
Computer Arithmetic and Enclosure Methods 
L. Atanassova and J. Herzberger (Editors) 
Elsevier Science Publishers B.V. (North-Holland) 
@ 1992 IMACS. All rights resewed. 

Automatic differentiation as nonarchimedean analysis 

Martin Berz 

Department of Physics and Astronomy and National Superconducting Cyclotron Labo- 
ratory, Michigan State University, East Lansing, MI 48824, USA 

Abstract 
It is shown how the techniques of automatic differentiation can be viewed in a broader 

context as an application of analysis on a nonarchimedean field. The rings used in au- 
tomatic differentiation can be ordered in a natural way and form finite dimensional real 
algebras which contain infinitesimals. Some of these algebras can be extended to become 
a Cauchy-complete real-closed nonarchimedean field, which forms an infinite dimensional 
real vector space and is denoted by t. 

On this field, a calculus is developed. Rules of differentiation and certain fundamental 
theorems are discussed. A remarkable property of differentiation is that difference quo- 
tients with infinitely small differences yield the exact derivative up to an infinitely small 
error. This is of historical interest since it justifies the concept of derivatives as differential 
quotients. But it is also of practical relevance; it turns out that the algebraic operations 
used to compute derivatives in automatic differentiation are just'special cases of calculus 
concepts on t. The arithmetic on L can be implemented in programming languages, 
in particular if object oriented features exist, and should provide a useful data type for 
various applications. 

1. INTRODUCTION 

The goal of automatic differentiation [I, 2 ,3 ,4]  is the accurate and rapid computation 
of derivatives of complicated functions in a computer environment. In the forward mode of 
automatic differentiation, this is achieved by substituting all real arithmetic by arithmetic 
on certain real algebras. To allow for the differentiation of expressions containing intrinsic 
functions, it is important to introduce these functions on these algebras as well. 

In the simplest case in which only the first derivative with respect to one variable 
is required, the real arithmetic is replaced by arithmetic on ordered pairs which can be 
traced back all the way to Veronese [5].  The arithmetic is defined by 

(ao, a i )  + (bo, bl) := (a0 + bo, a1 + bl) 

t (ao, a l )  := ( t  . ao, t  al)  

(ao, a l )  . (bo, bl) := (a0 . bo, a0 - bl + a1 . bo) 
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With this arithmetic, the structure forms a real algebra, which we denote by 
On Dl we can introduce an operation d(a0, a l )  = (0, al); this operation satisfies d(a.b) = 
a . db + b . da, i.e. it is a derivation. With this derivation, the structure 1 Dl becomes a 
differential algebra in the sense of [6] .  

The algebra is not a field since (0 , l )  has no inverse. This is not surprising because 
according to the famous theorem of Frobenius, there are only two finite dimensional real 
vector spaces that are fields, the complex numbers and the quaternions. 

We note that (0 , l )  is nilpotent: (0, = (0,O). It is also worth observing that the 
structure is a rather unique algebra. It is shown in [5] that up to isomorphisms 
there are only three algebras on R2: the complex numbers satisfying (0, = (- 1, O), the 
so-called dual numbers in which (0, = (1,0), and the numbers defined in 

S tandard  functions like sin, exp, log are introduced on this structure in the following 
way. Let I be a differentiable standard function, then we define 

The forward mode of automatic differentiation now utilizes that the definition of sum, 
scalar product, product and functions are just codings of calculus rules for the respective 
operations. This entails that it is now possible to compute the derivative of a function 
described by a computational algorithm at x by evaluating it in 1 Dl,  beginning with the 
ordered pair (x, 1). The resulting ordered pair will have the form (f (x), f'(x)), and hence 
the derivative is computed as the second component. 

The arithmetic on ordered pairs can be generalized to allow the computation of higher 
o rder  derivatives of several variables. To this end, one arranges the value and all 
requested derivatives of v variables and up to order n into'a vector. A customary way of 
arranging the vectors is to begin with the value, then list all the first order derivatives 
d/dxl ,..., d/dx,, then all second order derivatives d2/dx1dx1, d2/dxldx2, ..., d2/dx1d2,, ..., 
d2/dx2dx2 ,..., d2/dx,dx,, and then similarly with third and higher orders. 

According to calculus rules, the derivatives of order n of a sum and product appar- 
ently only depend on the derivatives of order n of the summands or factors, respectively. 
Similarly, the derivatives of a standard function applied to an expression depend only on 
the derivatives of the function and the expression to the same order. The rules to cal- 
culate the derivatives of the results from the derivatives of the previous step now define 
the arithmetic on the vectors. The resulting structure is again a real algebra, denoted 
by ,D,. Similarly, the rules to compute the derivatives of a standard function from the 
derivatives of its argument define the standard functions on the vectors. 

It can be shown [7] that the resulting vector space has dimension (n + v)!/(n! v!). 
Since it is finite dimensional, the resulting structure can not be a field. Again there are 
nilpotent e lements  and thus zero divisors: All elements that contain a zero in the 
first component vanish if raised to a power exceeding n. 

It follows readily that the nilpotent elements actually form an ideal in the algebra 
which we denote by lo. Besides lo, there are n more ideals In which contain the vectors 
whose components vanish up to order n. We observe that these ideals form a tower such 
that Ij c 

The algebras discussed in this introduction were all very practically motivated by the 
goal of computing derivatives, and they all belong to the so-called hypercomplex numbers 
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discussed in [5].  The structures have certain defects, division is not always possible, 
and nilpotent elements have no roots. In practice this sometimes entails that automatic 
differentiation fails for certain differentiable functions. For example, the functions 

sin(x) 1 - exp(x2) 
f(z) = - , f(0) = 1 and g(x) = x x , g(0) = 0 

are all differentiable at the origin, yet the attempt to compute their derivatives using 
automatic differentiation fails. 

In the next sections we will give extensions of these simple structures that remedy 
most of these problems. More importantly (at least from a purists point of view), they 
provide a very different view of automatic differentiation techniques as an application of 
analysis on a new system of numbers. 

2. ORDERING AND INFINITESIMALS 

The first step in the process towards a deeper understanding of the algebraic systems 
introduced by the automatic differentiation process is to introduce an ordering on the 
structures. Let us consider the most general structure, ,D,. The vectors are to be 
arranged in the way outlined in the previous section. Then we define positive numbers 
,D: on ,D, as follows: Starting from the left, we find the first nonzero component in the 
vector. If this component is greater than zero, we say the number is positive. 

Such an ordering is called lexicographic, because we start comparing the components 
with zero from the left, and the first disagreement from zero already determines if an 
element is positive or not. From this definition, we quickly infer that 

= 0 or x E ,D: or - x E ,D: (exclusive or) (6) 

The first and second statements are obvious. The third statement follows because 
the first nonzero component of x + y contains either the first component of x, the first 
component of y, or the sum of these. The last result follows because of the particular 
arrangement, the first nonzero component of x. y contains the product of the first nonzero 
components of a: and y, which are both positive. 

We now introduce an ordering in the following way: we say x < y iff y - x E ,D:. 
Using the previous equations, we can immediately infer 

For x, y E ,D,, exactly one of x < y, x > y, x = y holds (10) 
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These conditions mean that the ordering is compatible with the arithmetic and hence 
is a to ta l  ordering. We note that the ring homomorphism embedding the reals into ,D, 
is also order preserving. 

Let us now investigate the properties of the ordering. We begin by comparing the 
basis vectors ej  which have zero components except a 1 in the j-th component. Clearly 
we have ej  > 0. We also note that el = 1, and all the other basis vectors are in some 
nilpotent ideal I;. Let now j < k. We infer that ej > ek, but also 

Such a relation can never hold between real numbers; it means that ek is infinitely 
small compared to ej! In particular, we can infer that any ek, k > 1 is infinitely small 
compared to any positive real number. Number systems in which the ordering allows 
cases as in (13) are called nonarchimedean. So nonarchimedean extensions of R like 
,D, contain infinitely small numbers. We note that there is an extensive theory on ordered 
algebraic structures, and a good summary is contained in [8]. 

To conclude this section and to provide an outlook, let us now go back to the simple 
arithmetic on ordered pairs given by 1 Dl .  We denote d = (0 , l )  and note that d is infinitely 
small. Then the fact that evaluating a function f in instead of R yields its value in 
the first component and its derivative in the second component can be written as 

This resembles f (x+Ax) x f ($)+Ax. f'(x), in which case the approximation becomes 
better and better for smaller Ax. Here we choose an infinitely small Ax, and the error 
turns out to be zero. 

The following sections will provide a more detailed analysis of this interesting phe- 
nomenon and at the same time yield some interesting new calculus. The results obtained 
are similar to the ones in nonstandard analysis [9, 10, 11, 12, 131; however, the number 
systems required here can be constructed directly and described on a computer, while 
the ones in nonstandard analysis are exceedingly large, non-constructive (in the strict 
sense that the axiom of choice is used and also in a practical sense), and require quite a 
machinery of formal logic for their formulation. 

3. THE FIELD L 

In this section we will provide an extension of the structures encountered in the pre- 
vious sections. We begin by defining a family of special subsets of the real numbers: 

A subset M of the rational numbers is called almost-finite, iff below every bound 
there are only finitely many elements of M. With 3 we denote the family of all almost- 
finite sets. A few basic properties of almost-finite sets are as follows: Let M, N E 3, 
then 

M # 0 + M has a minimum (15) 
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M U N E F  (17) 

x E M + N  =+ 3 only finitely many (a, b) E M x N with x = a + b (20) 

We now define the new set of numbers L. These numbers were probably first studied 
by Levi-Civita [14, 15, 161, and their nice algebraic properties have been rediscovered 
many times, for example in [17, 18, 19, 201: 

So L contains the functions from the rational numbers into R whose support is almost- 
finite. For the sake of clarity from now on we denote the function in L with x, y, ... and 
their values at  q E Q with x[q] etc. This is helpful to avoid confusion when functions on 
L are discussed. On the set L we now define addition: 

We note that the support of x + y is contained in the union of the supports of x and 
y and is thus also almost-finite. We now define a multiplication in the following way: 
Let N, and N, be the supports of x and y. We set (x . y)[q] =-0, if q 4 N, + N,. In case 
q E N, + N,, we set 

( x .  y)[ql = C x[qzI - Y [qyl 
nr E Nr, qy E Ny, 

q= + qy = q 

Since the support of x . y is contained in N, + N,, it is almost-finite. Furthermore, the 
sum in the definition of the product contains at most finitely many contributions. 

On L one can introduce an ordering in a similar way as in the last section: we define 
the set L+ to be the set of all elements of L that have positive value at the smallest 
support point. Then again L+ + L+ c L+ and L+ . L+ C L+, and we again say x < y iff 
y - x E L+. Altogether, the ordering is total .  

With this ordering, L becomes nonarchimedean. It turns out that there are now both 
infinitely small  and infinitely large numbers. In fact, all positive numbers whose first 
support point is positive are infinitely small, whereas those with negative first support 
point are infinitely large. Of particular interest are the elements dr defined by. 

1 i f q = r  
"['I = { 0 else 

In particular, dr is infinitely small for r > O and infinitely large for r < 0. We note that 
the real numbers can be embedded in an order preserving way by mapping 
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The Veronese numbers (ao, al) can also be mapped into L in an order preserving way: 

a0 if q = 0 

(ao, a l )  E iD1 -+ x( ,,,,, ), where x( ,,,,, )[q] = (25) 
0 else 

In the latter case, after any algebraic operation defined in Dl is performed in C, the 
values at 0 and 1 agree with the corresponding values in Usually additional terms 
occur a t  the values of q = 2,3,4, ... related to the fact that the element (0 , l )  is no longer 
nilpotent. In a very similar way, .Dl can be mapped into C. 

We also introduce an absolute value: 

x i f x > O  
1x1 = -x else 

It is now relatively simple to conclude that C is Cauchy-complete with this absolute 
value; to find the value of the limit at q E Q, simply choose an n such that the terms of 
the Cauchy sequence do not differ by more than e = dq+' from n on, and define the value 
of the limit as xn[q]. Since the limit agrees to an element of the sequence to the left of 
any q, its support is almost-finite and it is thus in C. 

A very important concept for the study of L is the fixed point theorem [20]: Let f 
be a function defined in an interval M around the origin, and let f be contracting with 
infinitely small  contraction factor q, then f contains a unique fixed point in M. 

The proof is very similar to the Banach space case. One begins with an arbitrary 
element s o ,  and defines xi+l = f (xi). The resulting sequence is Cauchy. Let x denote its 
limit; it follows that x is the fixed point. 

This fixed point theorem allows to show several important properties of L. In particu- 
lar, we can show that C is a field. To prove this, assume we are interested in the inverse 
of a nonzero X E L. We write X = xo . d+ . (1 + x), where xo is real and x is infinitely 
small. Since xo 6 has the inverse x i 1  - d-', it suffices to find an inverse to (1 + x). Write 
this inverse as (1 + y), and conclude 

This is a fixed point problem for y with the function f(y) = -x - x . y. Since x is 
infinitely small, f is contracting on M = L with infinitely small contraction factor, and 
thus there is a unique fixed point. 

Note also that not only does the fixed point theorem guarantee the existence of an 
inverse, i t  also allows to compute it in a rather direct way. Indeed, to determine the 
inverse up to a certain depth, all that is required is to iterate f sufficiently often. 

In a similar way, we can show the existence of roots  of positive e lements  and 
provide an algorithm to compute them. Again we write X = x 0 . Z .  (1 + x) and note that 
zo . d' has the root 6. $I2. For the root of 1 + x we try 1 + y and obtain 

scanuser

scanuser



Limiting ourselves to  the interval around the origin that contains all the numbers 
whose square is not infinitely much larger than x, we again obtain that f is contracting. 
Hence there is a root; and furthermore, iteration of f provides an elegant way to compute 
it to any depth q .  

Clearly the algorithm can be modified to compute higher roots. The fixed point 
theorem can also be used to prove that the structure obtained from L by adjoining t h e  
imaginary uni t  is algebraically closed, i.e. all polynomials have roots. The proof of 
this theorem is much more involved than the two cases discussed here and certainly goes 
beyond the scope of this paper. For details, we refer to [19, 201. 

4. FUNCTIONS ON L 

In this section we want to introduce functions on L. The algebraic properties of L 
already allow for a di rect  introduction of polynomials, rational functions, roots,  
and any combination thereof. Besides these conventional functions, L readily contains 
de l t a  functions. For example, 

assumes the infinitely large value d-' at the origin, falls off as 1x1 gets larger, is infinitely 
small for any real x, and becomes smaller yet for infinitely large x .  

For the scope of this paper, however, it is more important to study the extendability 
of standard functions, in particular all power series. To this end, it is helpful to study 
two kinds of convergence. The first type of convergence is the one defined by the topology 
induced by the ordering. It is called s t rong convergence, and above we saw that L is 
complete under strong convergence. 

Besides this kind of convergence, there is another kind, the so-called weak conver- 
gence. We say that the sequence x ,  converges weakly to the limit x E L if for all q E Q, 
x,[q] -+ x[q ]  for n -t oo. So weak convergence is coordinatewise. It follows rather directly 
that strong convergence implies weak convergence, but not vice versa. It will be the weak 
convergence that will allow us to generalize power series to L. 

To this end, we first make an observation about almost finite sets. Let M be almost 
finite, and if M # 0 let the minimum of M be non-negative. Define 

Ma = ( ~ 1 3 k  E N,ml, ..., m k  E M with x = ml + ... + mk) (30) 

So Ma is the set of all rational numbers which can be obtained by adding finitely many 
elements of M. Then Ma is a lmost  finite. 
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The proof is simpler than it may appear; first note that if 0 E M ,  it does not contribute 
to any sum, so we may actually assume that M has only positive elements. Since it is 
almost finite, it has a smallest element q ~ ,  and q~ > 0. Let now q E Q be given; let n 
such that n - q~ > q. If it is our goal to obtain elements of Ma that are less than q, we 
have to restrict ourselves to the finitely many elements of M that are less then q. But we 
can also never add more than n of these, because by doing so q is exceeded. So altogether 
we only have finitely many ways of writing sums that do not exceed q, and thus M, is 
almost finite. 

Now let Canxn be a power series with real coefficients and conventional radius of 
convergence r .  Let x E L, x < r ,  and let M be the support of x. One can show [19, 201 
that the partial sum xm = CF==, amxm actually converges weakly inside the classical 
radius of convergence. Further we note that the support points of Cansn are all in Ma, 
and hence the weak limit is actually an element of L. 

This procedure allows the automatic generalization of any power series within its radius 
of convergence to the field L. So in a simple way, we have a very large class of functions 
readily available. In particular, this includes all the conventional intrinsic functions of a 
computer environment. 

5. DIFFERENTIATION 

In this section we will define differentiation on L, which will allow us to view the 
algorithms of automatic differentiation in a different light. Furthermore, we will provide 
a method to perform automatic differentiation in cases when the conventional methods 
fail. We begin with the definition of differentiability. 

Let f be a function on a subset of L. We say f is differentiable with derivative f'(x) 
at the point x in M ,  if for any 6 > 0 E C there is a 6 > 0 E C with 616 not infinitely small 
such that 

for all Ax with x + Ax E M and lAxl < 6. So this definition very much resembles the 
conventional differentiability; an important difference being the restriction imposed by 
requiring 6 not to become too small. This restriction, which is automatically satisfied 
in archimedean structures, was first studied in [19] and will prove crucial to making the 
concept of differentiation useful. 

It turns out that the usual rules for sums  a n d  products  hold in the same way 
as in the real case, with the only exception that factors are not allowed to be infinitely 
large. Furthermore, it follows readily that if f coincides with a real function on all real 
numbers and is differentiable, then so is the real function and the derivatives agree at the 
real point up to an infinitely small error. This will allow the computation of derivatives 
of real functions using techniques of L. 

A very important consequence of the definition of derivatives is the Fundamental 
Theorem: Derivatives a r e  differential quotients up to an infinitely small error. 

Let Ax # 0 be a differential, i.e. infinitely small. Choose E > 0 infinitely small such 
that lAxl/c is also infinitely small. Because of differentiability, there is 6 > 0 with 616 
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finite such the difference quotient differs from the derivative by an infinitely small error 
of less than E for all ordinate differences less than 6. But since 616 is finite and lAxI/e 
is infinitely small, we have lAx1/6 infinitely small, and in particular [Ax1 < 6. Thus A x  
yields an infinitely small error in the difference quotient. 

This elegant method now allows to compute the real derivative of any real function 
that has been extended to the field L and is differentiable there. In particular, all real 
functions that can be expressed in terms of power series functions combined in finitely 
many operations can be conveniently differentiated in this way. But note that it also 
works for the cases discussed above where automatic differentiation fails. Furthermore, 
it is of historical interest since it retroactively justifies the ideas of the fathers of calculus 
of derivatives being differential quotients. It is worth pointing out that the computation 
of exact derivatives as real parts of difference quotients corresponds to the result in Eq. 
(14), except that there division by d is impossible leading to the different form of the 
expression. 

To continue our overview over analysis on L, the details of which can be found in [20], 
we present an intermediate value theorem: Let f be defined on the interval [a, b] c L 
and let f be differentiable there. Let f ( x )  be finite and f ' (x)  be nonzero and finite in the 
interval. Then f assumes every intermediate value between f ( a )  and f (b). 

It turns out that the proof can be obtained in a rather elegant way from the fixed 
point theorem. We assume that S lies between f ( a )  and f ( b ) .  Let SR be the real part of 
S .  Consider now the function f~ obtained by restricting f to R. Then fR is continuous 
as a real function, and thus assumes SR as a real intermediate value. Let X be the real 
point at which the real intermediate value is assumed. Then we have 

and hence s is infinitely small. We now search for an infinitely small x such that S = 
f ( X  + 3). Because of differentiability it follows that 

S = f ( X  + x )  = f ( X )  + f r ( X )  . x + r ( x )  . x2, (33) 

where r ( x )  is actually at most finite [19], and by assumption f ' ( X )  is finite. Combining 
the last two equations yields 

In case one can find an infinitely small x satisfying this equation, X + x is the desired 
point where the intermediate value is assumed. We rewrite the equation as a fixed point 
problem: 

We now choose M to be the set of numbers which are not infinitely much larger than 
s. Since by assumption f r ( X )  is finite and r ( x )  is at most finite, the function on the right 
hand side is contracting with an infinitely small contraction factor; thus there is a fixed 
point and hence an intermediate value. 
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The intermediate value theorem is only the beginning of an analysis on C, but this 
is not the place to present more advanced results. We just want to mention that it is 
possible to  prove an equivalent of Rolle's theorem. We also obtain an equivalent of 
Taylor's theorem. 

The last result we want to mention here is called Cauchy's Pointformula. Let 
f = Ego a;(z-zo)' be a power series with real coefficients. Then the function is uniquely 
determined by its value at a point zo+ h, where h is an arbitrary nonzero infinitely small 
number. 

For the proof note that f (zo + h) = CEO a;hi Let h z hod', ho E R, r E Q+, then we 
conclude 

hence the coefficients can be computed. Choosing h = d yields the particularly simple 
form aj = f (zo + d ) [ i ] .  

This formula allows the computation of derivatives of any function which can be 
written as a power series with nonzero radius of convergence; this includes all differentiable 
functions obtained in finitely many steps using arithmetic and intrinsic functions. 

6. IMPLEMENTATION 

Besides allowing illuminating theoretical conclusions, , the strength of the Levi-Civita 
numbers is that they can be used in practice, and even in a computer environment. In 
this respect, they differ from the non-constructive structures in Nonstandard Analysis. 

An implementation of the Levi-Civita numbers is not as direct as one of the algebras 
of automatic differentiation since the Levi-Civita field is infinite dimensional. However, 
as we shall see now, it is still possible to implement the structure in a very useful way. 
Since there are only finitely many support points below every bound, it is possible to pick 
any such bound and store all the values of a function to the left of it. So each "number" 
is represented by these values as well as the value of the bound. 

The sum of two such functions can then be computed for all values to the left of the 
minimum of the bounds; so the bound of the sum is the minimum of the bounds. In a 
similar way it is possible to find a bound below which the product of two numbers can 
be computed from the bounds of the two numbers. Altogether, the bound to which each 
individual variable is known is carried along through all arithmetic. 

There is actually an illuminating similarity to the implementation of the real numbers 
in floating point format on a computer. In their decimal representations, the reals cannot 
be represented exactly because they have infinitely many digits. Instead, we store the 
digits to a certain depth, the mantissa length, and ignore the rest. Finding the mantissa 
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of a sum or product of reals can be done by just manipulating the digits of the mantissas 
of the two operands. In the case of the real numbers, this arithmetic can obviously 
introduce errors because of the carry operation which produces a feed up from lower 
to higher mantissa places. Interestingly, since there is no equivalent to the carry in the 
addition or multiplication in L, this problem does not exist. So there is no loss of accuracy 
over the course of computation, except the one in the real number values at the support 
points of the functions. 

References 

[I] A. Griewank and G .  F. Corliss (Eds.). Automatic Differentiation of Algorithms. 
SIAM, Washington, D.C., 1991. 

[2] L.B. Rail. The arithmetic of Differentiation. Mathematics Magazine, 59:275, 1986. 

[3] G .  Corliss and L. B. Rall. Automatic generation of taylor series in PASCAL-SC: 
Basic applications to ordinary differential equations. In Transactions of the First 
Army Conference on Applied Mathematics and Computing, volume ARO Report 84- 
1, 1984. 

[4] A. Griewank. On automatic differentiation. Technical Report MCS-P10-1088, Ar- 
gonne National Laboratory, 1988. 

[5] G .  Kantor and I. Lovovich. Hyperkompleze Zahlen. Teubner. 

[6] J. F. Ritt. Digerential Algebra. American Mathematical Society, Washington, D.C., 
1950. 

[7] M. Berz. Differential algebraic description of beam dynamics to very high orders. 
Particle Accelerators, 24: 109, 1989. 

[8] L. Fuchs. Partially ordered algebraic systems. Pergamon Press, Addison Wesley, 
1963. 

[9] C. Schmieden and D. Laugwitz. Eine Erweiterung der Infinitesimalrechnung. Math- 
ematische Zeitschrift, 69:l-39, 1958. 

[lo] A. Robinson. Non-standard analysis. In Proceedings Royal Academy Amsterdam, 
Series A, volume 64, page 432, 1961. 

[ l l ]  A. Robinson. Non-Standard Analysis. North-Holland, 1974. 

[12] M. Davies. Applied Nonstandard Analysis. John Wiley and Sons, 1977 

[13] K. D. Stroyan and W. A. J. Luxemburg. Introduction to the Theory of Infinitesimals. 
Academic Press, 1976. 

[14] Tullio Levi-Civita. Sugli infiniti ed infinitesimi attuali quali elementi analitici. Atti 
1st. Veneto di Sc., Lett. ed Art., 7a, 4:1765, 1892. 

scanuser

scanuser



[15] Tullio Levi-Civita. Sui numeri transfiniti. Rend. Acc. Lincei, 5a, 7:91,113, 1898. 

[16] D. Laugwitz. Tullio Levi-Civita's work on nonarchimedean structures (with an ap- 
pendix: Properties of Levi-Civita fields). In Atti Dei Convegni Lincei 8: Con- 
vegno Internazionale Celebrativo Del Centenario Della Nascita De Tullio Levi-Civita, 
Academia Nazionale dei Lincei, Roma, 1975. 

[17] L. Neder. Model1 einer Leibnizschen Differentialrechnung mit aktual unendlich 
kleinen Gro6en. Mathematische Annalen, 118:718-732, 1941-1943. 

[18] D. Laugwitz. Eine nichtarchimedische Erweiterung angeordneter Korper. Mathema- 
tische Nachrichten, 37:225-236, 1968. 

[19] M. Berz. Analysis auf einer nichtarchimedischen Erweiterung der reellen Zahlen. 
Report (in German), Universitat Gieoen, 1988. 

[20] M. Berz. Analyis auf einer nichtarchimedischen Erweiterung der reellen Zahlen. Tech- 
nical Report MSUCL-753, National Superconducting Cyclotron Laboratory, Michi- 
gan State University, East Lansing, MI 48824, 1990. 

scanuser

scanuser


