
ALGORITHMS FOR HIGHER ORDER AUTOMATIC DIFFERENTIATION
IN MANY VARIABLES WITH APPLICATIONS TO BEAM PHYSICS

MARTIN BERZ

PROCEEDINGS WORKSHOP ON AUTOMATIC DIFFERENTIATION
BRECKENRIDGE, CO, JANUARY 1991

PUBLISHED BY SIAM 1991

Abstract. Efficient algorithms for automatic differentiation with several variables and high orders are presented.
The algorithms are geared towards sparse vectors, which is particularly important in this case and allows significant
savings in computer time. Besides the mere computation of derivatives, algorithms for the efficient composition and
inversion of functions with sparse derivatives are discussed.

The algorithms are implemented in a FORTRAN library. The library can be utilized by a precompiler that
transforms FORTRAN into code to perform the desired automatic differentiation task. The precompiler allows
passing of variables into subroutines and functions and allows the user to provide functions. Besides the use with the
precompiler, the routines can be accessed from a dedicated language environment. The language has the flavor of
PASCAL, but provides object oriented features and nonlinear optimization at the language level.

The tools have been used in numerous cases for the computation and correction of aberrations of beam physics
systems and the simulation and analysis of nonlinear dynamics problems, including the simulation of large particle
accelerators.

1. Introduction. In recent years it has been shown that automatic differentiation methods,
combined with methods of theoretical physics, can be used very fruitfully for the computation and
analysis of beam physics systems [Ber88b, Ber89b, Ber90a, Ber87, Ber88a, Ber89a, FBI89, FB89].
These systems include particle accelerators, particle optical systems, and electron microscopy.

The high orders often needed for the computation of such maps and the complexity of the under-
lying systems require rather sophisticated computational algorithms. In this paper we will discuss
in detail the core algorithms used in the implementation of the high order automatic differentiation
methods.

Beam physics systems can be represented by a map relating final phase space coordinates �zf to

initial coordinates �zi and system parameters �δ in the following way:

�zf =M(�zi, �δ)(1)

Depending on the problem, the phase space variables can be sets of two or three positions
and momenta, and can contain other quantities like the spin. The system parameters can include
certain quantities that describe the system and the dependence on which is of interest. Note that

1

the distinction between variables and parameters is somewhat arbitrary; we consider any quantity
of interest a parameter if it stays constant throughout the system.

The transfer map is the (unique) flow of certain differential equations [Ber90b] describing the
evolution of the variables:

d

dt
�z = �f(�z, �δ, t).(2)

The partial derivatives of the transfer map (1) with respect to the phase space variables are
called aberrations, and the ones involving system parameters are called sensitivities. In a very
general sense, the task of beam physics is to find the aberration coefficients and sensitivities to a
certain order, and to try to modify them in such a way that the map has certain desirable properties.

Beam Physics systems are characterized by the fact that the linear part of the flow is dominant,
and that the Taylor series of the flow converges to the map rapidly. Typically, orders anywhere from
two to ten are required to describe the system with the required accuracy.

In the past, it has been very difficult to obtain aberrations, and usually the orders were limited
to at most three. It required considerable efforts to derive analytical formulas [Bro79, BW87]
for the aberrations of all the important elements of which particle optical systems are made of
[Wol87, Car87, WE65, BBB64, Wol65, Wol67, Wol68, MW70a, MW70b, MMW72]

In 1986, we outlined another way [Ber87] that allows a much more straightforward computation
of such image aberrations. It is based on the replacement of all arithmetical steps in the numerical
algorithm for the solution of the equations of motion by truncated power series. Being essentially
an automatic differentiation method, it automatically allows the computation of arbitrary order
aberrations of arbitrary systems in a very elegant way.

In order to compute the derivatives of �f , several evaluations of �f at different positions are
required; for example, the eighth order Runge Kutta algorithm used in COSY INFINITY [Ber91]
requires thirteen evaluations of the function per time step. These evaluations of the right hand side
of the differential equation are very costly, and they are indeed the limiting factor for the speed.

It turns out that in the important case in which �f is time independent and origin preserving,
the use of a numerical integrator can be avoided, and we can readily obtain all the required higher
order behaviour of �f with only one evaluation of �f .

To illustrate this technique, suppose we are interested in the behaviour of a function g of phase
space, i.e., we want to know g(�x(t)), where �x(t) is a solution of the equations of motion. Then we
can infer

d

dt
g = �∇ g · d

dt
�x+

∂g

∂t

= �∇ g · �f + ∂

∂t
g

= Lf g.(3)

The operator Lf is usually called the Lie derivative of g. Using the operator Lf , also higher
derivatives of g can be computed:

d2

dt2
g = L2f g,

d3

dt3
g = L3f g etc.(4)

This approach is well known [CdB80] and in fact is even sometimes used in practice to derive

analytical low order integration formulas for certain functions �f . The limitation is that unless �f is

very simple, it is usually impossible to compute the repeated action of Lf analytically, and this is why

this approach has not been very useful in practice. However, once all the derivatives of �f are known,
the repetitive actions of the Lie derivative can readily be computed. To this end, it is necessary to
compute a vector of derivatives for the partial derivative of a function from the vector of derivatives
of the underlying function. This is merely a bookkeeping operation and is formally accomplished by
the operator ∂μ. So altogether, one just evaluates the derivatives of �f and repeatedly uses the ∂μ to
compute the Lie derivatives

In this algorithm, the use of the derivations ∂μ is apparently of prime importance. Since an
algebra with a derivation is called a differential algebra [Rit50], the method is usually referred to as
the differential algebraic (DA) approach.

2. Storage and Addition. Let nDv the algebra of vectors of partial derivatives of order n in v
variables used in automatic differentiation. According to [Ber92], any element of the structure nDv

can be written as a polynomial in the v nilpotent base elements d1, ..., dn, i.e., they form generators
of the algebra. In the arrangement introduced in [Ber92], the element dk, k = 1, n, has a one in slot
k+1 and zeros everywhere else. The (n+ v)!/n!v! monomials generated by combinations of at most
n of these generators form a basis of the real algebra nDv. Any product of more than n of these
generators dk vanishes.

In many high order calculations, and also in the computations involving beam physics systems,
the derivative vectors are often very sparse. One reason for this effect is that a given intermediate
variable does not depend at all on a certain initial variable. While in the case of 1Dv, this entails
that one of the v + 1 component vanishes, in higher orders the effects are much more dramatic.
Of the (n+ v)!/n!/v! components, only (n+ v − 1)!/n!/(v − 1)! are nonzero, which is a fraction of
v/(n+ v). So for problems around n = 10 and v = 6, which is somewhat typical for beam physics
cases, less than half of the terms prevail. Of course, if the intermediate variable is independent of
even more than one original variable, the results are even more noticeable.

The particular mathematics of beam physics entails that many quantities depend on certain
initial conditions in a purely odd or even way, which further dramatically reduces the nonzero
terms. Altogether, in a typical beam physics calculation, it is not unusual to have only about 10 %
nonzero components on average.

So it is computationally advantageous to store and operate on the nonzero terms only. This
requires some bookkeeping overhead; however, compared to the sophistication needed for efficient
multiplication algorithms discussed in the next section, this effort is minor.

In order to facilitate addition and subtraction, it is essential that all nonzero entries are stored
in an ordered way, for example following the natural lexicographical ordering [Ber92]. In case such
an ordering is followed, addition and subtraction become simple merging operations.

3. The Multiplication Algorithm. As outlined in the previous section, vectors in the algebra

nDv used for automatic differentiation can be written and manipulated as polynomials such that
products of terms whose order exceeds n always vanish. Suppose the N = (n+ v)!/n!/v! monomials
are arranged in a certain order. Let Mi denote the monomial identified with the ith component,
and let IM denote the position of the monomial M .

In order to multiply two vectors and find the contribution to the ith component, it is necessary
to find all factorizations of the monomial Mi:

ci =
X

0 ≤ ν, μ ≤ N
Mν ·Mμ = Mi

aν · bμ(5)

The computation of all these factorizations presents a difficult algorithm and could be quite time
consuming. Thus in practice it is advantageous to rephrase the problem such that no factorizations
in submonomials are searched, but rather each component of the first vector is multiplied by each

component of the second vector and the product is stored at the place where the product monomial
belongs.

For this process, the main algorithmic problem of an efficient multiplication algorithm becomes
apparent: it is necessary to determine the address of the product monomial in a fast way.

Here we present a solution to this problem which produces minimal computational overhead and
works for arbitrarily many variables and arbitrary order.

First, all (n+v)!/n!/v! monomialsM are coded with an integer C(M) in the following way: Let
M = xi11 · ... · xivv , then C(M) is defined as follows:

C(M) = C(xi11 · ... · xivv) = i1 · (n+ 1)0 + i2 · (n+ 1)1 + ...+ iv · (n+ 1)(v−1)(6)

So the exponents are just ”decimals” in base (n+1). Note that since iν ≤ n, the functionM → C(M)
is injective and hence the coding unique. Note also that no coding exceeds (n+1)v, but not all such
codings occur.

Now suppose two monomials M and N have to be multiplied and suppose their product has an
order less than or equal to n. Since the multiplication corresponds to an addition of the exponents,
it follows that

C(M ·N) = C(M) + C(N)(7)

To exploit this for the finding of the desired coordinate position IM of the product of two
monomials, an array D is required that has the property

IM = D(C(M))(8)

This array can be generated easily once the order n and number of variables v are fixed, and has to
be computed only once. Since the codings are bounded by (n+ 1)v, the array has to have at least
this length. With 6 variables, this allows orders of 8 or 9 if one wants to stay inside the boundaries
of computer storage; with 8 variables the order would decrease to about 4, and this is too strict
a limitation. To circumvent this, a slight modification of the above coding and decoding will be
presented.

Without loss of generality, we assume the number of variables v to be even; if it is not even,
increase it by one and ignore the additional variable. We define two coding numbers C1 and C2 for
any monomial in the following way:

C1(x
i1
1 · ... · xivv) = i1 · (n+ 1)0 + i2 · (n+ 1)1 + ...+ i v

2
· (n+ 1)(v2−1)

C2(x
i1
1 · ... · xivv) = i v

2+1
· (n+ 1)0 + i v

2+2
· (n+ 1)1 + ...+ iv · (n+ 1)(

v
2−1)(9)

Next we store the N(n, v) monomials in a special way. We note that this storage differs from
the one used for the introduction of the lexicographical ordering described in [Ber92]; interestingly
enough, however, the arrangement presented here defines another lexicographical total ordering.

We start with all monomials that have C2(M) = 0 and group them by order; within one order,
the monomials are stored according to ascending values of C1(M). Then we store all those with
C2(M) = 1, again by order, and so forth, going through all possible values of C2. Because of the
order-by-order arrangement within the monomials belonging to the same C1(M), it follows that
again

C1(M ·N) = C1(M) + C1(N)

C2(M ·N) = C2(M) + C2(N)(10)

Finally we introduce some ”inverse” arrays D1 and D2 in the following way:

D1(c1) = (IM of first monomial M with C1(M) = c1)

D2(c2) = (IM of first monomial M with C2(M) = c2)− 1(11)

Again the arrays D1 and D2 can be generated once during the setup process. Using the definitions
of C1, C2, D1 and D2 and the storage scheme outlined above, it now follows that the address of the
product of the monomials M and N can be found directly as

IM·N = D1[C1(IM) + C1(IN)] +D2[C2(IM) + C2(IN)](12)

For the sake of clarity, table 1 shows an example for the arrays C1, C2, D1 and D2 for n = 3
and v = 4. This example also illustrates equations (9) through (12).

IM i1 i2 i3 i4 C1 C2
1 0 0 0 0 0 0
2 1 0 0 0 1 0
3 0 1 0 0 4 0
4 2 0 0 0 2 0
5 1 1 0 0 5 0
6 0 2 0 0 8 0
7 3 0 0 0 3 0
8 2 1 0 0 6 0
9 1 2 0 0 9 0
10 0 3 0 0 12 0
11 0 0 1 0 0 1
12 1 0 1 0 1 1
13 0 1 1 0 4 1
14 2 0 1 0 2 1
15 1 1 1 0 5 1
16 0 2 1 0 8 1
17 0 0 0 1 0 4
18 1 0 0 1 1 4
19 0 1 0 1 4 4
20 2 0 0 1 2 4
21 1 1 0 1 5 4
22 0 2 0 1 8 4
23 0 0 2 0 0 2
24 1 0 2 0 1 2
25 0 1 2 0 4 2
26 0 0 1 1 0 5
27 1 0 1 1 1 5
28 0 1 1 1 4 5
29 0 0 0 2 0 8
30 1 0 0 2 1 8
31 0 1 0 2 4 8
32 0 0 3 0 0 3
33 0 0 2 1 0 6
34 0 0 1 2 0 9
35 0 0 0 3 0 12

j D1(j) D2(j)
0 1 0
1 2 10
2 4 22
3 7 31
4 3 16
5 5 25
6 8 32
7 0 0
8 6 28
9 9 33
10 0 0
11 0 0
12 10 34(13)

Table 1: List of the ordering of the all monomials M = xi11 · ... · xivv for order n = 3 and number of
variables v = 4. Also shown are the coding integers C1 and C2 and the arrays D1 and D2. For all
M , one verifies IM = D1(C1(M)) +D2(C2(M))

The coding defined in (9) entails that the required length of the arrays D1 and D2 is much

smaller, namely only (n+ 1)
v
2 . For a maximum length of 106, this limits the maximum order for a

given number of variables to the values given in table 2.

number of variables 6 8 10 12
maximum order 99 30 14 10

Table 2: The maximum order for different numbers of variables due to the limitation of the length
of the reverse addressing arrays D1, D2

Each multiplication of two monomials now requires three integer additions and six integer array
look-ups besides the double precision multiplication of the coefficients. Since integer additions are
usually executed much faster than double precision multiplications and array look-ups are faster yet,
the extra amount of time for the bookkeeping is quite limited. To be specific, on a typical VAX
computer, all the bookkeeping integer operations together take only about one third of the time
required for the one double precision multiplication. Since the latter can of course never be avoided,
the algorithm here is very nearly optimal and it should be very hard to improve significantly.

4. Additional Operations. Besides the operations outlined in the previous section, there are
several more that are important for the practical use. First and foremost, this holds for intrinsic
functions.

In [Ber92] we showed that indeed all real power series can be extended to the structure L and
with it also to nDv within their radius of convergence. In practice, it turns out that we often
can simplify the computation considerably by exploiting certain addition theorems of the function
of interest. In this case, it suffices to evaluate the series at nilpotent infinitesimals, where they
converge in finitely many steps.

We illustrate this with the sine function. Suppose we are given a DA number which we write as
X + r, X being its real part and r being the infinitely small rest. Then we obtain

sin(X + r) = sin(X) · cos(r) + cos(X) · sin(r)⇒

= sin(X) ·
∞X
i=0

(−1)i r2i

(2i)!
+ cos(X) ·

∞X
i=0

(−1)i+1 r2i+1

(2i+ 1)!
⇒

= sin(X) ·
nX
i=0

(−1)i r2i

(2i)!
+ cos(X) ·

nX
i=0

(−1)i+1 r2i+1

(2i+ 1)!
.(14)

So the addition theorem allows us to compute the sine of an element of the differential algebra in
only finitely many steps. A very similar argument can be developed for the cosine, the exponential
and the logarithm, as well as for inverses and roots. For inverse trigonometric functions, the situation
becomes much more difficult, and it often requires a rather involved battery of equations.

The FORTRAN library developed using the algorithms described here contains routines for the
computation of most intrinsic functions covered by the FORTRAN ANSI standard.

Besides the computation of intrinsic functions, the second most important operation is the
derivation, which turns the algebras nDv into differential algebras [Rit50]. Because of the significance

of this operation for the computation of aberrations of beam physics systems (see section 1), the
techniques are usually referred to as the differential algebraic methods [Ber90a, Ber89b, Ber88a].

The derivation operation computes the value and derivatives of the partial derivative of a func-
tion from the corresponding values for the function. This operation is readily achieved by subtracting
the coding integers for the variable with respect to which to differentiate from the coding integers
of the component under consideration. Note that the derivation operations always entail a loss of
order by one, and algorithms have to be designed such that this does not matter. In a very similar
way to the derivations, it is possible to perform integration.

Another important algorithm allows the composition of functions of which partial derivatives
are known. So given �f1 and �f2 and their derivatives, we would like to compute the derivatives of
�f1 · �f2. Of particular importance is the case where �f2 vanishes, but its derivatives are nonzero.

As the need to compose functions occurs very frequently during beam physics computations,
an efficient implementation of this method is crucial. Again, great care has to be exercised if the
maps are sparse. In this case, the first step in composition algorithms is to find an optimally short
tree that reaches all the nonzero monomials in �f1, but requires the least number of monomials not
occurring in �f1. The next step is to traverse the tree in such a way that each new node requires only
one polynomial multiplication.

We note that using iterative compositions and the inversion of a linear matrix, it is possible to
compute the derivative of the inverse of a given map �f . For details, we refer to [Ber90a].

For practical use it is important to utilize the FORTRAN procedures described here in a con-
venient manner. At the present time, there are two different ways to use the differential algebra
package. The first way is based on a precompiler which allows the transformation of FORTRAN
code for the automatic computation of derivatives. This method is described in the next section.

The second approach is based on a full language system which provides a particularly elegant
and powerful environment for the development of new code. This is discussed below.

5. The Precompiler. The precompiler DAFOR [Ber90f, Ber90e] represents an extension
to standard FORTRAN 77 which allows the use of a differential algebraic data type. DAFOR is
designed to allow rapid conversion of existing programs. It converts the extended FORTRAN code
to regular FORTRAN code by expressing all DA operation by calls to subroutines from the DA
library DAPRE. For a more detailed description of the precompiler, the reader is referred to the
manual.

The first step in the conversion of a FORTRAN code to Differential Algebraic computation of
derivatives is to identify the independent variables with respect to which to differentiate as well as
the number of these variables and the maximum order to which derivatives are to be computed.
These two numbers are then passed to an initial setup routine.

In the next step, in each program segment all variables that become DA have to be declared
to the precompiler and their original FORTRAN declarations have to be removed. All declara-
tions for the precompiler have to be located between the declaration and execution section of the
FORTRAN program. Besides the DA variables, all REAL, INTEGER, or DOUBLE PRECISION
variables occurring in arithmetic expressions in which DA variables occur have to be declared to the
precompiler.

Besides the variables occurring in the program section, it is necessary to declare all external
functions that occur in an expression that contains DA operations. Note that the precompiler
supports all intrinsic functions required in the FORTRAN ANSI standard.

The main feature of the precompiler DAFOR is that it automatically converts assignment state-
ments in which DA variables are computed in terms of others. Any assignment statement containing
a DA variable has to be identified for precompilation with a *DA in columns 1 through 3. The state-
ment can extend over several lines, which then also have to be marked with *DA in the first columns.
The end of the command has to be denoted with a semicolon.

Besides assignment, DA variables can occur in calls to subroutines. No changes are necessary

as long as the subroutine is converted accordingly and the DA variables are properly declared.

FORTRAN commands other than assignments and subroutine calls are not processed by DAFOR.
In the case of outputting statements like WRITE or PRINT, it is necessary to rewrite the commands.
There are routines to output the value of the quantity along with its derivatives with respect to the
independent variables, i.e. the full DA variable.

6. The FOXY language. While the precompiler discussed in the previous section is par-
ticularly helpful for the conversion of existing FORTRAN code, we believe that the environment
discussed in this section is the matter of choice for the development of new code. This language
environment was used to write the new beam physics design and simulation code COSY INFINITY
[Ber90d, Ber90b, Ber90c]. While being much more powerful than existing codes, its source is
eminently readable and about a factor of 10 more compact than other codes. Besides the signifi-
cant simplifications in the physics parts that are the consequence of the use of differential algebraic
methods, this is largely due to the very powerful language environment.

The COSY language is similar to PASCAL, which provides power in a compact syntax that is
easy to analyze. The language of COSY differs from PASCAL in its object oriented features. New
data types and operations on them can easily be implemented. In particular, the language allows
the direct use of differential algebraic objects. Among other objects being used, the picture object
has proved very helpful for sophisticated manipulation of graphics.

Most commands of the COSY language consist of a keyword, followed by expressions and names
of variables, and terminated by a semicolon. The individual entries and the semicolon are separated
by blanks. The exceptions are the assignment statement, which does not have a keyword but is
identified by the assignment identifier :=, and the call to a procedure, in which case the procedure
name is used instead of the keyword.

The language consists of a tree-structured arrangement of nested program segments. There are
three types of program segments. The first is the main program, of which there has to be exactly
one and which has to begin at the top of the input file and which ends at the bottom. The others
are procedures and functions.

Inside each program segment, there are three sections. The first section contains the declaration
of local variables, the second section contains the local procedures and functions, and the third
section contains the executable code.

All variables are visible inside the program segment in which they are declared as well as in all
other program segments inside it. In case a variable has the same name as one that is visible from
a higher level routine, its name and dimension override the name and properties of the higher level
variable of the same name for the remainder of the procedure and all local procedures.

The next section of the program segment contains the declaration of local procedures and func-
tions. Any such program segment is visible in the segment in which it was declared and in all
program segments inside the segment in which it was declared, as long as the reference is physically
located below the declaration of the local procedure. Recursive calls are permitted. Altogether,
the local and global visibility of variables and procedures follows standard structured programming
practice.

The third and final section of the program segment contains executable statements. Among the
permissible executable statements are assignment statements, call to procedures and to FORTRAN
subroutines.

There are also statements that control the program flow. These statements consist of matching
pairs denoting the beginning and ending of a control structure and sometimes of a third statement
that can occur between such beginning and ending statements. Control statements can be nested as
long as the beginning and ending of the lower level control structure is completely contained inside
the same section of the higher level control structure. The flow control statements supported by
the COSY language are IF, WHILE, LOOP and FIT; the last statement goes beyond conventional
languages and allows direct nonlinear optimization.

Besides the commands just presented, there are commands for input and output. They appear
as commands and not as procedure calls because they have variable number of arguments. There
are also commands to save code in compiled form. This allows later inclusion in another program
without recompiling.

The COSY language is compiled by the program FOXY, which is written in standard FORTRAN
77 and has a length of about 3000 lines. The result of the compilation is metacode consisting of a
sequence of integers. The metacode can be stored or executed using FOXY. Great care was taken
to make FOXY as efficient as possible. In benchmark tests of compilation speed, it was only about
20 percent slower than an off the shelf PASCAL compiler.

As mentioned above, execution is controlled by machine independent metacode. In the case of
operations with differential algebraic data types, the induced computational overhead is completely
insignificant. For algorithms containing only double precision operations, an average slowdown by
a factor of two has to be expected.

REFERENCES

[BBB64] K. L. Brown, R. Belbeoch, and P. Bounin. First- and second- order magnetic optics matrix equations
for the midplane of uniform-field wedge magnets. Review of Scientific Instruments, 35:481, 1964.

[Ber87] M. Berz. The method of power series tracking for the mathematical description of beam dynamics.
Nuclear Instruments and Methods, A258:431, 1987.

[Ber88a] M. Berz. Differential algebraic description and analysis of trajectories in vacuum electronic devices
including spacecharge effects. IEEE Transactions on Electron Devices, 35-11:2002, 1988.

[Ber88b] M. Berz. Differential algebraic treatment of beam dynamics to very high orders including applications
to spacecharge. AIP Conference Proceedings, 177:275, 1988.

[Ber89a] M. Berz. The Description of Particle Accelerators using High Order Perturbation Theory on Maps,
in: M. Month (Ed), Physics of Particle Accelerators, volume 1, page 961. American Institute of
Physics, 1989.

[Ber89b] M. Berz. Differential algebraic description of beam dynamics to very high orders. Particle Accelerators,
24:109, 1989.

[Ber90a] M. Berz. Arbitrary order description of arbitrary particle optical systems. Nuclear Instruments and
Methods, A298:426, 1990.

[Ber90b] M. Berz. Computational aspects of design and simulation: COSY INFINITY. Nuclear Instruments and
Methods, A298:473, 1990.

[Ber90c] M. Berz. COSY INFINITY, an arbitrary order general purpose optics code. Computer Codes and the
Linear Accelerator Community, Los Alamos LA-11857-C:137, 1990.

[Ber90d] M. Berz. COSY INFINITY Version 3 reference manual. Technical Report MSUCL-751, National Super-
conducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, 1990.

[Ber90e] M. Berz. The DA precompiler DAFOR. Technical report, Lawrence Berkeley Laboratory, Berkeley, CA,
1990.

[Ber90f] M. Berz. Differential algebra precompiler version 3 reference manual. Technical Report MSUCL-755,
Michigan State University, East Lansing, MI 48824, 1990.

[Ber91] M. Berz. COSY INFINITY Version 4 reference manual. Technical Report MSUCL-771, National Super-
conducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, 1991.

[Ber92] M. Berz. Automatic differentiation as nonarchimedean analysis. In Computer Arithmetic and Enclosure
Methods, page 439, Amsterdam, 1992. Elsevier Science Publishers.

[Bro79] K. L. Brown. The ion optical program TRANSPORT. Technical Report 91, SLAC, 1979.
[BW87] M. Berz and H. Wollnik. The program HAMILTON for the analytic solution of the equations of motion

in particle optical systems through fifth order. Nuclear Instruments and Methods, A258:364, 1987.
[Car87] D. C. Carey. The Optics of Charged Particle Beams. Harwood, 1987.
[CdB80] S. D. Conte and C. de Boor. Elementary Numerical Analysis. McGraw Hill, New York, 1980.
[FB89] E. Forest and M. Berz. Canonical Integration and Analysis of Periodic Maps using Non-Standard

Analysis and Lie Methods, in: Lie Methods in Optics II, pages 47—66. Springer, Berlin, 1989.
[FBI89] E. Forest, M. Berz, and J. Irwin. Normal form methods for complicated periodic systems: A complete

solution using Differential algebra and Lie operators. Particle Accelerators, 24:91, 1989.
[MMW72] T. Matsuo, H. Matsuda, and H. Wollnik. Particle trajectories in a toroidal condenser in a third order

approximation. Nuclear Instruments and Methods, 103:515, 1972.
[MW70a] H. Matsuda and H. Wollnik. The influence of an inhomogeneous magnetic fringing field on the trajectories

of charged particles in a third order approximation. Nuclear Instruments and Methods, 77:40, 1970.
[MW70b] H. Matsuda and H. Wollnik. Third order transfer matrices of the fringing field of an inhomogeneous

magnet. Nuclear Instruments and Methods, 77:283, 1970.

[Rit50] J. F. Ritt. Differential Algebra. American Mathematical Society, Washington, D.C., 1950.
[WE65] H. Wollnik and H. Ewald. The influence of magnetic and electric fringing fields on the trajectories of

charged particles. Nuclear Instruments and Methods, 36:93, 1965.
[Wol65] H. Wollnik. Second order approximation of the three-dimensional trajectories of charged particles in

deflecting electrostatic and magnetic fields. Nuclear Instruments and Methods, 34:213, 1965.
[Wol67] H. Wollnik. Second order transfer matrices of real magnetic and electrostatic sector fields. Nuclear

Instruments and Methods, 52:250, 1967.
[Wol68] H. Wollnik. Image aberrations of second order of electrostatic sector fields. Nuclear Instruments and

Methods, 59:277, 1968.
[Wol87] H. Wollnik. Charged Particle Optics. Academic Press, Orlando, Florida, 1987.

