compute the perpendicular unit

vector un from hn to γ by minimizing the scalar product |〈γ̇(t), γ(t)−hn〉| over
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the parameter t at tn. Set un := γ(tn) − hn · (|γ(tn)− hn|)−1. Evaluate the

Jacobian Df(hn) and compute the length growth factor kn := |Df(hn) · un|.

3. Approximate d(hc, ht) ≈ dist(hK ,W
s
p ) ·

(
K−1∏
n=0

kn

)−1

.

In our present case with hc as in (4.17), ht = q1 and K = 40we obtain a numerical

value

d(hc, ht) ≈ 0.897 · 10−13

which is again in agreement with the previous rigorous claim.

Mapping to different sides of the stable manifold

Considering the computed point hc and the tangent direction of the stable manifold

near hc, we can construct another point h̃c that has been translated perpendicularly

to the manifold tangent from hc by a small (positive or negative) length l roughly

of the size of the expected displacement dist(hc,W
s
p ). If indeed the points hc and

h̃c lie on different sides of the manifold, then so will all their forward iterates. In

other words, once the points fk(hc) and fk(h̃c) get near p, their images slowly drift

away from each other to follow different branches of the unstable manifold under

subsequent iteration, which can be observed by simply printing the iterates of both

points to the screen. If this diverging behavior of fk(hc) and fk(h̃c) persists, the

true set W s
p has to be within |l| of hc.

Returning to the claimed homoclinic point interval enclosure in Theorem 4.16,

its top left and right cornerpoints were mapped successively by the squared Hénon

map H2
a,b (to avoid confusing switching of sides of the iterates) as depicted in Figure

4.11a. Likewise, Figure 4.11b shows the iterates by H−2
a,b of the right top and bottom

cornerpoints of the interval box. In both cases we see that the iterates follow different

branches of the unstable and stable manifold near the fixed point, respectively, which

is again compatible with the claim of Theorem 4.16.
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Figure 4.11. In a) the first 20 iterates of H2 of the left (plus) and right (x) top

cornerpoints of the claimed homoclinic point interval enclosure form Thm. (4.16) are

plotted, in b) the first 10 iterates of H−2 of the top (plus) and bottom (x) right

cornerpoint of the same interval box enclosure are plotted. The unstable manifold is

drawn solid, the stable manifold dashed.
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4.5 Summary and Outlook

Normal form type methods offer expansions of local parametrizations of invariant

manifolds in the neighborhood of a hyperbolic saddle point in the plane. The oper-

ations involved are suitable to be performed using sophisticated polynomial manipu-

lations offered in DA-arithmetic.

Thus, highly accurate polynomial approximations to the local invariant manifolds

are obtained. The question about the truncation error can be answered automatically,

as in the Taylor Model validation step a heuristic C0-error bound can be proven to

be self-contained.

This enables us to compute Taylor Model enclosures of the true invariant manifolds

over a length proportional to 0.1, with an error estimate of 10−12 and smaller.

The global manifold tangle is obtained through repeated iteration in Taylor Model

arithmetic of the initial local piece. To control blow-up of remainder bounds, the

iterating scheme splits and reexpands Taylor Model enclosure pieces if necessary, and

we obtain a finite list of Taylor Model pieces ordered along the arclength of the

true manifold. It is evident that high-precision arithmetic is required to extend the

iteration scheme to higher iterates before TM-pieces become so large that meaningful

manipulation is not feasible anymore.

Based on verified global optimization, rigorous bounds for all homoclinic intersec-

tions of a finite manifold tangle can be obtained. Typically existence of homoclinic

points within the enclosure balls can be guaranteed.
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CHAPTER 5

Construction of Symbolic

Dynamics and Entropy Estimates

In this chapter we develop an approach to obtain rigorous lower bounds for the

topological entropy of planar diffeomorphisms. The technique is based on finding

symbolic dynamics exhibited by the original map and performing entropy calculations

on the simplified finite system. This is achieved by defining regions in phase space,

so-called generalized curvilinear rectangles, and considering how they overlap under

mapping, which allows to draw conclusions about the existence of real orbits of the

diffeomorphism within those rectangle sequences (see e.g. [8] for related work on this

approach).

In light of the last chapter, where part of the global manifold tangle has been

sharply enclosed in Taylor Models, as well as verification of existence and ordering of

homoclinic points within that tangle, we then introduce procedures to fully automate

the rectangle construction mentioned above. Rectangles are bound by segments of

stable and unstable manifold, with homoclinic points at their corners, which allows

to construct and analyze rectangle sequences on a large scale and thus yields rigorous

lower entropy estimates which are very close to the numerically suggested true entropy
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values.

5.1 Some basic topological tools

Before we proceed with the presentation of the algorithm, we first review some fun-

damental results from algebraic topology, in particular in two dimensions, which will

prove to be useful in establishing the algorithm rigorously. We first cite Brouwer’s

fixed point theorem [18]:

5.1 Theorem. (Brouwer) Every continuous function from the closed unit ball in Rn

into itself has a fixed point.

Using Brouwer’s theorem we can prove a seemingly simple fact about the existence

of an intersection of two horizontally and vertically, respectively, oriented curves in a

rectangle. We follow [40] in the presentation;

5.2 Lemma. Let γh (s) =
(
γh,1 (s) , γh,2 (s)

)
and γv (t) =

(
γv,1 (t) , γv,2 (t)

)
, with

s, t ∈ [−1, 1], be two continuous curves in the rectangle [a, b] × [c, d] ⊂ R2, with

a, b, c, d ∈ R, such that γh,1 (−1) = a, γh,1 (1) = b, γv,2 (−1) = c and γv,2 (1) = d.

Then there exists (s0, t0) ∈ [−1, 1]2 such that γh (s0) = γv (t0).

Proof. In the following we consider the max norm ||x||∞ := max {|x1| , |x2|} on R2.

Note that with this norm the set [−1, 1]2 is actually the closed unit ball. Suppose now

that no intersection of γh and γv exists, then ||γh (s)− γv (t)|| 6= 0∀ (s, t) ∈ [−1, 1]2,

and we may define the map

f (s, t) :=

(
γv,1 (t)− γh,1 (s)

||γh (s)− γv (t)||∞
,
γh,2 (s)− γv,2 (t)

||γh (s)− γv (t)||∞

)
.

We see that f maps [−1, 1]2 into itself, or more precisely, into the boundary of [−1, 1]2,

and thus must have a fixed point by Theorem 5.1, say at (σ, τ), i.e. f (σ, τ) = (σ, τ).

Then ||(σ, τ)|| = 1 must hold and thus either |σ| = 1 or |τ | = 1. Suppose now that
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σ = −1, then also f1 (−1, τ) = −1, but this cannot be the case as f1 (−1, τ) ≥
0 by definition. The remaining three cases of |σ| = 1 or |τ | = 1 lead to similar

contradictions.

It is interesting to note that the previous lemma can be used (see [40]) to prove

the Jordan Curve Theorem (JCT) in a relatively simple fashion.

5.3 Theorem. (Jordan Curve Theorem) Given a Jordan curve J ⊂ R2, the comple-

ment R2\J consists of two mutually disjoint nonempty components, each with J as

its boundary. Exactly one of them is bounded (also called interior of J), the other un-

bounded (called the exterior of J). Furthermore, both components are path-connected

and open.

In the situation of the theorem, we can write R2\J = B ∪ U , where B and U are

the bounded and unbounded components, respectively. It is then easy to see that

B = B̊ und U = Ů . The JCT can be extended to higher dimensions, but we only

consider the planar case in this work. In this situation, there actually holds a stronger

result, the Jordan-Schoenflies Theorem:

5.4 Theorem. (Jordan-Schoenflies) assume a Jordan curve J ⊂ R2 with a corre-

sponding homeomorphism h : S1 −→ R2 such that J = h
(
S1
)

. Then h can be

extended to the entire plane, i.e. there is a homeomorphism h̃ : R2 −→ R2 such that

h̃|
S1 = h.

A consequence of the last theorem is that for a planar Jordan curve, the closure

of its bounded component (according to the JCT) is the homeomorphic image of the

unit disk in R2.
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5.2 Rectangles and their overlapping

The construction of symbolic dynamics in a dynamical system is possible by picking

suitably chosen subsets of phase space and checking how they overlap under iteration.

The subsets that we consider are generalized, curvilinear ’rectangles’.

5.5 Definition. Let γ : [a, b] −→ Rv be an injective homeomorphic curve. Let p1, p2

be points in the same connected component of γ.

Then by ℘γ(p1, p2) we denote the subarc of γ which has p1 and p2 as its endpoints,

and is oriented from p1 to p2.

5.6 Definition. (Rectangles) A set R ⊂ R2 is called a ’rectangle’ if R is the home-

omorphic image of the unit square, i.e. R = h
(

[−1, 1]2
)

for some homeomorphism

h : [−1, 1]2 −→ R2. Accordingly, we define the top, bottom, left and right edges of R

with the following notation:

1. tR := h ([−1, 1]× {1}), the top edge,

2. bR := h ([−1, 1]× {−1}), the bottom edge,

3. lR := h ({−1} × [−1, 1]), the left edge,

4. rR := h ({1} × [−1, 1]), the right edge.

In light of the Jordan-Schoenflies Theorem it becomes clear that the ’rectangles’

we consider are in a general sense simply Jordan curves together with their bounded

component, but the rectangle picture has two main advantages: it simplifies some

technicalities in the proofs and allows an easy transition, both practically and intu-

itively, into the computational implementation of the algorithm later.

Note that the edges are parametrized curves, e.g. as tR = tR (s) = h ((s, 1))

and likewise with the other edges. We customarily identify the point sets tR etc.,

and their parametrizations, this shall not lead to any confusions. Note furthermore
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that the homeomorphic (in particular, we will consider diffeomorphisms later) image

of a rectangle is again a rectangle with preserved top, bottom, left and right edge

classifications. For the finding of symbolic dynamics, we have to consider the way in

which images of rectangles overlap and introduce the following notion:

5.7 Definition. (Markov crossing) Assume two rectangles R1 and R2 are given. We

say that R1 Markov-crosses R2, in symbols R1]R2, iff the following hold:

1. tR2 ∩ R̊1 = ∅, where R̊1 denotes the interior of R1,

2. bR2 ∩ R̊1 = ∅,

3. lR1 ∩ R̊2 = ∅,

4. rR1 ∩ R̊2 = ∅,

5. The intersections tR1 ∩ lR2, tR1 ∩ rR2, bR1 ∩ lR2 and bR1 ∩ rR2 consist of a

single point each, called xtl, xtr, xbl and xbr respectively,

6. The interior B of the Jordan curve J := ℘tR1(xtlxtr) ∪ ℘rR2(xtrxbr) ∪
℘bR1

(xbrxbl) ∪ ℘lR2
(xblxtl) is fully contained in R1 ∩R2.

An intuitive idea of Markov crossings can be gained form Figure 5.1. It is clear

that Def. 5.7 can directly be extended to allow multiple Markov-crossings as in the

bottom right picture in Figure 5.1.

The fact that in point (6) the stated set J is a Jordan curve is easy to prove.

Furthermore, by the Jordan-Schoenflies f the union B ∪ J is actually a rectangle in

the sense of Def. 5.6 which is contained in R1 ∩ R2, with the top, bottom, left and

right edges of B ∪ J contained in tR1, bR1, lR2 and rR2 , respectively.

Intuitively, a Markov crossing of R1 and R2 is an overlap of the rectangles such

that R1 is thinner than R2 in the ’vertical’ direction and stretches fully across R2

in the ’horizontal’ direction. We now introduce the notion of a chain of rectangles,

Markov-crossing each other under iteration:
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Figure 5.1. Typical types of Markov crossings R1]R2 between two rectangles R1
(solid) and R2 (dashed).

5.8 Definition. (Rectangle N-chains) For a homeomorphism f : R2 ⊃ D −→
R2, and some N ∈ N0, assume we are given an ordered sequence of rectangles

R = {Rn}N−1
n=0 , such that Rn ⊂ D and f (Rn) ]Rn+1 ∀ 0 ≤ n ≤ N − 1. Then

we call R a rectangle N-chain for f . If N =∞, we say R is a global rectangle chain.

Two rectangle N-chains R(1) and R(2) are equal iff R
(1)
i = R

(2)
i ∀ 0 ≤ i ≤ N − 1.

5.9 Definition. (h/v-transverse curves) For a given rectangle R, an injective curve

γ : [a, b] −→ R connecting lR and rR is called an h-transverse curve. If γ connects

tR and bR, we call it a v-transverse curve.

It follows directly from Lemma 5.2 that two curves, one being an h-transverse and

the other being a v-transverse curve for the same rectangle, must intersect.

5.10 Lemma. Suppose two rectangles R1 and R2 are given such that R1]R2, and

there is an h-transverse curve γ1 ⊂ R1. Then γ1 contains a subarc γ2 ⊂ R2 that is

an h-transverse curve for R2.
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Proof. We prove the statement in several steps, and use the same notation as in Def.

5.7:

1. For a Jordan curve J , a path γ connecting two points χ ∈ B and ξ ∈ U in the

interior and exterior of J must intersect J . For if not, γ ⊂ R2\J = (B ∪ U),

and since B and U are path-connected, then also their union B ∪ U must be

path-connected, and thus connected. But then by definition, B ∪ U cannot be

the union of two nonempty, disjoint open sets, which it is according to the JCT.

2. The segments ℘lR2
(xblxtl) and ℘rR2(xtrxbr) are v-transverse curves for R1.

We will show this for the segment ℘lR2
(xblxtl), the proof then works analo-

gously for ℘rR2(xtrxbr). It is obvious that ℘lR2
(xblxtl) connects tR1 and bR1,

hence we only need to show that in fact ℘lR2
(xblxtl) ⊂ R1. Suppose this is

not the case, then there is a point η ∈ ℘lR2
(xblxtl) such that η /∈ R1. As

R1 is compact, we can find ε > 0 such that the ball Bε (η) ∩ R1 = ∅. Since

η is furthermore on the boundary of the rectangle B ∪ J , there exists a point

ξ ∈ Bε (η) ∩B, i.e. ξ /∈ R1 and ξ ∈ B. This is a contradiction to B ⊂ R1.

3. The h-transverse curve γ1 in R1 crosses both segments ℘lR2
(xblxtl) and

℘rR2(xtrxbr). This is an immediate consequence from Lemma 5.2 and the

previous claim.

4. γ1 contains a subarc γ2 ⊂ R2 that is an h-transverse curve for R2. With-

out loss of generality, assume that γ1 : [−1, 1] −→ R1 such that γ1 (−1) ∈
lR1 and γ1 (1) ∈ rR1, and that γ1 intersects ℘lR2

(xblxtl) before it inter-

sects ℘rR2(xtrxbr). Consider the nonempty (by (3)) set Il of intersection

points of γ1 and ℘lR2
(xblxtl) in the sense of the parametrization of γ1, i.e.

Il =
{
t ∈ (−1, 1) : γ1 (t) ∈ ℘lR2

(xblxtl)
}

. Let tl := sup Il, then tl > −1

and γ1 (tl) ∈ ℘lR2
(xblxtl) by continuity of γ1. Likewise consider now the

set Ir =
{
t ∈ (tl, 1) : γ1 (t) ∈ ℘rR2 (xtrxbr)

}
.
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We show that Ir 6= ∅. First note that the set R1\ (R1 ∩R2) has exactly one

connected component that contains the curve segment ℘γ1(γ1 (−1) γ1 (tl)), call

that set R∗1. Then define the rectangle R̃ := R1\R∗1, and note that the curve

segment ℘γ1(γ1 (tl) γ1 (1)) is an h-transverse curve for R̃. Also, ℘rR2(xtrxbr)

is a v-transverse curve for R̃ and thus by Lemma 5.2 ℘γ1(γ1 (tl) γ1 (1)) ∩
℘rR2(xtrxbr) 6= ∅, hence there ∃ t̃ ∈ (tl, 1) such that γ1

(
t̃
) ∈ ℘rR2(xtrxbr).

Let now tr := inf Ir, then tr > tl and γ1 (tr) ∈ ℘rR2(xtrxbr), again by

continuity of γ1. Now set γ2 := γ1|[tl,tr], then γ2 ⊂ γ1 and γ2 connects

℘lR2
(xblxtl) ⊂ lR2, and ℘rR2(xtrxbr) ⊂ rR2 and thus is an h-transverse

curve for R2.

The last lemma will provide us with a means of counting orbits:

5.11 Theorem. For a homeomorphism f : R2 ⊃ D −→ R2, let R = {Rn}N−1
n=0 be a

rectangle N-chain. Then there is an N-orbit in R, i.e. there exists a point x0 ∈ R0

such that fn (x0) ∈ Rn ∀0 ≤ n ≤ N−1 . A global orbit exists if R is a global rectangle

chain, i.e. if N =∞.

Proof. Let γ0 be an h-transverse curve for R0. Then f (γ0) is an h-transverse curve for

f (R0), and by the last lemma contains a subarc γ1 which is an h-transverse curve for

R1. Inductively, we get a sequence of curves {γn}n∈N0
such that f−1 (γn+1

) ⊂ γn,

and each γn is an h-transverse curve for Rn. This yields that f−(n+1) (γn+1
) ⊂

f−n (γn) ⊂ γ0. Since all preimages f−n (γn) are closed, we get a nested sequence

of closed sets and thus the intersection
⋂
n∈N0

f−n (γn) 6= ∅. So pick a point x0 in

that intersection, and it is obvious that x0 ∈ γ0 ⊂ R0 and fn (x0) ∈ γn ⊂ Rn, and

thus satisfies the desired properties.
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5.3 Entropy estimates

Given the results form the previous section, we can now make the transition from

rectangle crossings under iteration by a diffeomorphism to entropy estimates for that

same map:

5.12 Theorem. (Entropy from orbit counting) For a homeomorphism f : R2 ⊃
D −→ R2, let {R1, ..., Rv} be a set of mutually disjoint rectangles, and let A ∈ Nv×v

be a matrix with integer entries such that Ai,j = 1 iff f (Rj) ]Ri and 0 else. Then

we have for the topological entropy of f

h (f) ≥ log (sp (A)) ,

where sp (A) is the spectral radius of A.

Proof. 1. First note that, since all rectangles are mutually disjoint and by defini-

tion compact, ∃ ε0 > 0 smaller than the minimal distance between the rectan-

gles, i.e.

dist
(
Ri, Rj

)
> ε0 ∀ 1 ≤ i, j ≤ v.

Since the entropy h (f) := lim
ε→0

lim sup
n→∞

1
n log (r (n, ε, f)) is growing

monotonously as ε→ 0, for this finite ε0 we then get

h (f) ≥ lim sup
n→∞

1

n
log (r (n, ε0, f)) .

2. We now inductively define the sequence of state vectors

r(0) := (1, ..., 1)T ,

r(n) := Anr(0).

For any integer vector w ∈ Nv, let

||w||1 =
v∑
i=1
|wi|
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denote its 1-norm. We claim that r
(n)
i ∈ N gives a lower bound for the number

of mutually distinct rectangle (n+ 1)-chains with elements in {R1, ..., Rv} the

last element of which is Ri. Obviously, this is true for n = 0, since r
(0)
i =

1∀ 1 ≤ i ≤ v and there is exactly one rectangle 1-chain {Ri} with Ri as the

last element, and trivially f0 (Ri) ]Ri ∀ 1 ≤ i ≤ v.

Now for the step n → n + 1, consider a nonzero entry r
(n)
j , then there are

r
(n)
j rectangle n-chains ending in Rj , and pick one, say R :=

{
Rik

}n−1

k=0
. If

Ai,j 6= 0, f
(
Rin−1

)
= f

(
Rj

)
]Ri, and the set R ∪ {Ri} is an (n+ 1)-chain

ending in Ri. Since R is distinct from all other n-chains (both ending and

not ending in Rj), then also R ∪ {Ri} is distinct from all other (n+ 1)-chains

ending in Ri. Thus, summing up we have that the total number of mutually

distinct (n+ 1)-chains ending in Ri must be greater or equal to

v∑
j=1

Ai,jr
(n)
j = r

(n+1)
i ,

which proves the claim. But moreover we have shown that the total number of

all mutually distinct (n+ 1)-chains for f with elements in R is bounded below

by
v∑
i=1

r
(n+1)
i =

∣∣∣∣∣∣r(n+1)
∣∣∣∣∣∣

1
.

3. We claim that

r (n, ε0, f) ≥
∣∣∣∣∣∣r(n−1)

∣∣∣∣∣∣
1

(5.1)

and additionally, r
(n−1)
i gives a lower bound for the number of n-orbits starting

in
⋃v
j=1Rj and ending in Ri. This is true since by step (2), there are exactly

r
(n−1)
i rectangle n-chains ending in Ri, and by Theorem 5.11 each contains at

least one n-orbit starting in
⋃v
j=1Rj . Since by (1) all rectangles are separated

by at least ε0, then also these r
(n−1)
i n-orbits must be ε0-separated. Summation

over all r
(n−1)
i yields (5.1).
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4. We can express
∣∣∣∣∣∣r(n)

∣∣∣∣∣∣
1

via the matrix norm of A :

∣∣∣∣∣∣r(n)
∣∣∣∣∣∣

1
=

v∑
i=1

r
(n)
i =

v∑
i,j=1

(
An
)
i,j r

(0)
j

=
v∑

i,j=1

∣∣∣(An)i,j∣∣∣ ≥ max
1≤i≤v

 v∑
j=1

∣∣∣(An)i,j∣∣∣
 =

∣∣∣∣An∣∣∣∣∞ ,

where ||An||∞ denotes the row-sum-norm of An. It is a standard result (see [59])

that for any real square matrix M and any matrix norm ||.|| for M , we have

n
√
||Mn|| −→

n→∞ sp (M) ,

and so we have the estimate

h (f) ≥ lim sup
n→∞

1

n
log (r (n, ε0, f)) ≥ lim sup

n→∞
1

n
log
(∣∣∣∣∣∣r(n)

∣∣∣∣∣∣
1

)
≥ lim sup

n→∞
log

(
n
√
||An||∞

)
= log (sp (A)) .

As an alternative approach, we can obtain entropy estimates from the length

growth of curves. The benefit of this technique is that the rectangles under consider-

ation here may share boundaries, which will prove to be of fundamental importance

in our later algorithms where we construct rectangles that are bounded by invariant

manifolds. The cost is a restriction to smooth maps and rectangles with piecewise

smooth boundaries.

We start by stating canonical results about smooth extensions of functions [36]:

5.13 Lemma. (Extension lemma) Let M be a closed subset of a smooth manifold.

If f : M −→ Rv is smooth, then for every open neighborhood V of M there exists a

smooth function fV : V −→ Rv such that fV |M = f .

The proof of this statement is based on the existence of so-called bump functions,

i.e. smooth functions with a compact support. A typical example β for a bump
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function on R is given by

β (x) :=

 e
− 1

1−x2 for |x| < 1

0 else
.

These bump functions can be ’tailored’ to the choices of V and M and the smoothing

of f outsideM is performed using a convolution with a suitably chosen bump function.

In particular we have the following results about curve connection in the plane as a

corollary:

5.14 Corollary. (Smooth connection of curves) Let γi : R −→ R2 for i = 1, 2 be

smooth immersed curves (not necessarily injective). Let a < b < c < d ∈ R and

consider the restricted curves γ1|[a,b] and γ2|[c,d] . Note that all one-sided derivatives

of γi exist at the endpoints and γ̇i 6= 0 there. Then there exists a smooth curve

c1,2 : (b, c) −→ R2 such that the concatenated curve
(
γ1 & c1,2 & γ2

)
: [a1, b2] −→ R2

given by (
γ1 & c1,2 & γ2

)
(t) :=


γ1 (t) if t ∈ [a, b]

c1,2 (t) if t ∈ (b, c)

γ2 (t) if t ∈ [c, d]

is again smooth and an immersed curve. In particular note that c1,2 is of finite length

since the first derivatives are bounded on the compact set (b, c).

We can now prove the entropy estimates stemming from curve length growth:

5.15 Theorem. (Entropy from curve length growth) For a C∞-diffeomorphism f :

R2 ⊃ M −→ D, where M is compact, let {R1, ..., Rv} be a set of rectangles in M

with mutually disjoint interior such that the boundary segments tRi, bRi, lRi and rRi

are smooth for every 1 ≤ i ≤ v. Let A ∈ Nv×v be a matrix with integer entries such

that Ai,j = 1 iff f
(
Rj

)
]Ri and 0 else. Then we have for the topological entropy of

f

h (f) ≥ log (sp (A)) .
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Proof. 1. By Theorem 2.13 we know that

h (f) = sup
C∞-curves γ⊂M

G (γ, f)

= sup
C∞-curves γ⊂M

lim sup
n→∞

1

n
log
∣∣fn ◦ γ∣∣ .

where |.| denotes the arclength of a C1-curve. So for a choice of a fixed C∞-

curve γ0 ⊂M , we have that

h (f) ≥ lim sup
n→∞

1

n
log
∣∣fn ◦ γ0

∣∣ . (5.2)

2. For a rectangle Ri and any associated C∞ h-transverse curve γh (Ri), we have

inf
γh(Ri)⊂Ri

(|γh (Ri)|) > 0.

3. For a rectangle Ri there exists ε(Ri) > 0 such that and , we have

|γh (Ri)| > ε(Ri).

for any associated C∞ h-transverse curve γh (Ri) ⊂ Ri. For if not, then for

continuity reasons lRi ∩ rRi 6= ∅, which contradicts Def. 5.6. Then define

l0 := min {ε(Ri) : 1 ≤ i ≤ v} > 0,

so l0 is the positive minimal length of any h-transverse curve for any rectangle

in {R1, ..., Rv}.

For every Ri ∈ {R1, ..., Rv}, select now a C∞ h-transverse curve γh,i (these

exist for every Ri, in particular the boundaries tRi and bRi are smooth h-

transverse curves for Ri), and connect their endpoints with C∞ curves cj,j+1 ⊂
M , 1 ≤ j ≤ v−1, according to corollary (5.14) such that the concatenated curve

γ0 defined as

γ0 := γh,1 & c1,2 & γh,2 & c2,3 &...& cv−1,v & γh,v
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is an immersed (not necessarily injective) C∞-curve in M . Let

Kn :=
v−1∑
j=1

∣∣∣fn ◦ cj,j+1

∣∣∣ ≥ 0 ∀n ∈ N0.

4. We claim that ∣∣fn ◦ γ0
∣∣ ≥ ∣∣∣∣An∣∣∣∣∞ l0 +Kn.

We already know from steps (2) and (4) in Thm. 5.12 that ||An||∞ gives

a lower bound for the number of mutually distinct rectangle (n+ 1)-chains.

From Lemma 5.10 we know that every (n+ 1)-chain ends in a rectangle which

has a subarc of fn ◦ γ0 as an h-transverse curve, which has a minimal length of

l0. This proves the statement.

5. Combining the last claim with (5.2) yields the estimate

h (f) ≥ lim sup
n→∞

1

n
log
∣∣fn ◦ γ0

∣∣ ≥ lim sup
n→∞

log n
√
||An|| l0 +Kn

≥ lim sup
n→∞

log
(
n
√
||An|| · n

√
l0
)

= log (sp (A)) .

In light of the last two theorems, it becomes apparent that we found ’symbolic

dynamics’ exhibited by f , i.e. we found a subshift of finite type which satisfies the

same entropy estimates as would a topological factor of f according to Thm. 2.12.

Here the rectangles {R1, ..., Rv} form an alphabet α of v+1 symbols, and a subshift of

finite type Σ+
A is given by the incidence matrix A determined by the Markov crossing

properties of the Ri under iteration by f , combined with the shift map on Σ+
A.

5.4 Construction of rectangle chains

While the theorems from the last section ascertain entropy estimates for homeomor-

phisms and diffeomorphisms through a collection of rectangles and their incidence
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matrix under mapping, for a given problem it is neither clear how to best select a set

of rectangles nor how to rigorously prove their iterative Markov crossings.

To this end we now wish to combine the theoretical framework developed so far

in this chapter with the Taylor Model based techniques for the representation of

manifold tangles, which was presented in chapter 4. The fundamental idea is to

define suitable rectangles as sets bounded by segments of invariant manifolds, with

homoclinic points as their cornerpoints. Knowledge about the mapping properties of

the homoclinic points together with the invariance of the unstable and stable manifold

pieces will allow us to rigorously determine Markov crossings under iteration of the

thus defined rectangles.

The arguments are designed in such a way that they can be established with

Taylor Model arithmetic.

All definitions of sets or maps hold throughout this section.

5.4.1 Choice of manifold tangle

Let p be a hyperbolic saddle point of the Cr-diffeomorphism f : R2 −→ R2, and let

λu be the unstable eigenvalue, assumed without loss of generality to have positive

real part (else consider the squared map f2). Let Wu
loc (p) be a connected component

of the local unstable manifold around p containing p. Define the subarc Wu
K (p) as

Wu
K (p) := fK

(
Wu
loc (p)

)
for some finite iterate K. Observe that U ⊂ f (U).

Let S := {S1, ..., SM} be an arclength-ordered finite collection of compact stable

subarcs Si ⊂ W s (p) for 1 ≤ i ≤ M with mutually disjoint nonempty interiors. By

arclength-ordered we mean the following: Choose a fixed parametrization W s (p) :=

γs (t) for t ∈ R. Then for any two points p1 ∈ Si and p2 ∈ Si+1, p1 6= p2, there

exist t1 < t2 such that p1 = γs (t1) and p2 = γs (t2). If p3 ∈ ℘Ws(p) (p1, p2), then

p3 = γs (t3) for some t1 < t3 < t2.

Let U := {U1, ..., UL} be likewise an arclength-ordered finite collection of compact
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unstable subarcs Ui ⊂ Wu
K , for 1 ≤ i ≤ L, with mutually disjoint nonempty interiors.

For the rectangle construction, we now consider the manifold tangle T ⊂ R2 given

by

T := (S ∪ f (S)) ∪ (U ∪ f (U))

where we demand that both (S ∪ f (S)) and (U ∪ f (U)) can be fully ordered.

In fact, we will make the assumption that f (S) ⊂ S and U ⊂ f (U). In this case,

T = S ∪ f (U)

and the orderings of (S ∪ f (S)) and (U ∪ f (U)) are inherited from S and f (U).

5.4.2 Interval box enclosures of homoclinic points

If U ∩ S 6= ∅, then let

B := {B (i, ni) : 1 ≤ i ≤ N} (5.3)

be a collection of mutually disjoint closed balls B (i, ni) ⊂ R2 with nonempty interior,

which contains all homoclinic intersections of S ∩ U , that is

(S ∩ U) ⊂
N⋃
i=1

B (i, ni) .

We assume that every B (i, ni) gets crossed by the manifolds according to section 4.4

in such a way that existence of at least one homoclinic point of S ∩ U is guaranteed

in each B (i, ni). We may assume that the homoclinic point is in the interior B̊ (i, ni).

Furthermore, for the box B (i, ni) the indices i and ni denote the ordering of the boxes

along the stable and unstable manifold respectively. More precisely: analogous to the

previous step, choose fixed parametrizations W s (p) = γs (v) and Wu (p) = γu (w)

for v, w ∈ R. For two points p1 ∈ B (i, ni) and p2 ∈ B
(
i+ 1, ni+1

)
, there exist

v1, v2, w1, w2 ∈ R such that pk = γs (vk) = γu (wk) for k = 1, 2. Then v1 < v2, and

furthermore w1 ≶ w2 iff ni ≶ ni+1 .
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5.16 Remark. In (5.3) and in the rest of the algorithm for the rectangle mappings we

only consider closed balls. This choice is purely for notational ease in the argument.

In fact, we only need the balls to be Cr-diffeomorphic images of the unit ball in R2,

which is beneficial for sharpness of the homoclinic point enclosure in practice. The

argument works unchanged for this relaxed requirement.

5.4.3 Determination of homoclinic ball enclosure mappings

Consider now f (U) ∩ S (which is nonempty because S ∩ U ⊂ (S∩f (U)) and S ∩ U
6= ∅). Then choose a collection of closed balls with mutually disjoint nonempty interior

B̃ :=
{
B̃
(
j, nj

)
: 1 ≤ j ≤ Ñ

}
such that again

(S∩f (U)) ⊂
Ñ⋃
j=1

B̃
(
j, nj

)
,

with the ordering of B̃
(
j, nj

)
as the j-th stable and nj-th unstable box, and which

satisfies B ⊂ B̃. This choice of B̃ is clearly allowed, one simply sets

B̃
(
ji, nji

)
:= B (i, ni) for 1 ≤ i ≤ N

and then selects interval box enclosure B̃
(
j, nj

)
for j ∈

{
1, ..., Ñ

}
\ {j1, ..., jN}

which contain the newly created homoclinic intersections in (f (U) \U) ∩ S. Note

that then N ≤ Ñ .

5.17 Definition. (Parent/child balls) Let B1, B2 ⊂ R2 be two closed balls with

nonempty interior. If there exist x1 ∈ B1 and x2 ∈ B2 such that f (x1) = x2,

we call B1 a parent ball of B2, and B2 a child ball of B1.

The following is clearly true:

5.18 Proposition. Every ball B̃ (k, nk) ∈ B ⊂ B̃ is a parent ball for some

B̃
(
jk, njk

)
∈ B̃.
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We now make the additional assumption that for every parent ball B̃ (k, nk) ∈ B
exists a jk ∈

{
1, ..., Ñ

}
such that

B̃ (k, nk) ⊂ f−1
(
B̃
(
jk, njk

))
,

and f−1
(
B̃
(
jk, njk

))
is disjoint from all other balls B̃

(
j, nj

)
where j ∈{

1, ..., Ñ
}
\ {k}.

This obviously also means

f
(
B̃ (k, nk)

)
⊂ B̃

(
jk, njk

)
,

f
(
B̃ (k, nk)

)
∩ B̃

(
j, nj

)
= ∅ ∀ j ∈

{
1, ..., Ñ

}
\ {jk}

so in particular, for every parent ball there is a unique child ball into which the

parent ball maps. In other words, within the collection B̃ we have mutually disjoint

parent-child-pairs, and additional balls which are neither a parent nor a child ball.

5.4.4 Orientation of manifolds at homoclinic point enclosures

We first introduce a convenience definition:

5.19 Definition. Let B ⊂ R2 be a closed ball with nonempty interior. Let γ :

[a, b] −→ R2 be a curve which both enters and leaves B, i.e. there are t1 < t2 < t3

in [a, b] such that γ (t2) ∈ B̊ and γ (t1) , γ (t3) /∈ B. Then we define

tin (γ,B) := inf {t ∈ [a, b] : γ (t) ∈ ∂B} ,

tout (γ,B) := sup {t ∈ [a, b] : γ (t) ∈ ∂B} .

as the entrance and exit parameters for γ, and accordingly

qin (γ,B) := γ (tin (γ,B)) ,

qout (γ,B) := γ (tout (γ,B)) ,

as the entrance and exit points of γ in B.
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Figure 5.2. Left-handed (orientation o = −1) and right-handed (o = 1) crossing of

stable (solid) and unstable (dashed) manifold over a homoclinic ball enclosure.

For continuity reasons in particular qin (γ,B) ∈ ∂B and qout (γ,B) ∈ ∂B.

Now consider B̃ (i, ni) ∈ B̃. Since B̃ (i, ni) is guaranteed to contain a homoclinic

point, in particular both Wu (p) and W s (p) have to enter as well as leave B̃ (i, ni),

and we assumed that the entry/exit points of Wu (p) and W s (p) on the boundary

∂B̃ (i, ni) alternate and are mutually nonequal (i.e. no homoclinic points on the

boundary ∂B̃ (i, ni)). We can now meaningfully define the orientation, or handedness,

of the manifold crossing for B̃ (i, ni):

5.20 Definition. (Crossing orientation) Let B̃ (i, ni) ∈ B̃, and for simplicity write

B̃ = B̃ (i, ni). Then we define the crossing orientation o (i) of B̃ as

1. o (i) := 1 if starting at qin

(
W s (p) , B̃

)
and going counterclockwise (positive)

on ∂B̃, the next manifold crossing point is qin

(
Wu (p) , B̃

)
.

2. o (i) := −1 else, i.e. if the next manifold crossing point is qout

(
Wu (p) , B̃

)
.
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A superset E ⊂ R2 of B̃ is said to have crossing direction o (i) if there are no further

homoclinic intersections of W s (p) and Wu (p) in E\B̃.

Also see Figure 5.2 for a visualization.

5.21 Remark. Intuitively, one can think of these definitions as taking the cross prod-

uct of the tangent vectors to Wu (p) and W s (p) in B̃ (i, ni), with o (i, ni) indicating

whether the manifold crossing is right-handed (o (i) = 1) or left-handed (o (i) = −1).

In the more general setting, this intuition does not hold fully, since we can have mul-

tiple manifold crossings or homoclinic tangencies within B̃ (i, ni), hence this at first

glance more involved and cumbersome definition of the crossing orientation.

In fact, in the definition of manifold rectangles below, we are not interested in the

crossing orientation at the homoclinic cornerpoints, but in the manifold orientation

outside the cornerpoint ball enclosures.

5.4.5 Selection of rectangle cornerpoints and connector

curves

We first introduce the notion of connector curves:

5.22 Proposition. Let B̃ (i, ni) ∈ B̃, again write B̃ = B̃ (i, ni), with an associ-

ated crossing direction o (i). Let the manifolds Wσ (p) for σ = u, s be C∞ and

parametrized as γσ : R −→ R2, with the entrance and exit points qin

(
Wσ (p) , B̃

)
and qout

(
Wσ (p) , B̃

)
on ∂B̃ (i, ni) mutually nonequal and alternating. For simplic-

ity, write

tσin := tin

(
Wσ (p) , B̃

)
, tσout := tout

(
Wσ (p) , B̃

)
,

qσin := qin

(
Wσ (p) , B̃

)
, qσout := qout

(
Wσ (p) , B̃

)
.

Then there exist injectively immersed C∞-curves ζσ (i) :
[
tσin, t

σ
out

] −→ B̃, for

σ = u, s, such that

1. ζσ connects qσin = ζσ
(
tσin
)

and qσout = ζσ
(
tσout

)
for σ = u, s.
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Wu

W s

B̃(i, ni)

ζu(i)

ζs(i)

Figure 5.3. Homoclinic ball enclosure B̃(i, ni) with stable and unstable manifolds W s

and Wu (dashed). The connector curves ζs(i) and ζs(i) (solid) intersect transversely.

2. The connection preserves the C∞-differentiability, i.e. the concatenated curve

ξσ : R −→ R2 given by

ξσ (t) :=


γσ (t) if t ∈ (−∞, tσin)
(ζσ (i)) (t) if t ∈ [tσin, tσout]
γσ (t) if t ∈ (tσout,∞)

is again an immersed C∞-curve for σ = u, s.

3. The curves ζu (i) and ζs (i) intersect transversely in exactly one point h (i, ni)

in the interior of B̃, such that the orientation of their tangent vectors at h (i, ni)

corresponds to the crossing orientation o (i):

(
ζ̇s|h(i,ni)

× ζ̇u|h(i,ni)

)
≶ 0⇐⇒ o (i) ≶ 0.

The statement follows immediately from Proposition 5.14, also see Figure 5.3. In

this situation we call the curves ζs (i) and ζu (i) the stable and unstable connector
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curves for B̃ (i, ni), and h (i, ni) the i-th cornerpoint, for reasons that will become

clear soon.

5.23 Proposition. Let B̃ (i, ni) , B̃
(
j, nj

)
∈ B̃, and for simplicity write B =

B̃ (i, ni) and B̃ = B̃
(
j, nj

)
. Suppose now that B ⊂ f−1

(
B̃
)

, and that the man-

ifold crossing directions o (i) for B and for f−1
(
B̃
)

are equal. Let furthermore

ζu (i) , ζs (i) and h (i, ni) be chosen for B according to the previous proposition. Then

there exist connector curves ζu (j) and ζs (j) for B̃
(
j, nj

)
such that

f (ζσ (i)) ⊂ ζσ (j) , σ = u, s.

In particular, this means that h
(
j, nj

)
= f (h (i, ni)).

Proof. For ease of hand we write

tσin := tin (Wσ (p) , B) , tσout := tout (Wσ (p) , B) ,

qσin := qin (Wσ (p) , B) , qσout := qout (Wσ (p) , B) ,

q̃σin := qin

(
Wσ (p) , B̃

)
, q̃σout := qout

(
Wσ (p) , B̃

)
,

Let finally the manifolds Wσ (p) be C∞ and parametrized as γσ : R −→ R2, and

θσin, θ
σ
out ∈ R such that

γσ
(
θσin
)

= f−1 (q̃σin) and γσ
(
θσout

)
= f−1 (q̃σout)

for σ = u, s. Then there exist curves

ηinσ :
[
θσin, t

σ
in

] −→ f−1
(
B̃
)
, (5.4)

ηoutσ :
[
tσout, θ

σ
out
] −→ f−1

(
B̃
)
,

for σ = u, s such that

1. ηinσ connects f−1 (q̃σin) = ηinσ
(
θσin
)

and qσin = ηinσ
(
tσin
)

for σ = u, s.

2. ηoutσ connects qσout = ηoutσ
(
tσout

)
and f−1 (q̃σout) = ηoutσ

(
θσout

)
for σ = u, s.
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3. The concatenated curve µσ :
[
θσin, θ

σ
out

] −→ f−1
(
B̃
)

given by

µσ (t) :=


ηinσ (t) if t ∈ [θσin, tσin]
(ζσ (i)) (t) if t ∈ (tσin, tσout)
ηoutσ (t) if t ∈ [tσout, θσout]

is an injectively immersed C∞-curve for σ = u, s.

4. The concatenated curve ξσ : R −→ R2 given by

ξσ (t) :=


γσ (t) if t ∈ (−∞, θσin)
µσ (t) if t ∈ [θσin, θσout]
γσ (t) if t ∈ (θσout,∞)

is an injectively immersed C∞-curve for σ = u, s.

5. The curves µu and µs do not intersect in f−1
(
B̃
)
\B, i.e. they only have a

single transverse intersection point h (i) inherited from B.

Once such curves ηinσ , η
out
σ as in Figure 5.4 and subsequently µσ have been con-

structed for σ = u, s, define curves ζσ (j) in B̃ as

ζσ (j) := f (µσ) .

Then the ζσ (j) are connector curves for B̃ = B̃
(
j, nj

)
which intersect transversely

in the point h
(
j, nj

)
:= f (h (i, ni)) with the same orientation as o (j).

This proposition enables us to select rectangle cornerpoints and connector curves

which merge smoothly into the invariant manifolds outside a child ball B̃
(
j, nj

)
∈ B̃

if the same are known for the parent ball.

Based on the last two results, we can now proceed to assign such connector curves

and rectangle cornerpoints to every homoclinic enclosure ball in B̃. For convenience

we define rosaries:

5.24 Definition. (Rosary) A rosary is a finite set of L balls ρ :=
{
B̃
(
ij , nij

)}L
j=0

such that
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Wu

Wu

W s

W s

ζs(i)

ηins

ηouts

ζs(j)

Figure 5.4. B̃(i, ni) contained in f−1(B̃(j, nj)) (left). ζs(j) (dashdotted) for B̃(j, nj)

(right) is the image of the concatenated curves ηins , ζs(i) and ηout.

1. Unless B̃
(
i0, ni0

)
or B̃

(
iL, niL

)
contain the fixed point, then B̃

(
ij , nij

)
⊂

f−k
(
B̃

(
ij+k, nij+k

))
for 1 ≤ j ≤ L and 1 ≤ k ≤ L− j,

2. f−1
(
B̃
(
i0, ni0

))
and f

(
B̃
(
iL, niL

))
are disjoint from all elements of B̃.

In other words, a rosary defines a sequence of L balls in B̃ such that the j-th ball

is mapped fully into the subsequent balls in the rosary, no ball maps into the first

ball, and the last ball maps outside B̃. A rosary with only a single element contains

a ball B̃
(
i1, ni1

)
which is neither a parent nor a child ball.

5.25 Lemma. The set B̃ consist of finitely many mutually disjoint rosaries ρ1, ..., ρK ,

i.e.

B̃ =
K⋃
k=1

ρk
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such that no last elements of any ρk maps into another rosary, i.e.

f

(
B̃

(
iL(k), niL(k)

))
∩ B̃\

{
B̃

(
iL(k), niL(k)

)}
= ∅,

where L(k) is the number of elements in ρk.

Proof. We select the ρk inductively:

1. k = 1: It is clear that the fixed point p of the manifold tangle is con-

tained in some element of B̃, say p ∈ B̃
(
i1, ni1

)
. Then by the mapping

assumption (5.4.3), f
(
B̃
(
i1, ni1

))
∩ B̃

(
j, nj

)
= ∅ ∀ j 6= i1, and hence

ρ1 :=
{
B̃
(
i1, ni1

)}
is a rosary.

2. k −→ k + 1: Let ρ1 through ρk be chosen, and let

Bk :=
{
B̃ (α, nα) : 1 ≤ α ≤ N(k)

}
:= B̃\

 k⋃
j=1

ρj

 .

be the set of elements in B̃ not yet contained in the rosaries chosen so far. Since

the images of all elements in
k⋃
j=1

ρj are disjoint from elements in Bk, there

must be a ball B̃(α0, nα0) such that

f−1
(
B̃(α0, nα0)

)
∩
(
B̃\
{
B̃(α0, nα0)

})
= ∅.

Per the mapping property (5.4.3), select a sequence {Bi}i≥0 of balls in Bk such

that B0 = B̃(α0, nα0) and f (Bi) ⊂ Bi+1. Any such sequence {Bi}i≥0 has to

be finite, for if it were infinite, then we would have

f ñ (Bı̃) ⊂ Bı̃ (5.5)

for some ñ ∈ N, 1 ≤ ı̃ ≤ N(k). But due to the locally hyperbolic manifold

structure persisting in all balls B̃(i, ji) ∈ B̃, the invariance (5.5) can not occur.

Hence there must exist a finite L ∈ N, 1 ≤ L ≤ N(k), such that f (BL) maps

outside B̃\
(

k⋃
j=1

ρj ∪ {Bi}Li=1

)
. This makes {Bi}Li=1 the longest rosary in Bk

starting with B̃(α0, nα0), and we call this rosary ρk+1.
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This procedure obviously is exhaustive and assigns every element of B̃ to a rosary.

Disjointness of the rosaries is clear by construction.

By Propositions 5.22 and 5.23 we know that we can construct cornerpoints and

connector curves for every parent and child ball in B̃. We now want to select h (i, ni),

ζu (i) and ζs (i) for every B̃ (i, ni) ∈ B̃, but do so contingent on the rosary that

contains B̃ (i, ni):

5.26 Algorithm. (Cornerpoint and connector curve selection) Let B̃ =
K⋃
k=1

ρk,

and assume that for two rosaries ρk1
=

{
B̃
(
ij , nij

)}Lk1
j=0

and ρk2
={

B̃
(
lm, nlm

)}Lk2
m=0

(k1 may equal k2) and any two elements B̃
(
ij , nij

)
∈ ρk1

and B̃
(
lm, nlm

)
∈ ρk2

, we have the disjointness condition

f−t
(
B̃
(
ij , nij

))
∩ f−s

(
B̃
(
lm, nlm

))
= ∅ ∀ 0 ≤ t ≤ j, 0 ≤ s ≤ m, (5.6)

except where s = 0, lm = ij−t for a given ij , t.

Assume further that for any rosary ρk =
{
B̃
(
ij , nij

)}Lk
j=0

we have that the cross-

ing orientation of f−1
(
B̃
(
ij+1, nij+1

))
(in the sense of Def.5.20) equals o

(
ij

)
.

We choose cornerpoints and connector curves for elements of ρk inductively:

1. Consider the rosary ρ1, and let j = 0 : For B̃
(
i0, ni0

)
, choose a cornerpoint

h
(
i0, ni0

)
and connector curves ζu (i0) and ζs (i0) as in Prop. 5.22.

2. j −→ j+1 : Let h
(
ij , nij

)
, ζu

(
ij

)
and ζs

(
ij

)
be constructed for B̃

(
ij , nij

)
.

By definition,

f−j
(
B̃
(
ij , nij

))
⊂ f−(j+1)

(
B̃
(
ij+1, nij+1

))
.

So proceed as in Prop. 5.23 and for σ = u, s construct mutually dis-

joint curves ησin which connect f−(j+1)
(
qin

(
Wσ (p) , B̃

(
ij+1, nij+1

)))
to f−j

(
qin

(
Wσ (p) , B̃

(
ij , nij

)))
and ησout
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which connect f−j
(
qout

(
Wσ (p) , B̃

(
ij , nij

)))
to

f−(j+1)
(
qout

(
Wσ (p) , B̃

(
ij+1, nij+1

)))
.

Map the concatenated curve ξσ := ησin&f−j
(
ζσ

(
ij

))
&ησout to obtain

ζσ

(
ij+1

)
:= fj+1 (ξσ) .

Since furthermore h
(
i0, ni0

)
= f−j

(
h
(
ij , nij

))
is the only intersection of

the curves ξu and ξs in f−(j+1)
(
B̃
(
ij+1, nij+1

))
, also we set

h
(
ij+1, nij+1

)
:= f

(
h
(
ij , nij

))
= fj+1

(
h
(
i0, ni0

))
as the unique transverse intersection of ζu

(
ij+1

)
and ζs

(
ij+1

)
in

B̃
(
ij+1, nij+1

)
.

Stop the induction when j = Lk.

3. Repeat steps 1 and 2 over all rosaries ρk for k = 2, ..., K.

5.27 Remark. The disjointness condition (5.6) is a natural one. If we did not

have ball enclosures of the homoclinic points, but the actual homoclinic points, this

condition would always be given. So for continuity reasons, by having sufficiently

small ball enclosures of the homoclinic points, we are still be able to satisfy (5.6).

In practice, however, due to the hyperbolic nature of the map in the neighborhood

of homoclinic points, this disjointness demand for the homoclinic ball mappings is

quite hard to satisfy and is the primary reason for a breakdown of the Taylor Model

verification of the the rectangle chain construction described in this section.

Obviously the above algorithm exhaustively assigns a unique rectangle corner-

point to every ball in B̃ by finding mapping sequences, and we can define the set of

cornerpoints as

HB̃ :=
{

h (i, ni) ∈ R2 : 1 ≤ i ≤ Ñ
}
.
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0 10 20 30 40 50 60

Figure 5.5. A manifold tangle with 65 transverse cornerpoints, ordered along the

stable manifold S (horizontal axis), and the unstable segments U (black) and f(U)

(blue).

It is also clear that the following mapping property holds: If B̃ (i, ni) , B̃
(
j, nj

)
∈ B̃

such that B̃ (i, ni) is a parent ball for B̃
(
j, nj

)
, then for the associated cornerpoints

and connector curves we have

f (h (i, ni)) = h
(
j, nj

)
,

f (ζσ (i)) ⊂ ζσ (j) for σ = u, s.

5.4.6 Definition of rectangles

5.28 Remark. At this point, we have ’untangled’ the manifold tangle T from section

5.4.1 . For every ball in B̃ (i, ni) ∈ B̃, a unique point h (i, ni) is selected at which
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the ’patched’ manifolds intersect transversely with the same orientation o (i) as is

assigned to B̃ (i, ni) as in section 3.4.4 . By ’patched’ manifolds we mean the curves

obtained from taking the invariant manifolds outside the balls in B̃ and connecting

them with the respective connector curves inside the balls.

The ordering of all points h (i, ni) along the patched manifold as given by the

indices i and ni is still valid. This information is sufficient to draw the manifold

tangle T as in Figure 5.5.

It is important to note that we have thus made a transition from the problem

of finding rectangle chains for f in the plane, to describing the construction in a

completely discrete framework.

Consider a subset HB of HB̃ given as

HB :=
{

h (i, ni) ∈ R2 : h (i, ni) is the cornerpoint in B̃ (i, ni) ∈ B ∩ B̃
}
,

=: {h (α,mα) : 1 ≤ α ≤ N} .

where the indices (α,ma) correspond to the stable and unstable ordering (i, ni)

restricted to the intersections in S ∩ U . So HB contains the cornerpoints selected for

the closed balls in S ∩ U . In particular, by design all balls in B ∩ B̃ are parent balls,

so we have that

f (h (α,mα)) ∈ HB̃ ∀ 1 ≤ α ≤ N .

In other words, if we define rectangles with cornerpoints inHB, their images will again

be rectangles with cornerpoints in HB̃ . We now proceed with the rectangle construc-

tion with an eye to the untangled manifold picture in remark (5.28). Specifically, we

will use the manifold orientation at the intersection points to define rectangles ’above’

and ’below’ the stable axis to ensure disjointness of rectangle interiors.

5.29 Algorithm. (Cornerpoint loop)

1. Construction ’above’ the stable axis: Let α = 1 and consider h (α,mα) ∈ HB̃.
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(a) Select the next cornerpoint in the unstable direction as h
(
β,mβ

)
, where

mβ = mα + o (α), i.e. h
(
β,mβ

)
is the next (or previous) cornerpoint

along the unstable arc above the stable axis if the crossing is positive (or

negative). See also Figure 5.6 for visualization.

(b) Select the previous cornerpoint h
(
γ,mγ

)
in the stable direction, i.e. γ =

β − 1.

(c) Select the next cornerpoint in the unstable direction as h (δ,mδ), where

mδ = mα + o (α).

(d) If δ = α + 1, record the ordered sequence of cornerpoint indices cα :=

{α, β, γ, δ}. Let α −→ α + 1 and repeat from step 1.

(e) Stop when α = N.

2. Construction ’below’ the stable axis is analogous to above: Let α = 1 and con-

sider h (α,mα) ∈ HB̃.

(a) Select the next cornerpoint in the unstable direction as h
(
β,mβ

)
, where

mβ = mα + o (α), i.e. h
(
β,mβ

)
is the next (or previous) cornerpoint

along the unstable arc above the stable axis if the crossing is positive (or

negative).

(b) Select the previous cornerpoint h
(
γ,mγ

)
in the stable direction, i.e. γ =

β − 1.

(c) Select the next cornerpoint in the unstable direction as h (δ,mδ), where

mδ = mα + o (α).

(d) If δ = α + 1, record the ordered sequence of cornerpoint indices cα :=

{α, β, γ, δ}. Let α −→ α + 1 and repeat from step 1.

(e) Stop when α = N.
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0 10 20 30 40 50 60

R1 M1

Figure 5.6. A rectangle R(α, β, γ, δ) = R(1, 44, 41, 6) (red) as constructed in section

5.4.6 . Also shown is the mapped rectangle f(R(1, 44, 41, 6)) (green).

Identify all index sequences that are cyclic permutations of each other, i.e. if

cα := {α, β, γ, δ} and cα̃ :=
{
α̃, β̃, γ̃, δ̃

}
= {γ, δ, α β}, then discard cα̃.

We now have a collection of M cornerpoint index sequences
{
cαi

}M
i=1

such that for each index sequence cα := {α, β, γ, δ} the cornerpoints

h (α,mα) , h
(
β,mβ

)
, h
(
γ,mγ

)
, h (δ,mδ) are adjacent to each other in the stable

and unstable directions of S ∩ U as per algorithm steps 1 and 2, and form a closed

loop

h (α,mα) −→ h
(
β,mβ

)
−→ h

(
γ,mγ

) −→ h (δ,mδ) −→ h (α,mα) .

We now use these cornerpoint sequences to define rectangles, with special care about

the choice of curves connecting them so that invariance under mapping is guaranteed:
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Consider an index sequence cα := {α, β, γ, δ} , and select the cornerpoints

h (α,mα) and h
(
β,mβ

)
. They are contained in balls B̃ (α, nα) and B̃

(
β, nβ

)
which

are directly adjacent to each other in the unstable manifold of S ∩ U . Furthermore

they are contained in rosaries ρk1
, ρk2

⊂ B̃ as

B̃ (α, nα) = B̃

(
ij0 , nij0

)
∈ ρk1

=
{
B̃
(
ij , nij

)}N(k1)

j=1
,

B̃
(
β, nβ

)
= B̃

(
lm0 , nlm0

)
∈ ρk2

=
{
B̃
(
lm, nlm

)}N(k2)

m=1
.

The balls B̃

(
iN(k1), niN(k1)

)
and B̃

(
lN(k2), nlN(k2)

)
are the last elements of

their respective rosaries, and have associated unstable connector curves ζu

(
iN(k1)

)
and ζu

(
lN(k2)

)
. The preimages

f
−
(
N(k1)−ij0

) (
ζu

(
iN(k1)

))
,

f
−
(
N(k2)−lm0

) (
ζu

(
lN(k2)

))
,

are disjoint, contain h (α,mα) and h
(
β,mβ

)
and are connected Cr by ex-

actly one subarc of the unstable manifold Wu (p). Define the curve tR (α, β, γ, δ)

as the curve concatenated from f
−
(
N(k1)−ij0

) (
ζu

(
iN(k1)

))
, Wu (p) and

f
−
(
N(k2)−lm0

) (
ζu

(
lN(k2)

))
and having h (α,mα) and h

(
β,mβ

)
as its end-

points.

Analogously, connect h
(
β,mβ

)
, h
(
γ,mγ

)
and h (δ,mδ) , h (α,mα) with ’stable’

curves rR (α, β, γ, δ) and lR (α, β, γ, δ), and connect h
(
γ,mγ

)
, h (δ,mδ) with an ’un-

stable’ curve bR (α, β, γ, δ).

This construction leads to the following result:

5.30 Lemma. For the index sequence cα := {α, β, γ, δ}, let

h (α, mα) , h
(
β,mβ

)
, h
(
γ,mγ

)
, h (δ,mδ) and tR (α, β, γ, δ), rR (α, β, γ, δ),
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bR (α, β, γ, δ) and lR (α, β, γ, δ) be given as above. Then the concatenated curve

J := tR (α, β, γ, δ)

∪ rR (α, β, γ, δ)

∪ bR (α, β, γ, δ)

∪ lR (α, β, γ, δ)

is a Jordan curve and J together with its interior forms a retangle with piecewise

Cr boundaries and with cornerpoints

xtl = h (α,mα) , xtr = h
(
β,mβ

)
,

xbr = h
(
γ,mγ

)
, xbl = h (δ,mδ) .

This rectangle is naturally denoted R (α, β, γ, δ).

Repeating the rectangle construction over all index sequences yields the set of

suitable rectangles:

5.31 Lemma. For all index sequences
{
cαi

}M
i=1

stemming from the rosaries

ρ1, ..., ρK containing B̃, we can construct M rectangles R(α, β, γ, δ) with piecewise

Cr boundaries. All M rectangles have disjoint interior.

The disjointness follows directly from the construction, since two rectangles can

share at most one boundary. We also observe the following:

5.32 Proposition. If R (α, β, γ, δ) is a rectangle, then its image f (R (α, β, γ, δ)) is

again a rectangle with

f (h (α,mα)) , f
(
h
(
β,mβ

))
,

f
(
h
(
γ,mγ

))
, f (h (δ,mδ)) ,

as its top left, top right, bottom right and bottom left cornerpoints, and

f (tR (α, β, γ, δ)) , f (rR (α, β, γ, δ)) ,

f (bR (α, β, γ, δ)) , f (lR (α, β, γ, δ)) ,

as its top, right, bottom and left boundaries.

This is illustrated in Figure 5.6.

128



5.4.7 Mapping of rectangles

The rather involved construction of rectangle boundaries yields this fundamental and

important mapping property:

5.33 Theorem. (Invariance of rectangles under mapping) Let R (α, β, γ, δ) and

R
(
α̃, β̃, γ̃, δ̃

)
be two rectangles constructed as in the previous section. If

the cornerpoints of R (α, β, γ, δ) map into those of R
(
α̃, β̃, γ̃, δ̃

)
, then

f (R (α, β, γ, δ)) = R
(
α̃, β̃, γ̃, δ̃

)
.

However, typically the rectangles do not map into each other, but due to the hy-

perbolic nature of the map across each other instead, i.e. they form Markov crossings

under iteration. This observation is the content of the next mapping theorem.

Let R1 = R1 (α, β, γ, δ) be a rectangle given by the top left, top right, bottom

right and bottom left cornerpoints xtl = h (α, nα) , xtr = h
(
β, nβ

)
, xbr = h

(
γ, nγ

)
and xbl = h (δ, nδ). Consider the mappings

h (a, na) := f (xtl) = f (h (α, nα))

h (b, nb) := f (xtr) = f
(
h
(
β, nβ

))
h (c, nc) := f (xbr) = f

(
h
(
γ, nγ

))
h (d, nd) := f (xbl) = f (h (δ, nδ)) .

Then these are the cornerpoints for the rectangle f (R1) .

Let now a second rectangle R2 = R2 (ε, ζ, η, θ) be given with the top left, top right,

bottom right and bottom left cornerpoints xtl = h (ε, nε) , xtr = h
(
ζ, nζ

)
, xbr =

h
(
η, nη

)
and xbl = h (θ, nθ).

5.34 Theorem. (Rectangle Markov crossing) Let the rectangles R1 and R2 have

cornerpoints as above, and let their boundary segments be oriented as in Fig-

ure 5.7. There is a Markov crossing f (R1) ]R2 if there exist homoclinic points
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h (i, ni) , h
(
j, nj

)
, h (k, nk) and h (l, nl) such that the following hold:

i) a ≤ i < j ≤ b ii) c ≤ k < l ≤ d

iii) nζ ≤ nj < nk ≤ nη iv) nθ ≤ nl < ni ≤ nε .
(5.7)

If R1 or R2 have other orientations of their boundary segments, then analogous state-

ments to Thm. 5.7 hold with altered orderings.

Proof. The proof follows directly from Figure 5.7. We concatenate the unstable arc

℘Wu(p)

(
h (i, ni) h

(
j, nj

))
, the stable arc ℘Ws(p)

(
h
(
j, nj

)
h (k, nk)

)
, the unsta-

ble arc ℘Wu(p) (h (k, nl) h (l, nl)) and the stable arc℘Ws(p) (h (l, nl) h (i, ni)). Then

the concatenated curve

J := ℘Wu(p)

(
h (i, ni) h

(
j, nj

))
∪ ℘Ws(p)

(
h
(
j, nj

)
h (k, nk)

)
∪ ℘Wu(p) (h (k, nl) h (l, nl))

∪ ℘Ws(p) (h (l, nl) h (i, ni))

is a Jordan curve, the interior of which is contained in both rectangles f (R1) and

R2, and thus we have a Markov crossing.

5.4.8 Entropy estimates

The entire rectangle chain construction of Section 5.4 culminates in the following

theorem, a direct consequence of Thm. 5.15:

5.35 Theorem. Let f : R2 ⊃ M −→ M , where M is compact, be a smooth diffeo-

morphism with a homoclinic saddle point p. Starting from p, generate the manifold

tangle T as in section 5.4.1 and proceed to obtain homoclinic ball enclosures B̃ with

the ordering information (as in section 5.4.2), mapping information (as in section

5.4.4) and manifold crossing orientation (as in section 5.4.3) of elements B̃.
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(a, na) (b, nb)

(c, nc)(d, nd)

(ε, nε) (ζ, nζ)

(η, nη)(θ, nθ)

(i, ni) (j, nj)

(k, nk)(l, nl)

Figure 5.7. The determination of the Markov-crossing of f(R(α, β, γ, δ)) =

R(a, b, c, d) and R(ε, ζ, η, θ) amounts to a simple check on the cornerpoint ordering

in the manifold tangle.
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This data permits the automatic construction of rectangles and rectangle crossings

such that for an incidence matrix A obtained from the Markov crossings in Thm. 5.34

we have

h (f) ≥ sp (A) .

5.5 Taylor Model verification of rectangle chain

construction

In the previous section an algorithm to construct topological rectangles using the

invariant manifold tangle, and to determine their Markov crossings, has been pre-

sented. In the following we now rigorously verify this construction, i.e. we introduce

Taylor Model based algorithms that can check the assumptions that were made for

the construction in section 5.4. Conceptually, this will prove to be not difficult, since

the construction in section 5.4 was developed with an eye on the implementation in

the Taylor Model framework.

5.5.1 Manifold tangle

Let p be a hyperbolic saddle point of the Cr-diffeomorphism f : R2 −→ R2, and let

λu be the unstable eigenvalue, assumed without loss of generality to have positive

real part (else consider the squared map f2).

According to the construction in section 4.4 we are able to find ordered sequences

of Taylor Models that form a C0-enclosure of the invariant manifolds. Starting with

verified Taylor Model enclosures Ts,u of the local invariant manifolds W
s,u
loc (p), we

simply iterate in Taylor Model arithmetic to obtain

fKu
(
Wu
loc (p)

) ⊂ fKu (Tu) and f−Ks
(
W s
loc (p)

) ⊂ f−Ks (Ts) .

for some iterates Ku, Ks ∈ N0 . The fundamental assumption which needs to be
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satisfied is U ⊂ f (U) and f (S) ⊂ S. The simplest choice of tangle that guarantees

this property is to choose S := {S1} and U := {U1} where

U1 := f−Ks
(
W s
loc (p)

)
and S1 := fKu

(
Wu
loc (p)

)
, (5.8)

in which case the desired containments are immediately satisfied.

Selecting the entire manifold iterates as in (5.8) for the manifold tangle is not nec-

essarily desirable, e.g. for high iterates Ku, Ks the manifolds accumulate so densely

upon themselves that the Taylor Model enclosures fKu (Tu) and f−Ks (Ts) cannot

resolve them anymore, and one may wish to select only a finite collection of subarcs

of the entire manifold iterates.

We note that there is a technique to suitably pick a finite collection U? ⊂ U of

unstable subarcs for the tangle selection and still have U? ∪ f (U?) fully ordered:

Let U? :=
{
U?1 , ..., U

?
L?

}
be an ordered collection of compact unstable subarcs

with mutually disjoint interiors. For a subarc U?i ∈ U?, let bl (i) and bu (i) denote

the lower and upper endpoints of U?i in the orientation of Wu (p). Then U? ∪ f (U?)

can be ordered if the following two conditions hold:

1. f (bl (k)) ≥ bu (k) ∀ 1 ≤ k ≤ L?.

2. f (bu (k)) ≤ bl (k + 1) ∀ 1 ≤ k ≤ (L? − 1)

where ≤ and ≥ denote ordering in the orientation of Wu (p).

5.5.2 Interval box enclosures of homoclinic points, ordering

and crossing orientation

In section 4.4 we presented an algorithm to find set enclosures of homoclinic intersec-

tions of a stable and unstable manifold piece contained in intersecting Taylor Models.

Immediately we can extend this algorithm to enclose all homoclinic intersections of
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entire lists of TMs
{
Tu,i

}Ju
i=1

and
{
Ts,j

}Js
j=1

. The algorithm is simply performed

Ju · Js times.

Candidate parameter enclosures for intersections of two Taylor Models Tu,i and

Ts,j are found by a verified global optimization scheme. Since the lists
{
Tu,i

}Ju
i=1

and
{
Ts,j

}Js
j=1

are ordered along the arclength of the manifold they contain, and

every Tu,i and Ts,j is parametrized longitudinally on [−1, 1], the candidate parameter

enclosures for the intersections can easily be ordered.

Existence of a homoclinic intersection points as in section 5.4.2 and following is

being proved via Algorithm 4.15. Since Algorithm 4.15 checks the existence of entry

and exit points and determines the correponding boundary segment of the interval

enclosure, the manifold crossing orientation is obtained immediately as well.

5.5.3 Homoclinic interval box enclosure mappings

The containment conditions (5.4.3) and (5.6) are required for the determination of

mapping properties and rosaries. Performing the mappings of an interval box enclo-

sure B̃ ∈ B̃ in Taylor Model or interval arithmetic yields verified outer estimates of

their ranges and containment can be rigorously checked. Techniques for the efficient

range bounding for specific cases Taylor Model are available [45,48].

Finding sharp range estimates of f
(
B̃
)

and f−1
(
B̃
)

in light of the inavoidable

accumulation of homoclinic interval box enclosures for higher iterates of the manifold

is the biggest challenge.

5.6 Results: Entropy of the Hénon map

As an example of the entropy construction in the last section we again consider the

Hénon map

Ha,b(x, y) :=
(

1 + y − ax2, bx
)
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Figure 5.8. a) Rectangle R12 (blue) and its 7th image (red). b) Rectangle R1 (red)

and its image (green).
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b)

Figure 5.9. a) Rectangles R1, R3, R5, and R7 (red). b) Rectangle R24 (red) and its

image (green).
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b)

Figure 5.10. a) The mapped rectangles R22 and R23 (green) both cross R1 (red). b)

The mapped rectangle R23 (green) crosses both rectangles R1 and R13 (red).
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with the standard parameters of a = 1.4, b = 0.3. This map has been a subject

of detailed study before and nonverified numerical approximations of its topologi-

cal entropy have been calculated using various approaches, e.g. via periodic orbit

counting [19,20] or from curve length growth algorithms [57]. Numerical experiments

suggests that

h
(
Ha,b

)
≈ 0.464. (5.9)

Work has been done using concepts similar to Markov-crossings in interval arithmetic

for rigorous bounds [21,22], but without employing the invariant manifold structure.

The largest lower entropy bound obtained with such interval methods as of the time

of this writing is

h
(
Ha,b

)
≥ 0.430.

In comparison, the construction in section 5.4 has been implemented using Taylor

Model arithmetic in COSY Infinity [1, 15]. Coding for the determination of the ho-

moclinic ball data (ordering, orientation, mapping) from section 5.4.1 through 5.4.4

was implemented by the author, the construction of rectangles and their Markov-

crossings was performed by the COSY program dyn2.fox due to K. Makino. dyn2.fox

also created Figures 5.5, 5.6 and 5.8-5.10.

Data sets with interesting results ranged from sample sizes of about 100 homoclinic

ball enclosures to over 700, with the corresponding number of rectangle (# R) and

Markov crossings (# MC) as listed in the following table:

n # HP # R # MC h
(
Ha,b

)
≥

7 101 37 43 0.3466

8 161 66 94 0.4132

9 267 119 185 0.4132

10 437 218 346 0.4283

11 707 381 603 0.4417

(5.10)

The best lower entropy estimate obtained so far from this automatic procedure is
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thus

h
(
Ha,b

)
≥ 0.4417 .

5.7 Verification of preselected tangles

The preceding sections have been concerned with the fully automatic verified con-

struction of symbolic dynamics through the knowledge of the ordering and mapping

properties of homoclinic points within a homoclinic tangle. While this method is

designed to fully rely on computational power, one could argue that it disregards the

experience and intuition of the user to a certain degree. That is to say, the method

tries to get ’good’ symbolic dynamics, i.e. subshifts as topological factors that retain

a majority of the original dynamics, by a brute-force approach in which the sheer

number of homoclinic points and the rectangles constructed from the data is maxi-

mized, thus coding the dynamics more finely.

The approach of the experienced researcher is typically a different one: he has an

educated idea about which rectangles (and their associated homoclinic cornerpoints)

are essential to retaining the interesting dynamics in a subshift on the selected symbol

space, and which ones might be redundant. For example, near-tangencies between

the stable and unstable manifold which form a very thin bigon (a set with a bound-

ary consisting of exactly one subsegment each of the stable and unstable manifold)

contribute significantly to entropy estimations, because they expand disproportion-

ally under iteration and lead to many entries in the incidence matrix. Naturally,

the number of homoclinic points that a researcher is able to consider for these con-

structions is very small, maybe in the few dozens, compared to the computational

effort required in the automatic methods described above, which need hundreds or

thousands of homoclinic points to code the dynamics well. This suggests that it is

worthwhile to try to verify a manually selected homoclinic tangle with Taylor Model
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methods, i.e. prove that a selected set of rectangles, cornered by homoclinic points,

indeed satisfies the mapping properties suggested by numerical experimentation.

In the following, we analyze a homoclinic tangle suggested by Newhouse in [56]. The

authors consider the Hénon map with standard parameter values a = 1.4 and b = 0.3

and are able to find a rigorous lower entropy bound which is within 10−3 of the

numerically suggested true entropy value for this map.

5.7.1 Determination of trellis

Newhouse proposed a trellis constructed around the hyperbolic saddle

p0 ≈ (0.6313544770895048, 0.1894063431268514)

and the transverse homoclinic point

q1 ≈ (0.3388525493895907,−0.2551125297830196)

(the existence of which has been confirmed already in chapter 4). There are subarcs

S1 ⊂ W s (p0) and U1 ⊂ Wu (p0) connecting p0 and q1 which form a bigon D. The

intersection H2 (U1)∩D contains a second unstable arc U2 which lies in the interior

of D and forms a bigon with a subarc of S1. These manifold pieces together with

stable subarcs S2-S13, which were generated as Si ⊂ H−ki (S1) ∩D for some ki-th

preimage of S1, form the trellis which defines a set of 13 rectangles {R1, ..., R13} with

mutually disjoint interiors as shown in picture (5.11).

All rectangles Ri are have top and bottom boundaries in Wu (p0) and left and

right boundaries in W s (p0). The rectangles R1-R6 and R8-R10 are of full height in

D, whereas R7 has its upper unstable boundary in U2 and R11-R13 have their lower

unstable boundaries in U2. Clearly, the bigon D ⊃ ⋃13
i=1Ri, and we want to consider

return maps from D back into itself, and how iterates Hmi (Ri) Markov-cross other

rectangles Rj :

140



ON THE ESTIMATION OF TOPOLOGICAL ENTROPY ON SURFACES 11

FIGURE 2. The rectangles 1,2, . . . bounded by pieces of unstable and stable arcs
in the standard Henon map

For space reasons, in the figure, we have left out the R′s and simply denoted the rectangles by
their numbers. We use the number i to denote the corresponding rectangle Ri. Thus, 1 corresponds
to the left most rectangle, 2 is adjacent to it on the right, etc.

The rectangles 1,2,3,4,5,6,8,9,10 are of full-height in D0: they are bounded above and below
by pieces of the unstable curve U1. The rectangles 7,11,12,13 are not of full-height. Rectangle 7
is bounded above by pieces of U2 and below by pieces of U1. The opposite is true of rectangles
11,12,13. They are bounded above by pieces of U1 and below by pieces of U2.

Letting ri be the first return time of the rectangle Ri to D0 as above, the mapping properties of
the various rectangles were determined using the program COSY. We numerically computed (with
rigorous error estimates) the image Hri(Ri) of each rectangle Ri. This image will cut across certain
of the rectangles R j, in some cases more than once.

Figures 3, 4, and 5 show the rectangles Ri and their return time images (i.e.; Hri(Ri)). The captions
describes the rectangles Ri and those which Hri(Ri) meets in full-width components. Note that the
boundaries of the images H5(R8),H6(R11) and H6(R13) are nearly tangent to the curves S4,S6 and
S6, respectively. To see that these images map fully across the necessary curves, we show magnified
pictures of the images near the tangencies in the upper right and bottom of Figure 5. The images
H6(R11),H6(R13) are nearly the same, so we only show the blow-ups of H5(R8) and H6(R11).

Figure 5.11. Thirteen rectangles are contained in the trellis formed by stable manifold

segments S1-S10 and unstable segments U1 and U2. Picture from [56].
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5.36 Proposition. (Newhouse) The rectangles R1-R13 satisfy the following mapping

properties:

1. H2 (R1) crosses R1, R2, R3, R4, R5, R6, R11 and R12.

2. H2 (R2) crosses R13 and R8.

3. H2 (R3) crosses R9.

4. H2 (R4) crosses R10.

5. H5 (R5) crosses R1, R2 and R3; the crossing of R3 is a double crossing.

6. H5 (R6) crosses R1 and R2.

7. H6 (R7) crosses R1; the crossing is a double crossing.

8. H5 (R8) crosses R1, R2 and R3; all crossings are double crossings.

9. H2 (R9) crosses R9 and R10.

10. H2 (R10) crosses R1, R2, R3, R4, R5, R6, R7 and R8.

11. H6 (R11) crosses R1, R2, R3, R4 and R5; all crossings are double crossings.

12. H7 (R12) crosses R1, R2 and R3; all crossings are double crossings.

13. H6 (R12) crosses R1, R2, R3, R4 and R5; all crossings are double crossings.

This proposition is seemingly true as suggested by nonverified numerical experi-

mentation, but that these intersection do in fact occur as claimed will be shown later

using verified Taylor Model manifold enclosures.

5.37 Definition. (Return vector) For x ∈ D, let r̃ : D −→ N+ denote the first

return iterate such that H r̃(x) (x) ∈ D. It turns out that r̃ (x) ≥ 2∀x ∈ D and that
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r̃ is constant on Ri. We can thus define the return vector r for the set of rectangles

{R1, ..., R13} as

r ∈ N13
+ , ri := r̃ (xi) for some xi ∈ Ri.

According to Proposition 5.36, the return vector r is apparently given by

r = (2, 2, 2, 2, 5, 5, 6, 5, 2, 2, 6, 7, 6) .

The matrix A ∈ N13×13 is defined as Aij = k iff Hri (Ri) Markov-crosses Rj exactly

k times. From the claim we can see that

A =



1 1 1 1 1 1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

1 1 2 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0

2 2 2 2 2 0 0 0 0 0 0 0 0

2 2 2 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 0 0 0 0 0 0 0 0


The jargon is to call A an incidence matrix for the trellis composed of the rectangles

R1-R13. Strictly speaking, A is not an incidence matrix according to Def. 2.15, as

the encoded crossing properties under iteration are based on higher iterates of H.

However, there is a standard and straightforward procedure to transform A into a

form compatible with our notion of incidence matrices: consider the i-th row of A

which denotes the Markov crossings of Hri (Ri) with Rj . We construct a tower by

adding new rectangles Ri,1 := H1 (Ri) , Ri,2 := H2 (Ri) , ..., Ri,ri−1 := Hri−1 (Ri),

and insert them as additional rows and columns between rows/colums i and i + 1.

Trivially, by definition H
(
Ri,j

)
Markov crosses Ri,j+1 only, leading to additional

rows in the expanded matrix A as A(i,j),k = δk,j+1. We call this incidence matrix

on this expanded rectangle set Ã.
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Ã is an N52×52-incidence matrix in the sense of Def. 2.15. We do not state Ã

here for obvious formatting reasons. According to Thm. 2.17, the logarithm of the

spectral radius of Ã yields a lower bound on the entropy of the Hénon map H. There

are standard techniques available for the determination of verified lower bounds of the

spectral radius of real-valued matrices, and we were able to determine the following

entropy bound:

5.38 Theorem. The topological entropy h (H) of the standard Hénon map H = Ha,b

with a = 1.4 and b = 0.3 satisfies the estimate

h (H) ≥ 0.46469 .

This theorem obviously requires Proposition 5.36 to hold, which we will prove in

the next section. It is quite remarkable that this rigorous lower bound which relies on

only 13 symbols is so close to the numerically suggested true value of the topological

entropy of the Hénon map with standard parameters.

5.7.2 Verification of mapping pictures

Let S1 ⊂ W s(p0) be the segment of the stable manifold connecting the fixed point

p0 to the homoclinic point q1 and consider the 11th preimage S := H−11(S1). We

first determine subarcs S2 through S13 of S as shown in Figure 5.11 (in the figure the

arcs S1-S13 actually extend slightly above and below the domain D, we crop them

such that their ends lie in U1 ∪ U2).

The approximate position of the homoclinic intersections of the arcs S1-s13 with

the unstable segment U1 ∪ U2 as shown in Figure 5.11 is sufficient to determine the

number ni of backward iterates of H−ni(S1) at which each of the exact arcs Si,

1 ≤ i ≤ 13, are first generated. With one exception, the respective iterates are much
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smaller than 11, leading to easy identification of the corresponding pieces.

S1 : 0 S2 : 8 S3 : 6 S4 : 8

S5 : 4 S6 : 11 S7 : 5 S8 : 5

S9 : 4 S10 : 6 S11 : 2 S12 : 6 S13 : 6

Figures 5.12-5.17 justify the last statement. The figures contain the approximate

boundary points of the rectangles Ri from Figure 5.11, and rigorous Taylor Model

enclosures of the manifold pieces U1, U2 and the respective preimages of S1. The

curvilinear rectangles R1 through R13 are defined analogously to Figure 5.11, each

formed by two stable and two unstable arcs, but with the rigorously determined true

manifold segments:

5.39 Proposition. Let nl(i) and nr(i) be the numbers of the inverse iterate of S1 at

which the left and right stable boundaries of rectangle Ri are first generated, as shown

in Figures 5.12-5.17. We see that the following table holds:

Rectangle nl nr Rectangle nl nr
R1 0 8 R8 5 4

R2 8 6 R9 4 6

R3 6 8 R10 6 3

R4 8 4 R11 5 6

R5 4 11 R12 6 6

R6 11 5 R13 6 5

R7 5 5

With these definitions, we can now prove the following rectangle crossing under

iteration:

5.40 Theorem. The rectangle mappings claimed in Prop. 5.36 occur in the given

trellis.

Proof. The proof is based on the fact that the pictures (5.12-5.17) are verified, i.e.

that the rigorously computed error bounds for all manifold pieces are below printer

resolution. More precisely, the plotted curves are contained in Taylor Models with

error bounds of size less than 10−12 for the unstable arcs U1 and U2, and between
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10−12-10−5 for the iterates of the stable arcs S1-S13. Together with the informa-

tion of iterates first generating the Si we can show that the mapping properties in

suggested in the pictures are in fact true.

First consider R1. We observe that the upper unstable boundary of R1 is con-

tained in U1 and extends between the stable subarcs S1 and S2. Then its second

iterate must be contained in H2 (U1) ∩ D = U1 ∪ U2, and per the picture one can

identify that it is again contained in the upper portion of U1. It extends between

H2 (S1) and H2 (S2), and since according to Prop.5.39 nl (R1) = 0 and nr (R1) = 8,

we have nl

(
H2 (R1)

)
= 0 and nr

(
H2 (R1)

)
= 6, and we can identify that the

mapped rectangle H2 (R1) is bounded on the left by S1 and on the right by S13. For

the remaining lower unstable boundary of H2 (R1) we know that it is again contained

in U1∪U2, and inspection of the picture shows that it is a subarc of U2 again extending

between the stable segments S1 and S13. With this information it is now clear that in-

deed the second iterate H2 (R1) stretches Markov across R1, R2, R3, R4, R5, R6, R11

and R12. This proves claim 1.

Next we analyze the crossing properties of H5 (R8). For its left and right stable

boundaries we have nl (R5) = 5 and nr (R5) = 4. Hence for the stable boundaries of

the fifth iterate we have nl

(
H5 (R5)

)
= 0 and nr

(
H5 (R5)

)
= 0, and we can thus

infer that both stable boundaries of H5 (R8) must be subarcs in S1. Furthermore,

from Figure 5.21b and the magnification Figure 5.22a it is clear that both upper and

lower unstable boundaries of H5 (R8) extend fully to the right of R3, and thus we

have that H5 (R8) Markov-crosses R1, R2 and R3 twice. This establishes claim 8.

The remaining claims 2-7 and 9-13 work analogously to the two cases discussed

in detail here.
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a)

b)

Figure 5.12. a) The fundamental stable arc S1 (red). Also printed are the segment

of the unstable manifold (blue) and the homoclinic points (black) that are relevant

for the rectangle construction. b) The first preimage H−1(S1) (red).
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a)

b)

Figure 5.13. a) The second preimageH−2(S1) (red). b) The third preimageH−3(S1)

(red).
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a)

b)

Figure 5.14. a) The fourth preimage H−4(S1) (red). b) The fifth preimage H−5(S1)

(red).
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a)

b)

Figure 5.15. a) The sixth preimage H−6(S1) (red). b) The seventh preimage

H−7(S1) (red).
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a)

b)

Figure 5.16. a) The eigth preimage H−8(S1) (red). b) The ninth preimage H−9(S1)

(red).
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a)

b)

Figure 5.17. a) The tenth preimage H−10(S1) (red). b) The eleventh preimage

H−11(S1) (red).
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a)

b)

Figure 5.18. a) Rectangle R1 (blue) and its 2nd image (red). b) Rectangle R2 (blue)

and its 2nd image (red). The remaining rectangles are printed in black.
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a)

b)

Figure 5.19. a) Rectangle R3 (blue) and its 2nd image (red). b) Rectangle R4 (blue)

and its 2nd image (red).
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a)

b)

Figure 5.20. a) Rectangle R5 (blue) and its 5th image (red). b) Rectangle R6 (blue)

and its 5th image (red).
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a)

b)

Figure 5.21. a) Rectangle R7 (blue) and its 6th image (red). b) Rectangle R8 (blue)

and its 5th image (red).
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a)

b)

Figure 5.22. a) A magnified view of the 5th image of rectangle R5 (red). We see that

H5(R5) maps fully across the right boundary S4 of R4. b) Rectangle R9 (blue) and

its 2nd image (red).
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a)

b)

Figure 5.23. a) Rectangle R10 (blue) and its 2nd image (red). b) Rectangle R11
(blue) and its 6th image (red).
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a)

b)

Figure 5.24. a) Rectangle R12 (blue) and its 7th image (red). b) Rectangle R13
(blue) and its 6th image (red).
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Figure 5.25. A magnified view of the 6th image of rectangle R13 (red). We see that

H6(R13) maps fully across the right boundary S6 of R5.

5.8 Summary and Outlook

We presented a method to compute lower bounds for the topological entropy of pla-

nar diffeomorphisms by selecting generalized rectangles and checking their Markov-

crossings under iterations. In the case of a smooth diffeomorphism, only disjointness

of the rectangle interiors is required, thus allowing invariant manifolds to be used as

the rectangle boundaries.

Having C0-enclosures of the invariant manifolds given by an arclength-ordered

set of Taylor Models enables us to find a set of closed balls rigorously containing

all homoclinic points of a finite manifold tangle. The ordering of the balls along

both the stable and unstable manifold in the tangle, together with their mapping

properties and orientation of the manifold crossing is sufficient information to prove

the existence of rectangles with well-defined mapping and Markov-crossing properties,

the boundaries of which are contained in the original Taylor Model C0-enclosures of
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the invariant manifolds.

The entire algorithm can be fully automated and all assumptions that enter the

rigorous rectangle construction are suitable to be checked using Taylor Model meth-

ods.

The largest lower bound for the entropy of the standard Hénon map thus computed

is

h
(
Ha,b

)
≥ 0.4417,

obtained from a data set of 707 homoclinic points. The estimates can be improved

by accounting for hexagons, octagons etc. in the manifold tangle which have bound-

aries alternating in the stable and unstable manifold. Such sets can be converted to

rectangles through the incorporation of bigons, i.e. sets that have exactly one stable

and one unstable arc as their boundary.

Conversions of this type increase the number of rectangles and Markov-crossings

and lead to incidence matrices with larger spectral radii. In the following table we can

see how the number of rectangles (# R), the number of Markov crossings (# MC), and

the entropy estimates (h
(
Ha,b

)
≥) change if rectangle conversion of higher n-gons

is performed.

n # R # MC h
(
Ha,b

)
≥ # R with conv. # MC with conv. h

(
Ha,b

)
≥

7 37 43 0.3466 47 62 0.3738

8 66 94 0.4132 77 110 0.4309

9 119 185 0.4132 130 205 0.4403

10 218 346 0.4283 229 366 0.4499

11 381 603 0.4417 392 621 0.4536

The data suggests an improved lower bound

h
(
Ha,b

)
≥ 0.4536.

The n-gon conversion will be treated in detail in forthcoming publications.
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Recent work shows that there are more sophisticated ways to check Markov-

crossings than the method in sections (5.4.6) and (5.4.7). Using the same data for

ordering, mapping and orientation of the homoclinic balls as produced the above esti-

mates, P. Collins [11,12] suggested an algorithm that claims a rigorous lower entropy

bound of

h
(
Ha,b

)
≥ 0.4571.

An investigation to which degree these methods can be implemented in the verified

computational framework seems worthwile.

Future modifications of the method should include updates in the computational

framework, such as the implementation of high-precision Taylor Model arithmetic,

which should increase the size of the manifold tangle and the number of homoclinic

enclosure balls that can be rigorously shown to satisfy condition (5.6), the foremost

criterion where the verification using Taylor Models can fail. Lastly, Taylor Model

enclosures of invariant manifolds were used to produce verified pictures, accurate to

below printer resolution, which rigorously establish a rectangle construction suggested

by S. Newhouse [56]. Using 52 rectangles, the lower entropy bound stemming from

the incidence matrix is

h
(
Ha,b

)
≥ 0.46469,

which to the best knowledge of the authors is the largest lower bound that has been

established for the Hénon map with the standard parameter values so far, and which

agrees to within 10−3 with the entropy value (5.9) suggested through nonverified

numerical experiments.
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APPENDIX A

Interval Arithmetic

A.1 Definitions

The concept of interval arithmetic as introduced by Moore [49, 50] is one of the

earliest frameworks to offer numerical computations with automated self-contained

error estimates. Instead of performing operations on real numbers (which may or

may not be accurately known or even representable), one performs operations on

intervals known to contain the respective numbers , where the interval operations are

compatible with the original number operations, i.e. for any operation ~ (summation,

subtraction, multiplication or division) and any two closed intervals I1, I2 ⊂ R, we

must satisfy

a ∈ I1, b ∈ I2 =⇒ a~ b ∈ I1 ~ I2, (A.1)

where we again identify the symbols for number and interval operations for conve-

nience.

A.1 Definition. (Interval operations) Let I1 = [a1, b1] , I2 = [a2, b2] ⊂ R be closed
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real intervals. Then we define

I1 + I2 := [a1 + a2, b1 + b2] ,

I1 − I2 := [a1 − b2, b1 − a2] ,

I1 · I2 := [min {a1a2, a1b2, b1a2, b1b2} ,max {a1a2, a1b2, b1a2, b1b2}] ,

I1/I2 := I1 · I−1
2 , where I−1

2 := [1/b2, 1/a2] provided 0 /∈ I2 .

It is easy to check that indeed the operations from definition (A.1) satisfy the

condition (A.1). Moreover, it is important to note that the above operations can

be implemented in a computer environment with proper outward rounding of the

resulting imtervals to satisfy the inclusion property (A.1) in a fully rigorous way,

even accounting for round-off errors.

Analogous to the binary operations also elementary functions can be extended to

intervals. For a function f : R ⊃D −→ R and a closed interval I ⊂ D, the interval

equivalent function (again abusing notation) has to satisfy

a ∈ I =⇒ f(a) ∈ f (I) .

For detailed discussions on the implementation of such interval extensions of mathe-

matical functions we refer to [27].

The availablity of general classes of functions for interval arguments has led to

a wide range of applications for interval arithmetic in self-contained error analysis,

from root-finding (interval Newton methods) and global optimization (Branch-and-

Bound algorithms) to verified interval inclusion of ODE-flows [37, 38]. Tucker used

interval ODE integrators to prove the existence of the geometric model for the Lorenz-

attractor [64].
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A.2 Fundamental problems of interval arithmetic

The goal of interval algorithms is of course to keep the resulting interval enclosures

of the mathematical solutions as narrow as possible. However, in a general setting

in practice all applications mentioned above suffer from significant overestimation,

i.e. a blow-up of the interval enclosures after frequent evaluation of code lists in

interval arithmetic. The major causes of this problem are unfortunately rooted in the

very definition of interval operations themselves, which can lead to overly pessimistic

interval widths in the right hand side of condition (A.1).

A.2.1 Dependency problem

To illustrate the dependency problem [42],we consider a classic simple example. Let

f : [−1, 1] −→ R given as f (x) := x − x. Clearly f is just the zero function, and

its range over the entire domain [−1, 1] is simply {0}, but when we evaluate the

expression in interval arithmetic we obtain

x− x ∈ [−1, 1]− [−1, 1] = [−2, 2] ,

which is a true statement, but obviously the estimation is both impractically coarse

and fails to reflect the mathematical reality. This is precisely the dependency problem,

the artificial blowup in the interval evaluation of a function if that function is given

as a code list that requires many individual interval evaluations, e.g. in a Horner

scheme or an inductively defined function.

A.2.2 Wrapping effect

The second cause for overestimation is the so called wrapping effect [3, 39, 51, 52],

based on the fact that interval arithmetic provides interval range bounds along the

coordinate axes. Consider planar functions f1, f2 : [−1, 1]2 −→ R2 that map the
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Figure A.1. Schematic depiction of the wrapping effect in the linear (left) and non-

linear (right) case. The range enclosure (blue dotted line) exhibits overestimation

versus the true mapped square (red).

initial square as in Figure A.1 for an intuitive idea of the wrapping effect. In both

cases the resulting interval range bounds severly overestimates the true range bounds.

While in the first case, where the action of f1 is linear, the effect can be alleviated

to a certain degree by linearly transforming the coordinate system, in the nonlinear

second case of f2 the overestimation by interval arithmetic can be arbitrarily large.

A.2.3 Dimensionality curse

The dimensionality curse is jargon for the unfavorable exponential scaling of compu-

tational effort and memory requirement with the dimension of the problem in interval

arithmetic. Typically, one wishes to model a set (e.g. a box of initial coordinates

transported through an ODE or the set containing all zeroes of a function) as con-

tained within a union of interval boxes of a given fineness. That is, for a collection of

interval boxes I = {Ik}mk=1 with Ik = [ak,1, bk,1]× ...×
[
ak,v, bk,v

]
⊂ Rv, bk,l > ak,l

∀ 1 ≤ k ≤ m, 1 ≤ l ≤ v, let

εk := max
{(
bk,l − ak,l

)
: 1 ≤ l ≤ v

}
.
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Note that εk > 0. Then define the fineness of I as

εI := max {εk : 1 ≤ k ≤ m} .

Typically however, the fineness εI is a given quantity in the context of the prob-

lem, say the threshold accuracy with which one wants to approximate sets. Let

D ⊂ Rv have full dimension v, and we want to construct a collection of intervals

I = {Ik}card(I)
k=1 with 0 < εI << 1 such that D ⊂ ⋃card(I)

k=1 Ik, then

card (I) v

(
1

εI

)v
,

an undesirable exponential scaling with the dimensionality.
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APPENDIX B

The differential algebra nDv

B.1 Definitions

In the following, we introduce a framework that allows the efficient numerical manipu-

lation of high-order multivariate polynomials and of Taylor polynomials in particular.

Given that by its very nature Taylor Model arithmetic combines both polynomial ma-

nipulation and, for the remainder bound, interval arithmetic, the techniques presented

in this section bridge the gap to the former.

Consider an open subset G ⊂ Rv containing the origin, and let the set Cn(G,R)

be the set of all real-valued n -times continuously differentiable functions on G. Then

we introduce an equivalence relation on this function space as follows:

B.1 Definition. For two functions f, g ∈ Cn(G,R) we say that f =n g (’f equals g

up to order n’) if and only if f(0) = g(0) and all partial derivatives of f and g agree

at the origin up to order n.

It is obvious that =n indeed establishes an equivalence relation on Cn(G,R).

B.2 Definition. On the function space Cn(G,R), equivalence classes modulo the

relation =m, m ≤ n, are called ’DA-vectors of order m’. For f ∈ Cn(G,R), its

DA-vector of order m is denoted by [f ]m.
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The collection of DA-vectors up to and including order n is called nDv.

The DA-vector [f ]n contains all functions that agree with f at the origin up to

their n-th derivative, and in particular it is easy to see the following:

B.3 Proposition. For a function f ∈ Cn(G,R), its Taylor polynomial of order n is

contained in nDv.

We can therefore think of the DA-vector [f ]n as the n-th order Taylor polynomial.

Since basic arithmetic operations on R carry over naturally to Cn(G,R), we wish to

establish these operations on nDv as well.

B.4 Definition. (Elementary operations) Let f, g ∈ Cn(G,R) and consider their

DA-vectors [f ]n and [g]n. Let t ∈ R. We define

[f ]n + [g]n := [f + g]n , (B.1)

t · [f ]n := [t · f ]n .

Furthermore, we can define a multiplication

[f ]n · [g]n := [f · g]n . (B.2)

Here we take the liberty of denoting operations on Cn(G,R) and nDv with the same

symbols.

In a more intuitive manner, which is beneficial when thinking of DA-vectors in

the Taylor Model context, this means that knowledge of the Taylor polynomials of

two functions f and g at the origin immediately yields the Taylor polynomials for

the sum f + g and the product f · g. For a more detailed study of this property of

DA-arithmetic we refer to [4, 6].

It is clear that with addition and scalar multiplication as in (B.1) nDv becomes

a vector space and with the vector multiplication (B.2) an algebra. In fact, we can
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define a derivative operation that observes the product rule such that nDv becomes

a differential algebra.

B.5 Definition. Let 1 ≤ k ≤ n and [f ]n ∈ nDv. Then we define the derivation ∂k

as

∂k [f ]n := [πk · ∂kf ]n , (B.3)

where πk ∈ Cn(G,R), πk(x) := xk for x ∈ Rv, is the projection of the k-th component

of x.

This derivation operation is thus analogous to the differentiation on Cn(G,R),

except that ∂k had to be modified as in (B.3) as a Lie derivative in order to make

nDv closed under ∂k.

B.6 Proposition. For all 1 ≤ k ≤ n and f, g ∈ Cn(G,R) we have

∂k ([f ]n + [g]n) = ∂k [f ]n + ∂k [g]n ,

∂k ([f ]n · [g]n) = ∂k [f ]n · [g]n + [f ]n · ∂k [g]n .

The fact that the derivation operation observes a product rule indeed makes nDv

a differential algebra.

The extension of the nDv-concept from real-valued functions to vector valued

functions in Cn(G,Rm) is straightforward:

B.7 Definition. Let f, g ∈ Cn(G,Rm). We say that f =n g if and only if their

components satisfy fi =n gi, 1 ≤ i ≤ m, in the sense of the Definition B.1.

Analogously we see that =n defines an equivalence relation also on these vector

valued functions and we can define the collection of equivalence classes nD
m
v .

B.2 Composition on nDv

Consider a function M : Rv ⊃ G → G ⊂ Rv that is n-times continuously differen-

tiable and which satisfiesM(0) = 0, and let g ∈ Cn(G,R). Then g ◦ M ∈ Cn(G,R)
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and [g ◦M]n ∈ nDv. Hence we may define the composition as follows:

B.8 Definition. Let M : G → G and g ∈ Cn(G,R), and consider their respective

DA-vectors [M]n ∈ nD
v
v and [g]n ∈ nDv. Then define the composition of [M]nand

[g]n as

[g]n ◦ [M]n := [g ◦M]n .

In other words, knowledge of the Taylor polynomials for g and M yields the

Taylor polynomial for g ◦M, provided the constant part ofM is compatible with the

expansion point of g (the origin in this case).

From the composition of DA-vectors we immediately obtain the DA-vectors of

elementary functions, if care is taken that we work on domains and ranges where the

functions have the necessary smoothness. In particular, intrinsic functions available

in a computer environment are of interest here.

B.9 Definition. (Elementary Functions) Let f ∈ Cn(G,R) sucht that f(0) = 0 and

consider [f ]n ∈ nDv. The we define

exp ([f ]n) := [exp(f)]n

log ([f ]n) := [log (f)]n where f > 0 on G

sin ([f ]n) := [sin (f)]n

cos ([f ]n) := [cos (f)]n√
[f ]n :=

[√
f
]
n

where f > 0 on G .

We see that for any function which can be written as a finite code list of elementary

operations and intrinsic functions in a computer environment, we are able to obtain its

Taylor expansion around the origin in an automated way by starting with the identity

DA-vector [I]n and then inductively evaluating the code list in DA-arithmetic.
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B.3 Depth, Contractions and Fixed Point Theo-

rems on nDv

B.10 Definition. For [f ]n ∈ nDv, [f ]n 6= 0, define the depth λ ([f ]n) as the order

of the first nonvanishing derivative of f ∈ Cn(G,R) at the origin. If [f ]n = 0, set

λ ([f ]n) := n+ 1.

For vector-valued functions, [f ]n ∈ nD
m
v , we set λ ([f ]n) := min1≤i≤m λ ([fi]n).

Intuitively, the depth of the difference of two DA-vectors is somewhat comparable

to a metric, except that two DA-vectors are the more similar the larger the depth

of their difference is. Hence we introduce the notion of a contracting operator on

DA-vectors.

B.11 Definition. Let O : M −→ nD
m
v be an operator on M ⊂ nD

m
v , and let

[f ]n , [g]n ∈M , Then we say that O is contracting if and only if

λ (O ([f ]n)−O ([g]n)) > λ ([f ]n − [g]n) .

Naturally, one would hope that for this type of contractions traditional fixed-point

theorems exist, and it turns out this is the case:

B.12 Theorem. (Fixed Point Theorem) Let M ⊂ nDv and let O : M −→ M be

a contracting operator. Then O has a unique fixed point [p0] ∈ nDv. Furthermore,

starting with the identity [I]n, [p0]n is assumed after finitely many iterations, namely

n+ 1,

On+1 ([I]n) = [p0]n .

Again for details we refer to [2].

B.13 Remark. A particularly useful operation for the computation of flows of ODEs

both in the DA-vector picture and the verified integration using Taylor Models is the

antiderivation ∂−1
i , essentially the integration with respect to the i-th variable.
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If for two DA-vectors [f ]n , [g]n ∈ nDv we have that λ ([f ]n − [g]n) = k, then

after integration the first nonvanishing derivative of f−g is of order k+1, and hence

λ
(
∂−1
i ([f ]n)− ∂−1

i ([g]n)
)

=λ
(
∂−1
i ([f ]n − [g]n)

)
=λ

(
∂−1
i ([f − g]n)

)
> λ ([f − g]n) = λ ([f ]n − [g]n) .

In other words, if the Taylor polynomial of a function f is known up to order n at

the origin, one can immediately obtain the Taylor polynomial of its indefinite integral

w.r.t. the i-th variable up to the same order.

This allows the computation of high-order expansions of ODE-flows. Assume the

autonomous IVP

ẋ (t) = f (x) , x (0) = x0,

for a C1-function f : Rv → Rv, then the local expansion of the flow ϕ (x, t) around

x0 can be obtained through the Picard-iteration

[ϕ (x, t)]0 := [x0]n ,

[ϕ (x, t)]k+1 := [x0]n + ∂−1
v+1 (f ([ϕ (x, t)]k)) .

Since the Picard-iteration yields Taylor expansions of successively increasing or-

ders, i.e. [ϕ (x, t)]k+1 =k [ϕ (x, t)]k, this scheme converges after at most n steps.

B.4 Functional inversion

The most useful advanced feature in the context of the present work is the automated

functional inversion of a DA-vector. The claim states the following: assume a smooth

origin-preserving function M : Rv −→ Rv that is invertible at the origin, i.e. its

Jacobian Df (0) is regular, and we know its Taylor polynomial up to order n stored

in the DA-vector [M]n, then there is an algorithm to compute the Taylor polynomial
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of the local inverse M−1 around the origin up to the same expansion order n in the

DA-vector
[
M−1

]
n

, and furthermore [M]n ◦
[
M−1

]
n

=
[
M−1

]
n
◦ [M]n = [I]n :

B.14 Theorem. (Functional DA-inversion) Let G ⊂ Rv, 0 ∈ G, and let M ∈
Cn (G,G) such thatM (0) = 0 and the linear part L(x) := DM (0) ·x, with a regular

Jacobian DM (0). Write M = L +N , where N is the purely nonlinear part of M.

Then the operator

O(.) := L−1 ◦ (I −N◦.)

is contracting on nD
v
v and for the identity [I]n ∈ nD

v
v we have

On+1 ([I]n) =
[
M−1

]
.

Proof. First we note that the DA-vector
[
M−1

]
is indeed a fixed point of the operator

O. For the original function M we have

M◦M−1 = I

⇐⇒L ◦M−1 = I −N ◦M−1

⇐⇒M−1 = L−1 ◦
(
I −N ◦M−1

)
and thus [

M−1
]

= L−1 ◦
(
I −N◦

[
M−1

])
.

We only need to show that O is contracting on nD
v
v and have proved both existence

and uniqueness of
[
M−1

]
.

Let [f ]n , [g]n ∈ nD
v
v , then

O ([f ]n)−O ([g]n) = L−1 ◦ (I −N◦ [f ]n)− L−1 ◦ (I −N◦ [g]n)

= L−1 ◦ (N◦ [f ]n −N◦ [g]n)

If we assume that λ ([f ]n − [g]n) = k, then the lowest nonvanishing order of

O ([f ]n) − O ([g]n) has to be at least k + 1, since every term in [f ]n − [g]n gets
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multiplied with a nonlinear term of N . Hence

λ (O ([f ]n)−O ([g]n)) ≥ k + 1 > k = λ ([f ]n − [g]n) .

and

λ
(
On+1 ([f ]n)−On+1 ([g]n)

)
≥ k + n+ 1 ≥ n+ 1

and thus On+1 ([f ]n) and On+1 ([g]n) coincide with all derivatives at the origin up

to order n.

B.5 Normal form transformations

Utilizing the functional inversion algorithm from the previous section, we can for-

mulate an automated approach to compute normal form transformations for suitable

maps. Assume we are given an origin-preserving Cr-map f : Rv −→ Rv, where the

linear part of f is diagonal, and such that the origin is a hyperbolic fixed point, i.e.

|λi| 6= 1 ∀ 1 ≤ i ≤ v.

Given a fixed compuation order n, we assume that the eigenvalues are nonresonant

up to that maximal order, i.e. satisfy

λj − λ
k1
1 · ... · λ

kv
v 6= 0∀ 1 ≤ j ≤ v ∀ |k| ≤ n, (B.4)

where k =(k1, ..., kv) is a multiindex of length v. Up to finite order n, this criterion

can usually be easily checked once the eigenvalues are known.

The objective is to find a coordinate transformation N which reduces f to its

linear part L in the new coordinates,

N−1 ◦ f ◦ N = L, (B.5)
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using normal forms. Assume this can be done order-by-order using near-identity

transformations

T1 := I,

Ti := I + Si,

with nonlinear parts Si of exact order i (i.e. homogoneous). For the inverse

transformations T −1 we then have

T −1
i =i I − Si.

Suppose that f has been transformed such that in new coordinates it takes the form

f̃ : Rv −→ Rv, where f̃ is origin-preserving, Cr and up to order i− 1 we have

f̃ =i−1 L

and hence

f̃ =i L+Ri,

where Ri contains only terms of order i and higher. We now derive a condition for the

transformations Ti, or more specifically their nonlinear parts Si, such that application

of Ti eliminates the nonlinear part Ri, i.e.

T −1
i ◦ f̃ ◦ Ti =i L

Observe that up to order i we have

T −1
i ◦ f̃ ◦ Ti =i (I − Si) ◦ (L+Ri) ◦ (I + Si)

=i (L+Ri) ◦ (I + Si)− Si ◦ (L+Ri) ◦ (I + Si)

=i L+ L ◦ Si +Ri ◦ (I + Si)− Si ◦ (L+ L ◦ Si +Ri ◦ (I + Si))

=i L+ L ◦ Si +Ri − Si ◦ L

=i L+Ri + [L,Si].
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Looking at the last expression componentwise, we can choose the coefficients in

Si such that the commutator eliminates respective terms in Ri. Suppose that both

Ri and Si can be represented by their Taylor polynomial expansion, and that the

j-th components in their expansions are

R
(j)
i =

∑
|k|=i

ρ(k, j) · xk1
1 · ... · x

kv
v , (B.6)

S(j)
i =

∑
|k|=i

σ(k, j) · xk1
1 · ... · x

kv
v .

Since L is diagonal we have that for the j-th component of the commutator

(L ◦ Si − Si ◦ L)(j) =i

∑
|k|=i

λjσ(k, j) · xk1
1 · ... · x

kv
v


−
 ∑
|k|=j

σ(k, j) · (λ1x1)k1 · ... · (λvxv)kv


=i

∑
|k|=i

(
λj − λ

k1
1 · ... · λ

kv
v

)
σ(k, j) · xk1

1 · ... · x
kv
v

and comparing with eq.(B.6) componentwise we see that the correct choice for

σ(k, j) is given by

σ(k, j) := − ρ(k, j)

λj − λ
k1
1 · ... · λ

kv
v

.

Note that this choice for σ(k, j) is feasible due to the nonresonance condition (B.4).

Applying these transformations to f we can now remove the nonlinearities in f

inductively. We define a sequence {Ui}i≥2 to fully linearize the original map f

U2 := f,

Ui+1 := T −1
i ◦ Ui ◦ Ti

We can now set

N := T2 ◦... ◦ Tn, (B.7)

N−1 := T −1
n ◦ ... ◦ T −1

2 , (B.8)
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to obtain a transformation N which satisfies eq.(B.5) up to prespecified order n. Note

that this also entails that

L−1 =n

(
N−1◦ f ◦ N

)−1
= N ◦ f−1 ◦ N−1

and

f=nN ◦ L ◦ N−1,

f−1=nN−1 ◦ L−1 ◦ N .

The move of the aforementioned algorithm into the DA-vector realm is benefi-

cial, since the inverse transformations T −1
2 , ..., T −1

n in (B.8) can be obtained as DA-

vectors
[
T −1

2

]
n
, ...,

[
T −1
n

]
n

in the fashion of the last paragraph once the DA-vectors

[T2]n , ..., [Tn]n are defined componentwise by

[
Ti,j
]
n

:=
[
Ij
]
n

+
[
Si,j

]
n

=
[
xj

]
+
∑
|k|=i

ρ(k, j)

λj − λ
k1
1 · ... · λ

kv
v

·
[
x
k1
1 · ... · x

kv
v

]
n

.

Finally up to finite order n the Taylor expansions for the normal form transfor-

mation N and its inverse N−1 are obtained in the DA-vectors

[N ]n := [T2]n ◦ ... ◦ [Tn]n ,[
N−1

]
n

:=
[
T −1
n

]
n
◦ ... ◦

[
T −1

2

]
n
.
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