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25Università del Molise, Campobasso, Italy
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A new measurement of the magnetic anomaly aμ of the positive muon is presented based on data taken
from 2020 to 2023 by the Muon g − 2 Experiment at Fermi National Accelerator Laboratory (FNAL).
This dataset contains over 2.5 times the total statistics of our previous results. From the ratio of the
precession frequencies for muons and protons in our storage ring magnetic field, together with precisely
known ratios of fundamental constants, we determine aμ ¼ 1 165 920 710ð162Þ × 10−12 (139 ppb) for the

new datasets, and aμ ¼ 1 165 920 705ð148Þ × 10−12 (127 ppb) when combined with our previous results.

The new experimental world average, dominated by the measurements at FNAL, is aμðexpÞ ¼
1 165 920 715ð145Þ × 10−12 (124 ppb). The measurements at FNAL have improved the precision on
the world average by over a factor of 4.
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Introduction—Precise measurements of magnetic
moments of charged leptons serve as precision probes
of the Standard Model (SM) due to their sensitivity to
particles and interactions within the SM and potentially
beyond the Standard Model (BSM). The Dirac equation [1]
predicted ge ≡ 2 for the g factor ge that relates the electron
magnetic moment to its spin. Schwinger’s radiative cor-
rection [2], inspired by contemporaneous experimental
data [3,4], refined this result and introduced the anomaly
ae ¼ α=2π. This Letter laid the foundation for modern
relativistic field theory and the development of the SM.
The magnetic anomaly a≡ ðg − 2Þ=2 [5] arises from

radiative corrections from virtual particles and can be
calculated precisely within the SM. While ae is measured
[6] 1000 times more precisely than aμ, the muon’s greater
mass makes aμ about 4 × 104 times more sensitive to much
BSM physics. Precision measurements of gμ span decades
of advances, beginning with early experiments at Columbia
University Nevis Laboratory [7,8] and the University of
Liverpool [9]. Direct measurement of aμ started with the
CERN-I [10], CERN-II [11], and CERN-III experiments
[12], which the Brookhaven National Laboratory (BNL)
E821 experiment further improved [13]. The E821 results
revealed a statistically significant tension with SM pre-
dictions at the time. The Muon g − 2 Experiment at Fermi
National Accelerator Laboratory (FNAL) confirmed the
E821 result with the 2018 Run-1 data [14], and then refined
aμ with over twice the precision with the Run-2/3 data [15].
This Letter presents a measurement of aμ from the Muon

g − 2 Experiment using data collected in three runs
spanning 2020 to 2023 (designated as Run-4, Run-5,
and Run-6). The Run-4/5/6 positron statistics, over 2.5
times that of our previous measurements [14,15], improve
our final Run-1 to Run-6 statistical precision by more than
1.8 compared to the Run-1/2/3 result. Our final result
surpasses our original statistical and systematic goals [16]
and establishes a stringent benchmark for future theoretical
BSM extensions.
Experimental principle—Our Run-1 and Run-2/3 pub-

lications [14,15,17–20] detail the experiment. Polarized
muon beams are injected into a 7.112 m radius storage
ring with a design storage momentum of 3.1 GeV=c. A
superferric magnet generates a homogeneous vertical 1.45 T
dipole field [21] that provides weak horizontal focusing of
the beam and drives the muon spin precession. Two critical
components for beam storage are a fast kicker that redirects
muons onto the central orbit [22] and an electrostatic
quadrupole (ESQ) system for vertical focusing
[23]. At the design momentum, the contributions to the
muon spin precession from the electric fields in the ESQ
cancel.
The experiment determines the ratio of two frequencies,

R0
μ ¼ ωa=ω̃0

pðTrÞ, where ωa is the difference between the
spin precession and cyclotron frequencies of the muon, and
ω̃0
pðTrÞ is the nuclear magnetic resonance (NMR)

precession frequency of shielded protons in a spherical
water sample (corrected to a reference temperature Tr),
averaged over the muon distribution, which expresses the
magnetic field strength. The ωa measurement utilizes 24
PbF2 electromagnetic (EM) calorimeters [24–26] that rec-
ord the energy and time of incident positrons. Parity
violation in muon decay and the Lorentz boost of the beam
couple to provide an oscillation in the rate of high-energy
positrons at a frequency of ωa. A laser system [27]
continuously monitors the gain of each crystal in the
calorimeters. A chain of magnetic field measurements yields
ω̃0
pðTrÞ, where the tilde indicates muon-weighted averag-

ing. The chain begins with a periodic mapping of the
magnetic field by a movable mapper with 17 NMR probes
[28]. These probes are calibrated in situ against a water-
based cylindrical probe that transfers the absolute calibra-
tion of shielded protons in a spherical water sample [29].
Additional NMR probes [30], embedded in the experiment’s
vacuum chambers, track the field while muons are stored
between mappings. The mapped and tracked magnetic field
is weighted by the muon distribution, M, measured using
two straw tracker stations [31].
The narrow aperture through which the beam enters the

storage ring produces a mismatch between the phase space
of the incoming beam and the storage ring acceptance that
leads to coherent betatron oscillation (CBO). This coherent
beam motion introduces a time variation into the positron
detection efficiency. After Run-4, an additional radio
frequency (rf) system [32] added a small modulation of
the ESQ high voltage during the first 6 μs after muon
injection. The rf system generates dipole fields tuned to the
CBO frequency, resonantly damping the CBO by applying
forces out of phase. For analysis purposes, the data are
divided into four distinct datasets based on rf configura-
tions: noRF (no rf system), xRF (horizontal rf fields only),
and xyRF5/xyRF6 (both horizontal and vertical rf fields in
Run-5 and Run-6, respectively).
The measured anomalous spin frequency, ωm

a , and the
muon-weighted magnetic field, hω0

p ×Mi, must be cor-
rected for several effects via

R0
μ ¼

ωm
a ð1þ Ce þ Cp þ Cpa þ Cdd þ CmlÞ

hω0
pðTrÞ ×Mið1þ Bk þ BqÞ

; ð1Þ

collectively shifting R0
μ by 572 ppb (see Table I). The

corrections to ωm
a address the residual contribution to

the muon spin precession rate from electric fields Ce; the
contribution to the muon spin precession from the vertical
betatron motion Cp; time-dependent changes in the mean
phase of the observed muon ensemble caused by (i) detec-
tor acceptance Cpa, and by phase-momentum correlations
coupled to (ii) momentum-dependent muon lifetimes Cdd
and (iii) momentum-dependent muon storage losses Cml.
Corrections to the muon-weighted magnetic field accom-
modate the fast transient fields not captured in the
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NMR-based field maps, specifically from eddy currents
generated by the fast injection kickers Bk and from
vibrations of the ESQ plates Bq, both synchronous with
muon injection. Table I summarizes the corrections.
From R0

μ ¼ ωa=ω̃0
pðTrÞ, we determine aμ via

aμ ¼
ωa

ω̃0
pðTrÞ

μ0pðTrÞ
μB

mμ

me
; ð2Þ

where μ0pðTrÞ=μB is the ratio of the shielded proton
magnetic moment to the Bohr magneton at Tr ¼ 25 °C
and mμ=me is the muon-to-electron mass ratio [33].
Anomalous precession frequency ωm

a—Reconstruction of
either individual positron candidates or the total calorimeter
energy from the digitized EM calorimeter waveforms
provides the oscillating time series that get fit to determine
ωm
a . Four independent analysis groups utilize three different

positron reconstruction and pileup correction algorithms
while a fifth group performs energy reconstruction [17,20].
The positron reconstructions have nonlinear energy
differences due to the treatment of low energy crystals,
differ in the level of unresolved overlapping positrons
(pileup) by up to 1 order of magnitude, and differ in the
positron content by several percentages. Consistency of the
ωm
a values from these algorithms speaks to the robustness of

the measurement.
Each positron-based analysis constructs its time series

using one of three methods [17,20]. The first method bins
the positron time directly. The second subdivides the data to

construct a ratio that isolates the oscillation from the
exponential decay and reduces sensitivity to slow response
changes. A newmethod fits forωm

a in slices of the dominant
horizontal CBO phase to reduce sensitivity to CBO. Parity
violation in muon decay manifests as an energy-dependent
amplitude, or asymmetry, AðEeÞ in the ωm

a oscillation.
Weighting each positron by AðEeÞmaximizes the statistical
power [34]. The five groups provide seven asymmetry-
weighted results for Ee > 1.0 GeV whose simple average
(assuming full correlation) gives ωm

a . Two energy-based
and 11 unit-weighted measurements for Ee > 1.7 GeV
provide 13 crosschecks.
Each group fits their time series using one of two models.

The first, used previously, takes the form

NðtÞ ¼ N0ΛðtÞηNðtÞe−t=γτμ
× f1þ AηAðtÞ cos ½ωm

a t − φ0 þ ηϕðtÞ�g; ð3Þ

where N0 is the normalization, γτμ is the average boosted
muon lifetime (≈64.4 μs), ΛðtÞ accounts for beam loss, A is
the average rate asymmetry, and −φ0 is the average phase
extrapolated to t ¼ 0. The factors ηN , ηA, and ηϕ are well-
motivated corrections that accommodate the rate variations
from the coupling of calorimeter acceptance with beam
oscillations, whose frequencies can be seen in Fig. 1.
A second, complementary model replaces those factors
with a sum

P
ωi
ξiðtÞ over those frequencies that modulate

the f1þ A cosðωm
a t − φ0Þg precession term. The fits begin

near 30 μs to allow the ESQ fields, and thus the muon
beam, to stabilize.

FIG. 1. Fourier transform of the residuals from the sum of the
four fits to the Run-4/5/6 data excluding (blue) and including
(purple) the ξðiÞ terms that incorporate the beam oscillation
effects. The peaks correspond to the betatron frequencies (see
[17] for frequency definitions). The rf-driven CBO damping has
decreased the power at fCBO compared to earlier data. The dashed
line (orange) indicates the anomalous precession frequency fa.
Inset: the asymmetry-weighted eþ time spectrum for the summed
data (blue) and fit functions (red).

TABLE I. Values and uncertainties of the R0
μ terms in Eq. (1),

and uncertainties due to the external parameters in Eq. (2) for aμ.
The hω0

p ×Mi uncertainties are separated into mapping and
calibration contributions.

Quantity
Correction

(ppb)
Uncertainty

(ppb)

ωm
a (statistical) 114

ωm
a (systematic) 30

Ce 347 27
Cp 175 9
Cpa −33 15
Cdd 26 27
Cml 0 2

hω0
p ×Mi (mapping, tracking) 34

hω0
p ×Mi (calibration) 34

Bk −37 22
Bq −21 20
μ0p=μB 4
mμ=me 22

Total systematic for R0
μ 76

Total for aμ 572 139
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Each analysis group developed its analysis using an
unknown, fixed, pseudorandom offset in the precession
frequency. These blindings add to the hardware blinding of
the digitization frequency, which was set and monitored by
FNAL physicists outside the collaboration. Shortly before
the hardware unblinding, the groups shifted to a common
unknown blind, and two of the seven analyses included in
the final average addressed minor issues in the ηϕðtÞ
treatment exposed by the comparisons, with changes on
the scale of a few (ppb). Removal of the hardware blinding
occurred after all aspects of the aμ determination were
complete and frozen.
All fits model the data well, and meet the requirement for

inclusion in the final result: a good χ2 and a Fourier
transform of the fit residuals free of artifacts, as illustrated
for the combined data in Fig. 1. The fit for the highest
statistics dataset has a χ2 of 4007 for 4097 degrees of
freedom, and a probability of χ2 of 84%. Fits in positron
energy bins, individual calorimeter stations, and as a
function of fit start and end time show only statistical
scatter in ωm

a . The 20 correlated ωm
a values agreed within

the allowed statistical variations assessed using 200 boot-
strap samples. The ωm

a statistical uncertainty of 114 ppb
dominates the Run-4/5/6 aμ uncertainty.
Uncertainties in the envelopes of the transverse beam

oscillations and in a new correction for an intensity-
dependent calorimeter gain sag dominate the systematic
uncertainties, each contributing at the level of 25–40 ppb in
the four fit datasets. The gain sag largely explains a residual
slow term observed in the data in the previous publications
[17,20] (in addition to a small issue in one of the
reconstructions that has been corrected here), and has been
well measured with dedicated laser studies using a full
calorimeter station. While the magnitude of the sag is
below our design specification, it oscillates at ωm

a with a
phase shift relative to the beam intensity, creating a greater
ωm
a sensitivity than previously estimated.
Beam-dynamics corrections Ci—The leading correction

Ce to ωm
a derives from the measured muon momentum

distribution, which has about a 0.1% relative width. The
debunching of the muon beam that results from the spread
of cyclotron frequencies can be observed in calorimeter
data at early times in a muon fill. Those data determine
the momentum distribution of the stored muons and the
correlation between momentum and relative time in the
bunch [19,20]. The reconstructed radial muon distribution
from the trackers also determines that information. Both
methods were cross checked with a minimally intrusive,
insertable scintillating fiber detector in dedicated studies, a
novelty of this dataset. The staged introduction of the ESQ
rf reduced the size of this correction from 387 ppb to 318–
382 ppb. The improved understanding and enhanced
robustness of these methods reduced the uncertainty from
32 ppb in Run-2/3 to 27 ppb in Run-4/5/6.
The tracker data provide the distribution of the stored

muons’ vertical betatron amplitudes, which lead to the

correction Cp. The analysis method remains unchanged
from the Run-1 [19] and Run-2/3 [20] analyses.
As the muon beam evolves, changes in the distribution of

muons whose daughter positron has been detected can lead
to a time-dependent change in the ensemble-averaged spin
precession phase, which causes bias in ωm

a . The calorimeter
acceptance and relative phase versus transverse decay
position are evaluated through simulation. Combining these
with the transverse beam distribution measured in the
trackers provides the Cpa correction. The method, resulting
values, and uncertainty remain consistent with the Run-2/3
evaluation.
Correlations between the muon phase and its momen-

tum, together with the momentum dependence of its
lifetime, lead to the differential decay correction Cdd.
Phase-momentum correlations in the stored muon ensem-
ble originate from the upstream beamline and the injection
process. These effects are evaluated in simulation [35–39]
and supported by dedicated measurements in which the
momentum acceptance of the storage ring is changed.
Another contribution arises from correlations of injection
time and momentum—early muons spend additional time
in the storage ring field compared to late ones, so build up a
relative precession phase shift. The temporal shape of the
kicker pulse and the relative timing between kicker pulse
and muon injection dominate those correlations. This
contribution is evaluated from the momentum-injection
time distributions from calorimeter data that were used to
calculate Ce. These kicker-related contributions vary over a
range of �50 ppb for different time periods and for the
muon bunch position in the 16-bunch cycle. Cancellations
in averaging lead to 4 ppb–8 ppb corrections to the main
datasets with uncertainties of 17–19 ppb.
Lastly, time-dependent phase changes can be caused by

muon loss. Loss rates have been significantly reduced
compared to earlier runs by optimizing storage conditions.
The introduction of rf decreased these losses further,
leaving a negligibly small correction, Cml.
Muon-weighted magnetic field hω0

p ×Mi—The determi-
nation of the muon-weighted magnetic field largely follows
the procedure developed earlier [18,20]. The magnetic field
showed azimuthal variations with an rms below 20 ppm.
The relative field change over the muon storage radius of
45 mm caused by azimuthally averaged transverse linear
and higher-order gradients is below 100 ppb and 1 ppm,
respectively. Figure 2 superimposes the azimuthally aver-
aged magnetic field contour lines from the xyRF5 dataset
on the time-averaged and azimuthally averaged muon
distribution.
The Run-4/5/6 dataset spans 194 magnetic

field maps, compared with 16 in Run-1 and 69 for
Run-2/3. All but four of the azimuthally averaged mag-
netic field maps stayed within a range of �1.3 ppm. The
remainder, still included in this work, exhibited variations
up to 10 ppm.
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The uncertainty in the field maps for Run-4/5/6 reduced
to 29–31 ppb compared to 37–39 ppb in Run-2/3, primarily
due to additional measurements of the magnetic footprint of
the field mapper’s parking mechanism. Its uncertainty
contribution dropped from 22 to 2 ppb, but these map
uncertainty gains are partially offset by the larger temper-
ature differences between the NMR probes during magnetic
field mapping and during their in situ calibration, increasing
the uncertainty from the NMR probe temperature depend-
ence from 9–15 to 13–16 ppb.
The increased number of tracked magnetic field maps

compared to our previous publications allowed for more
detailed studies of systematic effects in that tracking,
particularly of local drifts at magnet pole edges as a function
of time after a magnet ramp up. The remaining systematic
uncertainty is evaluated using a Brownian bridge model and
a new time-independent constant model, which yielded
similar results. The associated total tracking uncertainty
decreased to 8–14 ppb from 17–18 ppb due to the larger
number of magnetic field maps. The muon weighting,
which adjusts the field maps for the field experienced on
average by the stored muons, follows our previous
approach, yielding uncertainties of 6–7 ppb, comparable
to those of Run-3b which had similar muon distributions.
Two analysis teams with separate code bases performed

the magnetic field map extraction, tracking, and weighting
processes while software blinded. Their results were con-
sistent. The uncertainties of magnetic field mapping,
tracking, and muon weighting combine for a total of
33–35 ppb by dataset and 34 ppb in the final average.
In situ calibrations of the field mapper NMR probes were

performed before and after each of the three Run-4/5/6
running periods [40]. No time dependence was observed
over the six years of data taking, and the per-probe

calibrations are averaged, contributing an uncertainty of
16 ppb. Since the same calibration probe was used in Run-
2/3, the absolute calibration with respect to shielded
protons in a spherical water sample remains unchanged.
Additional work enhanced our understanding of the
material effects of the calibration probe but had no direct
impact on the associated 8 ppb uncertainty.
The absolute calibration was cross checked against 3He-

based magnetometers [41], which showed a 1.7 standard
deviation difference. Comparisons to water-based continu-
ous-wave NMR probes developed by the J-PARC Muon
g − 2/EDM collaboration [42] showed inconsistencies in
early comparisons but good agreement in later iterations.
These new crosschecks lead to an additional 25 ppb
uncertainty, resulting in a total calibration uncertainty
of 34 ppb.
The total systematic uncertainty of the muon-weighted

magnetic field, including calibration, increased by 10 ppb
to a total of 48 ppb with respect to Run-2/3, primarily
driven by the uncertainties on the absolute calibration.
Magnetic field transients Bi—The time-dependent

residual magnetic fields from eddy currents induced by
the fast kicker magnets were measured in situ with two
independent magnetometers, both based on Faraday rotation
in terbium gallium garnet crystals. One system uses optical
fibers to guide the laser light into the kicker region. The
second, new system uses an open laser beam, which enters
the storage volume through a window, and mirrors to guide
the light. Two of the three kickers were measured at several
transverse positions. The measurements from the two
apparatus agree within uncertainties. Measurements at a
large radius (18 mm) revealed transverse variations of about
a factor of 2, which were investigated with additional
measurements on a mock up. While the measurements
close to the beam center are consistent with earlier deter-
minations, the new measurements at a larger radial offset,
together with improved understanding of the transverse
modeling of the resulting field perturbation, lead to a larger
correction term Bk than reported in Run-2/3. Driven by the
observed stronger transverse variation of the transient and
uncertainties in the transverse modeling, the total uncer-
tainty increased to 22 ppb compared to Run-2/3.
The correction presented in Ref. [20] for magnetic field

transients from vibrations in the ESQ system, Bq, remains
valid. The transverse distribution of this effect was studied
in more detail, and the assigned uncertainties were
corroborated.
Calculation of aμ—The values of ωa and ω̃0

p listed in
Table II for the four fit datasets, along with the corrections
from Eq. (1), form R0

μ. The R0
μ measurements are sta-

tistically uncorrelated, while nearly all systematic uncer-
tainties are fully correlated. The table also lists the
combined Run-4/5/6 result and our earlier results, corrected
as noted below. The four fit datasets show good consistency
with a χ2 ¼ 0.96 for 3 degrees of freedom, which has a

FIG. 2. Azimuthally averaged magnetic field contours in units
of ppm overlaid in white on the time-averaged and azimuthally
averaged muon distribution for the xyRF5 dataset.
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probability of 80%. No statistically significant correlations
with magnet current, magnetic field, field gradients, or time
of day were observed.
We report R0

μ at Tr ¼ 25 °C. This change from the
reference temperature used in previous publications aligns
with both the Committee on Data of the International
Science Council (CODATA) standard and our actual meas-
urement conditions. Our previous R0

μ values were adjusted
by −101 ppb to reflect this change in reference temperature
and external constants. The aμ values do not change as a
result of the Tr shift, though the external CODATA
constants have been updated.
The superior statistical power of this larger dataset, along

with additional dedicated measurements, enabled further
cross-checks of the Run-2/3 results. Three corrections with
corresponding uncertainty adjustments were identified and
applied when combined with the latest dataset: the sensi-
tivity of ωa to small, slow gain shifts noted earlier;
improved understanding of spatial dependencies in the
transient magnetic fields from kicker system eddy currents;
and a sign error correction in one component of the Cdd
correction. These corrections, determined independently,
happened to have the same sign and combine to shift the
Run-1/2/3 results by 50–98 ppb, respectively, and result in
a total systematic uncertainty of 78 ppb for the adjusted
Run-2/3 result. The corrections were finalized before
unblinding the Run-4/5/6 results. The latest result agrees
well with the previous measurements.
The combined FNAL average, Run-1 to Run-6, with a

total uncertainty of 127 ppb, assumes fully correlated
systematic uncertainties between the results.
Following Eq. (2), we determine the muon anomaly

aμðRun-4=5=6Þ¼1165920710ð162Þ×10−12 ð139ppbÞ;
aμðRun-1-6Þ¼1165920705ð148Þ×10−12ð127ppbÞ;

for the full dataset, with the statistical, systematic, and
external parameter uncertainties combined in quadrature.
The combined experimental (exp) average, from BNL
E821 [43] and Run-1 to Run-6, becomes

aμðexpÞ ¼ 1 165 920 715ð145Þ × 10−12 ð124 ppbÞ:

Figure 3 shows the corresponding values.
The Muon g − 2 Theory Initiative has released an

updated SM value of aμ in their 2025 White Paper
(WP2025) [44], based on results from [6,45–103], which
agrees with the measured average. The value shifts con-
siderably compared to their 2020 White Paper (WP2020)
[104], which is almost entirely due to the exclusive use of
new, published leading-order hadronic vacuum polariza-
tion estimates based on lattice-QCD calculations. The
previous value in their WP2020 used experimental
eþe− → hadron cross section measurements from multiple
experiments to evaluate this contribution based on a
dispersion integral and showed a discrepancy with the
experimental value. However, a recent cross section
measurement [105,106] has increased the tension among
the experimental inputs; thus a prediction based on the
dispersion integral was not included in their WP2025.
Efforts are continuing toward an evaluation of this leading-
order hadronic contribution using both lattice QCD and
dispersion integral calculations.
In summary, we report the measurement of the muon

magnetic anomaly to a precision of 127 ppb using our full
six years of data. With over a fourfold improvement in
precision over the BNL E821 measurement [13], this result
represents the most precise determination of the muon
magnetic anomaly and provides a powerful benchmark for
extensions of the SM.
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End Matter

Appendix—We present additional information for the
final measurement of the muon magnetic anomaly, aμ,
by the Muon g − 2 Experiment at Fermi National
Accelerator Laboratory. Five sections provide
background on the run history, a new rf system, the fit
functions for the extraction of ωa, a residual gain
correction, and our improved understanding of the

differential decay correction. A forthcoming publication
will further detail the analysis and improvements over
our earlier publications. Table III presents the detailed
breakdown of aμ values by dataset corresponding to the
R0

μ ratios of Table II.
Run history: The Muon g − 2 Experiment collected

data over six physics runs, summarized in Table IV, from
2018 to 2023, with improved operational stability achieved
in the later periods. Run-1 (2018), the first physics run, had
variable operational parameters, including kicker voltages
ranging from 125 to 137 kV and ESQ performance
variations due to damaged high-voltage resistors, which
were identified and replaced after the run. During Run-2/3
(2019-2020) the experiment’s temperature stability
improved, kicker upgrades enabled better beam centering,
and the ESQ voltage optimization minimized resonances
and reduced muon losses. The final three runs, the focus of
this publication, Run-4/5/6, operated under largely con-
sistent conditions, with its primary distinction being the
staged introduction of rf modulation to the ESQ system to
reduce CBO amplitudes.
rf system: The ESQ rf system applied a ∼1 kV rf

voltage modulation tuned to the CBO frequency during the
first 6 μs after beam injection, which resonantly damped

TABLE III. The aμ values corresponding to the R0
μ ratios of

Table II. The uncertainties are shown in the form ð Þstatð Þsystð Þext,
where the final error corresponds to the uncertainty from the
externally measured factors.

Dataset aμ×1012−1165900000 ppb uncertainties

Run-1 20 506(506)(185)(26) (434)(159)(23)
Run-2/3 20 701(235)(91)(26) (201)(78)(23)

noRF 20 563(212)(91)(26) (182)(78)(23)
xRF 20 825(282)(87)(26) (242)(74)(23)
xyRF5 20 712(287)(88)(26) (247)(75)(23)
xyRF6 20 894(324)(88)(26) (278)(75)(23)

Run-4/5/6 20 710(133)(89)(26) (114)(76)(23)

Run-1-6 20 705(114)(91)(26) (98)(78)(23)
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the coherent beam motion by more than a factor of 5,
significantly reducing its impact on ωm

a . Omission of the
CBO-related terms from the ωa fits shifts ωa by 0.8 ppm in
data without the rf but only by 0.1 ppm with the rf. While
the dominant CBO systematic uncertainty, stemming from
limited knowledge of its decoherence behavior, remained
similar between datasets, the consistent ωm

a values obtained
with and without rf bolsters confidence in the robustness of
the CBO treatment.
The rf field also helped center the stored beam by

rebalancing the phase-space distribution of high- and
low-momentum muons, thereby reducing the electric field
correction Ce as follows. Underkicking by the kicker causes
the stored muons to oscillate with large CBO amplitude. In
the absence of rf, high-momentum muons, which are
initially closer to the ideal orbit, receive a kick closer to
optimal and thus remain nearer the ideal orbit, while low-
momentum muons get pushed further from equilibrium. As
a result, more high-momentum muons survive postkick,
shifting the beam centroid. The rf acts to bring low-
momentum muons closer to the ideal orbit while pushing
high-momentum muons away, making their motion out of
phase but matched in amplitude and population. This
centering of the beam reduces both Ce and muon loss
during storage, and thus improves the overall quality and
stability of the stored beam.
Fit function details—The transverse oscillations of the

muon beam and the spread of muon momenta introduce
complexity into the precession data, which the terms ηNðtÞ,
ηAðtÞ, and ηϕðtÞ capture in the fit model

NðtÞ ¼ N0ΛðtÞηNðtÞe−t=γτμ
× f1þ AηAðtÞ cos ½ωm

a t − φ0 þ ηϕðtÞ�g: ðA1Þ

The oscillations couple to the variation of positron accep-
tance with muon decay position. For example, the nor-
malization modulation takes the form

ηNðtÞ ¼ ½1þ XðtÞ�½1þ YðtÞ þ XYðtÞ�; ðA2Þ

where XðtÞ ¼ P
AiðtÞ cos½ωitþ ϕiðtÞ�, or equivalently

XðtÞ ¼ P½αiðtÞ cosðωitÞ þ βiðtÞ sinðωitÞ�, arises from the

coupling of the horizontal beam oscillations with horizontal
acceptance. A similar form for YðtÞ arises from the vertical
oscillation and acceptance, while XYðtÞ mixes horizontal
and vertical frequencies because of the variation of the
vertical acceptance function with horizontal position.
Nonlinearities in the ESQ fields cause a slow drift in the
muon ensemble-averaged betatron frequencies over the
course of a muon fill which the time dependence in
ϕiðtÞ captures. The relative amplitudes of the betatron
frequencies are well understood. The dominantly linear
horizontal and quadratic vertical acceptances cause the
horizontal betatron frequency, aliased to fCBO and the
second harmonic of the vertical frequency, aliased to fVW
to dominate. The acceptance modulation also results in
modulation of the positron spectrum, which in turn mod-
ulates both the muon ensemble-averaged asymmetry A and
precession phase ϕ. The correction terms ηAðtÞ and ηϕðtÞ
have forms similar to the XðtÞ terms.
The five different analyses take a broad range of

approaches for incorporating the time dependence of the
envelopes AiðtÞ and φðtÞ or αiðtÞ and βiðtÞ, which even-
tually decay away as the beam oscillations decohere. The
approaches range from purely analytical forms with param-
eters floating in the fit to data-driven forms where the
amplitudes are measured in time bins and then smoothed.
Residual gain correction—The initial flash of beam

particles at injection causes a gain sag in the calorimeters
as capacitors are depleted and bias voltages recover. The
laser system [27] measures this effect in situ and provides
gain corrections that are exponential with Oð6 μsÞ time
constants governed by the capacitance of the detector
electronics [17,20]. Short term—Oð10 nsÞ—effects from
the recovery of individual silicon photomultiplier pixels
from single positron hits are also corrected.
Each shower also causes a small gain sag with the

Oð6 μsÞ time constant. This effect and its scaling with
the number of photoelectrons was confirmed with dedicated
measurements of a modified calorimeter station after the
completion of Run-6. These small gain perturbations build
up iteratively over a muon fill and distort the exponential
flash recovery. The distortion due to this effect was
considered during design of the calorimeter electronics

TABLE IV. Key parameters for the Muon g − 2 dataset periods. The rf mode indicates which ESQ rf components were used: no rf
(� � �), horizontal only (x), or both horizontal and vertical (xy), the field index n, the number of analyzed positrons in the energy range
1–3.1 GeV=c detected more than 30 μs after the muon injection, and the number of magnetic field maps.

Dataset ESQ (kV) rf mode Kicker (kV) Field index Positrons (109) Mag. field maps

Run-1 18.3 � � � 125 to 137 0.107 to 0.120 15.4 16
Run-2/3 18.2 � � � 142 and 161 0.107 to 0.108 70.9 69

noRF 18.2 � � � 161 0.108 86.0 71
xRF 18.2 x 161 0.108 49.3 40
xyRF5 18.2 xy 161 0.108 47.8 37
xyRF6 18.2 xy 161 0.108 39.1 46
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[24] and is visible in the residuals of laser monitor data after
the correction for the flash. The relative amplitude of this
effect is below our design goal of < 10−4 at 30 μs, so no
correction was calculated for previous publications.
Because the amplitude of the gain sag is proportional to

the deposited energy and the recovery time constant is
about the ωa period, the oscillation of the average positron
energy in the detectors imprints a phase-shifted ωa oscil-
lation onto the gain correction. This phase shift leads to a
bias in ωm

a much larger than an exponential or in-phase
oscillating gain sag if not corrected. With the Run-4/5/6
beam rates, this gain sag caused a shift of 40 ppb inωm

a with
an amplitude below the design sensitivity of our laser
monitoring system.
Differential decay—The differential decay correction

Cdd ¼
�

1

ωa

��
dφ0

dp

��
dp
dt

�
dd

ðA3Þ

to ωm
a arises from correlations between the initial phase of

the spin precession after injection and the momentum of
stored muons. The coupling of this correlation and the
evolving momentum distribution due to the momentum-
dependent muon lifetime leads to a temporal evolution of
the ensemble-averaged initial phase, φ0, which in turn
shifts the measured spin precession frequency.
We directly calculate the time evolution of the momen-

tum spread from its width σp, i.e.,

�
dp
dt

�
dd

≈
1

p̄γτμ
σ2p; ðA4Þ

with p̄ the mean momentum. The momentum-phase
correlation dφ0=dp can be decomposed into two parts:
the injection and longitudinal components.
The injection component emerges from initial phase

correlations with muon momentum and transverse phase
space coordinates that originate from the muon production,
transport to the experiment, and injection into the storage
ring. We extract this component from high-fidelity simu-
lations that reproduce the effects of pion decay and muon
momentum on the spin phase advance, as well as the
correlations at injection time between the radial phase space
coordinates and momentum for muons that store. Since all
these aspects define the injection component, we cover a
wide range of configurations that lead to a contribution Cdd
(injection) of 19–20 ppb with a conservative uncertainty
estimate of 20 ppb.
The longitudinal component arises from the dependence

of momentum acceptance on the longitudinal coordinate
within the stored muon bunch. The temporal shape of the
kicker pulse determines this effect. This correspondence
between momentum and muon time of flight accentuates
the muon spin-precession gradient from the head to the tail
of the stored beam, which together yield Cdd (longitudinal)
of 4–8 ppb with uncertainties of 17–19 ppb. The total
correction is Cdd ¼ 26� 27 ppb.
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