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2.3.5 Differential Algebraic Techniques
M. Berz, MSU

The study of the behavior of motion in the vicin-
ity of a chosen reference solution is a central
problem arising in many subfields of dynamical
systems, including beam dynamics. The Taylor
expansions of these solutions can be obtained by
solving the so-called variational equations, which
in beam physics has been carried out to orders two
and three in the code Transport [1], to orders three
for example in the codes TRIO [2], GIOS [3] and
MaryLie [4], and to order five in COSY 5.0 [5].
This approach is laborious in practice, and the de-
velopment of the DA techniques has greatly sim-
plified this endeavor in beam physics and other
fields. In their latest versions [6]–[9], the unprece-
dented accuracy these methods afford for the so-
lution of differential equations has been awarded
the Moore prize for rigorous computing.

A review of DA as used in our field can be
found in [10]. The DA techniques allow the con-
venient computation of high-order Taylor expan-
sions of the transfer map M which relates final
particle coordinates ~zf to initial coordinates ~zi
and parameters ~δ,

~zf =M(~zi, ~δ) (1)

relative to one (in most beamlines, microscopes,
or synchrotrons) or several (in FFAs, cyclotrons
and some spectrographs) reference orbits. The
mapM is the flow (solution depending on initial
conditions) of ODEs

~z ′ = ~f(~z, s), independent variable s (2)

Since their introduction [11, 12], DA techniques
have been utilized in most newly developed codes
[13]–[18] and the DA engines forming the core
of COSY INFINITY [13] also form the back-
bone of various other codes. DA methods
have their origin in the algebraic study of prob-
lems involving differentiation and integration for
the purpose of solving complicated integrals,
ODEs, and PDEs. Pioneered by Liouville [19]
in connection with the search of elementary in-
tegrals for elementary functions, it was put on
a solid foundation and significantly enhanced by
Ritt [20] and Kolchin [21]. Now the methods have
gained prominence in the field of formula manip-
ulation, where they provide the backbone of the

theory of analytic quadrature and integration of
ODEs [22].

For a given function f of v variables, we form
a vector that contains all Taylor expansion coeffi-

cients at ~x = ~0 up to a certain order n. Know-
ing this vector for two functions f and g allows
to compute the respective vector for f + g and
f · g, since the derivatives of the sum and product
function are uniquely defined from those of f and
g. The resulting operations of addition and multi-
plication lead to an algebra, the Truncated Power
Series Algebra (TPSA) [12, 23]. One can also in-
troduce elementary functions like exp, sin etc. on
TPSA. TPSA allows the convenient computation
of derivatives of any functional dependency on a
computer [24].

For the solution of ODEs and PDEs it is nec-
essary to introduce another operation. For any
fixed function g with g(0) = 0, it is possible to
determine the Taylor coefficients of g · ∂f/∂xi =
∂g,if from those of f . Including the operation
∂g,i and its inverse with addition and multiplica-
tion leads to a differential algebra (DA). Details
on this particular DA can be found in [10, 24]. In
passing it is worth mentioning that the DA struc-
tures also provide a novel way to a theory of dif-
ferentials as infinitely small numbers [10]. For
practical work with DA, care has to be taken to
provide elementary operations+, ·, ∂g,i that work
to any order and any number of variables. Since
usually many derivatives vanish due to symmetry,
the active support of sparsity is essential [23].

Solutions of ODEs and PDEs To determine the
map Eq. (1), it is necessary to solve the ODEs
Eq. (2). Since usually fields are known only in
the midplane, it is often also necessary to solve
their PDEs in the process. The crudest approach
to solve Eq. (2) is to replace all operations in a
tracking code by the corresponding ones in DA
[12, 11]. This replacement is similar in flavor
to the modification of existing code through
pre-processors performing “automatic differenti-
ation” [24], although in that field derivatives are
typically only obtained to first or second order and
the challenge lies in the efficient handling of large
numbers of independent variables. An impor-
tant practical problem of this map integration ap-
proach is to obtain higher order terms accurately,
which can be done by reducing the step size. This
approach has been used to retrofit several existing
tracking codes, including recently MAD-X for the
extraction of high-order DA maps.
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However, using DA techniques it is possible
to entirely avoid the approximate time stepping of
conventional integrators, but rather develop new
integrators of arbitrary order in time. Strikingly,
they require only a single evaluation of the r.h.s.
per step, resulting in greatly increased efficiency
and robustness [10, 6, 7]. One way is based on
the common rewriting of the ODE as a fixed point
problem

~zf = ~zi +

∫ sf

si

~f(~z, s̃)ds̃ (3)

Utilizing the operation ∂−1 for the integral, the
problem can be iterated in DA with s̃ as an ad-
ditional variable. It can be shown that iteration
converges to the exact result in n steps, where n
is the order of the DA operations; moreover, this
is not affected if in the ith iteration step the over-
all order is reduced to i. The result is an nth order
integrator; for a given accuracy demand, the inte-
grator typically results in a speed-up of about an
order of magnitude. Moreover, the integrator also
affords a rigorous and sharp estimate of all inte-
gration errors [6, 7, 8, 9].

Similarly, it is also possible to solve PDEs in
finitely many steps. For this purpose, one elimi-
nates differentiation with respect to one variable
by integration. For example, the PDE
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which describes the scalar potential in particle op-
tical relative coordinates, is rewritten as
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and again, iteration converges to the exact result in
finitely many steps [10]. In addition to producing
general PDE solvers, this approach allows the ex-
ecution of the commonly performed out-of-plane
expansion to arbitrary order [25].

It is important to observe that the accuracy of
the out-of-plane expansion rests on the quality of
field derivatives in the midplane. If the field arises
from models, DA methods can directly be used to
obtain these derivatives accurately to any order of
interest. If on the other hand, the field is based on
measurements, it is highly advantageous to repre-
sent the field in space through integrals over sur-
face fields based on the Helmholtz theorem which

resembles the Cauchy formula in complex anal-
ysis. DA methods can be used elegantly to ex-
pand fields simultaneously in the coordinates in
the midplane, as well in the surface coordinates,
and the integration is carried out directly utilizing
the DA operation ∂−1 [25].

For ODEs that are time independent and for

which ~z = ~0 is a solution, which is the case in par-
ticle optical relative coordinates, another method
can be applied. For a given function on phase
space g (~z, s) , it is possible to obtain its deriva-
tive along the true solution via

d

ds
g (~z, s) = ~f · ~∇g + ∂

∂t
g = L~f g (6)

Apparently we also have dn/dsn g = Ln~f
g. If g

is not explicitly time dependent, the operator Ln~f
can be evaluated directly within DA for any n; us-
ing it for g = zν , the components of the vector ~z,
we obtain an integrator of adjustable order. This
method is utilized for the main fields of elements
in COSY; an element is typically traversed in one
step, and orders of 25–30 are usually chosen to
obtain integration to nearly machine precision.
Note that for certain particle optical systems, in-
cluding the notoriously improperly treated fringe
fields, there are other efficient and fast perturba-
tive methods to obtain approximate solutions of
high accuracy, like the method of symplectic scal-
ing [26].

Advanced DA operations and manipulation of
maps Given the nth order representations of
two mapsMn andNn, it is possible to determine
the nth order representation of their composition
Mn◦ Nn as long as Nn has no constant parts. To
this end, one simply inserts the components ofNn
into the polynomial defined by the coefficients of
Mn. This allows to determine the map of a com-
bined system from the maps of the subsystems.

It is also possible to obtain the nth order rep-
resentation Nn of the inverse ofMn as long as
its linear part is invertible. To this end, one writes
Mn=M1+M∗

n, whereM1 is the linear part of
Mn. Then we have

In = (M1 +M∗
n) ◦ Nn

=M1 ◦ Nn +M∗
n ◦ Nn ⇒

Nn =M−1
1 (I −M∗

n ◦ Nn) (7)

a fixed point problem forNn. Beginning iteration
withNn = In yields convergence to the exact re-
sult in n steps because M∗

n is purely nonlinear.
The map of the reversion [27, 10] of a system, i.e.
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the system traversed backwards, is related to the
inverse of the map; but since angles change di-
rections when going backwards, the reversed map
Mr isMr = R◦M−1 ◦R, whereR is the linear
map that changes the signs of angles.

Symplectic tracking with maps Inverse maps
can also be used to establish mixed-variable gen-
erating functions that represent the map, which
are useful for symplectic tracking. Beginning
from the n-th order map Mn, we create Nn,1,
consisting of the position part of Mn, and
an identity for the momenta; thus (~qf , ~pi) =
Nn,1(~qi, ~pi). Similarly we construct Nn,2 via
(~qi, ~pf ) = Nn,2(~qi, ~pi). Inversion of N−1

n,1 (if pos-

sible) yields (~qi, ~pi) = N−1
n,1(~qf , ~pi), and compo-

sition with Nn,2 from the right yields
(~qi, ~pf ) = Nn,2 ◦ N−1

n,1(~qf , ~pi) (8)

From this mixed-variable representation, the un-
derlying generating function can be obtained by a
mere integration along a suitable path, again us-
ing the DA operation ∂−1; in a similar way as the
case shown here, also all the other three common
generating functions can be determined [10].

However, in practice it is frequently observed
that different symplectification schemes result in
different tracking results; so it is highly desirable
to achieve symplectification with minimal modi-
fication of the prediction of Taylor transfer map.
Utilizing Hofer’s metric on spaces of Hamiltoni-
ans, this can actually be achieved in a unified way
using DA techniques, resulting in the so-called
EXPO symplectification scheme [28].

Normal forms Another important manipulation
of maps is the transformation to normal form
[10]. The first step is the transformation to the

parameter-dependent fixed point ~z(~δ) which sat-

isfies (~z(~δ), ~δ) = Mn(~z(~δ), ~δ). Subtracting the
non-parameter identity map I~zn on both sides we
have (~0, ~δ) = (Mn − I~zn)(~z(~δ), ~δ), and thus

(~z(~δ), ~δ) = (Mn − I~zn)−1(0, ~δ) (9)

from which we read off ~z(~δ) in the non-parameter
lines.

The linear part of the normal form algorithm
itself is based on a study of the eigenvalue spec-
trum of the map; if they are distinct and complex,
then it amounts to a diagonalization to the form
R, where the phases of the diagonal terms cor-
respond to the tunes. The nonlinear part of the
normal form algorithm consists of a sequence of

transformations Sn that to order n have the form
Sn = I + Sn. The orders higher than n in Sn can
in principle be picked freely, and frequently they
are chosen so that all transformations Sn belong
to the same symmetry group as the original map.

Up to order n, we have S−1n =n I − Sn; let-
ting Nn = R+On denote the map that has been
normalized to order n, we have

Nn = Sn◦Nn−1◦Sn =n (I+Sn)◦Nn−1◦(I−Sn)
=n R+On + {Sn ◦ R −R ◦ Sn} (10)

Apparently, the Sn in the commutator {Sn ◦ R −
R ◦ Sn} can now be chosen to remove nth or-
der terms in On. In the symplectic case, it turns
out that the remaining terms are just those that
describe motion on circles, with a frequency that

depends on the radius and possible parameters ~δ,
allowing direct computation of amplitude depen-
dent tune shifts [10].

The radius vectors in each phase space pair
represent invariants, the quality of which is di-
rectly determined by the magnitude of the coef-
ficients of Sn, the so-called resonance strengths.
Trying to minimize their size is an efficient way
to enhance the overall nonlinear behavior of the
system [10].

Other DA-based tools It is also possible to ob-
tain Lie factorizations,

Mn =n {M1 exp(: f3 :) exp(: f4 :)...}I
or Mn =n {... exp(: f4 :) exp(: f3 :)M1}I

(11)
of symplectic maps Mn [10], where =n means
two functions are equal up to order n; in fact,
the DA approach currently represents the only
method to obtain them to arbitrary order. The pro-
cedure is order-by-order; in the ith step, all orders
less then i have already been taken care of, and
the problem is reduced to finding fi+1 such that

exp(:fi+1:)I = I + ~∇fi+1 · Ĵ agrees with the
given map to order i. This is an integration prob-
lem similar to the case of the generating functions
above, which is resolved once more with the DA
operator ∂−1 [10].

Some other DA-based methods not discussed
above shall be mentioned briefly. For the analy-
sis of spin dynamics, there are methods that allow
the computation of the spin map, spin tracking, as
well as invariant spin axis n̂. There are also ex-
tensions of the DA methods to allow for a math-
ematically rigorous treatment of the remainder
terms of Taylor’s formula [6], which allow for the
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development of rigorous error bounds for inte-
grators [7, 8] and also a rigorous bounding of 
stability times of nonlinear motion [29, 6] when 
combined with methods of verified global opti-
mization [6]. There are methods for the solution 
of algebraically constrained differential equa-
tions, so-called differential algebraic equations 
[30], and methods to develop high order ver-
sions of the Fast Multipole Method for 3-D space 
charge computation [31].
Applications The differential algebraic meth-
ods form the core tools for the computation of 
maps and aberrations for a large number of codes. 
First developed and used in the code COSY IN-
FINITY [13] which currently has about 2,500 
registered users, the methods also form the core 
engines in many other codes [14]–[18].

Maps are used for symplectic tracking of 
dynamics in synchrotrons resulting in speed in-
creases for the LHC [32] and the Tevatron; at 
the latter, they have also been used for purposes 
of linear decoupling [33] and a rigorous esti-
mate of long-term stability [31]. Another applica-
tion is the tracking and correction based on more 
sophisticated models for fringe fields or other 
nonlinearities in large acceptance rings [34], sym-
plectic tracking in light sources under consider-
ation of wigglers and undulators, all the way to 
various applications for novel accelerator types 
like the FFA [36].

The methods have also been used for the de-
sign and correction of fragment separators and 
particle spectrographs. In addition to computa-
tion and hardware correction, a particularly im-
portant application is the reconstructive correction 
of aberrations in high resolution spectrographs 
[35]. This technique uses combinations of the 
map and its inverse to eliminate aberrations by 
measurement data in two planes, i.e. knowledge 
of (xf , yf , af , bf ). Since this is uniquely deter-
mined as a function of (yi, δi, ai, bi, ), utilizing 
map inversion techniques discussed above yields 
reaction energy and angles to precisions that are 
sometimes two orders of magnitude higher than 
without correction.

Finally, over the last years, use is also be-
ing made of the methods in electron microscopy, 
where they afford the ability to compute and cor-
rect high-order aberrations when the fields of the 
devices are known.
Muon g − 2 ring As an illustration, consider
the case of a muon g−2 model ring that requires

magnets with exceedingly uniform field. Using
the fact that muons decay with different rates de-
pending on the orientation of their spin relative to
their direction of motion, and very large statistics,
it is possible to measure the precession of the spin
and thus an accurate measure of muon g−2. (See
also Sec. 1.6.16.)

From the perspective of beam dynamics, par-
ticles moving strictly in the midplane would
experience simple circular motion, and the trans-
fer map would be unity. However, in the interim
before the particles return to their initial condi-
tion, the motion is actually quite nonlinear. This
becomes important because in order to provide
vertical focusing, it is necessary to introduce elec-
trostatic quadrupoles which nominally do not dis-
turb the spin motion. However, in practice, the
quads are necessarily not perfect. After shap-
ing their electrodes to suppress the first allowed
harmonic, the twelve pole, the next allowed har-
monic, the twenty pole, still introduces nonlinear-
ities of order 9 into the dynamics.

In order to analyze the motion to the preci-
sion required for the experiment, DA-based nor-
mal form methods are used to compute tune shifts
and show the results for an illustrative ensemble
of particles on a grid within the acceptance of
the ring in Fig. 1 at four different contemplated
settings of the voltage of the electrostatic quads.
Analysis to order 9 shows significant horizontal
and vertical tune shifts, while analysis to order 7
(superimposed in green) misses most of these and
shows mostly the effect of the symmetry breaking
of the circular motion.

The careful study of losses in the system
is of prime importance since lost particles can
potentially bias the statistics of the muon decay
study which has to be taken into account. So
a careful preparatory beam treatment after injec-
tion called scraping that removes high-amplitude

Figure 1: Tune footprint of muon g − 2 ring with four
contemplated operation settings.
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Figure 2: particle loss predictions using different sim-

ulation models.

particles by various deliberate time-dependent
mispowering of the quads is carried out. For this
purpose, it is necessary to treat full nonlinear mo-
tion without approximation in the Hamiltonian
and include all field effects including the fringe
fields of the quadrupoles, which precludes com-
monly used split-operator-based symplectic track-
ing, which is avoided using the map-based EXPO
symplectic tracking scheme. Figure 2 shows
muon losses for the four voltage configurations
using the EXPO method (upper curves) and non-
symplectic tracking (lower curves) for a selection
of large-amplitude particles before scraping, and
the results show that avoiding symplectification
in tracking leads to a qualitatively different result
that incorrectly predicts much larger losses than
what appears in reality.
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