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The DA techniques used in beam physics [1] allow the convenient computa-
tion of high-order Taylor expansions of the transfer map M which relates final
particle coordinates Z to initial coordinates Z; and parameters 4,

-

7y = M(%;0) (1)
The map M is the flow (solution depending on initial conditions) of ODEs
7' = f(é’, s), independent variable s (2)

Because accelerators are only weakly nonlinear, Taylor expansion usually con-
verges rapidly. Since their introduction [2], DA techniques have been utilized in
most newly developed codes [3, 4, 5, 6, 7, 8, 9, 10].

The DA methods have their origin in the algebraic study of problems involv-
ing differentiation and integration for the purpose of solving complicated inte-
grals, ODEs, and PDEs. The topic was pioneered by Liouville [11] in connection
with the question of which elementary functions have elementary integrals. The
theory was then put on a solid foundation and significantly enhanced by Ritt
[12, 13] and Kolchin [14, 15]. In our days the methods have gained prominence
in the field of formula manipulation, where they provide the backbone of the
theory of analytic quadrature and integration of ODEs [16].

For a given function f of v variables, we form a vector that contains all Taylor
expansion coefficients at # = 0 up to a certain order n. Knowing this vector for
two functions f and g allows to compute the respective vector for f+ ¢ and f-g,
since the derivatives of the sum and product function is uniquely defined from
those of f and g. The resulting operations of addition and multiplication lead
to an algebra, the so-called Truncated Power Series Algebra (TPSA) [17, 18,
19]. One can also introduce elementary functions like exp, sin etc. on TPSA,
and with these, TPSA allows the convenient computation of derivatives of any
functional dependency on a computer [21].

For the solution of ODEs and PDEs it is necessary to introduce another
operation. For any fixed function g with g(0) = 0, it is possible to determine the
Taylor coefficients of g-0f/0x; = 0,,; f from those of f. Including the operation
0,,i to addition and multiplication leads to a differential algebra (DA). Many
details on this particular DA can be found in [1, 25, 21].

For practical work with DA, care has to be taken to provide elementary
operations +, -, dy,; that work to any order and any number of variables. Since



usually many derivatives vanish due to symmetry, the active support of sparsity
is essential [19].

Solutions of ODEs and PDEs

In order to determine the map Eq.(1), it is necessary to solve the ODEs
Eq.(2). Since usually fields are known only in the midplane, it is often also
necessary to solve their PDEs in the process. The crudest approach to solve
Eq.(2) is to replace all operations in a tracking code by the corresponding ones
in DA [18, 2]. This approach is similar in flavor to the modification of existing
code through pre-processors performing “automatic differentiation” [20, 21], al-
though their derivatives are almost always only obtained to first order, and the
real challenge lies in the efficient handling of very large numbers of indepen-
dent variables. An important practical problem to obtain higher order terms
correctly is often important to reduce the step size significantly. This approach
has been used to retrofit several existing tracking codes, including SIXTRACK
and TEAPOT, for the extraction of high-order DA maps.

Using DA techniques it is possible to obtain more robust and efficient inte-
grators. One way is based on the common rewriting of the ODE as a fixed point
problem,

sf =
y=a+ [ fE9 (3)

Utilizing the operation 8! for the integral, the problem can be iterated in DA
with § as an additional variable. It can be shown that iteration converges to the
exact result in n steps, where n is the order of the DA operations; moreover,
this is not affected if in the ith iteration step the overall order is reduced to i.
The result is an nth order integrator; typically, for a given accuracy demand,
the integrator typically results in a speed-up of about an order of magnitude.

Similarly, it is also possible to solve PDEs in finitely many steps. For this
purpose, one eliminates differentiation with respect to one variable by integra-
tion. For example, the PDE
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which describes the scalar potential in particle optical relative coordinates, is
rewritten as

1 ov
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and again, iteration converges to the exact result in finitely many steps.
For ODEs that are time independent and for which z = 0 is a solution,
which is the case in particle optical relative coordinates, another method can



be applied. For a given function on phase space g (2, s), it is possible to obtain
its derivative along the true solution via

d > = 0

—g(Z,s)=f-Vg+ —g9g=1L 6
759Z8)=F-Vg+59=Lgg (6)
the operator L 7 is usually called the wvector field of the ODE, and apparently we
also have d"/ds™ g = L;ig. If g is not explicitly time dependent, the operator
L;i can be evaluated directly within DA for any n; using it for ¢ = z,, the

components of the vector Z, we obtain an integrator of adjustable order. This
method is utilized in the code COSY [3]; an element is typically traversed in
one step, and orders of between 25 — 30 are usually chosen to obtain integration
to nearly machine precision. To conclude we also note that for certain particle
optical systems, including the notoriously improperly treated fringe fields, there
are other efficient and fast perturbative methods to obtain approximate solutions
of high accuracy, like the method of symplectic scaling [22].

Advanced DA operations and manipulation of maps

Given the nth order representations of two maps M,, and N,, it is possible
to determine the nth order representation of their composition Mo N,, as long
as N, has no constant parts. To this end, one simply inserts the components
of NV, into the polynomial defined by the coefficients of M,,. This allows to
determine the map of a combined system from the maps of the subsystems.

It is also possible to obtain the nth order representation N, of the inverse of
M., as long as its linear part is invertible. To this end, one writes M,,= M1 +
M, where M; is the linear part of M,,. Then we have

I, = (Mi+M))oN,
= MioN,+M;oN, =
No = MNT-M;o0N,) (7)

a fixed point problem for V,,. Beginning iteration with N,, = Z,, yields conver-
gence to the exact result in n steps because M, is purely nonlinear.

The map of the reversion [23] of a system, i.e. the system traversed back-
wards, is related to the inverse of the map; but since angles change directions
when going backwards, the reversed map M, is given by

M, =RoM 'oR, (8)

where R is the linear map that changes the signs of angles.

Another application of the inverse map is reconstructive correction of aber-
rations in high resolution spectrographs [24], which has been used recently for
the S800 at NSCL as well as the spectrographs at TJINAF. To this end, not only
final positions but also final angles are measured, and this information is used
to computationally compensate the aberrations of the system. Specifically, it is
approximated that all particles have zero x position at the reaction point; from



the computed transfer map we then establish (zf,yyr,az,br) = S(yi, i, as, b5, ),
which upon inversion yields reaction energy and angles to precisions that are
sometimes two orders of magnitude higher than without correction.

Inverse maps can also be used to establish mixed-variable generating func-
tions that represent the map [25], which are useful for symplectic tracking.
This has been used for tracking of the motion in the SSC [26, 27] and several
other machines and is currently used for the study of LHC. Beginning from
the n-th order map M,,, we create N, 1, consisting of the position part of
M,,, and an identity for the momenta; thus (§y, 5;) = Np,1(qi, ;). Similarly we
construct N, » via (&, Py) = Nn,2(qi, 7). Inversion of N;} (if possible) yields
(@,P:) = N,L_j(cj'f,ﬁ}), and composition with N, » from the right yields

From this mixed-variable representation, the underlying generating function can
be obtained by a mere integration along a suitable path; in a similar way as the
case shown here, also all the other three common generating functions can be
determined.

It is also possible to obtain Lie factorizations,

M, =, {Myexp(: f3 ) exp(: f1:)--.}Z
or My, =p {...exp(: f1:)exp(: fz )M1}T (10)

of symplectic maps M, [25], where =, means two functions are equal up to
order n; in fact, the DA approach currently represents the only method to
obtain them to arbitrary order. The procedure is order-by-order; in the ith
step, all orders less then i have already been taken care of, and the problem is
reduced to finding f;11 such that exp(:fiy1:)Z =Z + V fiy1 - J agrees with the
given map to order ¢. This is an integration problem very similar to the case of
the generating functions above.

Another important manipulation of maps is the transformation to normal
form [25]. The first step is the transformation to the parameter-dependent
fixed point Z(3) which satisfies (£(8),8) = M, (2(8),8). Subtracting the non-
parameter identity map ZZ on both sides we have (0,

)
8) = (M, — I2)(Z(5), ),
and thus

(#(8),8) = My = Z7)7(0,9) (11)

-

from where we read off Z(9) in the non-parameter lines.

The linear part of the normal form algorithm itself is based on a study of
the eigenvalue spectrum of the map; if they are distinct and complex, then it
amounts to a diagonalization to the form R, where the phases of the diagonal
terms correspond to the tunes. The nonlinear part of the normal form algorithm
consists of a sequence of transformations S, that to order n have the form
Sn, =T + S,. The orders higher than n in S,, can in principle be picked freely,



and frequently they are chosen so that all transformations S,, belong to the
same symmetry group as the original map [25].

Up to order n, we have S, =, T — S,,; letting NV, = R + O,, denote the
map that has been normalized to order n, we have

Nn :SnoNn—l Osn =n (I+Sn) O/Np—10 (I_Sn)

= R+0,+{SphoR—-RoS,} (12)

Apparently, the S,, in the commutator {S, o R — R 0 S, } can now be chosen
to remove nth order terms in O,,. In the symplectic case, it turns out that the
remaining terms are just those that describe motion on circles, with a frequency
that depends on the radius and possible parameters 5, allowing direct computa-
tion of amplitude dependent tune shifts. This method has been applied at SSC,
LEP, Hera, the KAON factory, COSY Jiilich, as well as many other machines,
and is currently used to study the effects of fringe fields in the interaction region
of LHC.

The radius vectors in each phase space pair represent invariants, the quality
of which is directly determined by the magnitude of the coefficients of S, the
so-called resonance strengths. Trying to minimize their size is an efficient way
to enhance the overall nonlinear behavior of the system, and the resulting res-
onance correction has been applied successfully at TRIUMF and COSY Jiilich,
and is currently being used for the Muon Collider and LHC.

Other DA-based tools

There are a several other DA-based methods which we cannot discuss here
in detail for reasons of space. For the analysis of spin dynamics, there are
methods [28, 29] that allow the computation of the spin map, spin tracking, as
well as invariant spin axis n. There are also extensions of the DA methods to
allow for a mathematically rigorous treatment of the remainder terms of Taylor’s
formula [30, 31, 32], which allow for the development of rigorous error bounds for
integrators [30], and also a rigorous bounding of stability times of nonlinear
motion [33, 34] when combined with methods of verified global optimization
[35]. The topics addressed here and many others are discussed in detail in [1].
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