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Design of a fifth-order achromat1
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Abstract

A repetitive system free of all aberrations up to the fifth order was designed based on a recently developed analytical
theory that, in principle, allows the design of such achromats to an arbitrary order (Wan and Berz, Phys. Rev. E 54 (1996)
2870; Wan, Ph.D. Thesis, Michigan State University, 1995). It serves as an example to show that complete correction of
aberrations is possible beyond order three, which is the highest order achieved before (Dragt, Nucl. Instr. and Meth.
A 258 (1987) 339; F. Neri, in: Berz, McIntyre (Eds.), Proc. Workshop on High Order Effects).

Instead of repetition of identical cells, which is widely used in achromat design based on normal form theory, we utilize
cells which are obtained from the original ones through mirror imaging about the x—y plane, which corresponds to
a reversion. In our design, the second half of the ring is the reversion of the first one, and two turns make a fifth-order
achromat. A possible application of repetitive high-order achromats being time-of-flight spectroscopy, the resulting ring
was analyzed with respect to dynamic aperture and energy resolution using maps of orders nine and higher. ( 1999
Elsevier Science B.V. All rights reserved.

1. Introduction

In the past few years, various third-order achro-
matic systems containing as few as seven identical
cells have been designed using normal form theory
[2—4]. The number of bending magnets needed
ranges from 7 to 300. Each solution requires a
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specific number of cells depending on the choice of
the tunes of a cell.

By introducing mirror symmetry into the consid-
eration, we developed a new theory which requires
only four cells and as few as one bend per cell to
obtain in principle achromats of arbitrary order
[1,8]. The use of mirror symmetry enables us to
choose from four kinds of cells, namely the forward
cell (F), the cell in which the order of elements is
reversed (R), the cell in which the direction of bend
is switched (S), and the cell where reversion and
switching is combined (C). According to the theory,
the minimum number of conditions required for
a four-cell fifth-order achromat with an arbitrary
forward cell are five for the first order, four for the
second order, fifteen for the third and the fourth
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Table 1
The optimal four-cell systems. Additional linear conditions are
(yDy)"(bDb)"0 or (yDb)"(bDy)"0 for each case

Systems Linear conditions

F R S C (aDd)"0, (xDa)"(aDx)"0
F R F R (aDd)"0, (xDx)"(aDa)"0
F C S R (xDd)"0, (xDa)"(aDx)"0
F C F C (xDd)"0, (xDx)"(aDa)"0

order and thirty nine for the fifth order. The opti-
mal four-cell systems which require only the min-
imum number of conditions are listed in Table 1,
together with the first-order requirements.

As it turns out and is shown in Table 1, ach-
romaticity always implies that the tune for each cell
can only be either an integer, a half integer or
a quarter integer. This fact certainly limits the pos-
sible applications of these kind of systems, yet there
are several applications where the concept of high-
order achromats is useful. On the one hand, there
are single-pass beamlines and achromatic bending
arcs of storage rings. On the other hand, there are
the time-of-flight mass spectrometers, including
both single-pass and multi-pass systems. In fact,
these are the areas where second-order achromats
have been widely used in the past [5—7].

For single-pass systems, the resonances do not
affect the beam at all. For storage rings with achro-
matic bending arcs, the resonances are avoided by
adjusting the tunes of the straight sections to suit-
able values. Finally, for multi-pass mass spectrom-
eters, the particles are usually stored for less than
about one hundred turns, and therefore resonances
tend to have only limited influence.

To verify the analytical theory and to begin
exploring the possibility of using a high-order ach-
romat as a multi-pass time-of-flight energy spec-
trometer, we present a conceptual design of a ring
which is achromatic to fifth order after two turns.
Since the main emphasis of this paper is of theor-
etical nature, we restrict ourselves to the actual
correction of aberrations and forego a detailed
error analysis of the influence of present-day instru-
mental constraints.

The details of the design is presented in Section 2
which is followed by the analysis of the system

(Section 3). In Section 3, the repetitive stability and
the time-of-flight energy resolution as a function of
the number of turns are studied through tracking.
Conclusions are given in Section 4.

2. Design of the achromat

2.1. First- and second-order design

In order to design an achromatic system for
a circular layout, no switched (S) or switched-re-
verse (C) sections can be used, the only choice is
FRFR. The first-order layout should avoid large
changes in the beta function in order to minimize
nonlinear aberrations; furthermore, there should be
room for the insertion of correction multipoles and
a reasonable average distance between multipoles
of the same order. Another consideration is that, if
possible, the number of first-order conditions
should be further reduced through symmetry ar-
rangements inside a cell.

The results of these thoughts is the ring shown in
Fig. 1. It consists of sixteen FODO cells plus two
dispersion correction sections each including two

Fig. 1. Layout, beam envelope and dispersive ray of the ring.
Circumference: 266.64m; acceptance: 30 p mm mrad; energy
acceptance: 0.3%.
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Table 2
The field strengths of the quadrupoles and sextupoles

Strengths of the multipoles (aperture 10 cm)

Quadrupoles (length 75 cm) Sextupoles (length 24 cm)

Gradient (kG/cm) Field (kG) Gradient (kG/cm2) Field (kG)

!0.162869 !0.814344 !0.718659E!03 !0.179665E!01
0.134119 0.670597 0.364420E!03 0.911050E!02

!0.131803 !0.659013

quadrupoles. The left half is the forward cell (F) and
the right half is the reversed cell (R). To reduce the
size and the cost, the ring is designed so that ach-
romaticity is obtained after two turns, which cor-
responds to the choice of a tune of 1/4 per cell. The
forward cell itself also consists of two parts, where
one is the reversion of the other. This guarantees
that, at the end of the system, (xDx)"(aDa) and
(yDy)"(bDb). Here a"p

x
/p

0
and b"p

y
/p

0
are nor-

malized canonical momenta, the use of which is
necessary within the symplectic theory of arbit-
rary-order achromats [1]. All four FODO cells
within one part of a cell are identical except that the
last one has an extra quadrupole for dispersion
correction. So there are three knobs for the first-
order design which can zero (xDx), (aDa), (yDy), (bDb),
(xDd) and (aDd) at the same time. Fig. 1 shows beta
functions and dispersion of the beam around the
ring; the apparent uniformity of these functions
suggests that the layout is benign, and also facilit-
ates the subsequent higher order correction.

According to the analytical theory [1], four inde-
pendent sextupoles are required to obtain a sec-
ond-order achromat. However, because the cell R
is identical to the cell F to the first order, a simpli-
fication is possible based on Brown’s theory of
second-order achromat design [9,10]. In this the-
ory it is shown that a second-order achromat can
be achieved by placing two pairs of sextupoles in
dispersive regions and separating the two in each
pair by a negative identity in both transverse
planes. In our case, the first-order one-turn map is
a negative identity, and thus the same sextupole can
be used in two consecutive turns to satisfy the
requirements above.

So in principle a second-order achromat can be
achieved on the ring using two sextupoles per cell
(half ring). In our case it turned out to be necessary
to split the sextupoles into symmetrically excited
pairs to ensure that up to the second order the
second half still is the reversion of the first. The
strengths of the quadrupoles and sextupoles are
shown in Table 2.

2.2. Higher order design

After the investment in a careful first-order
layout, the third-, fourth- and fifth-order correc-
tions actually turn out to be rather straightforward
conceptually and a direct application of the meth-
odology outlined in Ref. [1], although the com-
putational demands are of course substantially
higher than for the low order design. For the whole
process of nonlinear optimization, two aspects
seem worth to note. First, experience showed that
the required multipole strengths strongly depend
on the average distance between multipoles of the
same order. So in order to keep their strengths
limited, it is important to dimension the total size of
the ring and the dispersive region sufficiently large,
which was done in the first-order design stage, and
distribute multipoles of the same order roughly
uniformly.

Secondly, all the decapoles have to be placed in
regions with sufficient dispersion because all the
fourth-order aberrations remaining after third-or-
der achromaticity is achieved are of chromatic type.
Thus it is advantageous to use a substantial disper-
sive region.
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Fig. 2. The dynamic aperture footprint of the third- and fifth-order achromats.

The combination of these considerations results
in rather limited multipole strengths for third-,
fourth- and fifth-order corrections. Assuming that
the aperture and length are 10 and 24 cm, respec-
tively, the pole-tip field strengths of the octupoles,
decapoles and duodecapoles are in the range of up
to ten Gauss. The details of the layout and setting
of the multipoles can be obtained from Ref. [12].

3. Analysis of stability and resolution

To study the repetitive stability of the ring, which
is of importance for the use as a time-of-flight
spectrograph, high order one-turn maps were
generated using COSY INFINITY [11]. By com-
paring tracking results of various orders, it was
concluded that the 11th-order map is sufficient, and
the resulting map was then used for symplectic
tracking. Because the tune shifts of the horizontal
and vertical motions vanish due to achromaticity,
the system has unavoidable low-order resonances.
However, because achromaticity entails that all
low-order resonance driving terms vanish, still
substantial regions of phase space are stable for
several hundred turns.

To be specific, we calculated the short-term dy-
namic aperture for 12 000 turns for various momen-
ta with a total spread of $0.5%. As the measure of
dynamic aperture of a given momentum, we con-
sider the smallest of the maximum distances from
the origin that a particle survives along 16 different
directions in the x—y plane.

Fig. 2 shows a comparison of the dynamic aper-
ture for various energies of the third order ach-
romat and the fifth order achromat. The fifth order
achromat has a stability region that peaks near
momentum spread zero, while that of the third
order achromat is substantially smaller for on-mo-
mentum particles and rather skewed to the left.
This effect is apparently due to remaining fourth
and fifth order chromatic nonlinearities in the third
order design. In the fifth order design, these nonlin-
earities are compensated, resulting in a more linear
behavior with increased acceptance around the
origin.

It is rather illuminating to study a tracking pic-
ture of the fifth order achromat. Fig. 3 shows the
horizontal motion of on-energy particles up to 1000
turns. The absence of linear effects as well as any
nonlinearities up to order five leads to very unusual
behavior of particles staying nearly in place, and
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Fig. 4. Resolution versus the number of turns. Gaussian distribution is assumed for the initial conditions and cutoff is set at 2.5 sigmas.
p
x,y

"10mm, p
a,b

"1mrad and pd"0.1%.

Fig. 3. 1000-turn tracking of the x—a motion of on-energy par-
ticles in the fifth order achromat.

only very gradually drifting away due to nonlin-
earities of orders six and higher.

The time-of-flight energy resolution of the fifth
order achromat is determined in a statistical man-
ner. It turns out that while detailed tracking re-
quires the use of 11th-order maps, for the purpose
of resolution computation, no significant changes
were observed for orders beyond nine, and thus the

nineth-order one-turn map is used for this com-
putationally intensive task.

For the actual resolution calculation, 10 000 par-
ticles were randomly placed inside the phase space
area of interest. Then these particles were sent
through the one turn map n times, and thus the
n-turn time-of-flight of each particle was computed.
To this value, the random error of the detector,
which was assumed to be 100ps, was added, result-
ing in a simulation for the measured time-of-flight.
This value was used to estimate the energy of the
particle by inverting the time-energy dependence,
and the result was compared with the known actual
value. The resolution of the ring was determined by
calculating the inverse of the average differences.
The dependence of the resolution on the number of
turns is presented in Fig. 4.

4. Conclusion

It has been shown that, using the method out-
lined in Ref. [1], from a computational point of
view it is possible to correct all aberrations up to
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order five. Careful first-order considerations allow
the use of relatively weak correction elements, and
thus also small nonlinearities due to uncorrected
higher-order terms. The remaining nonlinearities
were estimated through repetitive tracking and
found to be small enough for particles to survive
several hundred turns.

As a proof of principle, the fifth-order achromat
was applied to serve as a time-of-flight spectro-
graph, yielding resolutions of about 200 000 over
significant phase space volumes.
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