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THE PROGRAM HAMILTON FOR THE ANALYTIC SOLUTION OF THE EQUATIONS
OF MOTION THROUGH FIFTH ORDER

M. BERZ * and H. WOLLNIK
II. Physikalisches Institut, Universität Giessen, 6300 Giessen, FRG

HAMILTON is a computer code performing all algebraic operations necessary for an analytic determination of the power series
of the Hamiltonian equations of motion in the electromagnetic fields with at least one plane of symmetry . It is written entirely in
FORTRAN in order to achieve fast machine performance, a requirement which is essential due to the complexity of the equations of
motion in higher orders . HAMILTON is considerably faster than common more versatile formula manipulators and uses noticeably
less storage.

Besides the mere solution of the equations of motion, HAMILTON also produces FORTRAN code compatible with the program
COSY 5.0 allowing the computation of matrix elements of individual optical elements and their concatenation. The produced
FORTRAN code is highly optimized and on average requires only 30% of the execution time of a handwritten comparable code.

1 . Introduction

In the mathematical description of particle optics systems, two major approaches have been used in the
past . In the first approach the equations of motion describing the system under consideration are
integrated numerically for a set of characteristic particles, and the desired information is extracted from
the final coordinates of these particles [1-5] . In the second approach, coefficients of the Taylor expansion
of the map describing the system are computed analytically [5-10] . This is done for all particle optical
elements of interest, and the results are programmed as a library of subroutines for all individual elements.
Even though the mathematics required for the derivation of these formulas does not require any advanced
techniques, the procedure is very cumbersome in higher orders due to an enormous complexity of the
occurring expressions. Thus the problem is well-suited for computer formula manipulation.

In this paper we present a new formula manipulator specifically designed for the power series solution
of the equations of motion of charged particles in piecewise constant electromagnetic fields with at least
one plane of symmetry. Due to a special procedure in performing elementary operations, the method used
here for the solution of the different equations is very fast and efficient . In order that the results of
Hamiltonian theory can be used directly, the equations of motion will be derived in a set of coordinates
which up to scaling factors is symplectic.

2. The equation of motion in particle optical coordinates

Particle optical systems are usually not described in Cartesian coordinates . Instead, all quantities are
determined relative to the trajectory of a reference particle, called the optic. axis . The independent variable
here is the arc length s along the optic axis . Since all commonly used particle optical fields have at least
one plane of symmetry, one can assume that the optic axis always lies in one plane, the reference plane . If
h (s) denotes the momentary curvature, i.e., the reciprocal of the momentary radius of curvature po(s) of
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the optic axis at the position s, the following set of seven coordinates describes the properties of an
arbitrary particle trajectory completely

ri = x,

	

(la)
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(lb)rz = a =-,
Po

r3 =Y,

	

(lc)
Pr

ra=b =-,

	

(Id)
Po

r5 =1= vo(t - to),
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r6 =d=
K
K
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o

r7=g= m- Mo
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Here x is the distance between the optic axis and the projection of the particle's position into the reference
plane, y is the distance to the reference plane, px the momentum component in the reference plane and py
the momentum component perpendicular to the reference plane. K is the particle's kinetic energy, v its
velocity, t its flight time to the momentary position and m its mass. The charge of the particle is assumed
to have the same value for all particles . po , Ko, v o , to and mo are momentum, energy, velocity, flight time
and mass of the reference particle, respectively .

Note that in this set of coordinates, a =pxlpo and b = pylpo are used instead of x' =pxlpz and
y' =py/p, as in refs . [5-7]. Firstly, this implies some simplifications . Secondly, the coordinates x, a, y, b,
1 and 'd are canonical coordinates up to a scaling factor . Thus many of the advantages of Hamiltonian
theory can be exploited [11,12], in particular the fact that Hamiltonian systems produce symplectic maps
[8].

In order to derive the equations of motion in the particle optical coordinates of eqs. (1) we start with the
equations of motion in Cartesian coordinates

dtPx-Fx,

	

dPy=Fy,

	

dt PZ-FZ .

	

(2)

Integrating these equations with respect to the independent variable s transforms the differential equations

with t' = dt/ds. Note here that on the way from so to s, the reference trajectory was bent by the angle

a =

	

sh ds .

	

(4)fso

Transforming the momentum components Px, Py, PZ of the initial coordinate system into the new

II . HAMILTONIAN OPTICS

to integral equations
\

Px(s) = Pxlso)+f
/

fl(. .)
r(s)

Fxct) dt = Pxcso)+
\

fsFx (s)t' ds, (3a)
so

Py (s ) = Py(so) + J=
dt = (so ) + ds ,

(so)
fr(s)FY (t) Py fo

SFY(s)t' (3b)

PZ(s) = PZcso) + f
r(s)
(SO)Fz(t) dt = Pz ( so) + f

s
OFz (s)t' ds, (3c)
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reference system at s, one obtains the components px, pY , pz of the transformed momentum from eqs. (3)
and (4)

Px (s)-cOS(fshds)(Px (so)+f sFx(s)t'ds)+sin(fshds)(PZ (so )+fsFz (s)t'ds), (5a)
SO	s o

	

\ so	s o
s

pY(s) _ (PY(so) + f FY (s)t' ds),
0

pz(s) = -sin (f shds)(Px (so )+ fsFx (s)t'ds)+cos(fshds)(PZ (so)+fsFZ (s)t'ds) .

	

(Sc)
so	s o	s o	s o

Differentiating the expressions in eqs . (5) with respect to s yields the equations of motion in the system
relative to the optic axis with s being the independent variable :

As above, here the primes denote differentiations with respect to s . With eqs. (6), the general form of the
equations of motion in particle optical coordinates can be determined by representing all expressions in
eqs. (6) in terms of particle optical coordinates . First note that in cylindrical coordinates one has

and from the relativistic relations

and

2 -1/2
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with h = 1/po(s) and thus

x'=(1+hx)P
,

y'=(1+hx)Py
.

(8)

The derivative of the particle's path length with dL = [ds2(1 + hx)2 + dx 2 + dy2j1/2 is Simply :

2 2 1/2
L'=((1+hx)2+x'2+y'2)1/2=(1+hx) 1+
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2PY )
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With the definition of the particle optical coordinates a and b (eq . (1)) one obtains
1/2

Px Px Po Po__ =a =aP0 (1 - (Po)2(a2+b2)
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Pz Po Pz p2
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Pz = Fxt' + hp, (6a)
py = FYt', (6b)

Pz = Fzt' - hp, (6c)
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Analogously to eqs. (10) and (11), one finds
1/z

py =b Po 1- (P0) z ( a z +bz)
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Thus one obtains from eqs . (8)-(12) for x' and y' as well as for the derivative of the 1 of eq. (le) :
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and from eqs . (6a) and (6b) one obtains for the derivatives of the coordinates a and b :
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here ze is the charge of the particle and Xe = p°v°/ze, Xm =Po/ze are the electric and magnetic rigidities,
respectively. In the last step the terms p°/p, vo/v and (mocz + Ko)/(mcz + K) must be expressed in
particle optical coordinates. Note here that the kinetic energy K of a particle consists of the reference
energy times the factor (1 + d) [see eq. (If)] plus the additional energy the particle obtains by virtue of the
electric potential Ve :

K=Ko(1+d)-zeVe (s, x, y)=K°(1+d- OVe(s, x, y)),

	

(15)

with -0 = ze/Ko . Considering m = m°(1 + g) [eq . (lg)] and using n = K°/mocz one obtains with eq . (15)
K

(16a)

(16b)
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From

p=2(mK)1/z(1+ K )2mcz
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(see above eq . (11)), we thus can infer with eqs. (16a) and (16b)
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Inserting eqs. (17) and (18) into eq. (14) yields the differential equations in particle optical coordinates .
Note that the four constants describing the reference particle are Xe, Xm, 0 and q where for nonrelativistic
systems 11 vanishes . Note also that if desired, 0 can be expressed in terms of Xe, Xm, and q.

In the following part we describe how the electric and magnetic fields can be expressed in x and y.
Since, contrary to a and b, these quantities are the same as in previous derivations of the particle optics
equations of motion, we just give a brief summary of those results. First note that both px E and p x B
are zero due to time independence . Thus there are scalar potential Ve and Vm to the magnetic and electric
fields . They satisfy Laplace's equation which in particle optical coordinates has the form [13,14,6]

__ 1 _a/
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1
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Assuming that the electric or magnetic potential can be written as a power series expansion in x and y
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00 00
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and inserting this power series into Laplace's equation, one obtains after some arithmetic
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As above, primes denote differentiation with respect to s and it is understood that all coefficients with
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negative indices are zero . Eq. (20) represents a recursion formula to compute all field expansion
coefficients A;,, for j> 2 from those with j = 0 and j =1. This means that Maxwell's equations determine
the potential in the whole space once its first two y-derivatives in the horizontal plane are known.

Inspecting the equations of motion (eqs . (14)) one sees that they can be written as

Here the functions fx, fa, fY and fb are free of linear terms in x, a, y and b; however, they may contain
linear terms in g and d. Expanding the transfer map describing the motion from so to s in a power series
in the coordinates at so and collecting orders, one obtains

where x ( ' ) , a('), y('), b(') and l(') are polynomials consisting of monomials of exact degree i in the phase
space coordinates at so. In a similar way one expands the functions f from eq . (21) and collects orders :

fx = E fx`',

	

fa =

	

fa' ),

	

fY =

	

e ) ,

	

f =

	

fb'',

	

f1= Y-fl ,) . (23)
=1

	

1=1

	

i=1

	

i=1

	

=i

According to eqs. (21), the linear terms of fx, fa, fY , and fb do not contain x, a, y and b, but may contain
g and d. Inserting eqs. (22) in (23) and collecting orders yields the following set of differential equations
for the different orders :

Here F(' ) , F(`), FY(') and Fb') do not contain x ( ' ) , a('), y(') and 0) any more since the f in eq. (23) are
free of the corresponding linear terms. This implies that the eqs. (24a) and (24b) allow the iterative
determination of x(') , a(` ) , y ( ' ) , P) in every order i since F(') , F('), FY(') and Fb'> only contain already
computed quantities . Once the terms x('), a(') , y(') and P) are computed, 1(') can be determined from eq.
(24c) by a mere integration since F(') does not contain 1.

Since the transfer function from position so to position s is the identical map, one obtains for the initial
conditions

x(,) (S= so) = xos,,i,

	

(25a)

a(')(s = so) = aost,�

	

(25b)

Y`) (s = so) =Yost,i,

	

(25c)

b(')(s=so) = bos�l ,

	

(25d)

1(' ) (s = so) = los, ' , '

	

(25e)
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x(')' = a(') + F('), a(')' =kzx(')+F(') , (24a)
yc'>' = P) + F(' ) , b(')'= kyy(') + F('), (24b)

1(')' = FI(') . (24c)

x =a+ fx( x, a, Y, b, g, d), a'=kXx +fa( x , a, Y, b, g, d) (21a)

y'=b+fY(x, a, y, b, g, d), b'=kyy+fb (x, a, y, b, g, d) (21b)

1' =ft(x, a, Y, b, g, d). (21c)

00 00 00

X(s) = E x(')(s), a(s) = E a(')(s), Y(s) = E Y(' ) (s),
i=1 1=1 1=1

(22)00 00

b(s) = Y_ b(') (s), 1(s) = Y' 1(')(s),
t=1 1=1
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where S represents Kronecker's symbol . In order to obtain a solution of order i, one first determines the
"homogeneous solution" of the two systems :

where Ax , Bx , Ay , and By are constants determined by the initial conditions .
In order to obtain a solution of the inhomogeneous differential equation (eqs. (24a) and (24b)), one uses

the well-known method of variation of constants. One makes a guess of the form of eqs. (28a) and (28b),
except that the quantities Ax , Bx , Ay , and By now are viewed as s-dependent. Differentiating these
expressions with respect to s and comparing with the system of differential equations (eqs. (24)), one
obtains

4. The storage of the data in the program HAMILTON

Inserting these expressions into eqs. (28) and choosing the integration constants such that the initial
conditions are satisfied yields the solution of the inhomogeneous system of differential equations ((eqs.
(24)).

According to the algorithm described in section 3 which is used by HAMILTON, the general solution
of any order consists of polynomials in the phase-space coordinates . Each monomial in the phase-space
coordinates has the following standard form :

M=

	

, xnsa nay nyb nyg n
gd

n d .Sn,sz~xcx~xsy=ycy°y .kXkxkyky kikl . . . k3 32 -dldl
N

	

-l

	

. . . d2g~, .

	

(31)

Here N and D are integers (numerator and denominator), x, a, y, b, g and d are the phase-space
coordinates, s is the independent variable, sx, cx , sy , cy are the functions defined in section 3. The kx and
ky are the frequencies in x- and y-direction as defined in section 3, kl through k32 can hold
problem-related constants like quantities describing the reference particle (X, Xm, 71 and 4o) or multipole
strengths, the curvature of the optic axis, magnetic and electric rigidities, etc. dl through the d24 are

x(i)
f
= a(') Y(')' = b(+) (26a)

a(')'= k2x(i) b(')' = yk2y(') . (26b)

With the abbreviations

cx = cosh(k xs), sX = ksinh(k ys), cy = cosh(kys), sy = sinh(kys)
X ky

(27)

one of course obtains for the general solution of the homogeneous system

x(') =Axcx + Bxsx , a(') = Bxcx + kxAxsx, (28a)

y(') = Aycy + Bysy , b(') = Bycy + k2Aysy, (28b)

AXcx + Bxsx = F('), BXcx + k2A'sx= F('), (29a)

Aycy + Bysy = Fy('), Bycy + k 2A'sy= Fb') . (29b)

Solving this system of equations for A' and B' and integrating finally yields

Ax = f(cxF(')-sxF(')), Bx = f (-kxsxF(') +cXF(')), (30a)

Ay= f(cyFy(')-SyFb')), By = f ( -k2syFy( I)+cyFb')) . (30b)



Table 1
Contents of 12 integer variables

1
nkz - mk2

fs'° " sz= " CXx . s"y . cvy

2<=n+m<=8.

M. Berz, H. Wollnik / Theprogram HAMILTON

for

	

is +isx +i c, +i sY
+ i

cy
<8 .

5. Representation of the basic operations of polynomial addition, multiplication and integration
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certain denominators that can occur when s'sJc ksycy is integrated according to eqs. (3). These denomina-
tors have the form

Note that if we restrict ourselves to less than tenth order, the exponents n.',"" -, n d, n,,"" " , n Cy,

nk,, -, nk32, ndl-., ndz4 occurring in eq . (31) are all between 0 and 9, whereas the coefficients nks, n ky

can take positive and negative values .
All the information characterizing one monomial is now stored in 12 integer variables on the computer

which contain the list presented in table l. HAMILTON can store a maximum of about 50000 of these
monomials. Each polynomial is represented by a string of monomials stored consecutively in the stack
where the monomials are sorted in ascending order.

The addition of polynomials is performed such that the resulting polynomial is also in ascending order.
To accomplish this the next monomials of each polynomial are compared . If all the exponents agree, a
fraction addition of the numerator and denominators is performed, and the new numerator and
denominator are stored together with the other integers representing the exponents. If the exponents do
not agree, the monomial coming first is copied . This is repeated until all monomials of both polynomials
have been treated.

The multiplication of polynomials is performed monomialwise with consecutive reordering of all
resulting monomials. Note that the multiplication of two monomials is particularly simple since it just
involves addition of the characteristic integers 3 through 12 (which contain the exponents of the possibly
occurring quantities) and a fraction multiplication of the numerators and the denominators. Using the
pattern described in section 2, one sees that any monomial whose phase-space coordinates have an order
larger than the one which is just being treated can be neglected. This considerably reduces the size of the
polynomials after multiplication and avoids an exponential growth of the sizes.

The integration of polynomials with respect to s uses a look up table containing all the integrals of the
form

(33)

Note that an integral of this form can always be written as a sum over expressions of exactly the same kind
(with different exponents), where in addition some of the denominators dl through d24 can occur. Once a
monomial must be integrated with respect to s, the monomial is copied for each term occurring on the
right-hand side of the integral, and the characteristic integers 4, 10, 11, 12 are changed.

II. HAMILTONIAN OPTICS

Number Contents Number Contents

1 Numerator (factor N) 7 10onx
. . .107nxlb

2 Denominator (factor D) 8 10onx i ,
. . . 107nxz4

3 100n x+101na +10 2ny +103nb+104ng +10 5nd 9 100nk2s' . ' 107nk32
4 loon ss+10'ncx +10 2n,y+ 10 3ncy +104n, 10 100ndl"" .107nds
5 1000100+nx +104n ky 11 100nd9

.
.107nd,s

6 10onkl " -10;)nk, 12 100nd17 " 10 7
ndz4
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6. The input of HAMILTON and the internal flow

All command describing the differential equations are contained in a file. The first command describes
the order to which matrix elements are to be computed. It has the form

ORDER = 5 .
Next all problem-related constants have to be defined. Their exponents will eventually be stored in the
characteristic integers 6, 7, 8, 9 (see table 1) . They are defined in the following form

k2g : (1/po ), i .e ., the reciprocal of radius of bend,
k2-ß : (1/Xo ), i .e ., the reciprocal of magnetic rigidity,
k32 : rl, i .e ., the kinetic energy divided by mc2 ,

and stored at positions 28, 27 and 32 of the 32 available places in the characteristic integers 6, 7, 8, 9. In
the next step, those problem-related constants which are dependent on the just defined ones are declared
together with the way they are computed . For instance, since one needs the expression 1/(1 + n) and
1/(1 +,q/2) in the equations of motion, one must write in the input file

k30 = 1/(1 + k32),

k3i = 1/(1 + 0.5k32),

so that the exponents of 1/(1 + ,q) and I/(1 + 1/2rß) will be stored in positions 30 and 31, respectively, of
the integers 6, 7, 8, 9.
Now the commands describing the equations of motion are given. This is done by introducing new

variables step by step as well as rules to compute them from other variables . Here the variables occurring
on the right-hand side are x, a, y, b, g and d or other previously defined variables . For instance, since in
the equations of motion the expression a2 + b2 occurs, one could write

AB= +A*A+B*B
and then use AB in the future. Finally, the variables XP, AP, YP, BP and LP must be defined. These
variables have a predefined meaning since they stand for the derivation of the phase space coordinates in
the differential equations of motion .

After the input is read, HAMILTON performs various consistency checks . For instance, it is checked
that all variables used on the right-hand sides of assignments are either phase space variables or previously
defined variables . In addition, it is checked if the equation of motion are really of the form of eqs. (31),
since HAMILTON can handle only this specific form at the moment. After these checks are performed,
HAMILTON finds out how the frequencies kz and ky can be computed from the problem-related
constants. Then it determines the first-order solution of the form of eq . (27) . Finally, order after order is
computed following the pattern described in section 2. Each new order usually takes about a factor of 5
longer than the previous one due to the quick increase in the lengths of the polynomials . This is the main
limit of the orders HAMILTON can computer. On a MICROVAX II, the maximum order which can be
achieved with reasonable computer time is 5 . Since at least the nominal operations in HAMILTON
vectorize, it might be possible to determine even higher orders on a vector computer .

7. The output generated by HAMILTON

In order to avoid all extra programming effort, HAMILTON produces a complete FORTRAN
subroutine which can compute numerically the matrix elements of the particle optical element under
consideration . This subroutine is compatible with the program COSY [10] . The quantities passed to the
subroutine are the problem-related constants defined in the input file. In the above example, k2s, keg and
k 29 would stand in the argument list of the subroutine . Since it is not always necessary to compute the



matrix elements to the maximum order, also the order to which computation is to be executed is passed .
Besides this FORTRAN routine, also a readable output is generated which can serve for checking
purposes and documentation.

Great care is taken that the computation of the matrix elements is performed with the least amount of
floating point operations . This entails that virtually all terms that occur more than once are determined in
advance in a separate statement and stored in a temporary variable. This increases the length of the code,
but leads to significantly faster machine performance. In order to achieve this property, first all
combinations of kx and ky to different powers stored in the characteristic integer 5 are collected and
computed first. Then all occurring combinations of the functions s, sx , c X , s y and cy are computed and
stored in temporary variables and similarly all occurring combinations of problem-related constants as
well as the 21 denominators . Then all occurring monomials are computed, where each monomial is
assembled from the four previously computed parts described above, and finally the matrix elements are
found by collecting the appropriate monomials and multiplying them with the proper numerators and
denominators .

The savings in computer time due to this strategy is substantial. For example, considering matrix
elements of fifth order, each individual monomial occurs about ten times on average at many different
places. Also each of the four fragments of the monomials usually occurs about twenty times in different
monomials .
Up to now HAMILTON has been used to create subroutines for the main field region of magnetic and

electric quadrupoles, hexapoles, decapoles, and duodecapoles, as well as for inhomogeneous sector fields
(see ref . [10]) .
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