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Abstract. 
A differential algebraic (DA) formulation of a normal form theory for repeti- 
tive systems is presented. Contrary to previous approaches, no Lie algebraic 
tools are used. The resulting algorithm is very transparent and not restricted 
to the treatment of symplectic systems. 
In the case of symplectic systems, the normal form algorithm provides a non- 
linear coordinate transformation in which the motion is confined to circles. 
The transformation exists if the tunes are not on a resonance; in this case, it 
can be used to compute tune shifts in a similar way as in the Lie algebraic 
picture. 
In the case of nonsymplectic systems, the motions in the new coordinates are 
growing or shrinking exponential spirals. In the case all spirals are shrinking, 
which occurs in electron rings, all amplitude dependent tune shifts vanish and 
in a formal sense tune resonances do not occur. 
The algorithm has been implemented in the code COSY INFINITY. For 
symplectic systems, which can also be studied with the DA-Lie algorithm 
also implemented in COSY INFINITY, identical results are obtained at a 
reduced computational expense. 

1. Introduction 

The famous Courant Snyder theory [I] completely describes the repetitive behaviour of 
linear symplectic systems. It provides a unique criterion for stability of the system, it 
provides an invariant of the system, and allow the calculation of important quantities 
like the tune. 

In the nonlinear case, the situation becomes substantially more involved. The 
question of stability is very difficult to answer, invariants usually do not exists, and the 
tune depends on the amplitude of the particle under consideration. Normal form theory 
[2, 3, 4, 51 comes closest to a nonlinear extension of the Courant Snyder theory in that 
it answers the questions of the amplitude dependence of the tune. It also produces a 
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78 Nonlinear Problems in Accelerator Physics 

set of pseudo-invariants which in special cases are real invariants, and at least allows the 
description of the motion in coordinates which are more suitable than the original ones. 

Normal form ideas were introduced to the field by Dragt and Finn [2] in the Lie 
algebraic framework [6, 71. While the original paper [2] contains all of the core ideas, 
some simplifications were necessary [8] before a first implementation for realistic systems 
was obtained by Neri and Dragt [4]. Difficulties inherent in the Lie algebraic formulation 
limited the efforts to relatively low orders, and only the combined DA - Lie approach 
[5] circumvented this problem, resulting in the first arbitrary order algorithm, and also 
allowed the use of system parameters. 

In the following sections we present an arbitrary order normal form algorithm 
that does not require any Lie algebraic methods, and in particular does not require 
ongoing changes between the factored Lie operator representation and the DA Taylor 
series representation. The resulting algorithm is more direct than the hybrid algorithm, 
and it allows the treatment of non-symplectic systems. 

In the next section we summarize some tools discussed elsewhere in detail. Sec- 
tion 3 shows how to perform a nonlinear change of variable to a rotationally invariant 
map. Sections 4 and 5 discuss the results of the transformation for symplectic and 
non-symplectic systems. A summary and an appendix follow. 

2. The Linear Transformation of t he  Map 

The goal of the normal form algorithm is to provide a nonlinear change of variables such 
that the map in the new variables has a significantly simpler structure than before. So 
we assume we are given the transfer map of a particle optical system 

where 2 are the 2v phase space coordinates and $are system parameters. While it is in 
general impossible to obtain the exact map M, the DA methods [9, 10, 11, 121 allow us 
to compute the partial derivatives [MI, of the map to any order n. This can be done in 
a particularly elegant way using the code COSY INFINITY [13, 14, 151, but also with 
other DA based codes. 

The normal form algorithm consists of a sequence of coordinate transformations A 
of the map: 

The first such coordinate transformation is the move to the parameter dependent 
fixed point ZF which satisfies 

This transformation can be performed to arbitrary order using DA methods. For 
details we refer to [16].,Aiter the fixed point transformation, the map is origin preserving; 
this means that for any 6, we have 
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As explained in [16], we note that the fixed point transformation is possible if and only 
if 1 is not an eigenvalue of the linear map. 

In the next step we perform a linear coordinate transformation that diagonalizes 
the linear part of the map. For this process, we have to assume that there are 2v pairwise 
distinct eigenvalues. This, together with the fact that no eigenvalue should be unity and 
that their product is positive are the only requirements we have to demand for the map; 
under normal conditions, accelerators are always designed such that these conditions are 
met. 

As shown in detail in [16], it is possible to perform a diagonalization such that the 
linear map assumes the following form: 

Here the tunes pj are either purely real or purely imaginary. For stable systems, none 
of the rjef'pj must exceed unity in modulus. 

For symplectic systems, the determinant is unity, which entails that the product 
of the r,  must be unity. This implies that for symplectic systems, for any rj < 1 there 
is another with r ,  > 1. Thus stable symplectic systems have r,  = 1 for all j, because 
otherwise there would be one j for which r,  exceeds unity, and thus at least one of r j e f ipJ  
would have modulus larger than unity. This would also happen if a pj were imaginary. 
So all pj are real, and they are even nonzero because we demanded distinct eigenvalues. 

To the eigenvector pair sf belonging to the eigenvalue r j e f  '"1, we associate another 
pair tf of variables as follows: 

ti+ = (sf + s;)/2 

t r  = (sf - s;)/2i. 

In case of complex sf ,  which corresponds to the stable case, the tf are just the 
real and imaginary parts and thus are real. In the unstable case, tf is real and t; is 
imaginary. Obviously the sf can be expressed in terms of the tf as 

In the rest of the paper, it is advantageous to perform the manipulations in the sf, 
while the results are most easily interpreted in the tf.  
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3. T h e  DA Normal Form Algorithm 

In this section we will show a map in the sf can be subjected to nonlinear coordinate 
transformations that considerably simplify the nonlinear terms. The advertised trans- 
formation to the new coordinates is carried out in an iterative manner. The first step 
consists of the fixed point transformation and the linear diagonalization. All further 
steps are purely nonlinear and do not affect the linear part anymore. The rnth step 
transforms only the mth order of the map and leaves the lower orders unaffected. 

We begin the mth step by splitting the momentary map M into its linear and 
nonlinear parts R and Sm, i.e. M = R + Sm. The linear part R has the form of Eq. 5. 
Then we perform a transformation using a map that to mth order has the form 

where Tm vanishes to order m - 1. Because the linear part of d,,, is the unity map, d,,, 
is invertible. Moreover, inspection of the algorithm to invert transfer maps reveals that 
up to order m, we have 

Of course, the full inversion of d,,, contains higher order terms, which will turn out 
to be one of the reasons why iteration is needed. It is also worth noting that in principle 
the higher order parts of Tm can be chosen freely. It seems to be particularly useful to 
choose these terms in such a way that they represent the flow of a dynamical system by 
interpreting 7 as the first term in the Lie derivative series [9]. This has the advantages 
that the computation of the inverse is trivial and that the transformation map comes 
out to be symplectic if the original map is. 

To study the effect of the transformation, we now infer up to order m: 

For the first step, we have used Sm o (E - Tm) =, Sm which holds because Sm is 
nonlinear and 7, is of order m. In the second step we used Tm 0 (R  + S m  - R 0 7m) =, 
Tm 0 R which holds because 7, is of exact order m and everything in the second term is 
nonlinear except R .  

A closer inspection of the last line reveals that Sm can be simplified by choosing 
the commutator Cm = {Tm, R )  = (Tm o R - R o Tm) appropriately. Indeed, if the range 
of Cm is the full space, then Sm can be removed entirely. However, as we shall see, most 
of the time this is not the case. 

Let (7:j lkr, k;, ..., k+ k-) be the Taylor expansion coefficient of Tmj with respect 
+ k+n ' to (S;)~; ... . (8,) (s;)li: in the j-th component pair of Tm. So 7,fj is written as 

+ k+ - k- + k i  - k, 7; = (Tmfj(k;,k; ,..., k:,k;) ( s l )  l ( s l )  1 .....( 3,) (s,) (11) 
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Similarly we identify the coefficients of C by (Cjflkt, k;, ..., k:, k;). Because R is 
diagonal, it is easily possible to express the coefficients of C in terms of the ones of 7. 
One obtains 

Now it is apparent that a term in SF can be removed if and only if the factor 
c(;+, k )  is nonzero; if it is nonzero,' then the required term in 7,' is just the negative 
of the respective term in ST divided by c(Z+, k).  

So the outcome of the whzle ?orma1 form transformation depends upon the condi- 
tions under which the term C(k+, k-) vanishes. This is obviously the case if and only if 
the moduli and the arguments of r, e*ifi and (& ryt+ki)) . e i ~ ' ( C - z - )  are identical; 
In the next sections we will discuss the conditions of this for various special cases and 
draw conclusions. 

4. Stable Symplectic Maps 

As discussed above, in the stable symplectic case all the r j  are equal+to zne, and the p j  
are purely real. So the moduli of the first and second terms in ~ j f ( k + ,  k-) are equal if 
and only if their phases agree modulo 27r. This is obviously the case if 

where the different signs apply for c~+(Z+, Z-) and C Y ( ~ + ,  z-), respectively. This can 
occur in two possible ways: 

1. k t  = k; V 1 #  j, and kf = ky f 1 

2. jl . n' = 0 ( mod 27r ) has nontrivial solutions. 

The first case is of mathematical nature and lies at the heart of the normal form 
algorithm. It yields terms that are responsible for amplitude dependent tune shifts. We 
will discuss its consequences below. The second case is equivalent to the system lying on 
a higher order resonance and is of more physical nature. In case the second condition is 
satisfied, there will be resonance driven terms that cannot be removed and that prevent 
a direct computation of amplitude tune shifts. 

Before proceeding in the discussion, we note that the second condition entails com- 
plications even if it is almost, but not exactly, satisfied. In this case, the removal of the 
respective term produces a small denominator that generates terms that become larger 
and larger, depending on the proximity to the resonance. In the removal process, this 
resonance proximity factor is multiplied by the respective expansion coefficient, and so 
this product obviously is an excellent characteristic of the significance of the resonance. 
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With higher and higher orders, i.e. larger k+ and k-, the number of relevant 
resonances increases. Since the resonances lie dense in tune space, eventually the growth 
of terms is almost inevitable and hence produces a map that is much more nonlinear 
than the underlying one. As we shall see in the next section, this problem is alleviated 
by damping. 

We now discuss the form of the map if no resonances occur. In this case, the 
transformed map will have the form 

The variables sf are not particularly well suited for the discussion of the result, 
and we express the map in terms of the adjoined variables tf introduced in 6. Simple 
arithmetic shows that 

It is now advantageous to write fj in terms of amplitude and phase as fj = a,. eibj. 
Performing the transformation to the coordinates t f ,  we thus obtain 

(t+ + it-) . fj[(tf)' + ( t ~ ) ~ ,  ..., (t:)' + (t;)'] 
(t+ - it-) &[(tf)' + (ti)', ..., (t$)2 + (t;)'] 

Here 4j = qhj[(tf)2 + (ti)', ..., (t:)2 + depends on a rotationally invariant 
quantity. 

So in these coordinates, the motion is now given by a rotation, the frequency of 
which depends only on the amplitudes (tf )' + (t;)' and some system parameters and 
thus does not vary from turn to turn. As we will show now, these frequencies are precisely 
the tunes of the nonlinear motion. 

For any repetitive system, the tune of one particle is the total polar angle advance 
divided by the number of turns in the limit of turn number going to infinity, if this limit 
exists. If we now express the motion in the new coordinates, we pick up an initial polar 
angle for the transformation to the new coordinates; then, every turn produces an equal 
polar angle which depends on the amplitude and parameters of the particle; at the 
end, we produce a final polar angle for the transformation back to the old coordinates. 

As the number of turns increases, the contribution of the initial and final polar 
angles due to the transformation becomes more and more insignificant, and in the limit 
the tune comes out to nothing but 43. So altogether, we showed that the limit exists and 
that it can be computed analytically as a by product of the normal form transformation. 
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5. Stable Non-Symplectic Maps 

In the case of stable, non-symplectic maps, all r j  must satisfy r j  5 1, because otherwise 
at least one of the rjeA'~j is larger than unity in modulus. Since in the normal form 
transformation, terms can be removed if and only if the phases or amplitudes for the two 
contributions in C(k+,  k-) are different and the amplitudes contribute, more terms can 
be removed. 

Of particular practical interest is the totally damped case in which rj < 1 for all 
j and all p j  are real, which describes damped electron rings. In this case an inspection 
of equation (12) reveals that now every nonlinear term can be removed. Then a similar 
argument as in the previous section shows that now the motion assumes the form 

where now the angle 4j does not depend on the phase space variables anymore but only 
on the parameters. This means that the normal form transformation of a totally damped 
system leads to exponential spirals with constant frequency 4,. In particular this entails 
that totally damped systems do not have any amplitude dependent tune shifts, and that 
they eventually collapse into the origin. Since in practice the damping is of course usually 
very small, these effects are usually covered by the short term sensitivity to resonances. 

It is quite illuminating to consider the small denominator problem in the case of 
totally damped systems. Clearly the denominator can never fall below 1 - max(rj) 
in magnitude. This puts a limit on the influence of any low order resonance on the 
dynamics; in fact, even sitting exactly on a low order resonance does not have any 
serious consequences if the damping is strong enough. In general, the influence of a 
resonance now depends on two quantities: the distance in tune space and the contraction 
strength rj. High order resonances are suppressed particularly strongly because of the 
contribution of additional powers of rj. 

Because all systems exhibit a residual amount of damping, the arguments here are 
generally relevant. It is especially noteworthy that residual damping suppresses high 
order resonances by the above mechanism even for proton machines, which entails that 
from a theoretical view, ultimately high order resonances become insignificant. 

6. Unstable Maps 

Clearly the normal form algorithm also works for unstable maps. The number of terms 
that can be removed will be at least the same as in the symplectic case, and sometimes 
it is possible to remove all terms. Among the many possible combinations of rj and pj, 
the most common case in which the p j  are real is worth studying in more detail. In this 
case, all terms can be removed unless the logarithms of the r j  and the tunes satisfy the 
same resonance condition, i.e. 
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have simultaneous nontrivial solutions. This situation characterizes a new type of reso- 
nance, the coupled phase-amplitude resonance. 

Phase-amplitude resonances can never occur if all rj are greater than unity in 
magnitude. This case corresponds to a totally unbound motion, and the motion in 
normal form coordinates moves along growing exponential spirals. 

Symplectic systems, on the other hand, satisfy nbr rl = 1. So if there are rj with 
both signs of the logarithm, and thus the possibility for amplitude resonances exists. In 
fact, any symplectic system lies on the fundamental amplitude resonance characterized 
by n' = (1,1, ...., 1). In this light, the stable symplectic case is a degeneracy in which 
all logarithms vanish and so the system lies on every amplitude resonances. Thus it is 
susceptible to any phase resonance, and it suffices to study just these. 

7. Conclusion 

In this paper we have presented a DA normal form algorithm for complex periodic 
systems. It is applicable as long as the linear transfer map has no multiple eigenvalues, 
all eigenvalues differ from 1, and their product is positive. All these conditions are basic 
requirements for linear stability and are usually satisfied by circular accelerators. 

The algorithm is very transparent and computationally efficient and does not re- 
quire Lie algebraic tools. It works to arbitrary order and allows the treatment of system 
parameters. In the case of symplectic systems, identical results as with the hybrid DA - 
Lie algorithm discussed in [5] are obtained at a reduced effort. In particular, the algo- 
rithms allows the cornputation of amplitude and parameter tune shifts if the linear tunes 
are not in resonance. For systems near a resonance, the characteristic small denominator 
problem occurs. 

The algorithm also applies to damped systems. In this case, it can be used to 
show that formally there are no amplitude dependent tune shifts. In addition, the 
transformation denominators now also contain a damping dependent term which prevents 
them from shrinking beyond a certain size, corresponding to the favorable long term 
behaviour of damped systems. Since any machine has nonzero residual damping, this 
also explains an old paradox of accelerator physics: in the strict sense, every resonance 
has to be avoided, but on the other hand, the resonances lie dense in tune space. Under 
the presence of ever so slight residual damping, resonances of high enough order turn 
out to be also mathematically irrelevant. 

8. Appendix: The  DA Normal Form Algorithm in COSY INFINITY Lan- 
guage 

Besides the transparency of the normal form algorithm in the DA picture, its strength 
lies in the possibility to implement it completely and in full detail. As with most DA 
operations, the resulting programs are not only powerful but also compact and easy 
to understand. This is particularly true for programs written in the COSY INFINITY 
language [15, 13, 141. 

To stress this point, we present here the COSY INFINITY source of the above 
normal form algorithm which amounts to about five dozen lines of code. This excludes 
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the routines for the eigenvalue solver, the closed orbit transformations, and the routines 
to compute Twiss parameters as well as low level DA routines. For the sake of com- 
parison we mention that the hybrid DA - Lie program, which is written in precompiled 
FORTRAN [17] excluding the same routines is about 20 times longer. 

PROCEDURE DANF M MN MA IMA EPS ; {Computes Normal Form MN of a map M. 
MA is the transformation map, which is only computed if IMAOO. 
EPS is the tolerance below which resonance denominators are not removed) 
VARIABLE J 1 ; VARIABLE K 1 ; VARIABLE L 2 ; VARIABLE NOM 1 ; 
VARIABLE IER 1 ; VARIABLE XF 100 NV ; VARIABLE T 2*NM1 ; 
VARIABLE F 100 TWOHD ; VARIABLE M W  100 ND ; VARIABLE AA 100 ND ; 
VARIABLE BB 100 ND ; VARIABLE GG 100 ND ; VARIABLE RR 100 ND ; 
VARIABLE MU 2 ; VARIABLE A 2 ; VARIABLE B 2 ; VARIABLE D 2 ; 
VARIABLE PHI 1 TWOND ; VARIABLE R 1 TWOND ; 
VARIABLE Ml 2*NMl NV ; VARIABLE I42 2*NMI NV ; VARIABLE M3 2*NMI NV ; 
VARIABLE I 2 ; IMUHIT I ; NOH := NOC ; DSET 1E-14 ; 
EM M XF MN IER ; BM MN MN Ml IER ; 
IF IMAOO ; LOOP J I TWOND ; MA(J) := -XF(J) + DD(J) ; ENDLOOP ; 

POLVAL 1 MI TWOND MA TWOND MA TWOND ; ENDIF ; 
GT MN F MUU AA BB GG RR ; 

LOOP J 1 ND ; K:= 2*J-1 ; L : = K +  1 ; MU := CONS(MUU(J))*2*PI ; 
A := CONS(AA(J)) ; B := CONS(BB(J)) ; D := CONS(RR(J)) ; 
IF TYPE(MU)=TYPE(I) ; PHI(K) := w ; PHI(L) := -MU ; 

R(K) := D ; R(L) := D ; 
M2(K) := ( I*B *DD(K) + I*B *DD(L) )/sQRT(~*I*B) ; 
M2(L) := ( (-1-I*A) *DD(K) t (I-I*A) *DD(L) )/S~RT(~*I*B) ; 
Ml(K) := ( ( 1-I*A)/P/I/B*DD(K) - 1/2*DD(L) )*sQRT(~*I*B) ; 
Ml(L) := ( ( l+I*A)/2/I/B*DD(K) + I/2*DD(L) )*SQRT(2*I*B) ; 

ELSEIF 1=1 ; PHI(K) := 0 ; PHI(L) := 0 ; MU := IMAG(W) ; 
IF IMAG(D)#O ; WRITE 6 I $ $ $  ERROR DANF ' ; ENDIF ; D := REAL@) ; 
R(K) := D*EXP(-MU) ; R(L) := D*EXP(MU) ; 
M2(K) := DD(K) ; M2(L) := DD(L) ; 
Mi(K) := DD(K) ; MI(L) := DD(L) ; ENDIF ; 

ENDLOOP ; ANM MN M2 MN ; CPOLVAL 1 Mi TWOND MN TWOND MN TWOND ; 
IF IMAOO ; CPOLVAL 0 Mi TWOND MA TWOND MA TWOND ; ENDIF ; 
NOM := NOC ; RS := 0 ; LOOP J 2 NOM ; LOOP K I TWOND ; CO J ; 

CDNFDA MN(K) R PHI K TWOND EPS T ; M3(K) := -T ; CO NOM ; 
IF (K/2)=NINT(K/2) ; RS := RS + T*DD(K-I) ; ENDIF ; ENDLOOP ; 
LOOP K 1 TWOND ; CDFLO M3 DD(K)+O*I T TWOND ; Ml(K) := T ; ENDLOOP ; 
LOOP K 1 TWOND ; M3(K) := -M3(K) ; ENDLOOP ; 
LOOP K I TWOND ; CDFLO M3 DD(K)+O*I T TWOND ; M2(K) := T ; ENDLOOP ; 
LOOP K TWOND+I NV ; Ml(K) := DD(K) ; M2(K) := DD(K) ; ENDLOOP ; 
CPOLVAL 1 MN TWOND Mi NV M3 TWOND ; 
LOOP K TWOND+1 NV ; M3(K) := Ml(K) ; ENDLOOP ; 
CPOLVAL 1 M2 TWOND M3 NV MN TWOND ; 
IF IMAOO ; LOOP K 1 TWOND ; M3(K) := MA(K) ; ENDLOOP ; 

LOOP K TUOND+I W ; M3(K) := DD(K) ; ENDLOOP ; 
CPOLVAL I M2 TWOND M3 NV MA TWOND ; ENDIF ; 

ENDLOOP ; LOOP J 1 ND ; K:= 2*J-1 ; L := K + 1 ; IF PHI(K)#O ; 
Ml(K) := ( DD(K) - I*DD(L))/SQRT(2*I) ; 
Ml(L) := ( DD(K) + I*DD(L))/SQRT(2*1) ; 
M2(K) := ( DD(K) + DD(L))*SQRT(I/2) ; 
M2(L) := (I*DD(K) - I*DD(L))*SQRT(I/S) ; 

ELSEIF 1=1 ; 
Ml(K) := DD(K) ; Ml(L) := DD(L) ; M2(K) := DD(K) ; M2(L) := DD(L) ; 

ENDIF ; ENDLOOP ; LOOP K TWOND+I IV ; Ml(K) := DD(K) ; ENDLOOP ; 
CPOLVAL 1 MN TWOND Nl NV M3 TWOND ; 
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LOOP K TWOND+l NV ; M3(K) := Mi(K) ; EIDLOOP ; 
CPOLVAL 1 U2 TWOND M3 NV UI TWOND ; 
IF IMA#O ; CPOLVAL 1 M2 TWOND MA TWOND MA TWOND ; LOOP K 1 TWOND ; 

IF ABS(IMG(HA(K)))<lE-6 ; UA(K) := REAL(MA(K)) ; EIDIF ; ENDLOOP ; 
ENDIF ; LOOP K I TWOND ; IF ABS(I~AG(~N(K)))<IE-6 ; 

UN(K) := REAL(UN(K)) ; ENDIF ; ENDLOOP ; DSET IE-16 ; ENDPROCEDURE ; 
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