
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME3, 124001 (2000)

d

Fringe field effects in small rings of large acceptance
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Recently there has been renewed interest in the influence of fringe fields on particle dynamics, due to
studies that revealed their importance in some cases, as, for example, the proposed Neutrino Factory an
muon colliders. In this paper, we present a systematic study of generic fringe field effects. Using as an
example a lattice of the proposed Neutrino Factory, we show that fringe fields influence the dynamics
of particles at all orders, starting with the linear motion. It is found that the widely used sharp cutoff
approximation leads to divergences regardless of the specific fall-off shape of the fields. The results
suggest that a careful consideration of fringe field effects in the design stage of small machines for large
emittances is always recommended.

PACS numbers: 41.75.-i, 29.27.-a, 41.85.Ja
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I. INTRODUCTION

Because of the diversity of the field of nonlinear be
optics, the mathematical methods employed and the
malisms utilized can be very different depending on
specific design requirements. One of the topics for wh
traditionally very different approaches have been car
out in different subfields is the fringe fields, or end field
For the purpose of simulations of large storage rings, fri
field effects are often neglected. Sometimes this i
quite good approximation. However, strictly speaking
is an unphysical model, as the electromagnetic fields of
model do not satisfy Maxwell’s equations. The simpl
method to take fringe fields into account is to approxim
their effect with a kick characterized by the integrated fi
value [1]. While this model may alleviate some problem
it is not a cure, and more sophisticated models are nee
for accurate simulations. Besides the kick, the effect of
fringe fields has been characterized by a sudden shift in
sition at the so-called effective field boundary [2–5]. Fo
specific field falloff, in [6] the third-order aberrations an
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their scaling with fringe field extension have been co
puted for the quadrupole. Also, leading order hard-ed
fringe field effects have been studied in [7]. Fringe fie
have been shown to adversely affect the PEP-II dyna
aperture [8]. However, an extensive study of fringe fie
effects in small rings has so far not been available.

The nonlinearities due to fringe fields have been w
known in the field of high resolution particle spectrograp
for a long time [4,9]. Also, as has been shown recen
they tend to become significant in small rings, especia
at larger emittances [10,11]. The latter studies motiva
us to look more deeply, at a fundamental level, at
fringe field effects. We keep the study generic beca
actual lattices for the muon storage rings are availabl
a preliminary design stage, and to illustrate general tre
in small footprint, large acceptance rings.

For a better understanding of the fringe field effec
in this paper we perform a study of the effects that o
may miss by not considering the influence of the frin
fields. As an example we use a version of the propo
30 GeV Neutrino Factory [12]. The fringe fields’ falloff
are modeled by a six parameter Enge function
F�s� �
1

1 1 exp�a1 1 a2

° s
D

¢
1 a3

° s
D

¢
2 1 a4

° s
D

¢
3 1 a5

° s
D

¢
4 1 a6

° s
D

¢
5�

, (1)
ifts,
dy-

ry,
pen-

ag-
a

where s is the arc length along the reference trajecto
used as the independent variable,D denotes the full aper
ture of the magnet, and theai �i � 1, 2, . . . , 6� are called
Enge coefficients. We look at fringe field effects as a fu
tion of magnet aperture and fall-off shape. This is achie
by varying the magnet aperturesD and the Enge coeffi
cientsai.

The fringe field effects can be particularly easily stu
ied in the map picture using differential algebraic meth
[13–15]. The consequences of the fringe field effects
fluence all orders of the motion, beginning with the line
behavior. Their complete treatment to any order is poss
,

-
d

-
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in the codeCOSY INFINITY [16–20]. To quantify the effects
we compute linear tunes, amplitude dependent tune sh
chromaticities, and resonance strengths, and estimate
namic apertures.

In the following sections we present some basic theo
and the observations related to aperture and shape de
dent effects. We will conclude with a short summary.

II. THEORY

In the divergence-free and curl-free regions of the m
nets it is possible to derive the magnetic field from
© 2000 The American Physical Society 124001-1
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magnetic scalar potential that satisfies the Laplace equa-
tion. The general solution in cylindrical coordinates with
axial coordinate s, in the so-called multipole expansion
form, is

VB �
X̀

k,l�0

�bk,l�s� sinlf 1 ak,l�s� coslf�rk. (2)

The functions bl,l�s� are called the normal and al,l�s� the
skew multipoles, respectively. The components, accord-
ing to l � 0, 1, 2, 3, . . . , are called the solenoid, dipole,
quadrupole, sextupole, etc. components, respectively. In
the fringe region of the magnets these are s dependent,
which induce the following recursion relations (see, for
example, [15]):

bl12n,l�s� �
b

�2n�
l,l �s�

P
n
n�1�l2 2 �l 1 2n�2�

,

al12n,l�s� �
a

�2n�
l,l �s�

P
n
n�1�l2 2 �l 1 2n�2�

,

(3)

where b
�2n�
l,l �s� denotes the 2nth derivative of bl,l�s� with

respect to s. Sometimes they are called pseudomultipoles.
The coefficients that cannot be obtained by these relations
are zero. Hence, the only free parameters in the general
form of the potential are the s-dependent multipoles. For
practical calculations, these are either fitted to represent
measured data or obtained by multipole decomposition of
detailed field computations as in [21].

The additional pseudomultipole nonlinearities of the
fringe fields couple to higher derivatives of the multipole
strengths. In practice this entails that fringe field effects
become more and more relevant the more the particles are
away from the axis of the elements, which, of course, is
directly connected to the emittance of the beam. Also, it is
clear that the fall-off shapes, and implicitly the apertures,
have an influence on the induced nonlinearities.

III. APERTURE DEPENDENT EFFECTS ON
LINEAR TUNES AND CHROMATICITIES

In some perturbation theories the linear or first-order ef-
fects are not considered. In others, the first-order effect is
characterized by a kick [1], or as a sudden change in posi-
tion and momentum at the so-called effective field bound-
ary [4]. Here, using the 30 GeV Neutrino Factory lattice,

TABLE I. Enge coefficients of the default fringe field falloff
used in COSY INFINITY for dipoles, quadrupoles, and sextupoles,
respectively.

Dipole Quadrupole Sextupole

a1 0.478 959 0.296 471 0.176 659
a2 1.911 289 4.533 219 7.153 079
a3 21.185 953 22.270 982 23.113 116
a4 1.630 554 1.068 627 3.444 311
a5 21.082 657 20.036 391 21.976 740
a6 0.318 111 0.022 261 0.540 068
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FIG. 1. (Color) Center tunes as a function of aperture. The
fringe field shape is given by the default Enge coefficients.
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FIG. 2. (Color) Traces of the x-a and y-b submatrices versus
aperture. The fringe field shape is given by the default Enge
coefficients.
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FIG. 3. (Color) First-order and second-order x chromaticities as
a function of aperture. The fringe field shape is given by the
default Enge coefficients.

we compute with COSY INFINITY the linear tunes and chro-
maticities as a function of the magnet apertures. We as-
sume that all the magnets have the same aperture, and the
falloff is given by the Enge coefficients of Table I [22].
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FIG. 4. (Color) First-order and second-order y chromaticities as
a function of aperture. The fringe field shape is given by the
default Enge coefficients.

We will call them hereafter the default Enge coefficients.
It is important to note that the Enge function model can
be used for a global fit of the magnetic fields, including
the out of axis expansion. This has been demonstrated in
several real situations, as for example the National Super-
conducting Cyclotron Laboratory’s S800 spectrograph
[23], the GSI quadrupole dipole (QD) kaon spectrometer
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FIG. 5. (Color) (a) Same as Fig. 1 and (b) same as Fig. 2, but
without the matching section, where most of the fringe field
effects are concentrated.
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FIG. 6. (Color) (a) Same as Fig. 3 and (b) same as Fig. 4, but
without the matching section, where most of the fringe field
effects are concentrated.

[24], and even the rather peculiar Large Hadron Collider’s
high gradient quadrupoles (LHCHGQ) lead end [25].

The aperture is varied between 1 and 300 mm. Figure 1
gives the results for the x and y center tunes. In the stable
regions the tunes change continuously and monotonically
with the aperture. However, in general there is a nonlinear
relationship between center tunes and the aperture. As the
linear motion is uncoupled, for linear stability the absolute
values of the traces of the x-a (horizontal phase plane)
and y-b (vertical phase plane) submatrices, respectively,
need to be less than 2. The nonlinear dependence of the
traces on the apertures is also clear from Fig. 2. The trend
regarding chromaticities is included in Figs. 3 and 4.

It has been noticed that the main impact of the fringe
fields is coming from only a few matching quadrupoles
in the arcs [11]. We repeated the computations of this
section for the same ring, with the respective matching
quadrupole fringe fields turned off. As one can see from
Figs. 5 and 6, the results are different only quantitatively,
but qualitatively the situation remains the same.

IV. THE SHARP CUTOFF LIMIT

As we already mentioned, the sharp cutoff or hard-edge
approximation is a contradiction in itself, as far as the
124001-3
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physics goes. However, as a purely mathematical approxi-
mation it can still be analyzed in some detail. Qualita-
tively, it can be characterized as follows. The function
that describes the falloff is called the cutoff function or
a bump function. It is well known in the mathematical
literature [26,27] that infinitely often continuously differ-
entiable (C` smooth) bump functions can be found such
that they take the value 1 on one closed set, and assume
the value 0 on the complement of another closed set; one
of the closed sets lying in the interior of the other closed
set. For our case the inner closed set can be taken as the
region of the main field of the magnet, and the comple-
ment of the outer closed set the region where the fields
practically vanish. Furthermore, the two sets are arbitrary
except for the already mentioned conditions. This means
that the two sets can be taken arbitrarily close to each other
in some sense (for example in the Hausdorff metric). Thus,
the fall-off speed can be arbitrarily fast, and, at the same
time, the smoothness can be kept intact.

This is why the sharp cutoff limit gives satisfactory nu-
merical results when fringe fields are not important: in
principle, the fall-off region’s width always can be taken
smaller than the smallest step of any integrator, and thus es-
capes any numerical issues. On the other hand, as a rigor-
ous mathematical limit, the sharp cutoff limit corresponds
to the case where the two closed sets “ touch” each other.
In this case any bump function tends to the sum of two
Heaviside functions, which then end up in the Hamiltonian.
However, as is well known, the dynamics are not governed
by the Hamiltonian itself, but by its gradient. The Heavi-
side function’s derivative being the Dirac delta function, it
follows that the sharp cutoff limit gives rise to divergences.
The divergences show up as blowing up of some of the map
elements, and, as a consequence, some of the tune shifts
and resonance strengths as well.

Hence, blowup of amplitude dependent tune shifts in
the sharp cutoff limit occurs regardless of the exact shape
of the falloff. However, in the perturbative order-by-order
approach the divergence can occur at different orders de-
pending on the specific fields involved. For the case of the
homogeneous dipole it has been derived [28] that the low-
est order map element that causes divergence is �b j yyy�;
that is the element that shows how the final angle in the ver-
tical phase plane depends on the initial position in the verti-
cal direction. For multipoles with straight optical axes, the
124001-4
divergences occur at higher orders. Recently, under some
simplifying assumptions, estimates for the second-order
amplitude dependent tune shifts of a quadrupole fringe
field have been calculated [29]. It is shown that, in the in-
tegrated field approximation, the second-order tune shifts
tend to a finite nonzero value in the sharp cutoff approxi-
mation. This is derived from a few integrals that are part of
the integrated Hamiltonian, and taking limits as the exten-
sion of the fringe region goes to zero. Within its domain of
validity the estimate gives good agreement with the exact
values computed by COSY INFINITY, at least for the cases
studied.

The second-order tune shifts are functions of the third-
order map elements. To compute the third-order map ele-
ments of a quadrupole, integrals of the type

I2 �
Z se

sb

r3�s�b00
2,2�s� ds , (4)

appear, where b00
2,2�s� is the second-order derivative with

respect to s of the quadrupole strength, and sb and se are
the beginning and end of the fringe field, respectively. The
function r�s� is the initially unknown orbit. To evaluate
the above integral within the framework of perturbation
theory, one can distinguish two cases. In the approxi-
mation that the orbit does not change over the fringe re-
gion, that is r�s� � const over s [ �sb, se�, the result is
I2 � r3�sb � �b0

2,2�se� 2 b0
2,2�sb��. Because, at the begin-

ning and end, the fringe fields have assumed their plateaus
b�s� � 0 and b�s� � 1, respectively, we have b0

2,2�se� �
b0

2,2�sb� � 0 and, hence, altogether I2 � 0. This approxi-
mation yields the prediction that there are no second-order
tune shifts, independent of the specific shape of b2,2�s�.

On the other hand, we obtain a different and more pre-
cise answer performing perturbation theory successively
over small equidistant subintervals of the interval �sb , se�,
which, in the limit of all subintervals going to zero, leads
to the correct result in much the same way as numerical
integration schemes. Again, we assume perturbatively that
r�s� is constant over the interval in question, which, in the
ith step of the perturbation theory, spans s [ �si, si11�. If
Ds � si11 2 si is small enough, this approximation will
become better and better. However, unavoidably, r�s� will
change slightly over different time steps. Consider the spe-
cific case of performing N substeps of the perturbation
theory. Then an estimate for I2 is
I2 �
NX

i�1

r3�si �
Z si11

si

b 00
2,2�s� ds �

NX
i�1

r3�si � �b0
2,2�si11� 2 b0

2,2�si�� (5)

� 2r3�s1�b0
2,2�s1� 2

"
NX

i�1
b0

2,2�si11� �r3�si11� 2 r3�si��

#
(6)

1 r3�sN�b0
2,2�sN11� (7)

� 2

NX
i�1

b0
2,2�si11� �r3�si11� 2 r3�si �� , (8)
124001-4
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where we used as before that b0
2,2�s1� � b0

2,2�sN11� � 0.
Performing a Taylor expansion of r�si11� we have

r3�si11� 2 r3�si � �
X̀
j�1

�Ds�j

j!
�r3��j��si� , (9)

and, therefore, the estimate becomes

I2 � 2

NX
i�1

b0
2,2�si11�

X̀
j�1

�Ds�j

j!
�r3��j��si� . (10)

To estimate the behavior of I2 as a function of aperture D,
we first observe that the derivative b0

2,2�s� scales with 1�D,
and thus

b0
2,2�si11� ~

ci11

D
, (11)

where ci11 are suitable constants; similarly, we have

Ds � si11 2 si �
se 2 sb

N
~

D

N
. (12)

Inserting (11) and (12) into (10) we obtain

I2 � 2

NX
i�1

ci11

X̀
j�1

Dj21

j!Nj �r3��j��si� . (13)

In the sharp cutoff approximation, D ! 0, only the
j � 1 terms survive the limit. Thus, finally we obtain the
qualitative behavior

I2 � 2

NX
i�1

c�
i11�r3�0�si� , (14)

where we absorbed various constants into c�
i11. Instead

of being zero, the integral now approaches a constant and
usually nonzero value as D ! 0. Therefore, the conver-
gence to a constant of the second-order quadrupole tune
shifts in the sharp cutoff limit can be qualitatively under-
stood. We mention that the limit of the extension of fringe
fields going to zero is equivalent to the limit of the aper-
tures going to zero.

On the other hand, in the case of fourth-order tune shifts
in the sharp cutoff limit, we obtain completely different
124001-5
qualitative behavior. The fourth-order tune shifts are func-
tions of fifth-order map elements. In this case, we need to
estimate integrals of the type

I4 �
Z se

sb

r5�s�b�4�
2,2�s� ds (15)

containing fourth-order derivatives of b2,2�s�. Proceeding
the same way as above we obtain that

I4 � 2

NX
i�1

ki11

X̀
j�1

Dj23

j!Nj �r5�� j��si� , (16)

due to the fact that the third-order derivatives, b
�3�
2,2�si11�,

scale with 1�D3. Hence, we obtain that in the sharp cutoff
limit the integral diverges as

I4 �
a

D2 1
b

D
1 c , (17)

for some constants a, b, c. In a log-log plot the slope of the
resulting curve will be between 0 and 2 depending on the
exact values of a, b, and c. Generalizing this argument to
a rectilinear 2l pole, we see that the first divergence occurs
always at order 2l 1 1.

The perturbative view employed in the above arguments
can reveal the qualitative behavior of the situation, yet it
is less fruitful for the quantitative study of the effects to
very high orders of the motion, which would require the
treatment of more and more integrals like those appearing
above. In the map picture employed in COSY INFINITY, all
dynamics can be solved by the ability of the differential
algebraic (DA) approach to obtain the map to any order of
interest, and then to obtain the tune shifts of interest to any
order using DA-based normal form methods.

For the example of the default COSY falloff, we explic-
itly obtained the divergence of the second-order and fourth-
order amplitude dependent tune shifts; see Figs. 7 and 8.
Only one second-order tune shift blows up, which shows
that the single map element responsible for this effect
comes from the dipole’s �b j yyy�. This behavior can be
seen in the logarithmic scale plots of Fig. 9, where slope 1
seems to be the limiting maximum slope. Although the
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FIG. 7. (Color) (a) Convergence to a constant of the second-order and (b) blowup of the fourth-order amplitude dependent tune
shifts in the x tune. The fringe field shape is given by the default Enge coefficients.
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FIG. 8. (Color) (a) Blowup of the second-order and (b) fourth-order amplitude dependent tune shifts in the y tune. The fringe field
shape is given by the default Enge coefficients.
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FIG. 9. (Color) Second-order amplitude dependent tune shifts as a function of aperture in log-log scale: (a) x tune shifts and
(b) y tune shifts. The maximum slope is around 1.
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FIG. 10. (Color) Fourth-order amplitude dependent tune shifts as a function of aperture in log-log scale: (a) x tune shifts and
(b) y tune shifts. The maximum slope is around 3.
constants ki�D� in general will be different at every time
step, we expect that the divergence of some of the fifth-
order quadrupole map elements will be roughly with the
second power of the aperture. As it turns out, this also
implies the divergence of the amplitude dependent tune
124001-6
shifts, and the logarithmic plots reveal the blowup with
slope at most 3 (Fig. 10).

We performed the same studies for the ring with the
matching quadrupole’s fringe fields turned off. As ex-
pected, qualitatively we obtained the same results. The
124001-6
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main difference is that the blowup of the fourth-order tune
shifts begins at somewhat smaller apertures.

V. SHAPE DEPENDENT EFFECTS

Rescaling of the length of the fringe field region, for
example, by changing the aperture, is a first example of
shape dependent effect. This was studied in Sec. III. In
this section we are interested in fall-off shape alterations,
modulo translation, and rescaling. It can be achieved by
different sets of Enge coefficients for the same lattice and
different falloffs only for the quadrupoles. Also, the same
falloff is assumed at both ends.

For example, one may want to choose a benign Enge
function. This can be achieved by utilizing only the first
two coefficients instead of six. Furthermore, one may want
the same effective field boundary in both cases. Hence,
for the Enge coefficients of the default case, we obtain
the values listed in Table II. In the following we list two
other sets, taken from fitting measured or simulated mag-
netic field data of specific quadrupoles. The Large Hadron
Collider’s high gradient quadrupoles of the interaction re-
gions have been designed by Sabbi of Fermilab. Based
on the magnet end design described in [30], we obtained
the Enge coefficients listed in Table III [25]. Finally, an-
other set has been obtained by Méot [24] for a warm, large
aperture (diameter �30 cm) quadrupole that belongs to a
QD kaon spectrometer in operation at GSI; the values are
a1 � 0.1122, a2 � 6.2671, a3 � 21.4982, a4 � 3.5882,
a5 � 22.1209, and a6 � 1.723. These fits represent the
fields globally, as well as along the optical axis.

Altogether, there is a total of six cases according to
the above sets: quadrupoles with default dipole, default
quadrupole, default sextupole, LHCHGQ lead end, two pa-
rameter default quadrupole Enge functions, and GSI QD
spectrometer-type fringe fields. For each case we com-
puted the maps at four different apertures: 25, 50, 75, and
100 mm. By using the map, we obtained the tune shifts and
resonance strengths via normal form methods [15], and the
dynamic apertures by symplectic tracking with the order 8
map. For the tracking we followed the prescription of the
optimal generating function symplectification (EXPO), de-
scribed in [31,32].

Table IV represents the results of the computation of
some of the amplitude dependent tune shifts in the hori-

TABLE II. Enge functions with only two parameters, com-
puted by slightly modifying the second default Enge coefficient
�a2� such that the corresponding Enge functions have the same
integral.

Dipole Quadrupole Sextupole

a1 20.003 183 0.000 04 20.000 117
a2 1.911 302 4.518 219 7.135 786
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zontal plane in all of the six cases for an aperture of
25 mm. The same data is given in Tables V, VI, and VII
for apertures of 50, 75, and 100 mm. Interestingly, there
are only moderate changes, with both aperture and shape,
of the second-order tune shifts, with the exception of a
few cases where significant changes can be observed. For
example, the LHCHGQ-type fringe fields, and to a lesser
extent the default dipole-type, differ significantly from the
other types when the aperture is around 75 mm. Also, the
small tune shift with horizontal action of the LHCHGQ-
type for aperture 25 mm is somewhat surprising. On the
other hand, starting with the fourth order, the tune shifts
depend significantly on the details of the fringe field shape.

In general, the results on the dynamic aperture and reso-
nance strengths point in the same direction. Here, we
include only some of the representative cases. We will
present the results for the 75 mm aperture for all of the six
fringe field shapes. The tracking pictures show the hori-
zontal phase plane of on-energy particles launched along
the x axis with vanishing transversal momenta. The reso-
nance strengths have been calculated along the diagonal in
action space, at a value that approximately corresponds to
the dynamic aperture.

We grouped the dynamic aperture pictures in Fig. 11 and
the resonance strength pictures in Fig. 12 for the 75 mm
aperture case. Notice that there is no real good correlation
between the three different quantities computed. The lat-
tice with dipole-type fringe field has larger than average
amplitude dependent tune shifts and resonance strengths,
which results in a smaller dynamic aperture. On the other
hand, the LHCHGQ-type fringe fields result in even larger
tune shifts, but the tracking shows a relatively clean look-
ing phase space with an average dynamic aperture. Fur-
thermore, in spite of the quadrupole-type fringe fields
having larger resonance strengths than the sextupole-type,
the dynamic apertures and the second-order tune shifts are
approximately equal. Even between the maximum value of
the resonance strengths of the six parameter, respectively
the two parameter default quadrupole-type Enge function,
there is a factor 5 difference in the resonance strengths, but
they produce similar dynamic apertures. This may serve
as an indication that it is wise to study fringe field effects
on a case-by-case basis.

TABLE III. Enge coefficients fitted for the LHCHCQ lead and
return ends, respectively.

Lead end Return end

a1 20.939 436 20.585 368
a2 3.824 163 3.603 682
a3 3.882 214 2.037 629
a4 1.776 737 0.768 748
a5 0.296 383 0.216 590
a6 0.013 670 0.035 435
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TABLE IV. A few amplitude dependent tune shifts for the 25 mm aperture case. All six of the studied fringe field fall-off shapes
are included.

Aperture � 25 mm
Amplitude dependent tune shifts

Type of fringe field �nx j Jx� �nx j Jy� �nx j J2
x� �nx j JxJy � �nx j J2

y �

Default dipole 479 722 541 992 56 513 171 226 570 420
Default quadrupole 500 753 1 040 229 52 370 674 222 335 176
Default sextupole 513 774 2177 824 2536 329 2404 400
LHCHGQ lead end 138 773 4 930 507 2200 333 148 100 929 561
Two parameter Enge function 499 751 950 741 37 684 628 215 400 818
GSI QD 514 776 1 455 256 63 871 881 226 392 343

TABLE V. A few amplitude dependent tune shifts for the 50 mm aperture case. All six of the studied fringe field fall-off shapes
are included.

Aperture � 50 mm
Amplitude dependent tune shifts

Type of fringe field �nx j Jx� �nx j Jy� �nx j J2
x� �nx j JxJy � �nx j J2

y �

Default dipole 480 738 2424 782 44 639 316 22 501 083
Default quadrupole 472 713 284 406 26 926 490 212 828 937
Default sextupole 492 741 727 021 26 941 101 210 996 773
LHCHGQ lead end 411 953 219 501 265 824 924 23 955 356
Two parameter Enge function 469 707 246 449 18 213 525 28 614 039
GSI QD 494 746 522 581 32 686 302 214 724 215

TABLE VI. A few amplitude dependent tune shifts for the 75 mm aperture case. All six of the studied fringe field fall-off shapes
are included.

Aperture � 75 mm
Amplitude dependent tune shifts

Type of fringe field �nx j Jx� �nx j Jy� �nx j J2
x� �nx j JxJy � �nx j J2

y�

Default dipole 957 1466 216 023 679 456 668 857 2293 452 875
Default quadrupole 475 718 2416 016 21 258 842 2952 296
Default sextupole 477 720 2239 001 2721 214 2544 239
LHCHGQ lead end 1261 1773 254 679 213 2227 089 388 222 890 174
Two parameter Enge function 459 702 551 115 12 895 677 26 894 978
GSI QD 480 762 65 222 36 938 218 4 364 284

TABLE VII. A few amplitude dependent tune shifts for the 100 mm aperture case. All six of the studied fringe field fall-off shapes
are included.

Aperture � 100 mm
Amplitude dependent tune shifts

Type of fringe field �nx j Jx� �nx j Jy� �nx j J2
x � �nx j JxJy � �nx j J2

y �

Default dipole unstable
Default quadrupole 532 834 21 043 654 23 274 271 22 568 105
Default sextupole 463 678 80 182 28 804 518 7 992 446
LHCHGQ lead end 426 621 21 958 026 221 897 965 5 483 897
Two parameter Enge function 483 757 2909 438 6 770 949 28 894 670
GSI QD 488 749 2313 590 16 526 843 210 581 676
VI. SUMMARY AND CONCLUSIONS

Recognizing that fringe fields might be important for
the design of some of the proposed machines and acceler-
ators under construction, we undertook a systematic study
124001-8
of the effects that one could expect. Using the example of
the proposed 30 GeV Neutrino Factory, we experimented
with six different types of fringe fields at many different
aperture settings. The main message of this paper is that
fringe fields induce a variety of effects, and it is not always
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FIG. 11. (Color) Tracking pictures of on-energy particles launched along the x axis with vanishing transversal momenta, magnet
aperture of 75 mm, for all six types of fringe fields. The following fringe field types are depicted: (a) default dipole, (b) default
quadrupole, (c) default sextupole, (d) LHCHGQ lead end, (e) two parameter Enge function, and (f) GSI QD spectrograph.
straightforward to anticipate their effects without accurate
simulation studies. The results point out that it is impor-
tant to decide ahead of time on the end field designs for
the proposed machines. We used fringe fields modeled
by Enge functions for the Neutrino Factory because, at
this stage, the exact shape is not known, as no model yet
exists. As we mentioned, there is such a model for the
LHCHGQs. Using differential algebraic techniques, it is
possible to compute the multipole decomposition and ac-
curate fringe field maps up to arbitrary order for such a
124001-9
model [21]. Once the necessary maps are available, the
subsequent dynamical studies can proceed with no addi-
tional overhead compared to the case when no fringe field
effects are taken into account. This includes normal form
based quantities such as tune shifts, resonance strengths
and resonance webs, and tracking. It is also worthwhile
to note that symplectic tracking with fringe fields is of the
same level of effort as without fringe fields [32].

Based on the magnet models described in [30], we per-
formed a detailed study for the LHC [33] and found that
124001-9
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FIG. 12. Resonance strengths of on-energy particles along the diagonal in action space, at a distance from the origin that corre-
sponds to the approximate dynamic aperture, magnet aperture of 75 mm, for all six types of fringe fields. The following fringe field
types are depicted: (a) default dipole, (b) default quadrupole, (c) default sextupole, (d) LHCHGQ lead end, (e) two parameter Enge
function, and (f) GSI QD spectrograph.
the fringe field effects are noticeable, but not a limiting
factor. We intend to undertake similar studies for the
Neutrino Factory and the muon collider once the magnet
end designs become available. In conclusion, a study of
fringe field effects appears to be indicated for a detailed
analysis of any ring lattice.
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