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Abstract. The performance of various Taylor model (TM)-based methods for
the validated integration of ODEs is studied for some representative computa-
tional problems. For nonlinear problems, the advantage of the method lies in the
ability to retain dependencies of final conditions on initial conditions to high or-
der, leading to the ability to treat large boxes of initial conditions for extended
periods of time. For linear problems, the asymptotic behavior of the error of the
methods is seen to be similar to that of non-validated integrators.

1 Introduction

Taylor model methods provide functional inclusions of a function f of the form

f(x) ∈ P (x) + I for x ∈ B

where B is the domain box, P is the nth order Taylor polynomial of f around a point
x0 ∈ B ⊂ Rm expressed by floating point coefficients, and I is an interval remain-
der bound including errors associated to the floating point representation of P. Taylor
models of a given function can be obtained from its code list by use of Taylor model
arithmetic. Compared to other validated methods, the approach has the following ad-
vantages:

– Reduction of the dependency problem [1], since the bulk of the functional depen-
dency is represented by the polynomial P

– High-order approximation, since the width of I scales with order (n+1) if n is the
order of P [2]

– Simplification of global optimization, since original function is replaced by P,
which has little dependency and is easily amenable to domain reduction

– Availability of advanced tools for solutions of implicit equations

The methods also allow the development of validated integration schemes [3] [4]
that represent the dependence of the solution at the time tk after the kth step in terms of
the initial conditions xi as a Taylor model

x(xi, tk) ∈ Pk(xi) + Ik.
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Frequently the dynamics is also represented in a pre-conditioned form by factoring a
co-moving coordinate frame as

x(xi, tk) ∈ (Ck + Jk) ◦ (Prk(xi) + Irk)

where Ck represents a change of variables. Frequently used choices in the study of dy-
namics are linear transformations based on curvilinear coordinates (PC-CV) [5] [4] [6]
[7] [8] and blunted parallelepiped coordinates (PC-BL), which prevents the occurring
parallelepipeds from becoming ill-conditioned [9]. For purposes of comparison, we also
utilize the QR coordinate system used for the description of the error term by Lohner
in his code AWA [10] [11] [12], which determines a linear relationship between final
conditions and initial conditions.

Finally it is also possible to give up the direct connection between final conditions
and initial conditions and merely ask that

x (xi, tk) ∈
⋃

xi∈B

P ∗
k (xi, tk)

where P ∗
k is a polynomial obtained in the so-called shrink wrap approach [13] [9], of

which we use the blunted version (SW-BL). All these features are implemented in the
code COSY-VI.

2 Nonlinear Problems

As an example for the behavior for a nonlinear problem, we utilize a classical example
from the literature [14] [15] of validated integration of ODEs, the Volterra equations

dx1

dt
= 2x1(1 − x2),

dx2

dt
= −x2(1 − x1). (2.1)

The ODEs admit an invariant which has the form

C(x1, x2) = x1x
2
2e

−x1−2x2 = Constant, (2.2)

which is useful for the practical study of the methods under consideration. In the quad-
rant characterized by x1,2 > 0, the constant is positive, which implies that contour lines
are restricted to this quadrant and even form closed curves. Figure 1 illustrates the shape
of C and a few of its contour lines. The period of one cycle of the solution depends on
the initial condition, and outer orbits take longer.

We study the ODEs for the initial conditions

x01 ∈ 1 + [−0.05, 0.05], x02 ∈ 3 + [−0.05, 0.05].

In the contour line plot of the invariant in figure 1, the center of these initial conditions
lies on the outermost of the three shown contour lines. Within the Taylor model frame-
work of COSY-VI, the initial conditions are represented by the initial Taylor models
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Fig. 1. The invariant of the Volterra equations, which has the form C(x1, x2) = x1x
2
2e

−x1−2x2 .
A few contour lines are shown, including the one passing through the initial condition (x1, x2) =
(1, 3) being studied

I COEFFICIENT ORDER EXPONENTS
1 1.000000000000000 0 0 0 0
2 0.5000000000000000E-01 1 1 0 0
R [-.5884182030513415E-015,0.5884182030513415E-015]

1 3.000000000000000 0 0 0 0
2 0.5000000000000000E-01 1 0 1 0
R [-.1476596622751470E-014,0.1476596622751470E-014]

We use the ODEs to compare the behavior of the code COSY-VI and the code
AWA by Lohner [12] and to study the longer term behavior of the validated integration
process. As a first step, in figure 2 we show the overall width of the validated enclosure
of the solution for one full revolution of the validated enclosure produced by AWA and
COSY-VI. It is seen that shortly before completion of the revolution, the enclosures
produced by AWA grow rapidly.

We now study the Taylor model representation of the solution obtained by COSY-VI
after one revolution; the x1 component has the form

I COEFFICIENT ORDER EXPONENTS
1 0.9999999999999984 0 0 0 0
2 0.4999999999999905E-01 1 1 0 0
3 0.1593548596541794 1 0 1 0
4 0.2987903618516347E-02 2 2 0 0
5 0.7967742982712876E-02 2 1 1 0
6 0.1745863785260356E-01 2 0 2 0
7 0.4979839364191599E-04 3 3 0 0
8 0.5551021321878651E-03 3 2 1 0
9 0.6348634117324201E-03 3 1 2 0



68 Martin Berz and Kyoko Makino

0.01

0.1

1

10

100

1000

0 1 2 3 4 5 6

S
ol

ut
io

n 
E

nc
lo

su
re

 B
ox

 W
id

th

Time

COSY-VI
AWA

Fig. 2. The width of validated enclosure for solution of the Volterra equation determined by AWA
and COSY-VI

10 0.1191291278992926E-02 3 0 3 0
11 0.3258832737620100E-05 4 4 0 0
12 0.3241341695678232E-06 4 3 1 0
13 0.3862783715688610E-04 4 2 2 0
14 0.2689662978922477E-05 4 1 3 0
15 0.3564904362283420E-04 4 0 4 0

.....
171 0.1136167325983013E-18 18 117 0
R [-.4707095747144810E-010,0.4699004714805186E-010]

It can be seen that the zeroth order term is reproduced nearly exactly, as necessary
after one revolution. Also the dependence on the first variable is nearly as in the original
Taylor model. However, there is now an additional dependence on the second variable,
which is significantly larger than the dependence on the first variable, and which in-
duces a significant shearing of the solution. There are also higher order dependencies
on initial variables; up to machine precision, terms of up to order 18 contribute, and
some of the second order contributions indeed have a magnitude similar to the first
order contribution, an indication of strongly nonlinear behavior.

The dependence on the second variable and the higher order contributions are the
reason why the box enclosure produced by COSY-VI shown in figure 2 is larger at the
end of the integration than it was in the beginning. To determine how much of this is
actual overestimation, we insert the Taylor models representing the flow at time t into
the invariant in eq. (2.2) of the ODE and subtract from it the value of the invariant at
time 0. To the extent the Taylor models represent the true solution, the coefficients of
the resulting polynomial should vanish. The bound of the resulting Taylor model is a
measure for the sharpness of the approximation.
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Fig. 3. Invariant defect of the Taylor model integration of the Volterra equation for one revolution
for oders 12 and 18 and curvilinear (CV) and QR preconditioning

As a specific example, we show the resulting Taylor model of the invariant defect
after one full revolution.

I COEFFICIENT ORDER EXPONENTS
1 0.1214306433183765E-16 0 0 0 0
2 -.1100465205072787E-16 1 1 0 0
3 -.4109126233720062E-16 1 0 1 0
4 0.3169597288625592E-17 2 2 0 0
5 0.2035589578841535E-16 2 1 1 0
6 0.2318159770045569E-16 2 0 2 0
7 -.3702063375093326E-18 3 3 0 0
8 -.2109853192492055E-17 3 2 1 0
9 0.7358175212798107E-17 3 1 2 0

10 0.2956745849914467E-16 3 0 3 0
.....

76 0.2469510337886316E-19 15 6 9 0
R [-.1689839352652954E-011,0.1691154903051651E-011]

Indeed all remaining coefficients are very small, and the remaining terms are just
of the magnitude of machine precision. The main contribution is in fact the remain-
der term of the Taylor model evaluation of the invariant of magnitude around 10−12,
which is similar to that of the Taylor model solution after one revolution. Overall, this
study shows that the original domain box of width 10−1 could be transported for one
revolution with an actual overestimation of only around 10−12.

Figure 3 shows in detail the size of the invariant defect as a function of integration
time for up to one revolution. Shown are computation orders 18 and 12 and curvilinear
(CV) as well as QR preconditioning. It can be seen that the method of order 18 produces
an overestimation of around 10−12 after one revolution; after a fast ramp-up away from
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the floating point error floor, a plateau is reached, until the error again increases because
the system of ODEs enters a region of strong nonlinearity. On the other hand, figure 2
shows that AWA already early on exhibits relative overestimation of about 2 and then
fails before t = 5.

In order to assess the long-term behavior of the integration, it is important to first
consider some of the specific properties of the Volterra equations. As can be seen from
the one-revolution Taylor model enclosure of the solution, one of the important features
of the ODEs is that the revolution period strongly depends on the original position
on the invariant curves of the Volterra equations. This entails that when integrating
the flow of an initial condition box of significant size, some of its corners will lag
more and more behind some of the others, and the box will become more and more
elongated. Analyzing the one-revolution Taylor model, one sees that within only about
five revolutions, the image of the original box has a size similar to the entire parameter
space reached during the revolution; thus simplistic long-term integration of this ODE
is not possible without further modifications.

One way to treat this problem is to assess the dynamics in terms of a Poincare sec-
tion, a method frequently employed in the study of long-term behavior (see for example
[5]). Here however, we will restrict our attention to a more immediate tool for assessing
the long-term behavior, namely repeated forward-backward integration. This approach
maintains the nonlinear effects of the problem while away from initial conditions, but
avoids the “lag” problem because after one forward-backward cycle, all initial condi-
tions return to their original values.

In the following we assess the long-term forward-backward integration of the
Volterra equation using the shrink wrap approach utilized in COSY-VI [13] [9]. Roughly
speaking, in this approach the interval remainder bounds are “absorbed” back into the
range of the Taylor polynomial of the flow by slightly enlarging the corresponding co-
efficients. Thus the remaining interval dependencies and the associated risk of eventual
blowup disappear. If the intervals to be absorbed into the range are sufficiently small in
each step, the increase in the size of the coefficients will also be small. The quality of
the invariant over suitable integration times suggests that this is indeed the case.

In figure 4 we show the results of some longer term integration of 100 forward-
backwards cycles. The pictures show the width of the solution enclosure box as a func-
tion of cycles. The left picture shows the situation for five full cycles; while the box
width varies greatly, namely by nearly two orders of magnitude, over one forward-
backward cycle it returns to nearly the previous status. The repeated pattern of five
very similar looking box widths is visible; furthermore, within each of the five cycles,
the widths are mirror symmetric around the middle, which corresponds with the turn-
around point.

The right picture in figure 4 shows the situation from cycle 95 to cycle 100. The
remarkable fact is that while the curves have significant fine structure, there is no dif-
ference discernible to the naked eye; hence the transport after nearly 100 cycles looks
almost the same as in the beginning, although the box itself was relatively large and got
enhanced to a width of nearly one in each of the forward and backward passes.
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Fig. 4. Evolution of box widths during forward-backward cycles of the Volterra equation. Shown
are the situation for the first five cycles as well as cycles 95 to 100

3 Autonomous Linear Problems

While of rather limited practical significance, linear autonomous problems are of the-
oretical interest in the study of integration schemes because much is known about the
asymptotic behavior of error growth of common methods. Thus it is interesting to study
the behavior of validated integration schemes for such cases. Of particular interest are
cases that have eigenvalues of varying magnitudes, since for several validated ODE
integration schemes asymptotically this leads to difficulties with ill-conditioned linear
algebra operations.

To asses the behavior of the methods, we study three test cases for linear ODEs
x′ = Bx originally proposed by Markus Neher. We compare the performance of COSY-
VI with that of the code AWA. This comparison is interesting because AWA can easily
handle these cases since different from the situation in the previous section, the depen-
dence on initial conditions is always linear, and thus COSY-VI’s advantage to handle
higher order dependence on initial condition is irrelevant. But they are challenging for
COSY-VI because only first order terms in initial conditions appear, resulting in ex-
treme sparsity in the Taylor model data structure on computers.

We show results of various computation modes with COSY-VI, namely QR precon-
ditioning (PC-QR), curvilinear preconditioning (PC-CV), blunted parallelepiped pre-
conditioning (PC-BL), and blunted shrink wrapping (SW-BL). Both codes use auto-
matic step size control. COSY-VI uses order 17. AWA uses order 20, and the modes 1
through 4; frequently the mode 4, the “intersection of QR decomposition and interval-
vector” performs best. All runs were performed in the arithmetic environment of a
450MHz Pentium III processor. Integration was performed until t = 1000 or until
failure for the initial box

(1, 1, 1) + 10−6 · [−1, 1]3.

As a first example, we study a pure contraction with three distinct eigenvalues and
obtained the following result of performance.
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B1 =




−0.6875 −0.1875 0.08838834762
−0.1875 −0.6875 0.08838834762

0.08838834762 0.08838834762 −0.875



 ≈




− 1

2 0 0
0 − 3

4 0
0 0 −1





Mode t max Steps Width
AWA 1000 1216 1.4e-35
VI PC-QR 1000 1633 3.1e-38
VI PC-CV 1000 1463 4.1e-38
VI PC-BL 1000 1620 3.8e-36
VI SW-BL 1000 1726 6.3e-36

We note that the sweeping variable in COSY’s Taylor model arithmetic [2], which
controls the size of terms retained as significant, has been set to 10−40 for this case.
Running with a larger value for the sweeping variable leads to a solution set with a size
of roughly that larger size.

As the next example, we study a pure rotation

B2 =




0 −0.7071067810 −0.5

0.7071067810 0 0.5
0.5 −0.5 0



 ≈




0 −1 0
1 0 0
0 0 0





Mode t max Steps Width
AWA 1000 2549 3.5e-6
VI PC-QR 1000 2021 3.5e-6
VI PC-CV 1000 2046 3.5e-6
VI PC-BL 1000 2021 3.5e-6
VI SW-BL 1000 2030 3.5e-6

Finally we study a combination of a contraction with a rotation

B3 =




−0.125 −0.8321067810 −0.3232233048

0.5821067810 −0.125 0.6767766952
0.6767766952 −0.3232233048 −0.25



 ≈




0 −1 0
1 0 0
0 0 − 1

2





Mode t max Steps Width
AWA 1000 3501 3.0e-6
VI PC-QR 1000 2772 3.0e-6
VI PC-CV 1000 2769 3.0e-6
VI PC-BL 1000 2746 4.7e-6
VI SW-BL 1000 2728 1.2e-5

4 Conclusion

Summarizing the results of the numerical experiments for various nonlinear and linear
problems shows the following results:
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– As expected, the ability to treat higher order dependences on initial conditions leads
to a significant performance advantage for COSY-VI for nonlinear problems and
larger initial condition domain boxes

– For extended computation times in the Volterra equations, curvilinear precondition-
ing of Taylor model integration behaves similar to QR preconditioning, and both of
them behave significantly better than the AWA approach

– Shrink wrapping allows extended integration periods; over 100 forward-backward
cycles through the Volterra equation, growth of box width is not discernible within
printer resolution even for rather large boxes where AWA cannot complete a single
forward integration

– For linear autonomous problems, the COSY-VI preconditioning methods based on
QR, curvilinear, and blunted parallelepiped, all show qualitatively the same behav-
ior as the QR mode of AWA. The latter is known to have error growth similar to the
non-validated integration for autonomous linear ODEs. Thus we observe that the
three modes of COSY-VI achieve the same type of error growth.

– The number of integration steps of all methods are rather similar.
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