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COSY 5.0 - THE FIFTH ORDER CODE FOR CORPUSCULAR OPTICAL SYSTEMS
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COSY 5.0 is a new computer code for the design of corpuscular optical systems based on the principle of transfer matrices. The
particle optical calculations include all image aberrations through fifth order. COSY 5.0 uses canonical coordinates and exploits the

symplectic condition to increase the speed of computation.

COSY 5.0 contains a library for the computation of matrix elements of all commonly used corpuscular optical elements such as
electric and magnetic multipoles and sector fields. The corresponding formulas were generated algebraically by the computer code
HAMILTON. Care was taken that the optimization of optical elements is achieved with minimal numerical effort. Finally COSY 5.0
has a very general mnemonic input code resembling a higher programming language.

1. The particle optical elements in COSY

The program HAMILTON [1] was used to de-
termine the analytic solution of the equations of motion
for the particle optical elements used in COSY. HAM-
ILTON generates these formulas in the form of a FOR-
TRAN subroutine fully compatible with the program
COSsY.

In particle optics the motion is usually described
relative to the motion of a reference particle, the trajec-
tory of which is called the optic axis. The set of coordi-
nates used for the description of the movement is the
following;:

rn=x, (1a)
Px
rn=a==—, 1b
ma-2 (1b)
=y, (].C)
Py
n=b=—, 1d
Vb= (19)
rs=1=py(t—t), (1e)
K—-K
m—m
r7=g=—;0—0, (1g)

Here x and y are the horizontal and vertical distances
to the optic axis, respectively. The quantities p,, vy, K
and m denote momentum, velocity, kinetic energy and
mass of the reference particle, whereas p, v, K and m
stand for the same quantities of the particle under
consideration.
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The values of the coordinates in eqgs. (1) at the end of
a particle optical device are now expressed in terms of
the values at the beginning in the following form
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Using the program HAMILTON, we determined
analytic formulas for the expansion coefficients or ma-
trix elements (7, ), (r,, r,r,), - - through fifth order.
Thus COSY allows much more accurate calculations
than other commonly used programs [2-4] which can
only handle aberrations through third order. Since
HAMILTON is not limited to fifth order, COSY could
even be expanded to still higher orders if desired. At the
moment, the following particle optical elements are
available:
~ field free drift,

— magnetic multipoles (quadrupole through dodeca-
pole),

— superposition of magnetic multipoles,

— electric multipoles (quadrupole through dodecapole),

- homogeneous magnetic bending fields,

- inhomogeneous magnetic bending fields, and

- inhomogeneous electrostatic bending fields.

If desired, this library of subroutines can be ex-
panded by additional routines quite easily. As soon as
the field expansion of the electric and magnetic fields
are known, one can use HAMILTON to determine the
corresponding subroutine.

Besides these main elements, COSY is able to handle
fringing fields in two different manners. The first method
is an approximation for sharp cutoff fringe fields. In
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this case, one obtains a 8-function-like field perpendicu-
lar to the field boundary for which a solution of the
equations of motion can be found. This leads to a kick
of the particle trajectory only. Alternatively, arbitrary
fringing fields can be handled using the method of
power series tracking [5). An implementation of this
very versatile method for the special requirements of
fringe fields is under development.

2. The conditions of symplecticity and its exploitation

The motion of charged particles in electromagnetic
fields is governed by the Hamiltonian equations of
motion having the form

dq,/ds 01 00 o0 0] [aH/dgq
dp,/ds -1 0 o0 0 o0 of]|aH/op,
dg,/ds 0 0 0 1 0 0 0H/dq,
dp,/as || 0 0 -1 0 o0 0| |aH/dp,
dg,/ds 00 00 o0 1|][3H/dg,
dp,/ds 00 0 0 -1 0l |aH/dp,
©))

where ¢, and p, are canonical variables describing the
particle motion, and s is the independent variable. Note
that by choosing a = p,_/p, instead of p /p, as in GIOS
[3] or TRANSPORT [2], the coordinates x,a and y, b
are canonical up to a scaling factor. Since / and d
describe the time-of-flight and the particle energy up to
scaling factors, these quantities are also canonical. This
choice of variables has the result that the full Hamilto-
nian theory can be applied directly. One consequence
thereof is the condition of symplecticity. For its deriva-
tion let us first collect the ¢, and p, to one vector

r={(ry, ry, ry, 14, 75, %) = (41, P1> 92> P2, 935 P3)s
and then rewrite Hamilton’s equations of motion (eq.
(3) as

, ,0H
r —-Jw, (4)

where J is the matrix of eq. (3), prime denotes differ-
entiation with respect to the independent variable s and
9H /dr denotes the gradient of H.

Let now T(s,— s) be the transfer map describing
the motion from position s, to position s (see eq. (2)),
ie.,

r(s)="T[r(s0)] (5)
and let M (s, — s) be the Jacobian of T; i.e.,

T (so—s)  or(s)
o r(se) ©

M(sq—s)=

Then we can infer the relations
r(s)'=M(s0—>s)r(s0)'

and

oH . aH
— = — . 7
ar(sy) M'(s0=>s) ar(s) )
Using now egs. (4) and (7) one obtains:

dH ’ ’
Jar—(s) =r(s) =M(sqg—5)r(sy)

=M(so—+s)J%
=M(s0—+s)JM‘(s0—>s)a—f(I§—). )

Comparing the beginning and the end of eq. (8), we
thus obtain
oH oH
J—— —. 9
or(s) ar(s) ©)
We now extend the Hamiltonian H beyond s in the
following way:

=M(sq—>s5)IM'(sq—5s)

H for §<s,
r, for s < §<s+As,
. r, for s+As < §<s+24s,
H,(3)=
ro for s+54s < §<s+64s,
(10)

where As is an arbitrary positive number. From eq. (10)
we can infer

oH,
ar

e;=(1,0,0,0,0,0) for s<§<s+A4s,
e,=(0,1,0,0,0,0) for s+As<§<s+24s,

es=1(0,0,0,0,0,1) for s+ 5As<35<s+64s,
(11)
and thus according to eq. (9)
Je,=M(sq—s+iAs)IM'(sq > s+ iAs)e;
fori=1---6. (12)

Since T is continuous, we can infer M (s, —> s + iAs)
=0T (sy—s+iAs)/dr > M(sy—s) if As— 0. Note
further that the vectors e, in eq. (11) form a basis of the
six-dimensional space. Taking the limit As— 0, thus,
eq. (12) yields

J=M(s,—>s)IM"' (54> s). (13)

This relationship holds for all Jacobians derived
from Hamiltonian transfer maps and thus is of global
importance [6]. The relationship presents a restriction of

II. HAMILTONIAN OPTICS
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the freedom a transfer map can have as soon as it is
created by a Hamiltonian system.

Consider now the case where the transfer map is
expanded in a power series of the initial coordinates.
Inserting these power series into the condition of sym-
plecticity produces a set of relationships among the
expansion coefficients [7]. To first order one obtains the
well-known results [8]:

(x1x)(ala) - (x|a)(alx) =1

and

(r1y)(bib)~(y1b)(bly)=1

as well as
(Ix)=k{(xIx)(ald)—(x|d)(a|x)}
and

(lla)=k{(x|a)(a|d)—(x|d)(a|a)}. (14)

Here k is a scaling factor. Note that the symplectic
condition implies that there is some redundancy in the
description of the transfer matrix.

This probably was the primary reason that led to the
development of the code MARYLIE [4] in which the
transfer map is represented by a standard time develop-
ment operator of the form

M =exp(: P:), (15)

Here exp is a function acting on the Lie algebra devel-
oped from the vector space of functions of the phase
space coordinates where “multiplication” is introduced
as the Poisson bracket.

The explicit derivation of the symplectic equations
through higher orders seems hardly possible without the
help of a computer. For this reason we wrote the
FORTRAN program SYMPLI that analytically derives
all symplectic conditions with or without midplane sym-
metry through any given order. Through fifth order, the
order of matrix elements handled in COSY, we obtain a
total of 617 symplectic equations, not all of which,
however, are independent.

These symplectic equations present a perfect means
of checking the validity and accuracy of a given pro-
gram determining matrix elements. However, inspecting
these conditions more closely shows that they can be
actually solved for individual matrix elements. This
implies that the matrix elements can be separated in
genuine matrix elements and symplectically dependent
matrix elements. Thus it suffices to actually compute
the genuine matrix elements and then determine the
symplectically dependent matrix elements in the much
simpler way of using the symplectic condition. COSY
exploits this advantage in its concatenation routine and
in doing so saves about 25-30% in computer time.

3. The command language of COSY

Besides the ability to compute the quantitites of
interest for charged particle optical systems, a very
general instruction code and also fitting capabilities are
desirable for the design of particle optics systems. For
this reason COSY has a quite general input language
involving use of variables, arbitrary arithmetic, logical
structures and loops. Furthermore, COSY allows the
fitting of any of the used variables or matrix elements
by changing the values of other variables.

COSY input somewhat resembles a programming
language like BASIC, upgraded for transfer matrix fea-
tures and fitting capabilities. This approach permits a
very general use and gives the user freedom to design
the input to satisfy his needs. However, for the average
user the utmost degree of generality is often not neces-
sary, but a system very easy to use is desirable. This is
why a second, slightly different input language is being
designed now to allow a faster setup and treatment of
standard problems [9]. We give a brief description of
the commands already available in COSY input. For a
full description of the commands available see ref. [10].

The first set of commands available in COSY en-
ables the definition of beam properties and computa-
tion modes. Among these commands are ones defining
the kinetic energy, mass and charge of the reference
particle and the shape and size of the phase space
occupied by a particle beam. Furthermore, maximum
energy and mass spreads are defined. Finally the de-
sired calculation order and the amount of detail to be
given in the output are specified. The next set of com-
mands involves particle optical elements and determines
whether the transfer matrix of the given element is to be
concatenated with the previously existing transfer ma-
trix. The particle optical elements include drift lengths,
magnetic and electric multipoles, bending magnets and
condensers including inhomogeneities and fringe fields.
Furthermore, a command that sets the current transfer
map to unity is available.

Besides the concatenation of transfer maps, usual
floating point algebra is available. The operands include
constants, previously defined variables and matrix ele-
ments. The syntax follows FORTRAN syntax including
the proper hierarchy of operations and parentheses.
Besides the usual five operations: addition, multiplica-
tion, subtraction, division and exponentiation, six logi-
cal operators are available. The supported functions
include all of the standard FORTRAN functions plus a
few more, like factorials and logarithms to the bases 2
and 10.

Also interactive computations are possible. If this is
desired, the control is returned to the user who can
interactively input a floating point algebra command
compatible with the form described above. After the
command is put in, it is analyzed and executed using
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the values of the internal variables.

The next group of commands allows for structured
logical decisions. They enable execution of a block of
commands only if a certain key variable has a certain
value. This allows both the simulation of block if struc-
tures and loops where in the latter case the key variable
is changed within the block. Similar to the structured
logical command is the fitting command. It entails that
a certain block is executed over and over again, chang-
ing some previously picked variables such that the val-
ues of other variables approach previously chosen val-
ues. This action is carried on until a certain termination
criterion is met.

Finally there are output commands. First of all there
are print commands, very similar to the ones in FOR-
TRAN or BASIC, allowing the output of any variables
and even text strings both to the terminal and to an
output file. Besides these commands there are print
commands, which dump the entire transfer matrix to
the terminal or the output file.

We conclude this section with an example of a
COSY input file and explanation of the commands. The
example of the input file is shown in table 1.

The command REFERENCE PARTICLE defines the en-
ergy, mass and charge of the reference particle to be 1
MeV, 4 amu and 2 elementary charges. With PHASE-
SPACE X-DIRECTION and PHASESPACE Y-DIRECTION, the
initial beam diameter and divergence are both set to

Table 1
An example of a COSY input file

0.02 m and 0.01 rad, respectively. The following com-
mands give the desired order of calculation and set
some variables to start values.

The command WHILE BEGIN entails a logical deci-
sion. As long as the variable IWHILE is greater than zero,
the block ending at the WHILE END of the same level is
executed until the value of IWHILE becomes negative or
zero. IWHILE can be set to zero in the very helpful
command INTERACTIVE COMPUTATION which returns
control to the user and allows arithmetic operations and
changing the values of variables.

The FIT BEGIN command marks the beginning of a
section which is run through over and over again, where
the variables after the FIT BEGIN are changed. The FIT
END command denotes the end of this section and gives
the name of a variable to be minimized (IMAGO), the
accuracy to which the minimization is to be done (1ToL),
and the maximum number of iteration steps (NANZ).

With the uNITY MATRIX (U M) command the total
transfer matrix is first set to unity. Then an optical
system is defined starting with a field free drift length
(D L) of length 0.1 m followed by a magnetic quadru-
pole (M Q) of length 0.1 m, pole flux density B, and
aperture 2 of 0.01 m. The next command (D L) entails
that a field free drift length of length L be included,
then follow another quadrupole and another drift length.

IFIT is a variable counting the iterations. Whenever it
is divisible by 10, IP will be set to 1, otherwise to zero.

REFERENCE PARTICLE 1 4 2;
PHASESPACE X-DIRECTION .02 .01;
PHASESPACE Y-DIRECTION .02 .01;

CALCULATION ORDER 5;
L=.1;

B1=.01; B2 =-.01;

NANZ =100; ITOL =1E-5;

IWHILE =1;

WHILE BEGIN IWHILE;
IFIT = 0;
FIT BEGIN L B1 B2;

UM;DL1;MQ.1B1O;DLL;MQ.1B201;DL .15

IFIT=1IFIT+1

IMAGO = SQRT((X, A)*(X, A)+ (Y, B)*(Y, B)); IFIT = IFIT+1;

IP = INT(IFIT /10) EQ IFIT/10;

WHILE BEGIN IP; PRINT SCREEN IFIT IMAGO; WHILE END;

FIT END IMAGO ITOL NANZ;
INTERACTIVE COMPUTATION;
WHILE END;
COSY END;

I1. HAMILTONIAN OPTICS
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Thus the following while block will be only executed on
every tenth iteration. In this case it prints to the screen
the values of IFIT and IMAGO.

The command INTERACTIVE COMPUTATION allows a
selection of new start values in the case the first fit has
not converged. In case the fit has converged, the varia-
ble IWHILE can be set to zero and the major while block
will be terminated. The last command terminates the
program COSY.
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