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Abstract: The verified integration of ranges of initial conditons through
ODEs faces two major challenges, namely the precise representation of the
flow over the short term, and the avoidance of unfavorable buildup of errors
in the long term. We discuss the method of shrink wrapping for meeting the
second of these challenges within the framework of Taylor model methods.
Illustrative examples of the performance of the method and comparisons to
other approaches are given.
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1. Introduction

When utilizing Taylor model-based methods for the verified integration of
ODEs [1], [3], [6], the dependency on initial condition is carried through the
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whole integration process. This controls the bulk of the dependency problem
arising in each integration step very efficiently and hence the main source of
the wrapping effect is eliminated to order n+ 1 for the single step.

On the practical side, the inclusion requirement asserting existence of a
solution reduces to a mere inclusion of the remainder intervals, and different
from conventional methods based on two separate algorithms for initial val-
idation by an Euler step and subsequent higher order execution, the entire
steps is performed in one algorithm. There is also no need to utilize addi-
tional ODEs for derivatives with respect to initial conditions. Finally, the
direct availability of the antiderivation on Taylor models allows to treat the
Picard operator like any other function, avoiding the need to explicitly bound
error terms of integration formulas and leading to a rather straightforward
verified fixed point problem.

The results of the methods developed in [6], [1], [3] can be summarized
in the following theorem.

Theorem 1. (Continuous Dynamical System with Taylor Mod-
els) Let P + I be an n-dimensional Taylor model describing the flow of the
ODE at the time t; i.e. for all initial conditions x0 in the original domain
region B ⊂ Rn, we have

x(x0, t) ∈ I +
⋃

x0∈B
P (x0).

Let P ∗(x0, t) be the invariant polynomial depending on x0 and t obtained in
[1], and assume that the self-inclusion step of the Picard Operator mapping
described there is satisfied over the interval [t, t+∆t] by the remainder bound
I∗. Then for all x0 ∈ B, we have

x(x0, t+ ∆t) ∈ I∗ +
⋃

x0∈B
P ∗(x0, t+ ∆t).

Furthermore, if even x (x0, t) ∈ P (x0) + I, then x (x0, t+ ∆t) ∈ P ∗(x0, t +
∆t) + I∗.

By induction over the individual steps, we obtain a relationship between
initial conditions and final conditions at time t. Thus formally, the continuous
case is made equivalent to the discrete case, for which the respective prop-
erty follows immediately from the respective enclosure properties of Taylor
models, as described for example in [5].

Theorem 2. (Discrete Dynamical System with Taylor Models)
Let P+I be an n-dimensional Taylor model describing the flow of the discrete
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dynamical system xn+1 = f(xn, n), i.e. for all initial conditions x0 in the
original domain region B ⊂ Rn, we have

xn(x0) ∈ I +
⋃

x0∈B
P (x0).

Let P ∗ + I∗ be the Taylor model evaluation of f (P + I, n). Then for all
x0 ∈ B, we have

xn+1(x0) ∈ I∗ +
⋃

x0∈B
P ∗(x0).

Furthermore, if even xn (x0, t) ∈ P (x0) + I, then xn+1 (x0) ∈ P ∗(x0) + I∗.

The two theorems thus allows the verified study of continuous and dis-
crete dynamical systems, provided that the Taylor model arithmetic is per-
formed in a verified manner. In the case of the implementation in COSY,
all errors in the floating point coefficients are fully accounted for [5], [9].

2. The Shrink Wrapping Approach

In this section, we address one method to control the long-term growth of
integration errors. As we saw in the last section, for a fixed time t of inter-
est, the errors appearing in the remainder interval can at least in principle
be kept as small as desired. However, for large values of the time t, the
approach used there may become computationally impractical because the
compounding of errors can be rapid, and so it is desirable to develop schemes
that limit the error growth as a function of time for a fixed expansion order
and computational accuracy. The shrink wrapping method[7] is one ap-
proach for this purpose. It is based on the idea of enclosing the remainder
error including floating point errors and errors due to the finite order in time
within the range of the polynomial part of the Taylor model. By doing so,
the remainder error ceases to be an interval, and instead is transformed into
a variable that is retained explicitly up to the order of the Taylor model.

While in the linear case, this problem reduces to mere linear algebra, in
the nonlinear case the situation is more involved, as the present nonlinear
terms should not be also simply lumped into the linear parts at the same
time; so the task requires to absorb the interval into a nonlinear structure,
and we refer to it as shrink wrapping. In the following, we present one
method to perform shrink wrapping; we point out that there are many vari-
ants of this approach, and while the one shown here is one of the simpler
ones to outline, it is not necessarily the optimal choice for given problems.
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As discussed in the introduction, after the kth step of the integration,
the region occupied by the final variables is given by the set

A = I0 +
⋃

x0∈B
M0(x0), (1)

where x0 are the initial variables, B is the original box of initial conditions,
M0 is the polynomial part of the Taylor model, and I0 is the remainder
bound interval; the sum is the conventional sum of sets. In the case of the
COSY-VI integration, the mapM0 can be scaled such that the original box
B is unity, i.e. B = [−1, 1]v. We assume this to be the case for the rest
of the discussion. The remainder bound interval I0 accounts for the local
approximation error of the expansion in time carried out in the kth step as
well as floating point errors and potentially other accumulated errors from
previous steps; it is usually very small. As stated earlier, the purpose of
shrink wrapping is to “absorb” the small remainder interval into a set very
similar to the second part of the right hand side in eq. (1) via

A ⊂ A∗ = I∗0 +
⋃

x0∈B
M∗0(x0),

whereM∗0 is a slightly modified polynomial, and I∗0 is a significantly reduced
interval of the size of machine precision.

As the first step, we extract the constant part a0 and linear part M0 · x
of M0 and determine a floating point approximation M̄−1

0 of the inverse of
M0. In case the ODEs admit unique solutions, as is typically the case for
the problems at hand, also the linear part of the flow is invertible. Within a
floating point environment, thus the attempt to invert the linear transforma-
tion M0 will likely succeed as long as the linear transformation is sufficiently
well-conditioned. If this is not the case, additional steps may be necessary,
which will be discussed in some detail below.

After the approximate inverse M̄−1
0 has been determined, we apply the

linear transformation M̄−1
0 · (x − a0) from the left to the Taylor model

M0(x0)+I0 that describes the current flow. As a result, the constant part of
the resulting Taylor model now vanishes, and its linear part is near identity.
We write the resulting Taylor model as

M+ I = I + S + I,

where I is the identity, and the function S contains the nonlinear parts of
the resulting Taylor model as well as some small linear corrections due to
the error in inversion. We include I into the interval box d · [−1, 1]v, where
d is a small number.
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Figure 1: The region described by the Taylor modelM0 +I0 is trans-
formed to be normalized as I + S + I, where I is the identity.

Definition 3. Let M = I + S +I, where S is a polynomial and I
is a small interval. We include I into the interval box d · [−1, 1]v. We pick
numbers s and t satisfying

s ≥ |Si(x)| ∀ x ∈ B, 1 ≤ i ≤ v,

t ≥
∣∣∣∣
∂Si(x)

∂xj

∣∣∣∣ ∀ x ∈ B, 1 ≤ i, j ≤ v.

We call a map M shrinkable if (1− vt) > 0 and (1− s) > 0; both of which
can be achieved if S (and since it is a polynomial, also its derivative) is
sufficiently small in magnitude. Then we define q, the so-called shrink wrap
factor, as

q = 1 + d · 1

(1− (v − 1)t) · (1− s) .

The bounds s and t for the polynomials Si and ∂Si/∂xj can be computed
by interval evaluation. The factor q will prove to be a factor by which the
Taylor polynomial I+S has to be multiplied in order to absorb the remainder
bound interval.

Remark 4. (Typical values for q) To put the various numbers in
perspective, in the case of the verified integration of the Asteroid 1997 XF11,
we typically have d = 10−7, s = 10−4, t = 10−4, and thus q ≈ 1 + 10−7.
It is interesting to note that the values for s and t are determined by the
nonlinearity in the problem at hand, while in the absence of “noise” terms in
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the ODEs described by intervals, the value of d is determined mostly by the
accuracy of the arithmetic. Rough estimates of the expected performance in
quadruple precision arithmetic indicate that with an accompanying decrease
in step size, if desired d can be decreased below 10−12, resulting in q ≈
1 + 10−12.

In order to proceed, we need some estimates relating image distances to
origin distances.

Lemma 5. Let M be a map as above, let ‖·‖ denote the max norm,
and let (1− vt) > 0. Then we have

|Mi(x̄)−Mi(x)| ≤
∑

j

|δi,j + t| |x̄j − xj | ,

‖M(x̄)−M(x)‖ ≤ (1 + vt) · ‖x̄− x‖ , and

‖M(x̄)−M(x)‖ ≥ (1− vt) · ‖x̄− x‖ .

where δi,j denotes the Kronecker delta.

Proof. For the proof of the first assertion, we observe that all (v − 1)
partials of ∂Mi/∂xj for j 6= i are bounded in magnitude by t, while ∂Mi/∂xi
is bounded in magnitude by 1 + t; thus the first statement follows from the
intermediate value theorem. For the second assertion, we trivially observe

‖M(x̄)−M(x)‖ = max
i
|Mi(x̄)−Mi(x)|

≤ max
i

∑

j

|δi,j + t| |x̄j − xj |

≤ (1 + vt) ‖x̄− x‖ .

For the proof of the third assertion, which is more involved, let k be such
that ‖x̄− x‖ = |x̄k − xk| , and wlog let x̄k − xk > 0. Then we have

‖M(x̄)−M(x)‖ = max
i
|Mi(x̄)−Mi(x)|

≥ |Mk(x̄)−Mk(x)|

=

∣∣∣∣∣∣
(1 + ck)(x̄k − xk) +

∑

j 6=k
cj(x̄j − xj)

∣∣∣∣∣∣
(2)

for some set of cj with |cj | ≤ t ∀j = 1, ..., v, according to the mean value
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theorem. Now observe that for any such set of cj ,

∣∣∣∣∣∣
∑

j 6=k
cj(x̄j − xj)

∣∣∣∣∣∣
≤
∑

j 6=k
|cj | |x̄j − xj | ≤


∑

j 6=k
|cj |


 |x̄k − xk|

≤ (v − 1) t |x̄k − xk|
≤ (1− t) |x̄k − xk| ≤ (1 + ck) (x̄k − xk) .

Hence the left term in the right hand absolute value in (2) dominates the
right term for any set of cj , and we thus have

∣∣∣∣∣∣
(1 + ck)(x̄k − xk) +

∑

j 6=k
cj(x̄j − xj)

∣∣∣∣∣∣

≥ (1− t)(x̄k − xk)−
∑

j 6=k
t |x̄j − xj |

≥ (1− t)(x̄k − xk)− (v − 1) t (x̄k − xk)
= (1− vt)(x̄k − xk) = (1− vt) ‖x̄− x‖ ,

which completes the proof.

Theorem 6. (Shrink Wrapping) Let M = I + S(x), where I is the
identity. Let I = d · [−1, 1]v, and

R = I +
⋃

x∈B
M(x)

be the set sum of the interval I = [−d, d]v and the range of M over the
original domain box B. Let q be the shrink wrap factor ofM; then we have

R ⊂
⋃

x∈B
(qM)(x),

and hence multiplying M with the number q allows to set the remainder
bound to zero.

Proof. Let 1 ≤ i ≤ v be given. We note that because ∂Mi/∂xi > 1−t >
0,Mi increases monotonically with xi. Consider now the (v−1) dimensional
surface set (x1, ..., xv) with xi = 1 fixed. Pick a set of xj ∈ [−1, 1], j 6= i. We
want to study how far the set R = I +

⋃
x∈BM(x) can extend beyond the

surface in direction i at the surface point y =M(x1, ..., xi−1, 1, xi+1, ..., xv).
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Figure 2: At the point yi, the set R = I +
⋃
x∈BM(x) can extend to

ri(y).

Let yi be the i-th component of y. The i-th components of the set y + I
apparently extends beyond yi by d. However, it is obvious that R can extend
further than that beyond yi. In fact, for any other ȳ with |ȳj − yj | ≤ d for
j 6= i, there are points in ȳ + I with all but the i-th component equal to
those of y. On the other hand, any ȳ with |ȳj − yj | > d for some j 6= i can
not have a point in ȳ+ I with all but the i-th component matching those of
y. So at the point yi, the set R can extend to

ri(y) = d+ sup
{ȳ| |ȳj−yj |≤d (j 6=i)}

ȳi.

We shall now find a bound for ri(y). First we observe that because of
the monotonicity of Mi, we can restrict the search to the case with xi = 1.
We now project to an (v − 1) dimensional subspace by fixing xi = 1 and by
removing the i-th component Mi. We denote the resulting map by M(i),
and similarly denote all (v − 1) dimensional variables with the superscript
“(i)”.

We observe that with the function M, also the function M(i) is shrink-
able according to the definition, with factors s and t inherited fromM. Ap-
parently the condition on ȳ in the definition of ri(y) entails that in the (v−1)
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dimensional subspace,
∥∥ȳ(i) − y(i)

∥∥ ≤ d. Let x̄(i) and x(i) be the (v − 1) di-

mensional pre-images of ȳ(i) and y(i), respectively; because
∥∥ȳ(i) − y(i)

∥∥ ≤ d,
we have according to the above lemma that

∥∥∥x̄(i) − x(i)
∥∥∥ ≤ d

1− (v − 1)t
,

which entails that also in the original space we have |x̄j − xj | ≤ d/(1− (v−
1)t) for j 6= i. Hence we can bound ri(y) via

ri(y) ≤ d+ sup
{x̄| |x̄j−xj |≤d/(1−(v−1)t)

(j 6=i), xi=x̄i=1}

Mi(x̄).

We now invoke the first statement of the lemma for the case of x̄, x satisfying
|x̄j − xj | ≤ d/(1− (v − 1)t) (j 6= i), xi = x̄i = 1. The last condition implies
that the term involving (δi,j + t) does not contribute, and we thus have
|Mi(x̄)−Mi(x)| ≤ (v − 1)t · d/(1− (v − 1)t), and altogether

ri(y) ≤ yi + d+
d · (v − 1)t

1− (v − 1)t

= yi + d · 1

1− (v − 1)t
.

We observe that the second term in the last expression is independent of i.
Hence we have shown that the “band” around

⋃
x∈BM(x) generated by the

addition of I never extends more than d/(1− (v − 1)t) in any direction.

To complete the proof, we observe that because of the bound s on S, the
box (1−s)[−1, 1]v lies entirely in the range ofM. Thus multiplying the map
M with any factor q > 1 entails that the edges of the box (1−s)[−1, 1]v move
out by the amount (1− s)(q − 1) in all directions. Since the box is entirely
inside the range of M, this also means that the border of the range of M
moves out by at least the same amount in any direction i. Thus choosing q
as

q = 1 + d · 1

(1− (v − 1)t) · (1− s)
assures that

⋃

x∈B
(qM) ⊃ R

as claimed.
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Remark 7. (Shrink Wrapping and Complex Arithmetic)
Taylor models have also been successfully used to perform operations

in the complex plane. To this end, one merely identifies complex functions
as functions from R2 into R2 and observes that analyticity entails infinite
partial differentiability of the component functions. Thus complex analytic
functions can be described as pairs of Taylor models in two variables, and the
rules for Taylor model arithmetic can be applied to the component functions.
Apparently the geometric properties of the resulting ranges of the Taylor
models are analogous to the situation of the flows of ODEs above; and
in a similar way it is thus possible to absorb the remainder term into the
polynomial part of the Taylor model.

Let us consider the practical limitations of the method:

Remark 8. (Limitations of Shrink Wrapping) Apparently the
shrink wrap method discussed above has the following limitations

1. The measures of nonlinearities s and t must not become too large

2. The application of the inverse of the linear part should not lead to
large increases in the size of remainder bounds.

Apparently the first requirement limits the domain size that can be cov-
ered by the Taylor model, and it will thus be relevant only in extreme cases.
Furthermore, in practice the case of s and t becoming large is connected
to also having accumulated a large remainder bound, since the remainder
bounds are calculated from the bounds of the various orders of s. In the light
of this, not much additional harm is done by removing the offending s into
the remainder bound and create a linearized Taylor model.

Definition 9. (Linearized Taylor Model) Let M0 · x + S + I be
a Taylor model with nonlinear part S , and let the components of S be
bounded by s = (si). We call

M0 · x+ I + s · [−1, 1]

the linearized Taylor model of M0 · x+ S + I.

The overestimation generated by the application of the inverse of the
linear part is apparently directly connected to the condition number of the
linear part M0.

Definition 10. (Blunting of an Ill-Conditioned Matrix) Let A
be a regular nxn matrix that is potentially ill-conditioned and q = (q1, ...qn)
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be a vector with qi > 0. Arrange the column vectors ai of A by Euclidean
length. Let ei be the familiar orthonormal vectors obtained through the
Gram-Schmidt procedure, i.e.

ei =

ai −
i−1∑
k=1

ek (ai · ek)
∣∣∣∣ai −

i−1∑
k=1

ek (ai · ek)
∣∣∣∣
.

We form vectors bi via
bi = ai + qiei

and assemble them columnwise into the matrix B. We call B the q-blunted
matrix belonging to A.

Proposition 11. (Regularity of the Blunted Matrix) The bi are
linearly independent and thus B is regular.

Proof. By induction. Apparently b1 is linearly independent. Assume
now that b1, ..., bi−1 are linearly independent. We first observe that for each
i, the vector bi is by virtue of its definition a linear combination of the ak for
k = 1, ..., i and thus also of the ek for k = 1, ..., i, since both sets of vectors
span the same space. Now suppose bi is linearly dependent on b1, ..., bi−1;
then it is also linearly dependent on e1, ..., ei−1, and in particular we must
have bi · ei = 0. Observe that we have (ai)

2 =
∑n

k=1(ai · ek)2 by virtue of the
fact that the vectors ek form an orthonormal basis. Using this, we obtain
from the definition of bi that

bi · ei = ai · ei + qi

=

(ai)
2 −

i−1∑
k=1

(ai · ek) (ai · ek)
∣∣∣∣ai −

i−1∑
k=1

ek (ai · ek)
∣∣∣∣

+ qi

=

n∑
k=i

(ai · ek) 2

∣∣∣∣ai −
i−1∑
k=1

ek (ai · ek)
∣∣∣∣

+ qi > 0,

which represents a contradiction to bi · ei = 0; thus b1, ..., bi are linearly
independent, which completes the induction step.
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Remark 12. (Effect of Blunting) The intuitive effect of the blunting
is that b1, and thus the dominating direction, which determines asymptotic
behavior, remains unchanged. Smaller bi are being “pulled away” from ear-
lier ones in the direction of ei, i.e. away from the space spanned by the
previous vectors b1, ..., bi−1. Since bi · ei ≥ qi, the “pulling” is stronger for
larger choices of qi. Thus larger choices for qi lead to a matrix that has more
favorable condition number.

Algorithm 13. (Pre-Conditioning of Shrink Wrapping) Let M0

be the linear part of the Taylor model to be shrink wrapped. Subject M0

to the blunting algorithm just described before attempting to compute its
inverse. As a result, M0 is less ill-conditioned, its approximate inverse M̄−1

0 is
determined more easily, and is itself less ill-conditioned. As discussed in the
main algorithm, the defect of applying M̄−1

0 to M0 is moved to the remainder
bound. Next, determine if the Taylor model is shrinkable as defined in 3.
If it is not, or if the shrink wrap factor q exceeds a pre-specified threshold
qmax, bound the nonlinear part into the remainder bound. The result is a
shrinkable Taylor model.

Remark 14. (Shrink Wrapping for Linear Systems) When ap-
plied to linear systems, the shrink wrapping with blunting limits the over-
estimation due to the conditioning of matrix when transforming the error
interval to the new coordinate system. At the same time, the leading direc-
tion remains unchanged, and thus there is no error introduced that scales
with the length of the leading direction, which determines the asymptotic er-
ror. On the other hand, the naive shrink wrapping method without blunting
behaves like the well-known parallelepiped method.

Apparently the trade-off of blunting the linear part lies in an increase
in the size of the remainder bound that then has to be absorbed into the
Taylor model. However, this increase is not affected by the size of the domi-
nating vector, since it remains unaffected by the blunting algorithm. Thus in
studies of asymptotic behavior where the other directions become exponen-
tially smaller compared to the dominating direction, the effect of blunting
will become exponentially less significant. Since this requires sending the
remainder bound through the inverse, which produces an overestimation in-
creasing with condition number, it is expected that a moderate amount of
blunting and the corresponding decrease in condition number will overall
lead to a smaller shrink wrap factor. Furthermore, we observe that the less
ill-conditioned inverse that results from blunting will also lead to smaller
nonlinear terms, which leads to a more favorable shrink wrap factor, or may
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even prevent the breakdown of shrinking and the need to absorb the nonlin-
earities into the remainder bound.

More specifically, the larger the size of the remainder bound relative to
the size of the range into which it is to be absorbed, the larger the blunt-
ing factor should be chosen, since the more important overestimation by
application of the inverse becomes, while the less important the additional
contributions from packing the original matrix in the blunted matrix be-
comes. A large ensemble of examples for the use of shrink wrapping under
blunting will be studied in the next section.

In a practical environment, one may even use trial and error or other
heuristics to determine suitable blunting parameters. Also, much further
theoretical thought could be spent on the question of the optimal enclosure
of one parallelepiped (the remainder interval) in another (the linear part).
For example, one could attempt to find a “minimal” parallelepiped to do
that; part of the problem is specifying the meaning of “minimal”. One could
think of minimizing volume, which would lead to a constrained nonlinear
optimization problem. One may also think of minimizing the lengths of the
vectors, which may lead to a linear programming problem.

The trade-off between these two cases seems far from obvious; first, both
cases require the choice of a coordinate system that is somehow “natural” for
the system, since both volume and coordinate lengths are affected by such
a choice of coordinates. Furthermore, while small volume may have obvious
immediate appeal, especially in the case of nonlinear systems, it may be more
desirable to operate with less “extended” objects, which may reduce subse-
quent nonlinear effects. Finally, if the system under consideration exhibits
a particular symmetry like energy conservation or symplecticity, emphasis
may be placed on the satisfaction of these symmetries. Altogether, although
of course all arguments remain verified in our setting, the efficiency of the
method is greatly affected by heuristic choices, in much the same way as in
conventional numerical integration.

Definition 15. (Parameterizing of Remainder Bounds) Let (P, I)
be a Taylor model describing a function f : D ⊂ Rn → Rm We introduce a
new polynomial P ∗ : (D × I) ⊂ Rn+m → Rm via

P ∗(x, t) = P (x) + t on D∗ = D × I.

The Taylor model (P ∗, [0, 0]) is called a parameter-extended Taylor model
of f.

We have the following immediate result.
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Proposition 16. (Enclosure Property) For all x ∈ D, we have
f(x) ∈ P ∗(x, I) + [0, 0]

What may appear as a simple mathematical slight of hand actually has
important consequences, since for subsequent steps of the integration, we
have uniquely represented f by only the Taylor model (P ∗, [0, 0]) in a higher
dimensional space that has no remainder bound. We may thus proceed
with subsequent operations in Taylor model arithmetic with the parameter
extended Taylor model (P ∗, [0, 0]) instead of the Taylor model (P, I). The
consequence is that in later steps, what was originally the interval I and is
thus subject to the cancellation and wrapping problems, is now the variable
t, which can be carried through all occurring Taylor model operations.

3. Example: Long-Term Error Growth of Floating-Point
Operations

The long-term numerical study of differential equations and dynamical sys-
tems in a computer environment operating with fixed precision is frequently
characterized by an exponential growth of the error. We first observe the
important point that this fact is intimately tied to the use of arithmetic of
finite precision, and does not merely appear in verified methods. We also
observe that this effect is independent of the well-known and frequently stud-
ied phenomenon of chaos, which is characterized by exponential growth of
errors in initial conditions in the true system.

To illustrate this phenomenon, let us consider the perhaps simplest con-
ceivable discrete dynamical system, which merely oscillates between two
states as

xn+1 =

{
a · xn, n even

(1/a) · xn, n odd
(3)

with initial condition x0 = 1. We study the behavior for specific choices
of a in both single and double precision arithmetic on two commonly used
compilers, the f77 compiler by DEC, which is now distributed as f77 Digital
Visual Fortran Version 5.0 as part of Microsoft Fortran PowerStation, as
well as the g77 compiler distributed by GNU; we specifically tested Version
V0.5.24. All tests were executed in the Cygwin Unix environment in Win-
dows 2000 and run on a Pentium III processor, and no changes to default
rounding modes were made.

Specifically, we chose a1 = 3 in the single precision mode, while in the
double precision mode we chose a2 = 0.9999999901608054 (digits generated
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Figure 3: Arithmetic error observed in the computation of xn+1 =
(1/3) · xn, xn+2 = 3 · xn+1, with x1 = 1, for various values of n.

by FORTRAN output)

Figure 3 shows the result for the case of single precision computation
using f77 with default compiler settings, revealing an exponential growth of
the error that after merely 109 iterations reaches the value of 1012. The error
growth per iteration corresponds to approximately 1 + 1.2 · 10−8, and hence
represents an average increment near the last significant bit.

Performing the same experiment with a1 = 3 in double precision arith-
metic on either f77 or g77 did not produce any exponential growth of errors;
however, performing a random search for values of a near 1 that might lead
to exponential growth yielded the above a2 within the first 10 tries, and
many other values of a with a similar behavior have also been found quite
easily. The empirically computed error growth factor per iteration is about
1 + 1.1 · 10−16, again corresponding to an increment near the last significant
bit.

Executing the simple dynamical system with interval arithmetic leads to
exponentially inflating bounds, as is expected from interval methods; how-
ever, in a well-written interval environment that rounds by a minimally
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sufficient amount, the overestimation of the computed bounds tightly en-
close the growing error. Thus in this case, the observed exponential growth
of the interval results is not due to any artificial overinflation of the inter-
val method, but rather to the unavoidable uncertainty of the results of the
underlying floating point arithmetic.

4. Example: A Nonlinear Problem and Shrink Wrapping

Let us now study such two-state systems in the multidimensional nonlinear
setting. First we observe that any errors that may occur lead to a more
complicated geometric shape of the solution sets that have to be studied.
While in the one-dimensional case, an interval can always tightly contain
the results of all such overestimations, this no longer holds in the multi-
dimensional case. As a simple example, consider the following two-state
discrete dynamical system

xn+1 = xn ·
√

1 + x2
n + y2

n and yn+1 = yn ·
√

1 + x2
n + y2

n

xn+2 = xn+1 ·
√√√√

2

1 +
√

1 + 4(x2
n+1 + y2

n+1)
and

yn+2 = yn+1 ·
√√√√

2

1 +
√

1 + 4(x2
n+1 + y2

n+1)
. (4)

Simple arithmetic shows that, similar to the two-state system in eq.
3, also this transformation has the property that (xn+2, yn+2) = (xn, yn).
Considering the action of the system on the box [−d, d]2, we see that the
corner points (±d,±d) are stretched out more than the axis intersection
points (±d, 0) and (0,±d), which leads to a pincushion shape with four-fold
symmetry after each odd step; the action on three centered squares is shown
in figure 4. Attempting to represent this structure by an interval box, or for
that matter any linear transformation of an interval box, will thus necessarily
lead to a noticeable overestimation. On the other hand, representing the
action of the iteration by a Taylor model will, for moderate values of d, be
able to lead to a much more accurate representation. Finally, note that the
linear transformations of the action of this system will always return to the
identity after even numbers of iteration and is also rather well conditioned
after odd iterations, so numerical difficulties due to conditioning do not arise
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0.2, 0.4, 0.6

Figure 4: The action of the two-step nonlinear transformation.
Squares are subjected to pincushion-shaped deformation and trans-
formed back into themselves.

in this case. Thus the example represents a good test for a method to treat
nonlinear effects.

The results of a simulation with Taylor models of various orders and
with and without shrink wrapping are shown in figures 5 and 6 for the point
(0, 0) + [−.05, .05]2 and in figure 7 and 8 for the point (1, 1) + [−.05, .05]2.
Because after two steps the linear part is the identity, the problem allows
to study the ability of the shrink wrap method to handle nonlinear effects,
but without possible complications that may arise due to the conditioning
of the linear part, which will be studied in other examples below.

Because the linear part represents the identity, shrink wrapping with
first order Taylor model behaves exactly like the QR and PE methods, and
so a useful comparison to these methods is possible. Apparently the use
of shrink wrapping and higher order Taylor models leads to very extended
stability; for example, Taylor models of order 20 lead to survival for 105

iterations with an accumulated error around 10−9, while the lack of use of
shrink wrapping or the use of linear methods leads to unacceptable errors in
100 or less iterations.
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Figure 5: Discrete dynamics of the nonlinear stretch at (0, 0) +
[−.05, .05]2. Treatment by naive Taylor models. First order Tay-
lor models without shrink wrapping behave like the linear PE, QR,
or PEQR methods.
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Figure 6: Discrete dynamics of the nonlinear stretch at (0, 0) +
[−.05, .05]2. Treatment by Taylor models with shrink wrapping.
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Figure 7: Discrete dynamics of the nonlinear stretch at (1, 1) +
[−.05, .05]2. Treatment by naive Taylor models.
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5. Examples: Linear Problems and Shrink Wrapping

While in the previous section, the emphasis was on the treatment of nonlin-
ear effects in the absence of complications due to linear conditioning, in this
section we will study the opposite: we will address linear problems that may
become ill-conditioned and forgo the study of nonlinear effects. Because lin-
ear problems lead to a merely linear dependence on initial conditions, they
thus allow a clear separation of the effects of the Taylor model methods
that are due to the expansion in initial conditions and those of their asymp-
totic behavior. We focus our attention here on autonomous problems, the
asymptotic behavior of which can apparently also be studied more efficiently
with verified eigenvalue/eigenvector tools. The behavior of non-autonomous
problems under shrink wrapping will be considered in a subsequent paper
[4] within the wider context of a connection of shrink wrapping and precon-
ditioning.

For the purpose of our study, we consider the behavior of the various
methods by studying discrete dynamics of iteration through two-dimensional
matrices. To minimize the influence of particular choice, we consider a col-
lection of 1000 matrices with coefficients randomly chosen in the interval
[−1, 1]. The initial condition under study is chosen to be (1, 1) + d · [−1, 1]
with a value of d = 10−3. Apparently the choice of the center point of the
domain box is rather immaterial due to the randomness of the matrices; and
because of linearity, the value of d is of importance only relative to the floor
of precision of the floating precision environment.

We study the development of the area of enclosure as a measure of the
sharpness of the method. We compare shrink wrapping without blunting
(TMSP) and with blunting (TMSB). We chose the blunting factors qi to be
10−3 times the length of the longest column vector of the linear matrix. In
order to provide a frame of reference, we also study the performance of naive
interval (IN) method as well as the naive Taylor model method (TMN); in
the latter case, the area is estimated as the sum of the determinant of the
linear part plus the area of the remainder bound interval box. In addition, in
order to provide an assessment of the influence of the effects of the underlying
floating point arithmetic, we also perform a non-verified tracking of the
vectors of the four corner points (1, 1) + d · (±1,±1) and determine the area
of the linear structure spanned by the vectors; this method is referred to
as the vector method (VE). Since this method is naturally inaccurate in
particular for strongly elongated structures, we average over a large number
of matrices to control statistical fluctuations.



TAYLOR MODEL INTEGRATORS - SHRINK WRAPPING 21

In the first test, we study an autonomous problem for 500 iterations.
Apparently in this case, the true solution of the problem shows an exponen-
tial shrinkage of the area by the product |λ1|· |λ2| of the magnitudes of the
eigenvalues. For the purpose of analysis, we study two kinds of matrices;
the category C1 contains all matrices in which the eigenvalues form con-
jugate pairs, and the category C2 consists of matrices for which the ratios
r = |λ1|/|λ2| of the eigenvalue λ1 of larger magnitude to the one of smaller
magnitude satisfies 1 ≤ r < 5. Within the two categories, we calculate the
average of the logarithm of the areas enclosed by the various methods as a
function of the iteration number, which for the true dynamics would lead
to a decrease along a straight line, the slope of which is given by the value
log (|λ1| · |λ2|) .

Figures 9 and 10 show the results of the situation for categories C1

and C2, respectively. It is clearly visible that in the dynamics of C1, the
behavior is characterized by the expected linear decrease, and the blunted
(TMSB) and parallelepiped (TMSP) methods show this behavior. Both of
these methods very closely follow the non-verified result (VE). The behavior
of the methods is in agreement with the theoretical results and practical
examples found in [8]. On the other hand, the naive interval method (IN) as
well as the naive Taylor model method (TMN) show a qualitatively different
behavior; the interval method leads to a different slope, while over the short
term the naive Taylor model method performs similar to the other methods
until the size of the remainder bound becomes the dominating contribution,
at which time its slope becomes similar to that of the interval method.

Studying the behavior of the class C2 shows a similar pattern, except
that now the TMSP behaves significantly worse over time because of the
negative consequences of the condition number of the matrix, while TMSB
still behaves similar to the non-verified VE case. More extensive studies of
the linear behavior.
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6. Example: The Area-Preserving Henon Map

The discrete dynamics of the repeated application of the Henon map is a
frequently used elementary example that exhibits many of the well-known
effects of nonlinear dynamics, including chaos, periodic fixed points, islands
and symplectic motion. The dynamics is two-dimensional, and given by

xn+1 = 1− αx2
n + yn

yn+1 = βxn. (5)

Since our study is focused on the prevention of overestimation of rigorous
flow enclosures, it is advantageous to focus on area preserving cases so that
artificial growth is not masked by the natural contractivity of the system. It
can easily be seen that the motion is area preserving for |β| = 1.For our study,
we borrow an example from the work of Kühn[2] illustrating the performance
of the zonotope method and compare with TMs using shrink wrapping. We
consider the dynamics for the special cases of α = 2.4 and β = −1, and
concentrate on initial boxes of the from (x0, y0) ∈ (0.4, −0.4) + [−d, d]2. As
an example to assess the dynamics, we consider the box with d = 10−2 and
study its evolution for a few turns.

Figure 11 shows the motion of the four corner points for five iterations
and for 120 iterations. It becomes apparent that three of the corner points
are trapped in a five-fold island structure, while one of them follows an
ergodic curve inside the islands. This situation makes very long-term verified
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Figure 11: Iteration through the Henon map. Shown are the motion
of the corner points of the box (x0, y0) ∈ (0.4,−0.4) + [−d, d]2 for
d = 10−2 for five iterations (left) and for 120 iterations (right).



24 M. Berz, K. Makino

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0th to 4th
5th to 7th
8th
9th

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0th to 4th
5th to 9th
10th to 14th
15th to 19th
20th to 24th
25th to 29th

Figure 12: Dynamics through the Henon map for the box (x0, y0) ∈
(0.4,−0.4) + [−d, d] for d = 10−2 for nine turns with first order (left)
and for 29 turns with tenth order (right) Taylor models with non-
blunted shrink wrapping.

integration impossible since the transition region between the islands and the
ergodic part is chaotic. As a first test, we study the dynamics of the box
(x0, y0) ∈ (0.4, −0.4) + [−d, d]2 for d = 10−2 with first order Taylor models
with shrink wrapping and compare with the results obtained by tenth order
Taylor models with shrink wrapping; the results are shown in figure 12. It
can be seen that the presence of the nonlinearities in the dynamics makes
the size of the enclosures obtained by the linear method increase quickly.
On the other hand, the higher order method can follow the details of the
dynamics, including the “pulling apart” of the corner points rather well.

As a first example to study long term motion, we show the predicted
inclusion after 500 iterations of the map for the case d = 10−6. This choice
of d entails that the entire box stays confined within the island structure,
and is at least not subject to chaotic motion. Figure 13 shows the results
obtained by the zonotope method, linear maps from Rm·n into Rn, for various
numbers of of the parameter m and Taylor model methods of orders 1 and 5
using shrink wrapping. On the left, the results obtained by the Taylor model
methods are overlaid on the respective results of the zonotope method; the
picture was taken from [2]. For the purpose of better comparison, the TM
results are also shown separately on the right. We see that the enclosure
by the TM method is similarly accurate, and perhaps slightly sharper, than
that of the zonotope method with m = 15. The right picture reveals that
the TM method of order 5 produces a slightly sharper result than the TM



TAYLOR MODEL INTEGRATORS - SHRINK WRAPPING 25

-8e-6

-6e-6

-4e-6

-2e-6

0

2e-6

4e-6

6e-6

8e-6

-8e-6 -6e-6 -4e-6 -2e-6 0 2e-6 4e-6 6e-6 8e-6

TM 5th

.

center at (0.2123944, -0.4880256)
TM center at (0.4143362, -0.3895275)

m = 6
m = 7

m = 9

m = 15

o

o

o

o

-8e-6

-6e-6

-4e-6

-2e-6

0

2e-6

4e-6

6e-6

8e-6

-8e-6 -6e-6 -4e-6 -2e-6 0 2e-6 4e-6 6e-6 8e-6

TM 1st

TM 5th

.

TM center at (0.4143362, -0.3895275)

Figure 13: Validated enclosures after 500 iterations of the initial con-
dition (0.4,−0.4) + [−10−6, 10−6]2 through the Henon map. Shown
are enclosures by the zonotope method of various values of the pa-
rameter m and by the TM methods of orders 1 and 5 using shrink
wrapping (left). For better comparison, the results of the TM meth-
ods are also shown separately (right).

method of order 1.

In passing we note that the values for the center point reported for the
zonotope method in [2] are incorrect; in fact, the values provided there agree
to all digits shown to those after 3 iterations, but not even to one digit with
those after 500 iterations, which because of the five-fold repetitive structure
of the Henon map should be close to the starting point. However, because of
the high degree of similarity of the m = 15 zonotope enclosure with that of
the TM method after 500 iterations and the dissimilarity after 3 iterations,
it appears very likely that the enclosure itself is indeed provided correctly.

In order to study the behavior of the TM methods for long term prob-
lems, we iterate the map until failure occurs. In [2] it is reported that for
the domain (x0, y0) ∈ (0.4, −0.4) + [−d, d]2 with d = 10−12, the m = 15
zonotope method succeeds for about 33, 000 iterations. We compare this be-
havior with the preconditioned TM method of order 5 with shrink wrapping
and observe that the method can succeed to provide enclosures for about
280, 000 iterations for order 5 and slightly longer for order 10. The TM
method of order 1 survives for about 20, 000 iterations. Figure 14 shows
some results of these computations. On the left we show the size of the
remainder bounds for each turn, which is nonzero if the shrink wrapping
fails to be executed. The remainder terms are usually in the range of 10−12,
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Figure 14: Dynamics in the Henon map for (x0, y0) ∈ (0.4,−0.4) +
[−d, d]2 with d = 10−12. Shown are the remainder bounds (left) and
total shrink wrap factors (right) for TMs of order 1, 5, and 10.
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Figure 16: Non-verified dynamics in the Henon map for floating
point errors similar to those in quadruple precision for (x0, y0) ∈
(0.4,−0.4) + [−d, d]2 with d = 10−12 Shown are the the remainder
bounds (left) and shrink wrap factors (right) for TMs of order 1, 5,
and 10.

but occasionally exceed 10−9. The right shows the total accumulated shrink
wrap factor, which is a measure of the inflation of the box. The seemingly
large value of 106 is due to the fact that because of the proximity to the
floating point floor, the initially small box size of 10−12 increases quickly.
Approximately at the number of iterations at which the zonotope method
fails to proceed, the shrink wrap factor stabilizes at about 106, leading to an
overall box size of around 10−6.

It is also interesting to study how much of an improvement shrink wrap-
ping provides compared to iteration with naive Taylor models. Figure 15
shows the remainder bounds obtained in this approach, and it is appar-
ent that failure now occurs much more rapidly at around 16, 000 iterations,
about half as much as the zonotope method is able to succeed.

In order to assess the expected influence of double precision floating point
error, we attempt to simulate the behavior in quadruple precision. Due to
the absence of an arbitrary precision or quadruple precision implementation
of our TM tools, we perform a non-verified experiment in which the floating
point accuracy threshold εm that is used in the internal interval operations
was artificially set to the 10−30, a number typical for the use of quadruple
precision arithmetic. While the resulting inclusions are of course not verified
results since the actual accuracy remains at the level of 10−15 or so, the
results provide a rather good estimate for the growth of errors that is to be
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expected in quadruple precision.
Repeating the study in this way, we observe that the survival time of

the first order method now increases to a respectable 150, 000 iterations.
But on the other hand, the higher order methods can now execute more
than 7, 500, 000 iterations, or about 50 times as much. A more detailed
study of the results in figure 16 shows that beyond well over one million
turns, the shrink wrap factor grows very moderately to about 10−6, until
just before 2 million turns, the first intermediate failures of shrink wrapping
occur. At this point, the shrink wrap factor increases appreciably to re-
absorb the remainder term a few iterations later, the map again becomes
shrinkable. Overall it is clear that here the use of the higher order methods
quite significantly improves performance, which seems to be limited mostly
by floating point errors.
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