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ABSTRACT

It is discussed how high order transfer map8 generated using dift'erential algebraic
methods can be used for symplectic tracking. Contrary to the usual tracking. the
map approach makes it possible to study the specific properties of the system with
as few approximations ..desired without prohibitive extra eft'ort. For example, the
full Hamiltonian can be used. and the elementa can be treated with finite length and
with their fringe field.. Furthermore, track ins through maps ia usually significantly
faster than element by elemen~ tracking.

Dift'eren~ schemes for fas~ symplec~ic tracking suited for dift'eren~ degree8 of non-
linearity of the original map are presented. The fact tha~ different approaches
sometimes produce differeD~ long term reaulta showl that symplectification is no~
the cure of all evil and should be used cautiously. I~ al8O sugesta to use a sym-
plectification scheme which chanses the original map by the le..~ amouD~ p~ible.

1. Introduction

The recently developed differential algebraic methods 1.~,3 allow the determi-

nation of t"ke Taylor series representation of transfer maps

%J = M(i;) (1)

describing the evolution of the phase space vector z of general optical systems to
arbitrary order.
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The maps can be Used to extract many quantities of interest in accelerator
simulations like tune shifts, chromaticities and smear 4.1, Within the same context
it is also possible to study the dependence of these quantities on parameters. The
parameter dependences in many cases allow a very direct way to optimize the
system.

The practical usefulness of these differential algebraic methods is intimately
related to a powerful and general software environment. For this purpose, an
ob ject oriented structured language was created which allows a direct use of the
differential algebra operations. For the sake of portability, the compiler was written
in FORTRAN 77. Using the environment, the design and simulation code COSY
INFINITY was created 5.6. Due to the openness of this approach, it is easy to use
for standard studies yet allows ut.most flexibility for more advanced problems.

While our philosophy is to try to solve as many problems as possible by merely
studying the map of the system, sometimes it is still desirable to be able to use the
crude but robust tool of tracking. For this purpose, in order to limit unphysical and
difficult to estimate growth or shrinkage, it is important that the approximated
map preserve phase space volumes, which can be achieved by preserving the sym-
plectic structure of the underlying system in the approximative map. It is well
known that a map is called symplectic if its Jacobian M satisfies the symplectic
condition 7:

M .J .Mt = J, or alternatively M .J = (M .J)' (2)

where J has the form

000 -1 0 0
0 0 O. 0 -1 0
000 0 0-1
100000
0 1 0 0 0 0
0 0 1 0 0 0

J= (3)

In the case of regular tracking, the preservation of phase space volume is usually
achieved by using a symplectic integrator. The well-known leapfrog algorithm
turns out to be a symplectic integrator of second order, and it has been possible
td develop kick based integraton with a similar flavor of order four a and six 9.

It is also well known that truncated Taylor series maps do only preserve sym-
plecticity up to the order of the map. Thus, 'unless the orden are so high that for
all particles of i~terest, the approximation is accurate to machine precision (which
in many cases can be achieved), there will be some loss of symplecticity that can
after many turns lead to unphysical shrinkage or growth of phase space.

There are different ways to symplectify transfer matrices. It has recently been
shown 10,11 that it is possible to factor the transfer map into a sequence of kick
maps followed by rotations such that the composition of these maps equals the
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given map to the pre-specified order. Since both kick mapa and rotations are
symplectic and tpefr action on particles can be directly and easily evaluated, this
constitutes a symplectic tracking algorithm.

In this paper we will present various different ways to perform symplectic track-
ing using Taylor maps. They all go back to the generating function representation
of transfer maps, which incidentally has a long history in optics as the Eikonal.

A. symplectic map can be described using the so-called generating functions
in mixed coordinates:

F1 (tli,qj)
F3 (tli,P/)
F3 (it, qj)

F. (p.,P/) (4)

which contain the information about the map as the solution of the implicit equa.-
tions:

(Pi, PI) = J. V F.

(Pt,qj) = J. VF2

(tli,iI) = J.VF3

(tli,qj) = J. V F. (5)

if these exist. Furthermore, the map represented by any generating function,
be it the right one or not, is always symplectic. An approximative generating
function can be used to perform symplectic tracking in the following way: Use
the underlying approximative map to compute first values of the final coordinates
(tlJ,P/). Depending on the accuracy of the map, the quadruple (fi,p.,tlJ,P/) is
already very close to a solution of the implicit equations 5. It is used a., a starting
point of a numerical solution of the implicit equations, and tlJ and/or PI are varied
to determine an exact solution. This can be done by Newton's method, and usually
one iterative step is enough to obtain machine accuracy.

To conclude this introduction, we present some notation. On the space of all
infinitely often differentiable functions from R- into R"', we introduce a relation
=" as follows: two functions are said to be equivalent if their derivatives agree to
order R. Quite clearly this is an equivalence relation, and we denote its classes by
[/l". Via

[/]" + (g]" := [I + g]",

c. [/]" := [c. /]",
[/]" .(g]" := [I .g]", (6)
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which are all well defined, the structure becomes a finite dimensional algebra.,
denoted by "D:;-. We note that the class into which the fun-;tion falls uniquely
describes its aberrations or nonlinearities through order n. Via 8i[/]" := [8/]"-1'
the algebra even becomes a differential algebra. Standard functions like exp and sin
can formally be introduced via exp[/]" := [exp(f)]" etc, even though for practical
purposes, other ways are needed; for details refer to 1. For our purposes, the key
advantage of the differential algebra is that it allows us to compute derivative
classes of very complicated functions, even transfer maps described by numerical
integrators, from simpler ones.

Now let 1 be origin preserving, i.e. 1(0) = O. Then it is easy to show that this
is equivalent to the fact that [/]" is nilpotent, in particular, ([/],,)"+1 = O. One
can also show that the differential algebra can be ordered, and that all nilpotent
elements are infinitely small; it is even possible to do very interesting Calculus on
certain algebraic closures of the differential algebra discussed here 12; a very short
overview over this is also given in 13.

2. Inverses of 'li-ansfer Maps

In order to determine generating functions for the maps presented here, it is
necessary to invert transfer maps in their DA representation; i.e., given [AI" in
"D~, find [B]" in "D~ such that [A 0 B]" = [E]". Suppose first the map [A]" is
nilpotent. We begin by splitting the map [A]" E "D~ into its linear and nonlinear
nilpotent parts:

[A]" = [At]" + [A~]". (7)

Furthermore, we write the sought for inverse in "D: as [M]".

[A-I]" = [M]" (8)

Composing the functions, we obtain

([AI] + [A2],,) 0 [M]" = [E]" ~

[AI] 0 [M]" = [E]" -[A2]" 0 [M]" ~

[M]" = [Ail] 0 ([E]" -[A2]" 0 [M],,-I)' (9)

In the last step use has been made of the fact that knowing [M)"-l gives
A2" 0 [M)" in "D:. The necessary computation of Ail is a linear matrix inversion.
Eq. 9 can now be used in a recursive manner to compute the Mj order by order.

In case the map [A]~ is not nilpotent, one first treats the nilpotent part alone.
Secondly, one uses the map generating program to find the values (q.,Pi) that map



292

into the origin (0-, !?);. which can be done using Newton's method. The resultins
(Iii, Pi) are then obviously the constant part of the inverse map.

3. The Taylo~ Expansion of the Generating I !\1nctions

Suppose we are given a transfer map M. In this section we will describe how
the class of the respective generating functions can be detennine<1 uniquely from
the class of M. We here show the algorithm for the computatio]~ of an F2-type
generator. It is immediately apparent how other generators can b4~ detennined.

We denote with M1 the part of the transfet map describing the final po-
sitions, and with M2 the part describing the fihal momenta. Thus, we have
M = (M1,M2). We do the same with the identity map: £ = (t1'£2)' In order
to obtain "mixed" relations (qj,pi) = F(qi,pj), we start by settingJl = (£I,M2).
Then,

(qi, pi) = J/( Iii, pi).

In order for the sought for generating function to exist, it is nec:essary that the
map .N is invertible, which in the DA picture requires the linear :matrix of.N to
be invertible. Note that while symplectic matrices are always invertible, this does
not have to be the case for the linear matrix of .N; in fact, in many importani
cases in optics, certain types of the generating functions do not exist. It is however
guaranteed that at least one always exists. In case .N is invertible" we obtain

(qi,fi) = }/-l(tii",i)~ (11)

Composing the map (Mt,E3) and the map }/-lj we finally obt.un the desired
"mixed" relations: l

The generating function F2 can be obtained as the potential of F. If M is
symplectic, this exists up to a constant (which is only relevant in Soection 5); if M
is not symplectic, the integration of F over an arbitrary path yielcis a generating
function that represents a symplectic transfer map "near" the original one.

This algorithm can be used for symplectification of transfer maps that are not
symplectic, for example because of the limited ac~ acy of the integrator used for

the computation of the map. Finally note that mputing the symplectified M

from F is the same algorithm as computing F fro M.

Altogether, the whole process of obtaining the gradient of the generating func..
tion can be performed to arbitrary order using only composition and inversion of



293

differential a.1gebra.ic tra.nsfer maps. The determination of the generating function
itself is only an integration. It is a.1so worth mentioning that as long as the inverse
of the linear part of II exists, there is a generating function. ltL particular, this
implies that in the differential algebraic view there is never more than one solution
of the implicit equations 5.

As it turns out, the ease of computing a generating function with Differential
Algebra is one of the strong points of the power series representa,tion of the map.
In the Lie representation, the computation of the generating function can not be
done in a straightforward pattern and gets increasingly cumbersome with high
orders. We also note here that it is possible to solve for the geDleratins function
directly via the Hamilton-Jacobi equation, without previously calculating a map.
This has been demonstrated in 14,

For all practical applications it is very important how "well bf!haved" the non-
linear generating function is; in particular, it is important that its nonlinearities
are not too large. While the nonlinearities of the transfer map a;re a more or less
direct measure of the nonlinearity of the syst-em" this is not the case for generat-
ing functions. By inspecting the algorithm for th~ computation of the generating
function, it becomes apparent that the new results are concatenated over and over
with the inverse of the linear generating function. While symplectic matrices are
alwa.ys restricted to unity determinant, this is not the case for the! linear matrix of
N. If its determinant is larger than one, after a few orders of the iteration process,
very large high order terms may be produced.

4. Retroactive Symplectic Extension

Using the Taylor series expansion terms of the generating function as described
in the last section, it is rather straightforward to compute a transfer map that
agrees to the given transfer map to order n, yet is symplectic to higher orders
than the old transfer map. Even if the old transfer map viola'~es symplecticity
noticeably because of truncation errors, it is possible to have tile extended map
satisfy the symplectic condition to higher and higher orden. Dlepending on the
case, it is often possible to obtain machine accuracy symplecticity for the phase
space regions of interest.

To this end, one tint computes any suitable one of the four generating functions
to the same order as the original map, followins the algorithm discussed in the last
section. While the result is not the proper generating function for the true map,
it has the same Taylor expansion as the proper one, and agrees to it better and
better the higher the order. One now approximates the real generatins function
by its Taylor series, and computes the map that is generated from it usins the
above algorithm. Up to oder n, the old map is reproduced; but there is no reuon
to stop the computation there. Just continuins produces higher ;LDd higher orders
extending the original transfer map, and the kth order extensioIL is such that the

map is now symplectic through order k.
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Figure 1: The distribution of the expansion points of the transfer maps of the
system (left) and the expansion points of the local generatins functions (right),
where only the qi spacing is equidistant. I

In the end we obtain a map of higher order than the On4! we started out with
and that is symplectic: to any requested order. If the missilLS hiper order terma
are sufficiently small, 'what we have produced i. an explicit lIymplectic integrator.
This algorithm is particularly useful for systema in which tb,e computation of the
map is rather expensive to hip orden, but whose inherelLt nonlinearity it not
too high. In particular, this could be the cue for machin.,. consistins of many
different elements, or compact machins with very compli,cated fields requirins
detailed integrations.

5. The ,Superposition of Local Generating i'\1nctioDl

The symplectic extension technique outlined in the lut section is fruitful for
the study of problelDll that are not too nonlinear. In certain cases, however, the
technique may be imp'ractical because too high orders would be required. In this
case the technique discussed in this section may prove useful.

Whet! usins seneratins functions for symplectic trackins, it is of course not
mandatory that they actually have the same Taylor expansion u the true gener-
a.tingfunction. Indeec!l, in the case of nonlinear problems in 'Nhich the function II
is not well behaved, it may be advantageous to produce gen4~ratins functions that
are s"moclther overall. This can be achieved by a superposition of local generating

functioDJI.

To this end, a rep~~ntative ensemble of nod~ in phase s1~ace is chosen, prefer-
ably in a regular way as in Figure 1. For each of these noCl~, a transfer map it
computed to a certain order. Then, for each of the nod~ the respective generatins
function is computed. Each of these generatins functions is uniquely determined
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except for its constant value Ci.

A total generating function can now be determined by a smooth interpolation
of the local polynomial type generating functions in the non-equidistant mesh.
This has the form

(13)
"

F(/fi,Pi) = L Fi(/fi,PJ). wi(/fi,PJ),
i=1

where the Wi are smooth weighting factor functions that ensure that the in-
fluence of Fi only extends to the respective next nod~ and not far beyond. For
example, they can be Gaussians centered at (fi, PI)' with widths detennined by
the distanc~ to the next nodes and ..height chosen accordingly.

While in the case of a single generating function, the unknown constant term
was irrelevant, here it is significant since it is :-:.ultiplied by the position dependent
weighting function and thus shows up in the implicit solution (tiJ,P/). So it is
necessary to choose the Ci in a self-consistent way.

One solution to this problem is to demand that at each node, the predictions
of all the neighboring nodes are as close together as possible (which is somewhat
similar to the finite element potential solving problem). This yields a least squares
problem for the Ci which can be solved usins conventional techniques. Naturally,
the higher the orden of the individual Fi' the better their prediction at the neigh-
boring nodes will be, and the smaller the resultins sum of squar~ will be.

Altogether, one obtains a generatins function that is not Taylor series like,
and one can cover large and rather nonlinear areas of phase space. Thus, at least
in principle, the technique is suitable for the symplectic trackins through any

Hamiltonian system.
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