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1. Introduction

The verified integration of differential equations is one of the important
applications of interval- and related verified methods; in fact, the desire
to integrate the dynamics of objects in the solar system has served as one
of the original motivations for their development. Compared to other uses
of verified methods, verified integration is particularly difficult because of
the quite extended number of arithmetic operations and the fact that often
similar operations repeat a great number of times.

While the problem of repeated application of similar operations mani-
fests itself very clearly in verified integration, it is also affecting conventional
integration, although in this case the effects are often more difficult to assess
rigorously. Within the framework of conventional integration, the prob-
lems are usually tackled by using sufficiently small step size and methods
of sufficient order for the step size under consideration, and optimizing the
parameters of the algorithms as for example the coefficients in Runge Kutta
and other frequently used tools.

However, the long-term control of these errors is much more difficult and
represents a fundamental problem, in particular for nonlinear motion. This
fact manifests itself particularly clearly in the frequent use of integration
schemes that preserve certain known symmetries of the system like geo-
metric constraints or symplecticity, because it is observed that conventional
integrators do not satisfy these constraints well enough. It is hoped, then,
that imposing the constraints leads to higher computational accuracy, an
approach that is indeed often successful, but also often difficult to quantita-
tively assess.

Within the context of verified integration, the two primary concerns are
that on the one hand, it is necessary to not only transport points, but rather
regions, since even starting with points quickly leads to the need to treat
regions due to the unavoidable overestimation. Already in his 1966 book[39]
and in an earlier paper[38], Moore describes this fundamental problem of
the verified solution of differential equations of dimension 2 and higher, the
need for re-packaging of the flow of the ODE with as little loss as possible,
to avoid what is usually called the wrapping effect. On the other hand, there
is less room for empirical approaches for the long term since they often do
not lend themselves to obtaining rigorous tighter enclosures. Thus verified
integration is faced with the need to address the following issues:

e Representing the flow accurately, i.e. providing a tight enclosure for
the action of the differential equation on an extended region for a time
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step At

e Preventing local errors from accumulating in an unfavorable way when
integrating over longer times.

To address the re-packaging or wrapping problem, which as observed by
Moore [39], [38] leads to an error that scales linearly with the step size At and
hence cannot be controlled by merely refining the step size, Moore proposes
to express the differential equations and its solution in a moving coordinate
system, which entails that in this system, the solution set will always be
nearly “upright” and thus is expected to be encloseable with intervals at
much reduced loss. The coordinate system originally chosen by Moore is an
approximation of the linearized solution that is first order in time and has
the form

My, =1+ Aty - fl(xn—latn—l)

where [ is the identity and f is the right hand side of the differential equation.
The local coordinate system after step n is obtained recursively as

Ap = My, - Ay
and the enclosure of the solution is given by
T = Ap [TO]

which is the linear transformation under the matrix A, of the original box
enclosing the set of initial conditions. Moore observed that if the solution
is expressed in terms of the matrix A,, the overestimation due to the need
for re-packaging grows with A#?, and thus a reduction of the step size can
effectively reduce the wrapping problem.

The method was further extended by Eijgenraam [16], who instead of
M,, chooses matrices of the form

k .
At
Sn =1+ g 1|nf(1) (xn—lat)
i=1

where again the local coordinate system after step n is given by A, = 5, -
A,_1. For larger At, the matrices S, represents a better approximation of
the linear transformation describing the propagation by the step At of the
linearized ODE. The f; are defined recursively as f; = f/_; - f(z) and are
also known as the Lie derivatives of the ODE, and £ is a suitably large fixed
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value. This approach is often also referred to as the parallelepiped (PE)
method.

In his ground breaking work on verified integration, Lohner [25], [26],
[24], [27], [28], [29] added another variant based on an orthogonal coordinate
system that is obtained by using the ) R-decomposition of the matrix A,,.
Specifically, the columns of A,, are sorted in descending order by Euclidean
length, and the transformation matrix is chosen as the orthogonal part @,
of the QR decomposition of the matrix A,. While seemingly providing a
less accurate approximation of the linearization than the propagation of .5y,
the method has the significant advantage that the matrix @), is always well-
conditioned by virtue of being orthogonal; thus the inversions necessary in
propagating to the next time step can always be executed reliably, and prop-
agation of interval vectors through the matrix does not lead to significant
overestimation. In situations where integration over sufficiently large times
is required and in which case the A, can easily become ill-conditioned, this
QR method offers a significant advantage.

An enhancement of the conventional QR method for large initial domain
boxes is the combination of a parallelepiped to describe the bulk of the flow
and a remainder expressed by the QR method as proposed by Lohner [26].
In our future study, this PEQR method will often serve as a reference for
comparison.

While it is very difficult to assess the relative merits of these approaches
in the general setting, for the special case of linear time-independent ODEs
it is possible to provide a quantitative analysis of the behavior of the ap-
proaches. This work was pioneered by Nedialkov and Jackson [41], [42], and
it was seen through an eigenvalue analysis similar to what is done in the
study of stability of conventional ODE solvers that the asymptotic behavior
of the QR method is essentially the same as that of conventional non-verified
integration schemes. Many practical examples also support this assessment,
and [42] contains a rather representative collection of them.

However, for non-autonomous systems, the situation is different even in
the linear case; for example, Kiithn [23] provides a rather elementary example
consisting of a sequence of n matrices that when applied repeatedly lead to
exponential growth in the QR method, while the product of the n matrices
is actually unity. We will revisit this topic again in [31].

Other enclosures for the flows of the ODEs besides the parallelepipeds of
the PE and QR methods have also been studied. It seems natural to consider
structures that are invariant under linear transformations, which aside from
numerical inaccuracies allows to at least represent the solution sets of linear
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ODEs. The natural choices are ellipses, which appear in the work of Jackson
[19], [20], [21], Kahan[22] and Neumaier[43], and convex polygons [45] as well
as the related zonotopes [23]. The latter are linear transformations from
R™"™ into R", where the higher dimensions are populated successively by
assigning a new dimension to any error term that reaches a certain minimum
size; apparently the approximation becomes better and better the larger the
parameter m is chosen.

From a formal point of view, the zonotope methods are interesting be-
cause not only are they invariant under linear transformation, but also under
addition, which facilitates the use of the objects in arithmetic. The latter
methods have the advantage that using proper strategies of how new faces
are added and others removed from the object, error growth can be sub-
stantially slowed. Particularly fruitful approaches seem to be the attempts
at finding the “smallest” polygon including an interval box in [45] and the
cascade algorithm presented in [23].

Other methods of avoiding potential exponential error growth for linear
systems are developed by Gambill and Skeel [17] using odd-even reduction
of the (Mn) x (Mn) matrix propagating the M initial and intermediate
conditions in the n-dimensional system, as well as the intuitive approach
by Barbarosie[2] based on propagating boundaries of sets instead of sets
themselves, which can be beneficially applied to two-dimensional problems.

Various aspects of the above mentioned approaches to validated DE
solvers are also studied and summarized in [14], [15].

All methods based on families of invariants of linear transformations dis-
cussed above, namely the PE, QR, PEQR, ellipsoid, and zonotope methods,
have the following properties:

e the enclosure sets for the flow are convex, while nonlinear problems
may require non-convex sets

e the accuracy of the enclosure, measured by the interval remainder
bound, scales at most quadratically with size for nonlinear problems

e the families are not invariant under nonlinear transformations.

The Taylor model-based integrator introduced in [30], [7], further studied
in [35], [10], and applied in [12], [18], [13], [9], [37] overcomes these three dif-
ficulties: Relationships between the coordinates z(¢) and initial coordinates
x; are expressed in terms of a Taylor model [30], [32], [34], [36] (P, I) consist-
ing of a polynomial with floating point coefficients P : R" — R™ and an n-
dimensional interval I, both of which depend on ¢, such that z(t) € P(z;)+1.
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The representation of final coordinates in terms of initial coordinates in terms
of Taylor models has the properties

e the enclosure sets can be either convex or concave

e the accuracy of the enclosure scales with order n + 1, where n is the
order of the Taylor models being used

e the family of Taylor models is invariant under nonlinear transforma-
tions

So the Taylor model method [32], [30] combines interval methods for
validation and high order Taylor methods for efficient modeling of local
functional behavior. The approach to express flows via Taylor models in
the initial conditions generalizes the differential algebraic methods [3], [4],
[5], which represent the first method that allows systematic determination
of high order dependence on initial conditions, albeit without a rigorous
remainder treatment.

The Taylor model method represents a multivariate functional depen-
dence f in the domain B by a high order multivariate Taylor polynomial P
and the remainder bound interval I as

f(x) € P(x —xp)+ I for all x € B, (1)

where xp is the reference point of the Taylor expansion. The nth order
Taylor polynomial P is expressed by floating point coefficients, and it cap-
tures the bulk of functional dependency. Because the manipulation of those
polynomials can be performed by operations on the coefficients where the
minor errors due to their floating point nature are moved into the remainder
bound, the major source of interval overestimation is removed, and overes-
timation only occurs in the remainder bound, the size of which scales with
order n of the width of the domain[36].

The standard binary operations and intrinsic functions on Taylor models
were implemented in the code COSY Infinity [30], [6]. For the treatment of
ODEs, it is of particular significance that the antiderivation operation 9
can be treated as an intrinsic function in the Taylor model structure [30],
[8]. This formally removes the difference between the solution of ODEs and
merely algebraic equations based on fixed point methods.

When applied to the verified integrations of ODEs [7], the following
advantages have been observed.
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e The inclusion requirement asserting existence of a solution reduces to
a mere inclusion of the remainder intervals, and different from conven-
tional methods based on two separate algorithms for initial validation
by an Euler step and subsequent higher order execution, the entire
steps is performed in one algorithm. There is also no need to uti-
lize additional ODEs for derivatives of the flow with respect to initial
counditions.

e The direct availability of the antiderivation on Taylor models allows
to treat the Picard operator like any other function, avoiding the need
to explicitly bound error terms of integration formulas and leading to
a rather straightforward verified fixed point problem.

e The explicit dependency on initial variables is carried through the
whole integration process. This controls the bulk of the dependency
problem very efficiently and hence the main source of wrapping effect
is eliminated to order n + 1.

The results of the methods developed in [7] can be summarized in the
following theorem.

Theorem 1. (Continuous Dynamical System with Taylor Mod-
els) Let P+ I be an n-dimensional Taylor model describing the flow of the
ODE at the time t; i.e. for all initial conditions x( in the original domain
region B C R", we have

z(zo,t) € I + U P(xy).
xo€EB

Let P*(xg,t) be the invariant polynomial depending on ¢ and t obtained in
[7], and assume that the self-inclusion step of the Picard Operator mapping
described there is satisfied over the interval [t,t+ At] by the remainder bound
I*. Then for all zy € B, we have

o(zo,t+ At) € I' + | P*(zo.t+ At).
ro€EB

Furthermore, if even x (xo,t) € P (xo) + I, then x (z¢,t + At) € P*(zg,t +
At) + T*.

By induction over the individual steps, we obtain a relationship between
initial conditions and final conditions at time ¢. Thus formally, the continuous
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case is made equivalent to the discrete case, for which the respective prop-
erty follows immediately from the respective enclosure properties of Taylor
models, as described for example in [36].

Theorem 2. (Discrete Dynamical System with Taylor Models)
Let P+1 be an n-dimensional Taylor model describing the flow of the discrete
dynamical system x,1 = f(zp,n), i.e. for all initial conditions z( in the
original domain region B C R", we have

Zn(z0) € I + U P(x9).
zo€EB

Let P* 4+ I* be the Taylor model evaluation of f (P + I,n). Then for all
zg € B, we have
Zny1(zo) € I* + | P* (o).
zo€EB

Furthermore, if even z,, (zo,t) € P (xo) + I, then x,,11 (z9) € P*(zo) + 1.

The two theorems thus allows the verified study of continuous and dis-
crete dynamical systems, provided that the Taylor model arithmetic is per-
formed in a verified manner. In the case of the implementation in COSY,
all errors in the floating point coefficients are fully accounted for [36], [44].

For the purpose of practical efficiency, it is important that the treatment
of the coefficients arithmetic supports sparsity, i.e. only coefficients that
are nonzero (or more specifically, above a pre-specified accuracy threshold
[36], [44]) contribute to computational effort. Finally, for high dimensional
systems and high expansion order n in time, one often observes that the
expansion in the initial conditions does not need to be executed to the same
order unless the dimensions of the original domain box is of a comparable
size as the time step. This can be exploited simply by not setting the initial
Taylor model to a linear form P(z¢) = A -z describing the original box,
but rather choose P(z¢) = A -z for some suitable odd integer power w. In
this way, throughout the computation, only powers of zy that are multiples
of w appear, which effectively limits the expansion in initial conditions to
the largest m that satisfies m-w < n. Combined with sparsity methods, this
can drastically reduce computational expense and storage requirements.

Definition 3. (Transversal Weighting) Let the continuous dynam-
ical system under consideration have v variables, and let the time expansion
be executed to order n. Assume the initial box of interest is described by the
Taylor model P(zy) = Azf where w < n is an odd integer; then w is called
the weighting of the transversal expansion.
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In a typical nonlinear problem one often finds that, already expansion
order 3 or 5 in initial conditions allows the treatment of rather large initial
domain boxes, while an expansion order of n = 17 in time may be desirable;
an example of this can be seen below in figure 4. This can be achieved
by setting w = b or w = 3, respectively. Furthermore, in the case of linear
ODESs where the dependency of final conditions on initial conditions is always
linear, one can choose w in such a way that 2 -w > n, and thus only first
order is retained. For the example case of n = 17, one may for example
choose w = 9.

The method also has the interesting side effect that the effective ex-
pansion order in time of the higher order terms in the initial conditions is
reduced, which because of their reduced importance and leads to additional
computational savings without loss of accuracy. For example, in the n = 17
and w = b case, the first order dependence in initial condition is expanded
to order 12, while the third order dependencies, of which there are many, are
expanded only to order 2. From the combinatorial arguments in [5] it follows
that the number of possible coefficients of order n in v initial conditions with
weighting factor w is given by

[n/j] , . B
N(n,v,w) = Z%'(n—wd+l)
§=0

where [z] denotes the Gauss bracket of z, the smallest integer not exceeding
2. On the other hand, the number of floating point numbers necessary in a
code like AWA that solves the ODE for the flow of the reference point and the
first partials using polynomials with interval coefficients is (n+1)- (v+1)-2.

For the purpose of providing some examples, we list in table 1 the num-
ber of floating point coeflicients in a Taylor model of order n in v variables
and with weighting w under the assumption of lack of any sparsity, i.e. all
coefficients appear and lie above the accuracy threshold. The quantity n; is
the order of expansion in initial conditions. For comparison, the number of
coefficients necessary to store all interval endpoints of the n; = 1 representa-
tion used in AWA is also given. The first four rows show the situation for the
case most similar to the performance of the n; = 1 case of AWA; the smaller
number of COSY coefficients is due to the fact that on the one hand, instead
of interval coefficients only real numbers are stored, and on the other hand
that the expansion order in time for the dependence on initial conditions
is reduced. The other rows show the situation for other choices of weights,
which of course is more expensive; yet in the COSY scheme third order n;
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0 v w I Coefs | Coefs
Order | Dimension | Weighting | Order | Cosy | AWA
17 3 9 1 41 144
17 5 9 1 57 216
17 10 9 1 97 396
17 20 9 1 177 756
17 3 5 3 135 144
17 5 5 3 308 216
17 10 5 3 1248 | 396
17 20 5 3 6578 | 756
13 5 3 4 504 168
13 10 3 4 3094 | 308
15 5 3 5 882 192
15 10 3 5 7098 | 352

Table 1: Number of floating point coefficients necessary to store all
appearing partial derivaties in COSY to order n; in initial conditions,
and in the first order code AWA

at least for low dimensions can still be achieved with a similar number of
coeflicients of AWA.

In the following section and in subsequent papers [11], [31], we will study
in detail the two fundamental questions of verified integration, the accurate
representation of flows of ODEs, and methods to prevent growth of the re-
mainder bound, and illustrate the behavior with a large number of examples.

2. Faithful Representation of Flows by Taylor Models

As discussed in the previous section, the successful use of verified methods
requires on the one hand the accurate representation of the solution sets over
short time scales, and on the other hand the ability to suppress the long-term
build up of errors. In this section we study the behavior of the Taylor model
method with respect to the first question, which is directly connected to and
characteristic of the mathematical behavior of the ODE being studied. We
observe that for linear systems, this first source of errors is particularly easy
to control, since the flows of linear ODEs are merely linear transformations of
the initial coordinates. However, as simple as the matter is for linear ODEs,
as complicated it is for nonlinear ODEs. In this case, except for special cases
there is no simple representation of the dependency of final conditions on
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initial conditions. This is the prime reason why nounlinear ODEs represent
the real challenge in the verified integration of differential equations, and
results obtained for the purely linear case are often not characteristic for the
behavior in nonlinear cases.

In the following, we illustrate the behavior of the Taylor model based
integration scheme[7] and compare it to other methods, specifically the code
AWA [24] as a representative of the conventional methods. We compare with
COSY-VI, the (V)alidated (I)ntegrator based on the COSY language system
[6] that is using the Taylor model arithmetic discussed in [36], [6].

The ODEs under consideration are the Volterra equations governing the
growth of two conflicting populations, modeling a predator-prey relation,
which are frequently used in the study of ODE solvers [1], [40]. The solution
trajectories obey the constraint

—r1—2x2 __

C(z1,29) = T 25€ Constant,

as can be seen by simple differentiation and insertion of the ODE, and thus
the solutions follow the contour lines of the function C. In the quadrant
characterized by 1 2 > 0, the constant is positive, which entails that contour
lines of C' cannot cross the z; or xo axis, and so contour lines originating
in this quadrant stay in it. Furthermore, within this quadrant the function
asymptotically approaches zero as x; or xo become large, and so contour
lines are bounded and follow closed curves. Figure 1 illustrates the shape
of C and a few of its contour lines. The period of one cycle of the solution
depends on the initial condition, and outer orbits take longer.

The Volterra equations are a frequently cited example for the numerical
verification of ODE solvers. For verified ODE solvers, their nonlinearity
combined with their periodicity allows for a particularly transparent study
of the wrapping effect.

We take the same model discussed by Ames and Adams [1] and by Moore
[40], and have the initial condition interval vector centered around the point
values used in their discussions. We aim, in such a way, to provide a good
comparison between our approach and other approaches. The ODEs and
initial conditions for the Volterra equations are

de‘l de‘Q
Y 91— axz
g = ml=m)

201 € 1+ [=0.05,0.05], 02 € 3+[—0.05,0.05] att=0.  (2)

= —.’132(1 — $1)

The right hand side of the ODEs has the form of a “single use expression”
(SUE), so it has no source of overestimation of arithmetic nature; this makes
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f(x1,x2)
0.04 ——----
0.02 -
0.05 /67]/'1/';\ 0.00821
0.04 Vi i s
(il .
//’I///l’/ll”""lll " "' "’0.0:“,““ ggi:‘:%:{%“:‘%%
=
el e

Figure 1: The solution trajectories of the Volterra equations,
f(z1,29) = 21237217222 = c(onstant). f(z1,72) is shown by mesh,
and the contour lines for various values of ¢’s are shown. The initial
condition (zg1,z02) = (1,3) corresponds to ¢ = 9e~" ~ 0.00821.

any overestimation due to the wrapping effect more clearly visible and sepa-
rates this effect from the ability of the Taylor models to significantly reduce
any dependency problem that may be present in the right hand side[33].

The solution trajectory for the point initial values (zo1,zg2) = (1,3) is
a closed orbit with a period of about 7' ~ 5.488138468035. We attempted
to carry out the integration of the system with AWA and COSY-VI for
one period T. As will be shown, the system starts to exhibit noticeable
nonlinearity around ¢ ~ 4.We used AWA in its standard mode; namely we
use the enclosure method 4 based on an intersection of interval-vector and
QR-decomposition [24], [26], [41]. AWA'’s error tolerances E, and E,, the
absolute and the relative accuracy of the solution used for the step size
control, are set at 107!? each. However, those accuracy requirements are
not necessarily achieved [24], as we will see later. The computational order
has to be pre-set in both AWA and COSY-VI, and the same order was used
to facilitate comparison. Both AWA and COSY-VI have automatic step
size control, and it was observed that their choices of step sizes for different
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times ¢ were similar. We performed the integration of the Volterra equations
by AWA and COSY-VI with various computational orders, demanding the
completion of one period T

The pictures in Figure 2 show the solution regions R(¢) at various charac-
teristic times, as they are enclosed by Taylor models. They are made based
on the observation that flows of ODEs are bijective and thus the outer edges
of the original box are mapped into the outer edges of the result after ap-
plication of the ODE. Hence it is only necessary to draw four curves, two
for which z; is fixed at the positive and negative values and z9 varies, and
two for which x5 is fixed at the positive and negative values and z; moves.
The remainder bounds are so small that they are insignificant to printer
resolution.

Initially nonlinearity is not very significant, and until the nonlinearity
becomes noticeable around ¢ ~ 4, the solution regions R(t) are still well rep-
resented by parallelepipeds. After that, the nonlinearity becomes larger and
larger, and the solution region R(¢ = 4.85) shows clear limitations to any at-
tempt to accurately model the region by a parallelepiped or any other convex
object. The nonlinearity temporarily decreases afterwards, but the strong
nonlinearity returns just before the completion of the period as observed in
R(t = 5.45).

The solution enclosures at each time step of the 18th order Taylor model
computation by COSY-VI are placed along the center point trajectory in
Figure 3. Since COSY-VI completes the whole integration period without
noticeable overestimation, it tightly keeps the closed orbit structure of the
ODE trajectory. An elongation of the solution region R(t) along the trajec-
tory is observed, which is the result of different cycle periods for the various
closed orbits. The dashed boxes are the solution enclosure interval vectors
obtained by AWA, showing the beginning of breakdown before ¢ = 4. The
last solution interval box by AWA in Figure 3 is at time ¢ ~ 4.634. In the
case of AWA, despite of the error tolerance demand, a quick error growth
is clearly observed after ¢ = 4, and eventually integration cannot proceed
despite drastic attempts at decreasing the step size. Eventually the box size
reaches more than 10! at time ¢ ~ 4.93115 and execution terminates. The
dramatic growth in solution interval box size shows a clear correlation to the
strong nonlinearity, which becomes apparent at ¢ = 4.85 in Figure 2.

On the other hand, COSY-VI continues the computation during the
period of strong nonlinearity by keeping the step size smaller; once the non-
linearity becomes weak again, the step size increases again. When the step
size control is done only connected to the local error, the step size progress
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Figure 2: Solution enclosures at characteristic times, obtained by

COSY-VI with computation order 18.
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3.5 T T T T

X2

Figure 3: Solution enclosures of the Volterra eqs. at each time step
by Taylor models (solid regions) and AWA (dashed boxes) in an 18th
order computation.

directly reflects the difficulty of integration due to the strength of nonlinear-
ity.

The performance was studied with different computation orders for the
system, but AWA terminated prematurely at nearly the same time regardless
of the integration order; a typical consequence of the wrapping effect, which
cannot be controlled by increasing the order. COSY-VI completed the whole
demanded integration period 7" without difficulty when the expansion order
in time was sufficiently high. For lower time expansion order, it was necessary
to keep the step size small as mentioned earlier.

Also listed in Table 2 is the CPU time comparison, using a 450 MHz
Pentium III PC running Linux; the weighting w was chosen to be 1. Since
AWA did not complete the period, we also listed the breakdown time ¢ in

the ODE system.
To illustrate the performance of the computation with COSY-VI, we now
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Order || COSY-VI
CPU time || CPU time | Breakdown time ¢

AWA

12 3.2 sec 13.6 sec

5.06039

18 13.6sec 10.7 sec

4.93115

Table 2: CPU time. COSY-VI completed the whole integration pe-
riod T' = 5.488138468035, but AWA broke down at time t.

list the resulting Taylor model for the variables x; after the completion of one
full cycle at t = 5.488138468035000. Shown are the floating point coefficients
for each monomial, as well as its order and the exponents of the expansion in
the initial conditions. Note that there is a third column for exponents, which
during the integration step is used to describe the dependence on time, but
which does not appear at the end since the final value of ¢ is plugged in.
We show all terms up to order 4, as well as the end of the expansions which
contain terms of order 12, as well as the remainder bounds.

I
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

79

80
81
82
83
84
85
86

COEFFICIENT

[eNeoNeoNeoNeoNeNelNe o NoNoNoNeoNel

o

SO OO O OO

1.000000000415308

.5000000002077984E-01
.1593548597307891

.2987903619745317E-02
.7967742985213962E-02
.1745863785938967E-01
.4979839364267220E-04
.5551021323566726E-03
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87 0.1915198148620145E-12 12 4 8 O
88 0.2264491972426495E-12 12 3 9 O
89 0.1788727621438823E-12 12 210 O
90 0.5499818896261770E-13 12 111 0
91 0.6996138986393415E-13 12 012 O
R [-.1481801093188394E-008,0.1490922875566877E-008]

To understand the meaning of the terms, consider some examples. After
one revolution, the center point of the first variable is mapped back to a
value near 1, as expected. The coefficient describing the linear dependence
of the final first variable on the initial first variable is around 0.05, corre-
sponding to the original box width. There is also a linear dependence on
the second variable of about 0.16, describing a substantial shearing of the
end result, which is also clearly visible in figure 3. Furthermore, there are
many higher order contributions; for example the second order dependence
on zixy is around —0.00597, indicating an appreciable curvature, which is
also noticeable in figure 3. The terms of order 12 are smaller than 1072,
illustrating that the expansion of final conditions on initial conditions does
indeed converge. The remainder bound has a width of about 3-10?, which
is more than seven orders of magnitude less than the dependence on linear
terms.

For the purpose of a more quantitative study of the behavior of the
integrators, let us now consider in detail the execution of a single step of the
integration process. We choose a region in which nonlinearity is sufficiently
strong so that the effects can be noticed in one step. We choose as initial
condition the linear part of the Taylor model at ¢ = 4.85. Since AWA can not
treat in detail the nonlinear solution set produced by COSY for this time,
we delete its nonlinear terms and obtain an approximation of the solution
set at the time of interest that has the form of a parallelepiped.

Then we use this parallelepiped to perform a single time step by the time
At. We execute the step with COSY so that as a result, nonlinear terms
are being populated. To simulate the behavior of AWA, all the resulting
nonlinearities as well as the (n 4 1)st order remainder interval produced
by COSY are bounded into an interval, which is a measure of the one-
step accuracy of a linear code like AWA. Tt is likely that this estimation is
somewhat optimistic since it ignores any possible dependency in the iterative
process of the solution of the ODE.

Figure 4 shows the width of the resulting higher order terms as a function
of the expansion order for various different time steps, where T is the time
step recommended by COSY'’s step size controller. As can be seen, at order
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Figure 4: Remainder errors for a single step as a function of order
and step size

1 the one-step error is around 1073, while for the smaller step sizes, between
orders 4 to 6 the one-step error can be suppressed below 10713, Because of
the high order dependence of the integration error on step size, the error
at twice the recommended step size reaches only around 1078 .Thus for a
suitable step size, the one-step integration error produced by COSY’s Taylor
model method is 10 orders of magnitude less than that for a linear method.

It is also illuminating to study the behavior of the error as a function
of the size of the parallelepiped. For this purpose we execute a step at
the recommended step size for parallelepipeds scaled by various factors and
observe the behavior at different orders. Figure 5 shows the resulting widths
of the remainder bounds. All boxes up to the original size of the box can be
integrated to an accuracy below 10713 for sufficiently high orders between
4 and 6; the larger box allows integration only to an error of 107'2. On the
other hand, a linear method similar to the one used in AWA can produce
a one-step error only in the range of 1072 to 107°. So altogether, again the
Taylor model approach leads to a reduction of the one-step error by 7 to 10
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Figure 5: Remainder errors for a single step as a function of order
and box size

orders of magnitude. Overall we observe that the Taylor model method has
the ability to represent the solution set very accurately up to the error of
the remainder bound, the size of which at a fixed time can be affected by
the order of expansion in the transversal variable, as well as of course by
the step size and as necessary the floating point accuracy. In fact, under the
assumption of expandability of the flow in time and transversal variables,
and under the assumption of arbitrary precision arithmetic, for a fixed ¢,
the Taylor model method allows to represent the flow to any pre-specified
accuracy. In [11], [31] we show how the local accuracy can be preserved
under long-term integration.
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