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Abstract. The validated integration of ranges of initial conditons through
ODEs faces two major challenges, namely the precise representation of the
flow over the short term, and the avoidance of unfavorable buildup of errors
in the long term. We discuss methods for meeting those challenges within the
framework of Taylor model methods, in which the dependence on initial con-
ditions is expressed by a high-order multivariate polynomial and a remainder
bound. Numerous examples of the performance of the methods and compar-
isons to other approaches are given.

1. Introduction

The validated integration of differential equations is one of the important appli-
cations of interval- and related validated methods; in fact, the desire to integrate
the dynamics of objects in the solar system has served as one of the original mo-
tivations for their development. Compared to other uses of validated methods,
validated integration is particularly difficult because of the quite extended number
of arithmetic operations and the fact that often similar operations repeat a great
number of times.
While the problem of repeated application of similar operations manifests itself

very clearly in validated integration, it is also affecting conventional integration,
although in this case the effects are often more difficult to assess rigorously. Within
the framework of conventional integration, the problems are usually tackled by using
sufficiently small step size and methods of sufficient order for the step size under
consideration, and optimizing the parameters of the algorithms as for example the
coefficients in Runge Kutta and other frequently used tools.
However, the long-term control of these errors is much more difficult and repre-

sents a fundamental problem, in particular for nonlinear motion. This fact manifests
itself particularly clearly in the frequent use of integration schemes that preserve
certain known symmetries of the system like geometric constraints or symplecticity,
because it is observed that conventional integrators do not satisfy these constraints
well enough. It is hoped, then, that imposing the constraints leads to higher com-
putational accuracy, an approach that is indeed often successful, but also often
difficult to quantitatively assess.
Within the context of validated integration, the two primary concerns are that on

the one hand, it is necessary to not only transport points, but rather regions, since
even starting with points leads to regions. Already in his 1966 book[34] and in an
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earlier paper[33], Moore describes this fundamental problem of the verified solution
of differential equations of dimension 2 and higher, the need for re-packaging of the
flow of the ODE with as little loss as possible, to avoid what is usually called the
wrapping effect. On the other hand, there is less room for empirical approaches
for the long term since they often do not lend themselves to obtaining rigorous
tighter enclosures. Thus validated integration is faced with the need to address the
following issues:

• Representing the flow accurately, i.e. providing a tight enclosure for the
action of the differential equation on an extended region for a time step ∆t

• Preventing local errors from accumulating in an unfavorable way when in-
tegrating over longer times.

To address the re-packaging or wrapping problem, which as observed by Moore
[34][33] leads to an error that scales linearly with the step size ∆t and hence can-
not be controlled by merely refining the step size, Moore proposes to express the
differential equations and its solution in a moving coordinate system, which entails
that in this system, the solution set will always be nearly ”upright” and thus is
expected to be encloseable with intervals at much reduced loss. The coordinate
system originally chosen by Moore is an approximation of the linearized solution
that is first order in time and has the form

Mn = I +∆tn · f 0(xn−1, tn−1)
where I is the identity and f is the right hand side of the differential equation. The
local coordinate system after step n is obtained recursively as

An =Mn ·An−1

and the enclosure of the solution is given by

rn = An[r0]

which is the linear transformation under the matrix An of the original box enclosing
the set of initial conditions. Moore observed that if the solution is expressed in
terms of the matrix An, the overestimation due to the need for re-packaging grows
with ∆t2, and thus a reduction of the step size can effectively reduce the wrapping
problem.
The method was further extended by Eijgenraam [10], who instead ofMn chooses

matrices of the form

Sn = I +
kX
i=1

∆tin
i!

f (i)(xn−1, t)

where again the local coordinate system after step n is given by An = Sn · An−1.
For larger ∆t, the matrices Sn represents a better approximation of the linear
transformation describing the propagation by the step ∆t of the linearized ODE.
The fi are defined recursively as fi = f 0i−1 · f(x) and are also known as the Lie
derivatives of the ODE, and k is a suitably large fixed value. This approach is often
also referred to as the parallelepiped (PE) method.
In his ground breaking work on validated integration, Lohner [21][22][20][23][24][25]

added another variant based on an orthogonal coordinate system that is obtained
by using the QR-decomposition of the matrix An. Specifically, the columns of An

are sorted in descending order by Euclidean length, and the transformation matrix
is chosen as the orthogonal part Qn of the QR decomposition of the matrix An.
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While seemingly providing a less accurate approximation of the linearization than
the propagation of Sn, the method has the significant advantage that the matrix
Qn is always well-conditioned by virtue of being orthogonal; thus the inversions
necessary in propagating to the next time step can always be executed reliably, and
propagation of interval vectors through the matrix does not lead to significant over-
estimation. In situations where integration over sufficiently large times is required
and in which case the An can easily become ill-conditioned, this QR method offers
a significant advantage.
An enhancement of the conventional QR method for large initial domain boxes is

the combination of a parallelepiped to describe the bulk of the flow and a remainder
expressed by the QR method as proposed by Lohner [22]. In our future study, this
PEQR method will often serve as a reference for comparison.
While it is very difficult to assess the relative merits of these approaches in the

general setting, for the special case of linear time-independent ODEs it is possible
to provide a quantitative analysis of the behavior of the approaches. This work was
pioneered by Nedialkov and Jackson [36][38], and it was seen through an eigenvalue
analysis similar to what is done in the study of stability of conventional ODE
solvers that the asymptotic behavior of the QR method is essentially the same as
that of conventional non-validated integration schemes. Many practical examples
also support this assessment, and [38] contains a rather representative collection of
them.
However, for non-autonomous systems, the situation is different even in the linear

case; for example, Kühn [19] provides a rather elementary example consisting of a
sequence of n matrices that when applied repeatedly lead to exponential growth
in the QR method, while the product of the n matrices is actually unity. We will
revisit this topic again below.

Other enclosures for the flows of the ODEs besides the parallelepipeds of the PE
and QR methods have also been studied. It seems natural to consider structures
that are invariant under linear transformations, which aside from numerical inac-
curacies allows to at least represent the solution sets of linear ODEs. The natural
choices are ellipses, which appear in the work of Jackson [15][16][17], Kahan[18] and
Neumaier[40], and convex polygons [42] as well as the related zonotopes [19]. The
latter are linear transformations from Rm·n into Rn, where the higher dimensions
are populated successively by assigning a new dimension to any error term that
reaches a certain minimum size; apparently the approximation becomes better and
better the larger the parameter m is chosen.
From a formal point of view, the zonotope methods are interesting because not

only are they invariant under linear transformation, but also under addition, which
facilitates the use of the objects in arithmetic. The latter methods have the advan-
tage that using proper strategies of how new faces are added and others removed
from the object, error growth can be substantially slowed. Particularly fruitful ap-
proaches seem to be the attempts at finding the ”smallest” polygon including an
interval box in [42] and the cascade algorithm presented in [19].
Other methods of avoiding potential exponential error growth for linear sys-

tems are developed by Gambill and Skeel [13] using odd-even reduction of the
(Mn)× (Mn) matrix propagating the M initial and intermediate conditions in the
n-dimensional system, as well as the intuitive approach by Barbarosie[2] based on
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propagating boundaries of sets instead of sets themselves, which can be beneficially
applied to two-dimensional problems.
All methods based on families of invariants of linear transformations discussed

above, namely the PE, QR, PEQR, ellipsoid, and zonotope methods, have the
following properties:

• the enclosure sets for the flow are convex, while nonlinear problems may
require non-convex sets

• the accuracy of the enclosure, measured by the interval remainder bound,
scales at most quadratically with size for nonlinear problems

• the families are not invariant under nonlinear transformations.
The Taylor model-based integrator introduced in [26] overcomes these three dif-

ficulties; relationships between the coordinates x(t) and initial coordinates xi are
expressed in terms of a Taylor model [26][27][31][32] (P, I) consisting of a polyno-
mial with floating point coefficients P : Rn → Rn and an n-dimensional interval
I, both of which depend on t, such that x(t) ∈ P (xi) + I. The representation of
final coordinates in terms of initial coordinates in terms of Taylor models has the
properties

• the enclosure sets can be either convex or concave
• the accuracy of the enclosure scales with order n+ 1, where n is the order
of the Taylor models being used

• the family of Taylor models is invariant under nonlinear transformations
More specifically, the Taylor model method [27, 26] combines interval methods

for validation and high order automatic differentiation for efficient modeling of local
functional behavior. The method represents a multivariate functional dependence
f in the domain B by a high order multivariate Taylor polynomial P and the
remainder bound interval I as

(1.1) f(x) ∈ P (x− xR) + I for all x ∈ B,

where xR is the reference point of the Taylor expansion. The nth order Taylor
polynomial P is expressed by floating point coefficients, and it captures the bulk
of functional dependency. Because the manipulation of those polynomials can be
performed by operations on the coefficients where the minor errors due to their
floating point nature are moved into the remainder bound, the major source of
interval overestimation is removed, and overestimation only occurs in the remainder
bound, the size of which scales with order n of the width of the domain[32].
The standard binary operations and intrinsic functions on Taylor models were

implemented in the code COSY Infinity [26, 4]. For the treatment of ODEs, it is of
particular significance that the antiderivation operation ∂−1 can be treated as an
intrinsic function in the Taylor model structure [26, 6]. This formally removes the
difference between the solution of ODEs and merely algebraic equations based on
fixed point methods.
When applied to the verified integrations of ODEs [5], the following advantages

have been observed.

• The inclusion requirement asserting existence of a solution reduces to a
mere inclusion of the remainder intervals, and different from conventional
methods based on two separate algorithms for initial validation by an Euler
step and subsequent higher order execution, the entire steps is performed
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in one algorithm. There is also no need to utilize additional ODEs for
derivatives.

• The direct availability of the antiderivation on Taylor models allows to
treat the Picard operator like any other function, avoiding the need to
explicitly bound error terms of integration formulas and leading to a rather
straightforward validated fixed point problem.

• The explicit dependency on initial variables is carried through the whole
integration process. This controls the bulk of the dependency problem very
efficiently and hence the main source of wrapping effect is eliminated to
order n+ 1.

The results of the methods developed in [5] can be summarized in the following
theorem.

Theorem 1. (Continuous Dynamical System with Taylor Models) Let P+
I be an n-dimensional Taylor model describing the flow of the ODE at the time t;
i.e. for all initial conditions x0 in the original domain region B ⊂ Rn, we have

x(x0, t) ∈ I +
[

x0∈B
P (x0).

Let P ∗(x0, t) be the invariant polynomial depending on x0 and t obtained in [5],
and assume that the self-inclusion step of the Picard Operator mapping described
there is satisfied over the interval [t, t +∆t] by the remainder bound I∗. Then for
all x0 ∈ B, we have

x(x0, t+∆t) ∈ I∗ +
[

x0∈B
P ∗(x0, t+∆t).

Furthermore, if even x (x0, t) ∈ P (x0)+I, then x (x0, t+∆t) ∈ P ∗(x0, t+∆t)+I∗.
By induction over the individual steps, we obtain a relationship between initial

conditions and final conditions at time t. Thus formally, the continuous case is
made equivalent to the discrete case, for which the respective property follows
immediately from the respective enclosure properties of Taylor models, as described
for example in [32].

Theorem 2. (Discrete Dynamical System with Taylor Models) Let P+I be
an n-dimensional Taylor model describing the flow of the discrete dynamical system
xn+1 = f(xn, n), i.e. for all initial conditions x0 in the original domain region
B ⊂ Rn, we have

xn(x0) ∈ I +
[

x0∈B
P (x0).

Let P ∗ + I∗ be the Taylor model evaluation of f (P + I, n). Then for all x0 ∈ B,
we have

xn+1(x0) ∈ I∗ +
[

x0∈B
P ∗(x0).

Furthermore, if even xn (x0, t) ∈ P (x0) + I, then xn+1 (x0) ∈ P ∗(x0) + I∗.
The two theorems thus allows the validated study of continuous and discrete

dynamical systems, provided that the Taylor model arithmetic is performed in a
validated manner. In the case of the implementation in COSY, all errors in the
floating point coefficients are fully accounted for [32][41].
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For the purpose of practical efficiency, it is important that the treatment of the
coefficients arithmetic supports sparsity, i.e. only coefficients that are nonzero (or
more specifically, above a pre-specified accuracy threshold [32][41]) contribute to
computational effort. Finally, for high dimensional systems and high expansion
order n in time, one often observes that the expansion in the initial conditions does
not need to be executed to the same order unless the dimensions of the original
domain box is of a comparable size as the time step. This can be exploited simply
by not setting the initial Taylor model to a linear form P (x0) = A·x0 describing the
original box, but rather choose P (x0) = A ·xw0 for some suitable odd integer power
w. In this way, throughout the computation, only powers of x0 that are multiples of
w appear, which effectively limits the expansion in initial conditions to the largest
m that satisfies m · w ≤ n. Combined with sparsity methods, this can drastically
reduce computational expense and storage requirements.

Definition 1. (Transversal Weighting) Let the continuous dynamical system
under consideration have v variables, and let the time expansion be executed to order
n. Assume the initial box of interest is described by the Taylor model P (x0) = Axw0
where w < n is an odd integer; then w is called the weighting of the transversal
expansion.

In a typical nonlinear problem one often finds that, already expansion order 3
or 5 in initial conditions allows the treatment of rather large initial domain boxes,
while an expansion order of n = 17 in time may be desireable; an example of this
can be seen below in figure4. This can be achieved by setting w = 5 or w = 3,
respectively. Furthermore, in the case of linear ODEs where the dependency of
final conditions on initial conditions is always linear, one can choose w in such a
way that 2 · w > n, and thus only first order is retained. For the example case of
n = 17, one may for example choose w = 9.
The method also has the interesting side effect that the effective expansion or-

der in time of the higher order terms in the initial conditions is reduced, which
because of their reduced importance and leads to additional computational savings
without loss of accuracy. For example, in the n = 17 and w = 5 case, the first
order dependence in initial condition is expanded to order 12, while the third order
dependencies, of which there are many, are expanded only to order 2. From the
combinatorial arguments in [3] it follows that the number of possible coefficients of
order n in v initial conditions with weighting factor w is given by

N(n, v,w) =

[n/j]X
j=0

(j + v − 1)!
j! · (v − 1)! · (n− w · j + 1)

where [x] denotes the Gauss bracket of x, the smallest integer not exceeding x. On
the other hand, the number of floating point numbers necessary in a code like AWA
that solves the ODE for the flow of the reference point and the first partials using
polynomials with interval coefficients is (n+ 1) · (v + 1) · 2.
For the purpose of providing some examples, we list in table 1 the number

of floating point coefficients in a Taylor model of order n in v variables and with
weighting w under the assumption of lack of any sparsity, i.e. all coefficients appear
and lie above the accuracy threshold. The quantity ni is the order of expansion
in initial conditions. For comparison, the number of coefficients necessary to store
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Order n Variables v Weighting w Order ni Cosy Coefs AWA Coefs
17 3 9 1 41 144
17 5 9 1 57 216
17 10 9 1 97 396
17 20 9 1 177 756
17 3 5 3 135 144
17 5 5 3 308 216
17 10 5 3 1248 396
17 20 5 3 6578 756
13 5 3 4 504 168
13 10 3 4 3094 308
15 5 3 5 882 192
15 10 3 5 7098 352

Table 1. Number of floating point numbers necessary to store all
appearing partial derivaties in COSY to order ni in initial condi-
tions, and in the first order code AWA

all interval endpoints of the ni = 1 representation used in AWA is also given. The
first four rows show the situation for the case most similar to the perfomance of
the ni = 1 case of AWA; the smaller number of COSY coefficients is due to the fact
that on the one hand, instead of interval coefficients only real numbers are stored,
and on the other hand that the expansion order in time for the dependence on
initial condtions is reduced. The other rows show the situation for other choices of
weights, which of course is more expensive; yet in the COSY scheme third order ni
at least for low dimensions can still be achieved with a similar number of coefficients
of AWA.
In the following section, we will study in detail the two fundamental questions of

validated integration, the accurate representation of flows of ODEs, and methods
to prevent growth of the remainder bound, and illustrate the behavior with a large
number of examples.

2. Faithful Representation of Flows by Taylor Models

As discussed in the previous section, the successful use of validated methods
requires on the one hand the accurate representation of the solution sets over short
time scales, and on the other hand the ability to suppress the long-term build up
of errors. In this section we study the behavior of the Taylor model method with
respect to the first question, which is directly connected to and characteristic of
the mathematical behavior of the ODE being studied. We observe that for linear
systems, this first source of errors is particularly easy to control, since the flows
of linear ODEs are merely linear transformations of the initial coordinates. How-
ever, as simple as the matter is for linear ODEs, as complicated it is for nonlinear
ODEs. In this case, except for special cases there is no simple representation of
the dependency of final conditions on initial conditions. This is the prime reason
why nonlinear ODEs represent the real challenge in the validated integration of
differential equations, and results obtained for the purely linear case are often not
characteristic for the behavior in nonlinear cases.
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Figure 1. The solution trajectories of the Volterra equations,
f(x1, x2) ≡ x1x

2
2e
−x1−2x2 = c(onstant). f(x1, x2) is shown by

mesh, and the contour lines for various values of c’s are shown.
The initial condition (x01, x02) = (1, 3) corresponds to c = 9e

−7 '
0.00821.

2.1. Examples - The Volterra Equations. In the following, we illustrate the
behavior of the Taylor model based integration scheme[5] and compare it to other
methods, specifically the code AWA [20] as a representative of the conventional
methods. We compare with COSY-VI, the (V)alidated (I)ntegrator based on the
COSY language system [4] that is using the Taylor model arithmetic discussed in
[32] [4].
The ODEs under consideration are the Volterra equations governing the growth

of two conflicting populations, modeling a predator-prey relation, which are fre-
quently used in the study of ODE solvers [1] [35]. The solution trajectories obey
the constraint

C(x1, x2) = x1x
2
2e
−x1−2x2 = Constant,

as can be seen by simple differentiation and insertion of the ODE, and thus the
solutions follow the contour lines of the function C. In the quadrant characterized
by x1,2 > 0, the constant is positive, which entails that contour lines of C cannot
cross the x1 or x2 axis, and so contour lines originating in this quadrant stay in it.
Furthermore, within this quadrant the function asymptotically approaches zero as
x1 or x2 become large, and so contour lines are bounded and follow closed curves.
Figure 1 illustrates the shape of C and a few of its contour lines. The period of one
cycle of the solution depends on the initial condition, and outer orbits take longer.
The Volterra equations are a frequently cited example for the numerical verifica-

tion of ODE solvers. For validated ODE solvers, their nonlinearity combined with
their periodicity allows for a particularly transparent study of the wrapping effect.
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We take the same model discussed by Ames and Adams [1] and by Moore [35],
and have the initial condition interval vector centered around the point values
used in their discussions. We aim, in such a way, to provide a good comparison
between our approach and other approaches. The ODEs and initial conditions for
the Volterra equations are

dx1
dt

= 2x1(1− x2),
dx2
dt

= −x2(1− x1)

x01 ∈ 1 + [−0.05, 0.05], x02 ∈ 3 + [−0.05, 0.05] at t = 0.(2.1)

The right hand side of the ODEs has the form of a “single use expression” (SUE), so
it has no source of overestimation of arithmetic nature; this makes any overestima-
tion due to the wrapping effect more clearly visible and separates this effect from
the ability of the Taylor models to significantly reduce any dependency problem
that may be present in the right hand side[28].
The solution trajectory for the point initial values (x01, x02) = (1, 3) is a closed

orbit with a period of about T ' 5.488138468035. We attempted to carry out
the integration of the system with AWA and COSY-VI for one period T. As will
be shown, the system starts to exhibit noticeable nonlinearity around t ∼ 4.We
used AWA in its standard mode; namely we use the enclosure method 4 based on
an intersection of interval-vector and QR-decomposition [20, 22, 36]. AWA’s error
tolerances Ea and Er, the absolute and the relative accuracy of the solution used for
the step size control, are set at 10−12 each. However, those accuracy requirements
are not necessarily achieved [20], as we will see later. The computational order
has to be pre-set in both AWA and COSY-VI, and the same order was used to
facilitate comparison. Both AWA and COSY-VI have automatic step size control,
and it was observed that their choices of step sizes for different times t were similar.
We performed the integration of the Volterra equations by AWA and COSY-VI with
various computational orders, demanding the completion of one period T.
The pictures in Figure 2 show the solution regions R(t) at various characteristic

times, as they are enclosed by Taylor models. They are made based on the obser-
vation that flows of ODEs are bijective and thus the outer edges of the original box
are mapped into the outer edges of the result after application of the ODE. Hence
it is only necessary to draw four curves, two for which x1 is fixed at the positive
and negative values and x2 varies, and two for which x2 is fixed at the positive and
negative values and x1 moves. The remainder bounds are so small that they are
insignificant to printer resolution.
Initially nonlinearity is not very significant, and until the nonlinearity becomes

noticeable around t ∼ 4, the solution regions R(t) are still well represented by
parallelepipeds. After that, the nonlinearity becomes larger and larger, and the
solution region R(t = 4.85) shows clear limitations to any attempt to accurately
model the region by a parallelepiped or any other convex object. The nonlinearity
temporarily decreases afterwards, but the strong nonlinearity returns just before
the completion of the period as observed in R(t = 5.45).
The solution enclosures at each time step of the 18th order Taylor model com-

putation by COSY-VI are placed along the center point trajectory in Figure 3.
Since COSY-VI completes the whole integration period without noticeable over-
estimation, it tightly keeps the closed orbit structure of the ODE trajectory. An
elongation of the solution region R(t) along the trajectory is observed, which is the
result of different cycle periods for the various closed orbits. The dashed boxes are



10 KYOKO MAKINO AND MARTIN BERZ

0.42

0.43

0.44

0.1 0.11 0.12 0.13 0.14

t=2.33

0.17

0.18

0.19

0.2

1.2 1.3 1.4 1.5

t=3.94

0.3

0.4

0.5

3.2 3.3 3.4 3.5 3.6

t=4.58

0.45

0.5

0.55

0.6

0.65

0.7

0.75

3.75 3.8 3.85 3.9 3.95 4 4.05

t=4.71

0.7

0.8

0.9

1

1.1

4.14 4.16 4.18 4.2 4.22 4.24 4.26 4.28

t=4.85

1

1.1

1.2

1.3

1.4

1.5

3.9 4 4.1 4.2 4.3 4.4

t=4.95

1.4

1.5

1.6

1.7

1.8

1.9

2

3.2 3.4 3.6 3.8 4 4.2

t=5.06

2.94

2.96

2.98

3

3.02

3.04

0.9 1 1.1 1.2 1.3 1.4 1.5

t=5.45
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Figure 3. Solution enclosures of the Volterra eqs. at each time
step by Taylor models (solid regions) and AWA (dashed boxes) in
an 18th order computation.

the solution enclosure interval vectors obtained by AWA, showing the beginning
of breakdown before t = 4. The last solution interval box by AWA in Figure 3 is
at time t ' 4.634. In the case of AWA, despite of the error tolerance demand, a
quick error growth is clearly observed after t = 4, and eventually integration cannot
proceed despite drastic attempts at decreasing the step size. Eventually the box
size reaches more than 1014 at time t ' 4.93115 and execution terminates. The
dramatic growth in solution interval box size shows a clear correlation to the strong
nonlinearity, which becomes apparent at t = 4.85 in Figure 2.
On the other hand, COSY-VI continues the computation during the period of

strong nonlinearity by keeping the step size smaller; once the nonlinearity becomes
weak again, the step size increases again. When the step size control is done only
connected to the local error, the step size progress directly reflects the difficulty of
integration due to the strength of nonlinearity.
The performance was studied with different computation orders for the system,

but AWA terminated prematurely at nearly the same time regardless of the integra-
tion order; a typical consequence of the wrapping effect, which cannot be controlled
by increasing the order. COSY-VI completed the whole demanded integration pe-
riod T without difficulty when the expansion order in time was sufficiently high.
For lower time expansion order, it was necessary to keep the step size small as
mentioned earlier.
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Order COSY-VI AWA
CPU time CPU time Breakdown time t

12 3.2 sec 13.6 sec 5.06039
18 13.6sec 10.7 sec 4.93115

Table 2. CPU time. COSY-VI completed the whole integration
period T = 5.488138468035, but AWA broke down at time t.

Also listed in Table 2 is the CPU time comparison, using a 450 MHz Pentium
III PC running Linux; the weighting w was chosen to be 1. Since AWA did not
complete the period, we also listed the breakdown time t in the ODE system.
To illustrate the performance of the computation with COSY-VI, we now list the

resulting Taylor model for the variables x1 after the completion of one full cycle at
t = 5.488138468035000. Shown are the floating point coefficients for each monomial,
as well as its order and the exponents of the expansion in the initial conditions.
Note that there is a third column for exponents, which during the integration step
is used to describe the dependence on time, but which does not appear at the end
since the final value of t is plugged in. We show all terms up to order 4, as well as
the end of the expansions which contain terms of order 12, as well as the remainder
bounds.

I COEFFICIENT ORDER EXPONENTS

1 1.000000000415308 0 0 0 0

2 0.5000000002077984E-01 1 1 0 0

3 0.1593548597307891 1 0 1 0

4 0.2987903619745317E-02 2 2 0 0

5 0.7967742985213962E-02 2 1 1 0

6 0.1745863785938967E-01 2 0 2 0

7 0.4979839364267220E-04 3 3 0 0

8 0.5551021323566726E-03 3 2 1 0

9 0.6348634118140111E-03 3 1 2 0

10 0.1191291279313411E-02 3 0 3 0

11 0.3258832737600261E-05 4 4 0 0

12 0.3241341493295573E-06 4 3 1 0

13 0.3862783708476137E-04 4 2 2 0

14 0.2689662801524732E-05 4 1 3 0

15 0.3564904350045831E-04 4 0 4 0

...

79 0.2264828694386490E-15 12 12 0 0

80 -.1070762043111673E-14 12 11 1 0

81 0.3189161647800073E-14 12 10 2 0

82 0.1429170282664684E-14 12 9 3 0

83 0.1168048490492948E-13 12 8 4 0

84 0.6197159510359881E-13 12 7 5 0

85 0.6886774467995614E-13 12 6 6 0

86 0.2141863127503214E-12 12 5 7 0

87 0.1915198148620145E-12 12 4 8 0
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88 0.2264491972426495E-12 12 3 9 0

89 0.1788727621438823E-12 12 210 0

90 0.5499818896261770E-13 12 111 0

91 0.6996138986393415E-13 12 012 0

R [-.1481801093188394E-008,0.1490922875566877E-008]

To understand the meaning of the terms, consider some examples. After one
revolution, the center point of the first variable is mapped back to a value near
1, as expected. The coefficient describing the linear dependence of the final first
variable on the initial first variable is around 0.05, corresponding to the original
box width. There is also a linear dependence on the second variable of about 0.16,
describing a substantial shearing of the end result, which is also clearly visible in
figure 3. Furthermore, there are many higher order contributions; for example the
second order dependence on x1x2 is around −0.00597, indicating an appreciable
curvature, which is also noticeable in figure 3. The terms of order 12 are smaller
than 10−12, illustrating that the expansion of final conditions on initial conditions
does indeed converge. The remainder bound has a width of about 3 · 10−9, which
is more than seven orders of magnitude less than the dependence on linear terms.
For the purpose of a more quantitative study of the behavior of the integrators,

let us now consider in detail the execution of a single step of the integration process.
We choose a region in which nonlinearity is sufficiently strong so that the effects
can be noticed in one step. We choose as initial condition the linear part of the
Taylor model at t = 4.85. Since AWA can not treat in detail the nonlinear solution
set produced by COSY for this time, we delete its nonlinear terms and obtain an
approximation of the solution set at the time of interest that has the form of a
parallelepiped.
Then we use this parallelepiped to perform a single time step by the time ∆t.

We execute the step with COSY so that as a result, nonlinear terms are being
populated. To simulate the behavior of AWA, all the resulting nonlinearities as
well as the (n+1)st order remainder interval produced by COSY are bounded into
an interval, which is a measure of the one-step accuracy of a linear code like AWA.
It is likely that this estimation is somewhat optimistic since it ignores any possible
dependency in the iterative process of the solution of the ODE.
Figure 4 shows the width of the resulting higher order terms as a function of the

expansion order for various different time steps, where T is the time step recom-
mended by COSY’s step size controller. As can be seen, at order 1 the one-step
error is around 10−3, while for the smaller step sizes, between orders 4 to 6 the
one-step error can be suppressed below 10−13. Because of the high order depen-
dence of the integration error on step size, the error at twice the recommended step
size reaches only around 10−8.Thus for a suitable step size, the one-step integration
error produced by COSY’s Taylor model method is 10 orders of magnitude less
than that for a linear method.

It is also illuminating to study the behavior of the error as a function of the
size of the parallelepiped. For this purpose we execute a step at the recommended
step size for parallelepipeds scaled by various factors and observe the behavior at
different orders. Figure 5 shows the resulting widths of the remainder bounds. All
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Figure 4. Remainder errors for a single step as a function of order
and step size

boxes up to the original size of the box can be integrated to an accuracy below 10−13

for sufficiently high orders between 4 and 6; the larger box allows integration only
to an error of 10−12. On the other hand, a linear method similar to the one used in
AWA can produce a one-step error only in the range of 10−2 to 10−5. So altogether,
again the Taylor model approach leads to a reduction of the one-step error by 7 to
10 orders of magnitude. Overall we observe that the Taylor model method has the
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Figure 5. Remainder errors for a single step as a function of order
and box size

ability to represent the solution set very accurately up to the error of the remainder
bound, the size of which at a fixed time can be affected by the order of expansion
in the transversal variable, as well as of course by the step size and as necessary the
floating point accuracy. In fact, under the assumption of expandability of the flow
in time and transversal variables, and under the assumption of arbitrary precision
arithmetic, for a fixed t, the Taylor model method allows to represent the flow to
any pre-specified accuracy.



TAYLOR MODEL INTEGRATORS 15

3. Shrink Wrapping

In this section, we address one method to control the long-term growth of inte-
gration errors. As we saw in the last section, for a fixed time t of interest, the errors
appearing in the remainder interval can at least in principle be kept as small as de-
sired. However, for large values of the time t, the approach used there may become
computationally impractical, and so it is desireable to develop schemes that limit
the error growth as a function of time for a fixed expansion order and computational
accuracy. The shrink wrapping method[30] is one approach for this purpose. It is
based on the idea of enclosing the remainder error including floating point errors
and errors due to the finite order in time within the range of the polynomial part
of the Taylor model. By doing so, the remainder error ceases to be an interval, and
instead is transformed into a variable that is retained explicitly up to the order of
the Taylor model.
While in the linear case, this problem reduces to mere linear algebra, in the

nonlinear case the situation is more involved, as the present nonlinear terms should
not be also simply lumped into the linear parts at the same time; so the task
requires to absorb the interval into a nonlinear structure, and we refer to it as shrink
wrapping. In the following, we present one method to perform shrink wrapping; we
point out that there are many variants of this approach, and while the one shown
here is one of the simpler ones to outline, it is not necessarily the optimal choice
for given problems.
As discussed in the introduction, after the kth step of the integration, the region

occupied by the final variables is given by the set

(3.1) A = I0 +
[

x0∈B
M0(x0),

where x0 are the initial variables, B is the original box of initial conditions,M0 is
the polynomial part of the Taylor model, and I0 is the remainder bound interval;
the sum is the conventional sum of sets. In the case of the COSY-VI integration,
the mapM0 can be scaled such that the original box B is unity, i.e. B = [−1, 1]v.
We assume this to be the case for the rest of the discussion. The remainder bound
interval I0 accounts for the local approximation error of the expansion in time
carried out in the kth step as well as floating point errors and potentially other
accumulated errors from previous steps; it is usually very small. As stated earlier,
the purpose of shrink wrapping is to “absorb” the small remainder interval into a
set very similar to the second part of the right hand side in eq. (3.1) via

A ⊂ A∗ = I∗0 +
[

x0∈B
M∗

0(x0),

whereM∗
0 is a slightly modified polynomial, and I

∗
0 is a significantly reduced interval

of the size of machine precision.
As the first step, we extract the constant part a0 and linear part M0 · x ofM0

and determine a floating point approximation M̄−10 of the inverse of M0. In case
the ODEs admit unique solutions, as is typically the case for the problems at hand,
also the linear part of the flow is invertible. Within a floating point environment,
thus the attempt to invert the linear transformation M0 will likely succeed as long
as the linear transformation is sufficiently well-conditioned. If this is not the case,
additional steps may be necessary, which will be discussed in some detail below.
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After the approximate inverse M̄−10 has been determined, we apply the linear
transformation M̄−10 · (x− a0) from the left to the Taylor modelM0(x0) + I0 that
describes the current flow. As a result, the constant part of the resulting Taylor
model now vanishes, and its linear part is near identity. We write the resulting
Taylor model as

M+ I = I + S + I,

where I is the identity, and the function S contains the nonlinear parts of the
resulting Taylor model as well as some small linear corrections due to the error in
inversion. We include I into the interval box d · [−1, 1]v, where d is a small number.

Figure 6. The region described by the Taylor modelM0 + I0 is
transformed to be normalized as I+S+ I, where I is the identity.

Definition 2. Let M = I + S +I, where S is a polynomial and I is a small
interval. We include I into the interval box d · [−1, 1]v. We pick numbers s and t
satisfying

s ≥ |Si(x)| ∀ x ∈ B, 1 ≤ i ≤ v,

t ≥
¯̄̄̄
∂Si(x)
∂xj

¯̄̄̄
∀ x ∈ B, 1 ≤ i, j ≤ v.

We call a map M shrinkable if (1− vt) > 0 and (1− s) > 0; both of which can be
achieved if S (and since it is a polynomial, also its derivative) is sufficiently small
in magnitude. Then we define q, the so-called shrink wrap factor, as

q = 1 + d · 1

(1− (v − 1)t) · (1− s)
.

The bounds s and t for the polynomials Si and ∂Si/∂xj can be computed by
interval evaluation. The factor q will prove to be a factor by which the Taylor
polynomial I + S has to be multiplied in order to absorb the remainder bound
interval.

Remark 1. (Typical values for q) To put the various numbers in perspective, in
the case of the verified integration of the Asteroid 1997 XF11, we typically have
d = 10−7, s = 10−4, t = 10−4, and thus q ≈ 1 + 10−7. It is interesting to note
that the values for s and t are determined by the nonlinearity in the problem at
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hand, while in the absence of “noise” terms in the ODEs described by intervals, the
value of d is determined mostly by the accuracy of the arithmetic. Rough estimates
of the expected performance in quadruple precision arithmetic indicate that with
an accompanying decrease in step size, if desired d can be decreased below 10−12,
resulting in q ≈ 1 + 10−12.
In order to proceed, we need some estimates relating image distances to origin

distances.

Lemma 1. LetM be a map as above, let k·k denote the max norm, and let (1−vt) >
0. Then we have

|Mi(x̄)−Mi(x)| ≤
X
j

|δi,j + t| |x̄j − xj | ,

kM(x̄)−M(x)k ≤ (1 + vt) · kx̄− xk , and
kM(x̄)−M(x)k ≥ (1− vt) · kx̄− xk .

where δi,j denotes the Kronecker delta.

Proof. For the proof of the first assertion, we observe that all (v − 1) partials of
∂Mi/∂xj for j 6= i are bounded in magnitude by t, while ∂Mi/∂xi is bounded in
magnitude by 1 + t; thus the first statement follows from the intermediate value
theorem. For the second assertion, we trivially observe

kM(x̄)−M(x)k = max
i
|Mi(x̄)−Mi(x)|

≤ max
i

X
j

|δi,j + t| |x̄j − xj |

≤ (1 + vt) kx̄− xk .

For the proof of the third assertion, which is more involved, let k be such that
kx̄− xk = |x̄k − xk| , and wlog let x̄k − xk > 0. Then we have

kM(x̄)−M(x)k = max
i
|Mi(x̄)−Mi(x)|

≥ |Mk(x̄)−Mk(x)|

=

¯̄̄̄
¯̄(1 + ck)(x̄k − xk) +

X
j 6=k

cj(x̄j − xj)

¯̄̄̄
¯̄(3.2)

for some set of cj with |cj | ≤ t ∀j = 1, ..., v, according to the mean value theorem.
Now observe that for any such set of cj ,¯̄̄̄

¯̄X
j 6=k

cj(x̄j − xj)

¯̄̄̄
¯̄ ≤X

j 6=k
|cj | |x̄j − xj | ≤

X
j 6=k

|cj |
 |x̄k − xk|

≤ (v − 1) t |x̄k − xk|
≤ (1− t) |x̄k − xk| ≤ (1 + ck) (x̄k − xk) .
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Hence the left term in the right hand absolute value in (3.2) dominates the right
term for any set of cj , and we thus have¯̄̄̄

¯̄(1 + ck)(x̄k − xk) +
X
j 6=k

cj(x̄j − xj)

¯̄̄̄
¯̄

≥ (1− t)(x̄k − xk)−
X
j 6=k

t |x̄j − xj |

≥ (1− t)(x̄k − xk)− (v − 1) t (x̄k − xk)

= (1− vt)(x̄k − xk) = (1− vt) kx̄− xk ,
which completes the proof. ¤

Theorem 3. (Shrink Wrapping) Let M = I + S(x), where I is the identity. Let
I = d · [−1, 1]v, and

R = I +
[
x∈B

M(x)

be the set sum of the interval I = [−d, d]v and the range of M over the original
domain box B. Let q be the shrink wrap factor ofM; then we have

R ⊂
[
x∈B

(qM)(x),

and hence multiplying M with the number q allows to set the remainder bound to
zero.

Proof. Let 1 ≤ i ≤ v be given. We note that because ∂Mi/∂xi > 1 − t > 0, Mi

increases monotonically with xi. Consider now the (v − 1) dimensional surface set
(x1, ..., xv) with xi = 1 fixed. Pick a set of xj ∈ [−1, 1], j 6= i. We want to study
how far the set R = I +

S
x∈BM(x) can extend beyond the surface in direction i

at the surface point y =M(x1, ..., xi−1, 1, xi+1, ..., xv).
Let yi be the i-th component of y. The i-th components of the set y+I apparently

extends beyond yi by d. However, it is obvious that R can extend further than that
beyond yi. In fact, for any other ȳ with |ȳj − yj | ≤ d for j 6= i, there are points in
ȳ + I with all but the i-th component equal to those of y. On the other hand, any
ȳ with |ȳj − yj | > d for some j 6= i can not have a point in ȳ + I with all but the
i-th component matching those of y. So at the point yi, the set R can extend to

ri(y) = d+ sup
{ȳ| |ȳj−yj |≤d (j 6=i)}

ȳi.

We shall now find a bound for ri(y). First we observe that because of the mono-
tonicity ofMi, we can restrict the search to the case with xi = 1. We now project
to an (v− 1) dimensional subspace by fixing xi = 1 and by removing the i-th com-
ponentMi. We denote the resulting map byM(i), and similarly denote all (v− 1)
dimensional variables with the superscript “(i)”.
We observe that with the function M, also the function M(i) is shrinkable ac-

cording to the definition, with factors s and t inherited from M. Apparently the
condition on ȳ in the definition of ri(y) entails that in the (v − 1) dimensional
subspace,

°°ȳ(i) − y(i)
°° ≤ d. Let x̄(i) and x(i) be the (v− 1) dimensional pre-images
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Figure 7. At the point yi, the set R = I+
S
x∈BM(x) can extend

to ri(y).

of ȳ(i) and y(i), respectively; because
°°ȳ(i) − y(i)

°° ≤ d, we have according to the
above lemma that °°°x̄(i) − x(i)

°°° ≤ d

1− (v − 1)t ,

which entails that also in the original space we have |x̄j − xj | ≤ d/(1− (v−1)t) for
j 6= i. Hence we can bound ri(y) via

ri(y) ≤ d+ sup
{x̄| |x̄j−xj |≤d/(1−(v−1)t)

(j 6=i), xi=x̄i=1}

Mi(x̄).

We now invoke the first statement of the lemma for the case of x̄, x satisfying
|x̄j − xj | ≤ d/(1− (v−1)t) (j 6= i), xi = x̄i = 1. The last condition implies that the
term involving (δi,j + t) does not contribute, and we thus have |Mi(x̄)−Mi(x)| ≤
(v − 1)t · d/(1− (v − 1)t), and altogether

ri(y) ≤ yi + d+
d · (v − 1)t
1− (v − 1)t

= yi + d · 1

1− (v − 1)t .

We observe that the second term in the last expression is independent of i. Hence
we have shown that the “band” around

S
x∈BM(x) generated by the addition of

I never extends more than d/(1− (v − 1)t) in any direction.
To complete the proof, we observe that because of the bound s on S, the box

(1− s)[−1, 1]v lies entirely in the range ofM. Thus multiplying the mapM with
any factor q > 1 entails that the edges of the box (1− s)[−1, 1]v move out by the
amount (1− s)(q− 1) in all directions. Since the box is entirely inside the range of
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M, this also means that the border of the range of M moves out by at least the
same amount in any direction i. Thus choosing q as

q = 1 + d · 1

(1− (v − 1)t) · (1− s)

assures that [
x∈B

(qM) ⊃ R

as claimed. ¤

Remark 2. (Shrink Wrapping and Complex Arithmetic)
Taylor models have also been successfully used to perform operations in the com-

plex plane. To this end, one merely identifies complex functions as functions from
R2 into R2 and observes that analyticity entails infinite partial differentiability of
the component functions. Thus complex analytic functions can be described as pairs
of Taylor models in two variables, and the rules for Taylor model arithmetic can
be applied to the component functions. Apparently the geometric properties of the
resulting ranges of the Taylor models are analogous to the situation of the flows of
ODEs above; and in a similar way it is thus possible to absorb the remainder term
into the polynomial part of the Taylor model.

Let us consider the practical limitations of the method:

Remark 3. (Limitations of Shrink Wrapping) Apparently the shrink wrap
method discussed above has the following limitations

(1) The measures of nonlinearities s and t must not become too large
(2) The application of the inverse of the linear part should not lead to large

increases in the size of remainder bounds.

Apparently the first requirement limits the domain size that can be covered by
the Taylor model, and it will thus be relevant only in extreme cases. Furthermore, in
practice the case of s and t becoming large is connected to also having accumulated a
large remainder bound, since the remainder bounds are calculated from the bounds
of the various orders of s. In the light of this, not much additional harm is done by
removing the offending s into the remainder bound and create a linearized Taylor
model.

Definition 3. (Linearized Taylor Model) Let M0 ·x+S + I be a Taylor model
with nonlinear part S , and let the components of S be bounded by s = (si). We call

M0 · x+ I + s · [−1, 1]
the linearized Taylor model of M0 · x+ S + I.

The overestimation generated by the application of the inverse of the linear part
is apparently directly connected to the condition number of the linear part M0.

Definition 4. (Blunting of an Ill-Conditioned Matrix) Let A be a regular
nxn matrix that is potentially ill-conditioned and q = (q1, ...qn) be a vector with
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qi > 0. Arrange the column vectors ai of A by Euclidean length. Let ei be the
familiar orthonormal vectors obtained through the Gram-Schmidt procedure, i.e.

ei =

ai −
i−1P
k=1

ek (ai · ek)¯̄̄̄
ai −

i−1P
k=1

ek (ai · ek)
¯̄̄̄ .

We form vectors bi via
bi = ai + qiei

and assemble them columnwise into the matrix B. We call B the q-blunted matrix
belonging to A.

Proposition 1. (Regularity of the Blunted Matrix) The bi are linearly inde-
pendent and thus B is regular.

Proof. By induction. Apparently b1 is linearly independent. Assume now that
b1, ..., bi−1 are linearly independent. We first observe that for each i, the vector bi
is by virtue of its definition a linear combination of the ak for k = 1, ..., i and thus
also of the ek for k = 1, ..., i, since both sets of vectors span the same space. Now
suppose bi is linearly dependent on b1, ..., bi−1; then it is also linearly dependent
on e1, ..., ei−1, and in particular we must have bi · ei = 0. Observe that we have
(ai)

2 =
Pn

k=1(ai ·ek)2 by virtue of the fact that the vectors ek form an orthonormal
basis. Using this, we obtain from the definition of bi that

bi · ei = ai · ei + qi

=

(ai)
2 −

i−1P
k=1

(ai · ek) (ai · ek)¯̄̄̄
ai −

i−1P
k=1

ek (ai · ek)
¯̄̄̄ + qi

=

nP
k=i

(ai · ek) 2¯̄̄̄
ai −

i−1P
k=1

ek (ai · ek)
¯̄̄̄ + qi > 0,

which represents a contradiction to bi ·ei = 0; thus b1, ..., bi are linearly independent,
which completes the induction step. ¤

Remark 4. (Effect of Blunting) The intuitive effect of the blunting is that b1,
and thus the dominating direction, which determines asymptotic behavior, remains
unchanged. Smaller bi are being ”pulled away” from earlier ones in the direction
of ei, i.e. away from the space spanned by the previous vectors b1, ..., bi−1. Since
bi · ei ≥ qi, the “pulling” is stronger for larger choices of qi. Thus larger choices for
qi lead to a matrix that has more favorable condition number.

Algorithm 1. (Pre-Conditioning of Shrink Wrapping) Let M0 be the linear
part of the Taylor model to be shrink wrapped. Subject M0 to the blunting algorithm
just described before attempting to compute its inverse. As a result, M0 is less ill-
conditioned, its approximate inverse M̄−10 is determined more easily, and is itself
less ill-conditioned. As discussed in the main algorithm, the defect of applying M̄−10
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to M0 is moved to the remainder bound. Next, determine if the Taylor model is
shrinkable as defined in 2. If it is not, or if the shrink wrap factor q exceeds a pre-
specified threshold qmax, bound the nonlinear part into the remainder bound. The
result is a shrinkable Taylor model.

Remark 5. (Shrink Wrapping for Linear Systems) When applied to linear
systems, the shrink wrapping with blunting limits the overestimation due to the
conditioning of matrix when transforming the error interval to the new coordinate
system. At the same time, the leading direction remains unchanged, and thus there
is no error introduced that scales with the length of the leading direction, which
determines the asymptotic error. On the other hand, the naive shrink wrapping
method without blunting behaves like the well-known parallelepiped method.

Apparently the trade-off of blunting the linear part lies in an increase in the size of
the remainder bound that then has to be absorbed into the Taylor model. However,
this increase is not affected by the size of the dominating vector, since it remains
unaffected by the blunting algorithm. Thus in studies of asymptotic behavior where
the other directions become exponentially smaller compared to the dominating
direction, the effect of blunting will become exponentially less significant. Since
this requires sending the remainder bound through the inverse, which produces an
overestimation increasing with condition number, it is expected that a moderate
amount of blunting and the corresponding decrease in condition number will overall
lead to a smaller shrink wrap factor. Furthermore, we observe that the less ill-
conditioned inverse that results from blunting will also lead to smaller nonlinear
terms, which leads to a more favorable shrink wrap factor, or may even prevent the
breakdown of shrinking and the need to absorb the nonlinearities into the remainder
bound.
More specifically, the larger the size of the remainder bound relative to the size

of the range into which it is to be absorbed, the larger the blunting factor should
be chosen, since the more important overestimation by application of the inverse
becomes, while the less important the additional contributions from packing the
original matrix in the blunted matrix becomes. A large ensemble of examples for
the use of shrink wrapping under blunting will be studied in the next section.

In a practical environment, one may even use trial and error or other heuristics
to determine suitable blunting parameters. Also, much further theoretical thought
could be spent on the question of the optimal enclosure of one parallelepiped (the
remainder interval) in another (the linear part). For example, one could attempt
to find a ”minimal” parallelepiped to do that; part of the problem is specifying the
meaning of ”minimal”. One could think of minimizing volume, which would lead to
a constrained nonlinear optimization problem. One may also think of minimizing
the lengths of the vectors, which may lead to a linear programming problem.
The trade-off between these two cases seems far from obvious; first, both cases

require the choice of a coordinate system that is somehow ”natural” for the system,
since both volume and coordinate lengths are affected by such a choice of coor-
dinates. Furthermore, while small volume may have obvious immediate appeal,
especially in the case of nonlinear systems, it may be more desirable to operate
with less ”extended” objects, which may reduce subsequent nonlinear effects. Fi-
nally, if the system under consideration exhibits a particular symmetry like energy
conservation or symplecticity, emphasis may be placed on the satisfaction of these
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symmetries. Altogether, although of course all arguments remain validated in our
setting, the efficiency of the method is greatly affected by heuristic choices, in much
the same way as in conventional numerical integration.

Definition 5. (Parameterizing of Remainder Bounds) Let (P, I) be a Taylor
model describing a function f : D ⊂ Rn → Rm We introduce a new polynomial P ∗ :
(D × I) ⊂ Rn+m → Rm via

P ∗(x, t) = P (x) + t on D∗ = D × I.

The Taylor model (P ∗, [0, 0]) is called a parameter-extended Taylor model of f.

We have the following immediate result.

Proposition 2. (Enclosure Property) For all x ∈ D, we have f(x) ∈ P ∗(x, I)+
[0, 0]

What may appear as a simple mathematical slight of hand actually has impor-

tant consequences, since for subsequent steps of the integration, we have uniquely
represented f by only the Taylor model (P ∗, [0, 0]) in a higher dimensional space
that has no remainder bound. We may thus proceed with subsequent operations
in Taylor model arithmetic with the parameter extended Taylor model (P ∗, [0, 0])
instead of the Taylor model (P, I). The consequence is that in later steps, what
was originally the interval I and is thus subject to the cancellation and wrapping
problems, is now the variable t, which can be carried through all occurring Taylor
model operations.

4. Preconditioning the Flow

In this section we will discuss another method to affect the behavior of the
remainder bounds of the solutions of ODEs. The idea is to write the Taylor model
of the solution as a composition of two Taylor models (Pl + Il) and (Pr + Ir), and
then choose Pl+ Il in such a way that Il is zero up to roundoff, and the operations
appearing on Ir are minimized so as not to increase the size of Ir significantly. In
a wider context, the Taylor model (Pl + Il) can be viewed as a specific coordinate
system in which the motion is studied. For practical purposes, in the factorization
we impose that (Pr+Ir) is normalized such that each of its components has a range
in [−1, 1]; for purposes of numerical stability, it is advantageous that the range is in
fact near [−1, 1].This is achieved by factoring out a linear diagonal transformation

containing scaling factors.

Definition 6. Let (P+I) be a Taylor model. We say that (Pl+Il), S, and (Pr+Ir)
form a factorization of (P +I) if the components of the range B(Pr+Ir) of Pr+Ir
lie in [−1, 1], S is a diagonal linear scaling transformation, and

(P + I) ∈ (Pl + Il) ◦ S ◦ (Pr + Ir) for all x ∈ D.

Here D is the domain of the Taylor model (P + I). In this case, we call Pl + Il the
preconditioner, S the scaling, and Pr + Ir the conditioned Taylor model.
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The composition (P1+I1)◦(P2+I2) of the Taylor models (P1+I1) and (P2+I2) is
here to be understood as insertion of the Taylor model (P2+I2) into the polynomial
P1 via Taylor model addition and multiplication, and subsequent addition of the
remainder bound I1. For the study of the solutions of ODEs, the following result is
important

Proposition 3. Let (Pl,n + Il,n) ◦ Sn ◦ (Pr.n + Ir,n) be a factored Taylor model
that encloses the flow of the ODE at time tn. Let (P

∗
l,n+1, I

∗
l,n+1) be the result of

integrating (Pl,n + Il,n) from tn to tn+1. Then

(P ∗l,n+1, I
∗
l,n+1) ◦ Sn ◦ (Pr,n + Ir,n)

is a factorization of the flow at time tn+1.

Thus the right factor remains unchanged. Considering that in the beginning of
the integration, the flow of the initial condition box can be represented as the com-
position of two identity Taylor models, this immediately leads to the obvious but
uninteresting case of leaving the right factor as the identity throughout the inte-
gration, which apparently reduces to the naive Taylor model integration. However,
the key to the beneficial use of the method, and in particular its use in reducing the
growth of remainder terms, lies in moving terms between the left and right factors.
To actually achieve the factorization, the following steps are necessary. First,

observe that according to proposition 3, an inclusion of the flow in a Taylor model
is given by (P ∗l,n+1 + I∗l,n+1) ◦ Sn ◦ (Pr.n + Ir,n). Let c

∗
n+1, C

∗
n+1 be the constant

and linear parts of P ∗l,n+1 and N
∗
l,n+1 the nonlinear part and the remainder, so that

P ∗l,n+1 = c∗n+1 +C∗n+1 +N∗n+1. We set cl,n+1 = c∗n+1 and assume that Cl,n+1 is the
desired linear part of the left factor; more on useful choices for Cl,n+1 below. We

then insert the identity transformation (Cl,n+1 ◦C−1l,n+1) in front of the parentheses,
and thus have an inclusion of the flow as follows:¡

c∗n+1 + C∗n+1 +N∗n+1
¢ ◦ Sn ◦ (Pr,n + Ir,n)

= c∗n+1 +
¡
C∗n+1 +N∗n+1

¢ ◦ Sn ◦ (Pr,n + Ir,n)

= cl,n+1 + (Cl,n+1 + [0, 0]) ◦
³
C−1l,n+1 ◦

¡
C∗n+1 +N∗n+1

¢ ◦ Sn ◦ (Pr,n + Ir,n)
´

= (cl,n+1 + Cl,n+1 + [0, 0]) ◦nh
C−1l,n+1 ◦ C∗n+1 + C−1l,n+1 ◦N∗n+1

i
◦ Sn ◦ (Pr,n + Ir,n)

o
(4.1)

We now denote the expression in the curly brackets by
¡
P 0r,n+1 + I 0r,n+1

¢
and de-

termine its component bounds, which produces the scaling matrix Sn+1. Denoting
(Pr,n+1 + Ir,n+1) = S−1n+1 ◦

¡
P 0r,n+1 + I 0r,n+1

¢
, we thus have an enclosure of the flow

at tn+1 as

(cl,n+1 + Cl,n+1 + [0, 0]) ◦ Sn+1 ◦ (Pr,n+1 + Ir,n+1).

To analyze the effects of this procedure, the following observations are crucial:

(1) The polynomial part of C−1l,n+1 ◦N∗n+1 is purely nonlinear, so its action on
Sn ◦ (Pr,n+Ir,n) via composition only introduces small contributions to the
remainder bound which scale at least quadratically with the components of
Sn+1. Thus for sufficiently small Sn+1, this effect will be small.

(2) The remainder part of C−1l,n+1 ◦ N∗n+1, which contains as one important
contribution the action of C−1l,n+1 on the remainder interval of N

∗
n+1, will be
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added to Ir,n. The magnification of the remainder bound of N
∗
n+1 by the

action of C−1l,n+1 is proportional to the condition number of Cl,n+1.

(3) Contributions of a similar magnitude as Ir,n come from application of the

linear term C−1l,n+1 ◦ C∗n+1 to Ir,n. If this term is not chosen properly, over
time, exponential growth of the remainder bound can occur.

We now are ready to consider several choices for the determination of Cl,n+1.
As a first nearly trivial but nevertheless interesting example, we assume that the
polynomial Pl,n represents the identity:

Definition 7. (Identity Preconditioning) We choose Cl,n+1 as the identity:

Cl,n+1 = I
This form of preconditioning amounts merely to moving the remainder error to

the right. In the subsequent step, the flow is then computed on an identity without
the presence of a remainder bound, which can lead to improved performance. This
is somewhat reminiscent of the common distinction between “algorithm 1” and
“algorithm 2” of integration approaches such as those in the code AWA, where
“algorithm 1” provides a first enclosure over an interval box enclosing the current
flow.
As the first nontrivial but nevertheless quite obvious example, we assume that

the polynomial Pl,n represents the linear flow of the motion.

Definition 8. (Parallelepiped Preconditioning) We choose

Cl,n+1 = C∗n+1

The parallelepiped preconditioning thus has the interesting effect that the entire
constant and linear parts of the flow are described by the left factor alone; and
the nonlinear parts of the motion and remainder bounds will by accumulated in
the right factor. Analyzing the arithmetic more carefully we see that the term
C−1l,n+1 ◦ C∗n+1 + C−1l,n+1 ◦N∗n+1 appearing in the square brackets in eq. 4.1 plays a
crucial role. Its linear part amounts to identity up to floating point error which leads
to very favorable numerics in the subsequent composition with Sn ◦ (Pr,n + Ir,n).

On the other hand, C−1l,n+1 is also acting on the nonlinear part and the remain-
der bound. However, it is known that in various practical cases of interest, over
long periods of time, Cl,n+1 can become more and more ill-conditioned; this is for
example the case in linear problems where the matrix of the ODE has distinct real
eigenvalues. Since the multiplication of a matrix with an interval vector leads to an
overestimation that scales with the condition number, this effect may lead to a rapid
growth of the remainder bound of the term, and thus in cases of ill-conditioned flow
is of limited value.
The method can be much improved by the following choice of preconditioner:

Definition 9. (Blunted Parallelepiped Preconditioning) We choose Cl,n+1

to be the q−blunting of C∗n+1, where q is a suitable blunting factor.
As seen above, the q-blunting provides an upper bound for the condition num-

ber of the matrix Cl,n+1, and thus a strict upper limit to the overestimation

obtained when sending the remainder bound interval of N∗n+1 through C−1l,n+1 ◦¡
C∗n+1 +N∗n+1

¢
. On the other hand, since a sufficiently small choice of q only

modifies Cl,n+1 in a minor amount, we still have that the linear part of C
−1
l,n+1 ◦



26 KYOKO MAKINO AND MARTIN BERZ¡
C∗n+1 +N∗n+1

¢
is nearly identity, which still favorably affects the subsequent ap-

plication to Sn ◦ (Pr,n + Ir,n) . So a suitable choice of q may lead to an acceptable
overestimation due to the condition number of Cl,n+1 while still providing only lim-
ited overestimation in the last step. Examples of the effect of blunted parallelepiped
preconditioning will be given in the next section.

As another example of preconditioning with a linear transformation, we consider
the following choice

Definition 10. (Curvilinear Preconditioning) Let x(m) = f(x, x0, ...x(m−1), t)
be an m-th order ODE in n variables. Let xr(t) be a solution of the ODE and

x0r(t), ..., x
(k)
r (t) its first k time derivatives. Let e1(t), ..., el(t) be l unit vectors not

in the span of x0r(t), ..., x
(k)
r (t) such that X = (x0r(t), ..., x

(k)
r (t), e1(t), ..., el(t)) have

maximal rank. Then we call the Gram-Schmidt orthonormalization of X a curvi-
linear basis of depth k, and we refer to its use for preconditioning as curvilinear
preconditioning.

The use of curvilinear coordinates has a long history, and it seems like their
virtues have been re-discovered several times. They are frequently used in the
study of dynamics in the solar system, and for the last 50 years in the dynamics in
large particle accelerators. For a treatment of their properties in the latter case, see
[3], and [26] as well as [29]. As an aside, we note that it is possible to even preserve
Hamiltonian structure in the transformation to curvilinear coordinates[26][7], which
is important for long term integration using symplectic methods as in [11] and [12].

Example 1. (Curvilinear Coordinates for the Solar System and Particle
Accelerators) In this case, n = 3, and one usually chooses k = 2. The first basis
vector points in the direction of motion of the reference orbit. The second vector
is perpendicular to it and points approximately to the sun or the center of the
accelerator. The third vector is chosen perpendicular to the plane of the previous
two.

Theorem 4. (Curvilinear Coordinates for Autonomous Linear Systems)
Let x0 = A · x be an n-dimensional linear system that has n distinct nonzero
eigenvalues λi with eigenvectors ai. Let B be a box with nonzero volume, and
xr =

Pn
i=1Xiai ∈ B such that Xi 6= 0 for all i = 1, ..., n. Then the deriva-

tives of x
(i)
r , i = 1, ..., n, are linearly independent, and hence the depth n curvilinear

coordinates are obtained by applying the Gram-Schmidt procedure to the derivatives

x
(i)
r , i = 1, ..., n.

Proof. The motion of the reference point xr as a function of time is apparently
given by

xr(t) =
nX
i=1

Xi · ai · exp(λit)

so that the jth derivative assumes the form

x(j)r (t) =
nX
i=1

Xi · ai · λji exp(λit).
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We now consider the determinant of the matrix of coefficients in the basis ai, and
observe

det


X1λ1 X1λ

2
1 X1λ

n
1

X2λ2 X2λ
2
2 X2λ

n
2

. . .

Xnλn Xnλ
2
n Xnλ

n
n



=
nY
i=1

(λiXi) · det


1 λ11 λn−11

1 λ12 λn−12

. . .

1 λ1n λn−1n

 =
nY
i=1

(λiXi)
Y
i>j

(λi − λj) 6= 0

because of the well-known property of the Vandermonde matrix. ¤

Definition 11. (Natural Coordinate System for Linear System) Let x0 =
A · x be an n-dimensional linear system that has n distinct real eigenvalues λ1 >
λ2 > ... > λn with eigenvectors a1, ..., an. We define the normal basis (bi) of the
system to be the result of applying the Gram-Schmidt orthonormalization procedure
to the vectors a1, ..., an, i.e. the result of the recursive computation

bi =
ai −

Pi−1
j=1 bj · (ai · bj)¯̄̄

ai −
Pi−1

j=1 bj · (ai · bj)
¯̄̄ .

The Natural Coordinate System has the property that as time progresses, the
components motion is pulled most towards the vectors b1, and then towards b2, and

so on.

Proposition 4. (Curvilinear Coordinates for Autonomous Linear Sys-
tems) Let x0 = A · x be an n-dimensional linear system that has n distinct real
eigenvalues λi with eigenvectors ai. Let bi be the natural coordinate system of the
linear system. Let B be a box with nonzero volume, and xr =

Pn
i=1Xiai ∈ B such

that Xi 6= 0. If xr is used as the reference orbit to define the curvilinear coordinates
ci, then the curvilinear coordinates converge to the natural coordinates, i.e. we have

ci → bi for all i as t→∞.

Proof. The derivatives of the motion of the reference point xr as a function of time
of order 0 and higher are apparently given by

x(j)r (t) =
nX
i=1

Xi · ai · λji exp(λit)..

Because of the ordering of the eigenvectors by size, we clearly have c1 = x0r(t)/|x0r(t)|
→ b1 as t→∞. Since c2 is perpendicular to c1, we thus also have that c2 · b1 → 0
as t → ∞, and so limt→∞ c2 is in the span of b2, ..., bn. Because in this subspace,
the coefficient exp(λ2t) is dominating, we even have c2 → b2 as t→∞. In a similar
fashion we obtain iteratively that cj → bj as t→∞. ¤

Remark 6. Variations of these arguments are obviously possible to treat the case
of complex eigenvalues. In this case, the ”natural” generalization of the natural
coordinate system has two non-uniquely defined vectors in the subspace belonging to
the conjugate pair of eigenvalues.
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Remark 7. (Depth of Curvilinear Coordinates) One may wonder about the
significance of the depth of curvilinear coordinates chosen, i.e. the number of deriva-
tives employed. As long as the first k eigenvectors are of larger magnitude than the
subsequent ones, then the subspace spanned by the first k derivatives will be asymp-
totically dominating over the remaining subspace, and thus the detailed choices of
subsequent basis elements are insignificant as long as the basis matrix remains well-
conditioned.

Definition 12. (QR Preconditioning) We choose Cl,n+1 to be the matrix Q of
the QR factorization of the matrix obtained by sorting the columns of C∗n+1 by size
in descending order.

So the matrix Cl,n+1 is chosen in the same fashion as originally proposed by
Lohner [21][22][20][23][24][25]. Different from his algorithm, also the Taylor model
describing the linear and nonlinear parts of the motion is expressed in this coordi-
nate system. This entails that the coefficients of this polynomial are subjected to
smaller coordinate transformations, which leads to reduced roundoff errors. And
of course, the transformations relating initial and final conditions are not merely
linear, but nonlinear.
Like the curvilinear preconditioning method, the QR preconditioning leads to a

coordinate system that is orthogonal, and thus the transformation in and out of this
system is computationally benign because of the favorable condition number of the
system. However, there are more similarities between curvilinear preconditioning
and QR preconditioning:

Proposition 5. (QR Coordinates for Autonomous Linear Systems) Let
x0 = A ·x be an n-dimensional linear system that has n distinct nonzero eigenvalues
λi with eigenvectors ai. Let bi be the natural coordinate system of the linear system
and ci the basis vectors of the QR coordinate system. Then we have

ci → bi for all i as t→∞.

The proof follows from the arguments developed in the work of Nedialkov and
Jackson [38]. As a consequence, we obtain that for the important case of linear au-
tonomous systems, the asymptotic behavior of the QR method and the curvilinear
method are identical.

To illustrate the performance of the curvilinear (CV) and QR preconditioning,
both of which provide orthogonal coordinate systems in which the motion is studied,
let us consider the example of the simple linear ODE x01 = x1, x

0
2 = x1. It has

distinct eigenvalues±1 , and the eigenvector belonging to the larger eigenvalue +1 is
(1, 1), thus asymptotically, the motion is “pulled” towards this eigenvector. Figure
8 shows that in the CV preconditioning, one of the coordinate axes is attached to
the direction of motion, and thus the axis will eventually line up with the vector
(1, 1). In the case of the QR preconditioning, where one of the vectors is always
attached to the longer domain box, the motion is less regular but leads to the same
asymptotic behavior, since eventually also the direction of main elongation of the
solution set aligns itself with the direction of motion.

For the purpose of a nonlinear example, we use the Volterra ODE and initial
conditions 2.1 from above. Figure 9 shows the coordinate systems for the case of
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Figure 8. Preconditioning coordinate systems for the ODE x01 =
x2, x

0
2 = x1. Left: curvilinear, right: QR
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Figure 9. Preconditioning coordinate systems for the Volterra
equations. Left: curvilinear method, right: QR method

the curvilinear preconditioning (left) and the QR preconditioning. The curvilinear
coordinate system performs a full rotation by 2π upon return to the initial condition
by virtue of the fact that after one full period, necessarily also the direction of the
tangent to the orbit is reproduced exactly. The coordinate system used by the QR
method is less regular, and it can be seen that after one revolution of the center
point, the coordinate system is not rotated by 2π. The long-term success of the
QR method rests on the ability to asymptotically produce rotations by 2π for each
revolution of the reference point, since any persistent lag in angle will produce linear
wrapping. In nonlinear systems, it is not a priori clear that this condition must
always be satisfied.

5. Examples for Long-Term Behavior
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The long-term numerical study of differential equations and dynamical systems
in a computer environment operating with fixed precision is frequently characterized
by an exponential growth of the error. We first observe the important point that this
fact is intimately tied to the use of arithmetic of finite precision, and does not merely
appear in validated methods. We also observe that this effect is independent of the
well-known and frequently studied phenomenon of chaos, which is characterized by
exponential growth of errors in initial conditions in the true system.
To illustrate this phenomenon, let us consider the perhaps simplest conceivable

discrete dynamical system, which merely oscillates between two states as

(5.1) xn+1 =

½
a · xn, n even

(1/a) · xn, n odd

with initial condition x0 = 1.We study the behavior for specific choices of a in both
single and double precision arithmetic on two commonly used compilers, the f77
compiler by DEC, which is now distributed as f77 Digital Visual Fortran Version 5.0
as part of Microsoft Fortran PowerStation, as well as the g77 compiler distributed
by GNU; we specifically tested Version V0.5.24. All tests were executed in the
Cygwin Unix environment in Windows 2000 and run on a Pentium III processor,
and no changes to default rounding modes were made.
Specifically, we chose a1 = 3 in the single precision mode, while in the double

precision mode we chose a2 = 0.9999999901608054 (digits generated by FORTRAN
output)
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Figure 10. Arithmetic error observed in the computation of
xn+1 = (1/3) · xn, xn+2 = 3 · xn+1, with x1 = 1, for various
values of n.

Figure 10 shows the result for the case of single precision computation using
f77 with default compiler settings, revealing an exponential growth of the error
that after merely 109 iterations reaches the value of 1012. The error growth per
iteration corresponds to approximately 1 + 1.2 · 10−8, and hence represents an
average increment near the last significant bit.
Performing the same experiment with a1 = 3 in double precision arithmetic

on either f77 or g77 did not produce any exponential growth of errors; however,
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performing a random search for values of a near 1 that might lead to exponential
growth yielded the above a2 within the first 10 tries, and many other values of a
with a similar behavior have also been found quite easily. The empirically computed
error growth factor per iteration is about 1+1.1 · 10−16, again corresponding to an
increment near the last significant bit.
Executing the simple dynamical system with interval arithmetic leads to ex-

ponentially inflating bounds, as is expected from interval methods; however, in a
well-written interval environment that rounds by a minimally sufficient amount,
the overestimation of the computed bounds tightly enclose the growing error. Thus
in this case, the observed exponential growth of the interval results is not due to
any artificial overinflation of the interval method, but rather to the unavoidable
uncertainty of the results of the underlying floating point arithmetic.

5.1. Nonlinear Problems and Shrink Wrapping. Let us now study such two-
state systems in the multidimensional nonlinear setting. First we observe that any
errors that may occur lead to a more complicated geometric shape of the solution
sets that have to be studied. While in the one-dimensional case, an interval can
always tightly contain the results of all such overestimations, this no longer holds in
the multidimensional case. As a simple example, consider the following two-state
discrete dynamical system

xn+1 = xn ·
p
1 + x2n + y2n and yn+1 = yn ·

p
1 + x2n + y2n

xn+2 = xn+1 ·
vuut 2

1 +
q
1 + 4(x2n+1 + y2n+1)

and

yn+2 = yn+1 ·
vuut 2

1 +
q
1 + 4(x2n+1 + y2n+1)

.(5.2)

Simple arithmetic shows that, similar to the two-state system in eq. 5.1, also
this transformation has the property that (xn+2, yn+2) = (xn, yn). Considering the
action of the system on the box [−d, d]2, we see that the corner points (±d,±d) are
stretched out more than the axis intersection points (±d, 0) and (0,±d), which leads
to a pincushion shape with four-fold symmetry after each odd step; the action on
three centered squares is shown in figure 11. Attempting to represent this structure
by an interval box, or for that matter any linear transformation of an interval
box, will thus necessarily lead to a noticeable overestimation. On the other hand,
representing the action of the iteration by a Taylor model will, for moderate values
of d, be able to lead to a much more accurate representation. Finally, note that
the linear transformations of the action of this system will always return to the
identity after even numbers of iteration and is also rather well conditioned after
odd iterations, so numerical difficulties due to conditioning do not arise in this
case. Thus the example represents a good test for a method to treat nonlinear
effects.
The results of a simulation with Taylor models of various orders and with and

without shrink wrapping are shown in figures 12 for the point (0, 0)+[.05, .05]2 and
in figure 13 for the point (1, 1)+[.05, .05]2. Because after two steps the linear part is
the identity, the problem allows to study the ability of the shrink wrap method to
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Figure 11. The action of the two-step nonlinear transformation.
Squares are subjected to pincushion-shaped deformation and trans-
formed back into themselves.

handle nonlinear effects, but without possible complications that may arise due to
the conditioning of the linear part, which will be studied in other examples below.
Because the linear part represents the identity, shrink wrapping with first order

Taylor model behaves exactly like the QR and PE methods, and so a useful com-
parison to these methods is possible. Apparently the use of shrink wrapping and
higher order Taylor models leads to very extended stability; for example, Taylor
models of order 20 lead to survival for 105 iterations with an accumulated error
around 10−9, while the lack of use of shrink wrapping or the use of linear methods
leads to unacceptable errors in 100 or less iterations.
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Figure 12. Discrete dynamics of the nonlinear stretch at (0, 0)+
[−.05, .05]2. Treatment by naive Taylor models (left) and Taylor
models with shrink wrapping (right). First order Taylor models
without shrink wrapping behave like the linear PE, QR, or PEQR
methods.
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Figure 13. Discrete Dynamics of the nonlinear stretch at (1, 1)+
[−.05, .05]2. Treatment by naive Taylor models (left) and Taylor
models with shrink wrapping (right). First order Taylor models
without shrink wrapping behave like the linear PE, QR, or PEQR
methods.

5.2. Linear Problems and Preconditioning. While in the previous section,
the emphasis was on the treatment of nonlinear effects in the absence of compli-
cations due to linear conditioning, in this section we will study the opposite: we
will address linear problems that may become ill-conditioned and forgo the study
of nonlinear effects. Because linear problems lead to a merely linear dependence
on initial conditions, they thus allow a clear separation of the effects of the Taylor
model methods that are due to the expansion in initial conditions and those of their
asymptotic behavior. We consider both autonomous problems, the asymptotic be-
havior of which can apparently also be studied more efficiently with validated eigen-
value/eigenvector tools, as well as a specific case of a non-autonomous problems.
Both of these cases allow to devise certain challenges for validated integrators, and
thus represent a sine qua non.
We begin the analysis of the behavior of the various methods by studying discrete

dynamics of iteration through two-dimensional matrices. To minimize the influence
of particular choice, we consider a collection of 1000 matrices with coefficients
randomly chosen in the interval [−1, 1]. The initial condition under study is chosen
to be (1, 1) + d · [−1, 1] with a value of d = 10−3. Apparently the choice of the
center point of the domain box is rather immaterial due to the randomness of the
matrices; and because of linearity, the value of d is of importance only relative to
the floor of precision of the floating precision environment.
In all cases, we study the development of the area of enclosure as a measure of

the sharpness of the method. We compare preconditioning the Taylor models by the
blunted method (TMB), the parallelepiped method (TMP), and the QR method
(TMQ). In this linear scenario, the TMB method also describes the effects of the
blunted shrink wrapping method, which in this case also reduces to sending the
remainder term through the blunted linear matrix. We chose the blunting factors
qi to be 10

−3 times the length of the longest column vector of the linear matrix.
In order to provide a frame of reference, we also study the performance of naive
interval (IN) method as well as the naive Taylor model method (TMN); in the latter
case, the area is estimated as the sum of the determinant of the linear part plus
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the area of the remainder bound interval box. In addition, in order to provide an
assessment of the influence of the effects of the underlying floating point arithmetic,
we also perform a non-validated tracking of the vectors of the four corner points
(1, 1) + d · (±1,±1) and determine the area of the linear structure spanned by the
vectors; this method is referred to as the vector method (VE). Since this method
is naturally inaccurate in particular for strongly elongated structures, we average
over a large number of matrices to control statistical fluctuations.

-120

-100

-80

-60

-40

-20

0

0 50 100 150 200 250

lo
g_

10
(M

ea
n)

Step Number

VE
IN
TMN
TMP
TMQ
TMB

-80

-70

-60

-50

-40

-30

-20

-10

0

0 50 100 150 200 250

lo
g_

10
(M

ea
n)

Step Number

VE
IN
TMN
TMP
TMQ
TMB

Figure 14. Areas predicted in the iteration through random 2x2
matrices with conjugate eigenvalues (left) and eigenvalues differing
in magnitude by a factor of 1 to 5 for various enclosure methods

In the first test, we study an autonomous problem for 500 iterations. Apparently
in this case, the true solution of the problem shows an exponential shrinkage of the
area by the product |λ1|· |λ2| of the magnitudes of the eigenvalues. For the purpose
of analysis, we group the matrices in six categories; the category C1 contains all
matrices in which the eigenvalues form conjugate pairs. The other matrices are
sorted into categories based on the ratios r = |λ1|/|λ2| of the eigenvalue λ1 of
larger magnitude to the one of smaller magnitude. Specifically we consider the
categories C2 with 1 ≤ r < 5, C3 with 5 ≤ r < 10, C4 with 10 ≤ r < 20, C5
with 20 ≤ r < 50, and C6 with 50 ≤ r. The numbers of matrices in categories C1
through C6 are 325, 520, 80, 40, 18, and 17.Within each category, we calculate the
average of the logarithm of the areas enclosed by the various methods as a function
of the iteration number, which for the true dynamics would lead to a decrease along
a straight line, the slope of which is given by the value log (|λ1| · |λ2|) .
Figure 14 shows the results of the situation for categories C1 and C2. It is clearly

visible that in the dynamics of C1, the behavior is characterized by the expected
linear decrease, and the blunted (TMB), parallelepiped (TMP), and QR method
(TMQ) all show this behavior. All three of these methods very closely follow the
non-validated result (VE), with a closer inspection showing that the TMB and
TMP methods provide enclosures about 1 to 2 orders of magnitude sharper than
the TMQmethod. The behavior of the methods is in agreement with the theoretical
results and practical examples found in [38]. On the other hand, the naive interval
method (IN) as well as the naive Taylor model method (TMN) show a qualitatively
different behavior; the interval method leads to a different slope, while over the
short term the naive Taylor model method performs similar to the other methods
until the size of the remainder bound becomes the dominating contribution, at
which time its slope becomes similar to that of the interval method.
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Studying the behavior of the class C2 shows a similar pattern, except that now
the TMB and TMQ methods provide indistinguishable sharpness, while the par-
allelepiped method now performs markedly worse. This is due to the unfavorable
conditioning of the TMP approach that does not appear in the TMQ approach.
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Figure 15. Areas predicted in the iteration through random 2x2
matrices with eigenvalues differing in magnitude by a factor be-
tween 5 and 10 (left) and 10 and 20 (right) for various enclosure
methods

Studying the behavior in the classes C3 and C4 shown in figure 15 reveals again
that the TMB and TMQ methods perform virtually indistinguishable, and both
of them follow the non-validated result VE very closely. Furthermore, the naive
Taylor model method TMN and the parallelepiped method TMP both perform quite
similar to each other, but substantially worse than the TMB and TMQ methods.
However, another interesting effect appears. We notice that there is a marked

change in the slope of the curve after somewhere around n = 20 iterations for the C3
case and n = 15 iterations for the C4 case. This is attributed to the fact that after
this number of iterations, the quantity rn reaches around 1017, and thus the ratio of
the elongations of the solution domain in the directions of the eigenvectors v1 and
v2 reaches the limit of what can be represented in a double precision floating point
environment. Before this value of n, the computed volume decreased by λ1 · λ2 at
each iteration, but after this n, the apparent ”thickness” of the needle-like structure
will be determined by the floating point accuracy ε times the length of the needle.
Thus any decrease in volume is merely due to the decrease of the needle’s length,
which is governed by the eigenvalue of smaller magnitude λ2, and so the subsequent
volume decrease is given by λ22. Thus one is bound to observe a jump in slope of
about the factor r.
Thus we observe that in the process of floating point errors, the long-term be-

havior of the area is predicted qualitatively wrong, and thus does not follow the
predictions of [38] for the infinite precision case anymore. However, it is most
noticeable that this effect does not only appear within the validated setting, but
just in the same way in the non-validated case. In the latter case, the perceived
”thickness” of the needle is merely given by floating point rounding errors that
prevent the four corner points from being collinear, where again the deviation from
collinearity being given by the ε times the length of the respective vectors, which
leads to a perceived area very similar to that in the validated case. This observa-
tion appears most important, since it stresses that the spurious exponential growth
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observed compared to the true result is an unavoidable consequence of the floating
point environment per se and has nothing to do with the attempt to do validated
computation.
The situation for the cases of C5 and C6 are similar to those of the C3 and C4

cases, except that as expected the change in slopes appears earlier and is more
pronounced.
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Figure 16. Predicted areas for 10 forward and 10 backward it-
erations through random 2x2 matrices with conjugate eigenvalues
(left) and eigenvalues differing in magnitude by a factor of 1 to 5
for various enclosure methods

As another set of test cases, we want to perform a limited study of non-autonomous
linear systems. This case is interesting because the quantitative analysis of the be-
havior of the QR methods undertaken in [38] does not hold in this case, and as
already observed by Kühn, spurious exponential error growth is possible; thus a
comparison to the TMB method is worthwhile.
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Figure 17. Predicted areas for groups of 10 forward and 10 back-
ward iterations through random 2x2 matrices with conjugate eigen-
values (left) and eigenvalues differing in magnitude by a factor be-
tween 1 and 5 (right) for various enclosure methods. Results shown
after each set of 20 steps.
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For the purposes of our non-autonomous study, we merely iterate through the
1000 random matrices for 10 iterations, and follow these by iterating through the
approximate floating point inverses of the respective matrices for the next 10 iter-
ations, repeating this procedure a total of 25 times. So similar to the examples 5.1
and 5.2 in the previous section, the overall transformation reaches the identity after
each 20 steps, and thus the analysis of the performance is straightforward. Figure
16 shows the behavior of the various methods for the case of conjugate eigenvalues
and the case 1 ≤ q < 5; it is clearly seen that the naive interval (IN) and the naive
Taylor model (TMN) methods lead to overestimation rather quickly. For the pur-
pose of better readability, in figure 17 we show the enclosure area only after every 20
steps, at which point the overall transformation reaches identity. It can be seen that
the TMB (and the TMP) methods reproduce the correct result to printer resolu-
tion, while the TMQ method reaches an overestimation of two orders of magnitude.
For the case 1 ≤ r < 5, which is more favorable to the QR approach, again the
TMB (and the TMP) method produce very little overestimation, while the TMQ
method has about one order of magnitude of overestimation. For larger values of r,
the advantage of the TMB method becomes less pronounced but is still one order
of magnitude, while the TMP method begins to produce larger overestimations, as
can be seen in figures 18 for the cases of 5 ≤ r < 10 and 10 ≤ r < 20.
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Figure 18. Predicted areas for groups of 10 forward and 10 back-
ward iterations through random 2x2 matrices with eigenvalues dif-
fering in magnitude by a factor between 5 and 10 (left) and 20 and
50 (right) for various enclosure methods. Results shown after each
set of 20 steps. The blunted method (TMB) outperforms the QR
method.

As another example for the use of preconditioning tools for linear problems, we
study some continuous problems and compare the behavior of the QR precondi-
tioning method with the curvilinear (CV) preconditioning methods. We study an
ensemble of 4x4 matrices with random elements in [−1, 1], and determine validated
solutions of the linear homogeneous ODE

r0 = A · r
over the time domain [0, 10] for initial domain box r+ [−.1, .1]4 where r is a vector
with random number entries.
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Figure 19. The size of the interval remainder errors for 4x4 linear
systems as determined using QR and CV preconditioning. Left:
averages of the errors of the four components for the matrix A1,
right: averages of the errors in the four components of 10 random
matrices

We study the details of the situation for one particular matrix A1 with approx-
imate form

A1 =


+0.9564 +0.2004 +0.4826 +0.8871
−0.4922 +0.5651 −0.1474 −0.7678
−0.0269 −0.8587 −0.3785 −0.6168
−0.8271 +0.2661 −0.9380 +0.5289


and approximate eigenvalues 0.3928, −0.3911, 1.005 ± 0.8669i as well as for a set
of 10 random matrices. The matrix A1 was selected because it has positive, neg-
ative, and complex conjugate eigenvalues, and the complex conjugate pair is even
dominating in magnitude. The random center point of the initial domain box was
approximately (0.6446, 0, 0050,−0.2394, 0.4581). The other matrices were studied
to give confidence that what is observed is not an isolated case.
The left picture in figure 19 shows the effects of QR and CV preconditioning for

the specific case A1. Note that both remainder estimates are increasing exponen-
tially, which is due to the fact that the magnitude of the leading eigenvalues, those
that form the complex conjugate pair, exceeds unity. Apparently the two methods
behave very similarly, where in the very beginning the QR preconditioning provides
results that are sharper by about a factor of 2. Note that there is an oscillatory
pattern visible, which is due to the fact that two of the four eigenvalues of the
matrix form a complex conjugate pair, resulting in some oscillatory motion in one
of the invariant subspaces of the matrix.
An attempt of a quantitative analysis of the figure shows that after the initial

period of rapid error growth, which is due to the proximity of the floating point
accuracy floor, the function rises exponentially from 10−11 at t = 3 to 10−7 at
t = 10, which corresponds to a gain of 104/7 ≈ 10.5715 per time unit. On the other
hand, the magnitude of the complex eigenvalue is approximately 1.327, leading to
a gain of exp (1.327) ≈ 3.769 ≈ 100.5763 per time unit. So we see that to very
good approximation, the growth in the remainder error matches the growth of the
parallelogram enclosing the flow of the initial domain box or the corner points
thereof, which is the behavior observed in a non-validated integrator.
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To conclude the discussion of linear the study of linear problems with precondi-
tioning, we summarize the observed behavior of the methods:

(1) For iteration through identical matrices, which corresponds to study of au-
tonomous systems, the Blunted Method and the QR method have the same
asymptotic behavior and error growth as the non-validated method. On the
other hand, the naive interval method, the parallelepiped method, and the
naive Taylor model produce overestimations that grow exponentially.

(2) For iteration through sets of matrices and their inverses, which corresponds
to a periodic non-autonomous system, the blunted and the parallelepiped
methods perform superior to the QR method, which in turn is superior to
the naive interval and naive Taylor model methods.

5.3. The Henon Map. The discrete dynamics of the repeated application of the

Henon map is a frequently used elementary example that exhibits many of the well-
known effects of nonlinear dynamics, including chaos, periodic fixed points, islands
and symplectic motion. The dynamics is two-dimensional, and given by

xn+1 = 1− αx2n + yn

yn+1 = βxn.(5.3)

It can easily be seen that the motion is area preserving for |β| = 1.For our study,
we borrow an example from the work of Kühn[19] illustrating the performance of
the zonotope method and compare with TMs using shrink wrapping. We consider
the dynamics for the special cases of α = 2.4 and β = −1, and concentrate on
initial boxes of the from (x0, y0) ∈ (0.4, −0.4) + [−d, d]2. As an example to assess
the dynamics, we consider the box with d = 10−2 and study its evolution for a few
turns.
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Figure 20. Iteration through the Henon map. Shown are the
motion of the corner points of the box (x0, y0) ∈ (0.4,−0.4) +
[−d, d]2 for d = 10−2 for five iterations (left) and for 120 iterations
(right).

Figure 20 shows the motion of the four corner points for five iterations and for
120 iterations. It becomes apparent that three of the corner points are trapped in
a five-fold island structure, while one of them follows an ergodic curve inside the
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islands. This situation makes very long-term validated integration impossible since
the transition region between the islands and the ergodic part is chaotic. As a first
test, we study the dynamics of the box (x0, y0) ∈ (0.4, −0.4)+[−d, d]2 for d = 10−2
with first order Taylor models with shrink wrapping and compare with the results
obtained by tenth order Taylor models with shrink wrapping; the results are shown
in figure 21. It can be seen that the presence of the nonlinearities in the dynamics
makes the size of the enclosures obtained by the linear method increase quickly.
On the other hand, the higher order method can follow the details of the dynamics,
including the ”pulling apart” of the corner points rather well.
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Figure 21. Dynamics through the Henon map for the box
(x0, y0) ∈ (0.4,−0.4) + [−d, d] for d = 10−2 for nine turns with
first order (left) and for 29 turns with tenth order (right) Taylor
models with non-blunted shrink wrapping.

As a first example to study long term motion, we show the predicted inclusion
after 500 iterations of the map for the case d = 10−6. This choice of d entails that
the entire box stays confined within the island structure, and is at least not subject
to chaotic motion. Figure 22 shows the results obtained by the zonotope method,
linear maps from Rm·n into Rn, for various numbers of of the parameter m and
Taylor model methods of orders 1 and 5 using shrink wrapping. On the left, the
results obtained by the Taylor model methods are overlaid on the respective results
of the zonotope method; the picture was taken from [19]. For the purpose of better
comparison, the TM results are also shown separately on the right. We see that the
enclosure by the TM method is similarly accurate, and perhaps slightly sharper,
than that of the zonotope method with m = 15. The right picture reveals that the
TM method of order 5 produces a slightly sharper result than the TM method of
order 1.
In passing we note that the values for the center point reported for the zonotope

method in [19] are incorrect; in fact, the values provided there agree to all digits
shown to those after 3 iterations, but not even to one digit with those 500 iterations,
which because of the five-fold repetitive structure of the Henon map should be
close to the starting point. However, because of the high degree of similarity of the
m = 15 zonotope enclosure with that of the TM method after 500 iterations and
the dissimilarity after 3 iterations, it appears very likely that the enclosure itself is
indeed provided correctly. In order to study the behavior of the TM methods for
long term problems, we iterate the map until failure occurs. In [19] it is reported
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Figure 22. Validated enclosures after 500 iterations of the ini-
tial condition (0.4,−0.4)+[−10−6, 10−6]2 through the Henon map.
Shown are enclosures by the zonotope method of various values of
the parameter m and by the TM methods of orders 1 and 5 using
shrink wrapping (left). For better comparison, the results of the
TM methods are also shown separately (right).

that for the domain (x0, y0) ∈ (0.4, −0.4) + [−d, d]2 with d = 10−12, the m = 15
zonotope method succeeds for about 33, 000 iterations. We compare this behavior
with the preconditioned TM method of order 5 with shrink wrapping and observe
that the method can succeed to provide enclosures for about 280, 000 iterations for
order 5 and slightly longer for order 10. The TM method of order 1 survives for
about 20, 000 iterations. Figure 23 shows some results of these computations. On
the left we show the size of the remainder bounds for each turn, which is nonzero
if the shrink wrapping fails to be executed. The remainder terms are usually in the
range of 10−12, but occasionally exceed 10−9. The right shows the total accumulated
shrink wrap factor, which is a measure of the inflation of the box. The seemingly
large value of 106 is due to the fact that because of the proximity to the floating
point floor, the initially small box size of 10−12 increases quickly. Approximately at
the number of iterations at which the zonotope method fails to proceed, the shrink
wrap factor stabilizes at about 106, leading to an overall box size of around 10−6.

It is also interesting to study how much of an improvement shrink wrapping
provides compared to iteration with naive Taylor models. Fig. 24 shows the re-
mainder bounds obtained in this approach, and it is apparent that failure now
occurs much more rapidly at around 16, 000 iterations, about half as much as the
zonotope method is able to succeed.
In order to assess the expected influence of double precision floating point error,

we attempt to simulate the behavior in quadruple precision. Due to the absence of
an arbitrary precision or quadruple precision implementation of our TM tools, we
perform a non-validated experiment in which the floating point accuracy threshold
εm that is used in the internal interval operations was artificially set to the 10−30,
a number typical for the use of quadruple precision arithmetic. While the resulting
inclusions are of course not validated results since the actual accuracy remains at
the level of 10−15 or so, the results provide a rather good estimate for the growth
of errors that is to be expected in quadruple precision.
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Figure 23. Dynamics in the Henon map for (x0, y0) ∈
(0.4,−0.4) + [−d, d]2 with d = 10−12. Shown are the remainder
bounds (left) and shrink wrap factors (right) for TMs of order 1,
5, and 10.
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Figure 24. Dynamics in the Henon map for (x0, y0) ∈
(0.4,−0.4) + [−d, d]2 with d = 10−12 using naive Taylor models
without shrink wrapping. Shown are the the remainder bounds for
TMs of order 1, 5, and 10.

Repeating the study in this way, we observe that the survival time of the first
order method now increases to a respectable 150, 000 iterations. But on the other
hand, the higher order methods can now execute more than 7, 500, 000 iterations, or
about 50 times as much. A more detailed study of the results in figure 25 shows that
beyond well over one million turns, the shrink wrap factor grows very moderately
to about 10−6, until just before 2 million turns, the first intermediate failures of
shrink wrapping occur. At this point, the shrink wrap factor increases appreciably
to re-absorb the remainder term a few iterations later, the map again becomes
shrinkable. Overall it is clear that here the use of the higher order methods quite
significantly improves performance, which seems to be limited mostly by floating
point errors.

5.4. A Muon Cooling Ring. In this section we study a problem from the field
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Figure 25. Non-validated dynamics in the Henon map for floating
point errors similar to those in quadruple precision for (x0, y0) ∈
(0.4,−0.4)+ [−d, d]2 with d = 10−12 Shown are the the remainder
bounds (left) and shrink wrap factors (right) for TMs of order 1,
5, and 10.

of beam physics and illustrate the use of curvilinear coordinates. We use a simple
model of a muon cooling ring, the purpose of which is to reduce the size of a beam
by passing it through material and simultaneously accelerating it. Specifically, the
particles are held in a confined orbit by a homogenous magnetic field in vertical
direction; for reasons of simplicity, we restrict the dynamics to lie only in the
plane. The coordinates describing the motion are the Euclidean x and y, and the
corresponding momenta px and py.
The particles are moving in homogenous matter, which provides a deceleration

force of magnitude α along their direction of motion; the direction of motion is

given by (px, py)/
q
p2x + p2y. Furthermore, there is an azimuthal acceleration force

of equal magnitude α and opposite direction. For particles at coordinates (x, y),

the azimuthal direction is given by (y,−x)/
p
x2 + y2. Altogether, the equations of

motion are

ẋ = px

ẏ = py

ṗx = py − αq
p2x + p2y

· px + αp
x2 + y2

· y

ṗy = −px − αq
p2x + p2y

· py − αp
x2 + y2

· x(5.4)

It can be easily verified that the system has an invariant solution

(x, y, px, py)I(t) = (cos t,− sin t,− sin t,− cos t),
which represents a clockwise rotation in the horizontal plane with constant radius
1 and constant momentum 1. The practically significant property of the system
is that acceleration always happens azimuthally, while deceleration happens in the
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direction of motion; this leads to a decrease of the radial component of the mo-
mentum, and mathematically to the fact that solutions of the ODE asymptotically
approach circular motion of the form

(x, y, px, py)a(t) = (cos (t− φ) ,− sin (t− φ) ,− sin (t− φ) ,− cos (t− φ)),

where φ is a characteristic angle of the particle in question. For practical appli-
cations, this is eminently useful, as it reduces the volume of the four dimensional
space of values (x, y, px, py), an effect known as cooling. While in practice, many
technical details have to be considered, the simple ODE (5.4) represents the essence
of this process.
For the purpose of using the problem as a test case for validated integration, the

following aspects are important

(1) It is important to treat a large initial domain box of a range of [−10−2, 10−2]4.
This will entail the presence of rather strong nonlinearities.

(2) Because of the transversal damping action towards the invariant limit cycle,
the linear part of the motion will be more and more ill-conditioned.

We study the dynamics using COSY-VI using curvilinear preconditioning, which
is standard in beam physics simulations (see for example [26], [3] and references
therein). We perform the integration until no further reduction in phase space can
be performed due to the proximity of the floating point floor. Figure 26 shows the
effects of cooling for domain boxes (0, 1, 1, 0)+ [−d, d]4 for d = 10−2, 10−4, and
10−6; the value of 10−2 approximately corresponds to the practical needs.
Studying the magnitude of the determinants of the linear part, which roughly

correspond to the volume, we see that cooling happens exponentially and with
nearly the same speed in all three cases. The final volume that is attained is larger
for the larger initial volumes, which is due to the fact that volume gets compressed
only transversely to the motion of the beam, while nothing affects the particle’s
longitudinally motion. Thus for larger initial boxes, the final box in the direction
of motion will be larger.
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Figure 26. Simulation of the Muon Cooling Ring for initial con-
dition boxes (0, 1, 1, 0)+ [−d, d]4 located at the upper top for
d = 10−2, 10−4, 10−6. Shown are the determinants of the lin-
ear part (left) indicating progress in cooling, and the condition
numbers of the linear part (right).
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As a result, we obtain a very narrow elongated structure with nearly vanishing
radial thickness that rotates around a circle. As a consequence, the condition num-
ber of the linear part becomes larger and larger, as shown on the right of figure 26.
If not treated properly, computationally this may represent a significant challenge,
but as expected, the curvilinear preconditioning can overcome this difficulty. To
study the motion in detail, we look at the remainder bounds of the dynamics, which
are shown in 27. Overall, we see that COSY-VI has no difficulty performing the
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Figure 27. Remainder bound sizes for the simulation of the Muon
Cooling Ring for initial condition boxes (0, 1, 1, 0)+ [−d, d]4 for
d = 10−2, 10−4, 10−6.

integration of the muon damping system with d = 10−2 for ten revolutions, which
is sufficient to perform the required damping task. On the other hand, the linear
code AWA can only succeed with this task for d = 10−4. Thus a full simulation of
the necessary space of initial conditions, which can be performed with one run of

COSY-VI, would require approximately
¡
102
¢4
= 108 runs of AWA.

5.5. The Discrete 2D Circular Kepler Problem. This system describes the
dynamics of circular Kepler orbits around a central mass in terms of the variables
(x, y) in the plane of the motion. It is well known from Kepler’s third law that the
periods T and large semi-major axes a of a Kepler ellipse are related via T 2 = k ·a3,
where k is determined by the mass of the central object. For circular orbits of radius
r, for k = 1 this entails an angular velocity of ω = 2π/T = 2π · r−3/2, which means
that the transformation by a fixed time step ∆t is given by the two-dimensional
transformation µ

xn+1
yn+1

¶
=

µ
cos∆φ sin∆φ
− sin∆φ cos∆φ

¶µ
xn
yn

¶
where ∆φ =

2π∆t

(x2 + y2)3/4
.

While addressing only circular motion, the dynamics is also quite characteristic of
the general motion of Kepler ellipses because it captures one of the main effects: as
time progresses, there is a larger and larger lag between the circles of different radii
r. This lag makes Taylor expansion of final condition in terms of initial conditions
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impossible for sufficiently large times, and thus represents a challenge for all Taylor-
based methods that will necessarily lead to their eventual failure. The interest in

the problem now lies in the attempt to delay failure.
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Figure 28. Dynamics in the discrete 2D Kepler system for initial
box sizes widths of 10−6 (left) and 10−8 (right). Shown are the
remainders obtained by the first and tenth order Taylor method
using Curvilinear Preconditioning and QR preconditioning.

Figures 28 and 28 show the remainder bounds of the study of the dynamics
without shrink wrapping for repeated application of the discrete transformation
with φ0 = π/4, in which case one full revolution, or one cycle, consists of eight
applications of the individual map.
We study three cases: as a reference we use first order Taylor models precon-

ditioned by curvilinear coordinates, which behave similar to the PEQR method.
We compare with tenth order Taylor models preconditioned by curvilinear coor-
dinates, and tenth order Taylor models preconditioned by the QR method. The
growth of the remainder bounds is shown for four different initial domain widths
of 10−6, 10−8, 10−10, and 10−12 as a function of full cycles of 2π. It can be seen
that for each case, the tenth order Taylor model method survives between 7 and
10 times longer than the first order method. Furthermore, the preconditioning by
curvilinear coordinates leads to a slightly better performance, which is attributed
to the fact that the movement of the coordinate system is smoother since it follows
the reference orbit instead of the somewhat more random orientation of the longest
edge.

It is also interesting to estimate the growth rate of the remainder bounds in the
high-order TM methods. An inspection of the right picture in figure 29 reveals that
during revolutions 1000 and 6000, the remainder width increases from about 10−10

to about 10−9, for a total increase of 9 · 10−9 over 5, 000 revolutions or 40, 000
iterations. This corresponds to about 2 · 10−13 per map iteration; considering
that each iteration requires several function evaluations, and that in our current
implementation, intrinsic functions carry an overestimation of around 10 ulps, this
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Figure 29. Dynamics in the discrete 2D Kepler system for initial
box sizes widths of 10−10 (left) and 10−12 (right). Shown are the
remainders obtained by the first and tenth order Taylor method
using Curvilinear Preconditioning and QR preconditioning.

number is very close to the unavoidable consequences of accounting for the mere
floating point errors of the arithmetic involving the constant part of the Taylor
model.
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