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Towards a Universal Data Type
for Scientific Computing

Martin Berz

ABSTRACT Modern scientific computing uses an abundance of data
types. Besides floating point numbers, we routinely use intervals, univari-
ate Taylor series, Taylor series with interval coefficients, and more recently
multivariate Taylor series. Newer are Taylor models, which allow verified
calculations like intervals, but largely avoid many of their limitations, in-
cluding the cancellation effect, dimensionality curse, and low-order scaling
of resulting width to domain width. Another more recent structure is the
Levi-Civita numbers, which allow viewing many aspects of scientific com-
putation as an application of arithmetic and analysis with infinitely small
numbers, and which are useful for a variety of purposes including the as-
sessment of differentiability at branch points. We propose new methods
based on partially ordered Levi-Civita algebras that allow for a unification
of all these various approaches into one single data type.

45.1 Introduction

In this chapter we attempt to combine various data types used in scientific
computation into a single one. Our primary interest lies in the ability to
compute derivatives of as wide a class of functions representable on a com-
puter as possible; in addition, we strive to make our arguments rigorous
by employing interval techniques. To this end, we provide a generalization
of the Levi-Civita numbers that on the one hand covers the multidimen-
sional case, and on the other hand employs interval techniques to keep all
arguments rigorous. The interval technique in particular will also allow an-
swering a variety of questions concerned with proper exception handling
merely within the one-dimensional case.

The Levi-Civita field R can be viewed as a set of functions from the
rational numbers into the real numbers that are zero except on a set of
rational numbers forming at most a strictly monotonically diverging se-
quence, as described in [4]. The structure forms an ordered field that is al-
gebraically closed and admits infinitely small and large numbers [5]. In [4]
and [19, 20] it is shown that for functions that can be represented as a
computational graph consisting of elementary operations and the common
intrinsics, derivatives can be obtained up to infinitely small error by evalua-
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tion of the difference quotient(f(z+ Az)— f(z))/Axz for any infinitesimally
small Az; similar formulae hold for higher derivatives. Thus, the method
retroactively justifies the thinking of Newton and Leibnitz, and allows treat-
ment of infinitely small numbers even on the computer. Additionally, the
algebraic closure implies that derivatives can also be calculated and proven
to exist in many cases of branch points, and even under the presence of non-
differentiable pieces as long as the overall graph represents a differentiable
function [19].

The method of [4] is limited to functions of one variable. This allowed the
treatment of partial derivatives by repeated evaluation, but no assessment
of differentiability over entire multidimensional neighborhoods. Below the
structures are extended to the canonical treatment of v independent dif-
ferentials. One obtains functions from @V into R such that the sequence
formed by adding the v rational numbers ¢; + ... + g, at nonzero entries
forms a strictly diverging sequence. Most favorable properties are retained,
in particular the structure still admits roots for most numbers, and similar
to above it is now possible to obtain partial derivatives of any order as
the respective difference quotients with respect to different infinitesimals.
Again the methods also hold under branching and in the presence of certain
non-differentiable pieces.

In a practical implementation requiring mathematical rigor, it is also
necessary to account for possible floating point errors. This can be achieved
by embedding the structures into functions from @V into the set of floating
point intervals. Using this method, the presence/absence of critical points
can be detected in a rigorous way if appropriate.

In practice, first and higher order partial derivatives are often used in
the framework of sensitivity analysis. We note that it is possible to develop
a further extension of the previous numbers that even support rigorous
bounds of the errors made in a sensitivity representation over a pre-specified
domain. This approach provides a generalization of the Taylor Model ap-
proach [14, 15] that now also rigorously accounts for non-differentiability.
For reasons of space, we have to refer to a forthcoming paper for details.

Altogether, the newly proposed data type unites differentiation data
types for any order and number of variables, interval methods, the sharper
approach of Taylor models, and has the ability to assert differentiability
even if not all pieces are differentiable.

45.2 The Levi-Civita Numbers R,

We begin our discussion with a group of definitions.

Definition 1 (Diagonal Finiteness) We say a subset M of the rational
v-tuples QY is diagonally finite if for any m, there are only finitely many
elements (q1,...,q,) € M that satisfy q1 + ... + ¢, < m.
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Diagonal finiteness is a generalization of the left-finiteness introduced for
the Levi-Civita numbers [4]. In a similar way, we now introduce a set of
numbers as follows:

Definition 2 (Extended Levi- Civita Numbers) We define the extended
Levi-Civita numbers R, to be the set of functions x from QU into the real
numbers R such that the points q = (qu,...,q,) in the support of z, i.e.
those points that satisfy z[q] # 0, are diagonally finite.

For two extended Levi-Civita Numbers x and y in R,, we define (x + y)
and (z - y) via

(z +y)ld] = z[q] + yd] (45.1)
(@-yld= Y =] ylsl (45.2)
q=r-+s

where for a given q, the sum is carried over only those r and s that satisfy
q=r+s and z[r] # 0, y[s] # 0, of which there are only finitely many.

Definition 3 We define the interval Levi-Civita Numbers RI to be the
set of functions from QU into intervals with diagonally finite support. The
arithmetic for the intervals (45.1) and (45.2) follows standard practice ([1,
11, 16, 17, 18]). The arithmetic for the q is performed as exact rational
arithmetic with check for overflow beyond a maximum q, and underflow
beyond a minimum q,.

For a generalization of the Taylor model approach [13, 14, 15], one would
map into a product space (I1, I) of two intervals, the first of which agrees
with the previous one, and the second of which would represent a bound
of the remainder error for truncation at the respective order.

We note that implementation of the Levi-Civita numbers R, is a straight-
forward generalization of high-order multivariable Taylor methods; to any
given Levi-Civita number, one decides a depth ! to which support points
are kept. For the finitely many support points below [, the common de-
nominator is determined, and the numerators are manipulated just as in
high-order multivariate automatic differentiation [3].

Definition 4 (Degree, Finiteness, Core and Pyramidality) To a
number nonzero x € R,, we define the degree

Az) =min{qg1 + ... + ¢ | z[q1, .-, @] # 0}, (45.3)

i.e. the minimum of the support of x. We also define A(0) = +o00. If A(z) =
0, > 0, or < 0, we say = is finite, infinitely small, or infinitely large,
respectively. Any point (g5, ...,q5) that satisfies z[¢5,...,q5] # 0 and ¢1 +
e+ @ = A(2) is called a core of x. We say x is pyramidal if it has only
one core.
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The most important case, representing the case of conventional auto-
matic differentiation, corresponds to finite numbers with support points
(q1,---,qv) that satisfy ¢; > 0. These numbers are pyramidal with core
(0,...,0).

Definition 5 (Positive Numbers, Ordering) Let x € R, be pyramidal,
and let q. be the core of x. We say x is positive if x if z[q.] > 0, and negative
if x[q.] < 0. We say x >y if (x —y) is pyramidal and positive.

Apparently the ordering is only partial, as some numbers are neither
positive nor negative. Altogether, we arrive at the following situation.

Theorem 1 (Structure of R,) The Levi-Civita Numbers R, form an
extension of the real numbers R by virtue of the embedding

r€R—x €R, withz[0] =7 and z[q] =0 for q #0 (45.4)

which preserves arithmetic and order of R.

They form a partially ordered real algebra, and the order is compatible
with the algebraic operations. The order is non-Archimedean; for example,
the elements d, given by

dyles] =1, and 0 else (45.5)

where e, is the v-th Cartesian basis vector, are infinitely small, and their
multiplicative inverses are infinitely large.

Pyramidal elements admit inverses and odd roots, and positive pyramidal
elements admit even roots.

The proofs of these assertions follow rather parallel to the corresponding
ones in the case of R presented in [4]. Specifically, let (¢f,...,q5) be the
(unique) core of the number z. We then write

r = 2[qf, ..., q5] - (1 + )

and observe that by the definition of pyramidality, A(Z) > 0. This allows
for the treatment of (1 + Z) through a (converging) power series for the
root, in a similar way as in [4].

45.3 Intrinsic Functions for Finite and Infinite Argu-
ments

In [4, 5, 20], the common intrinsic functions were extended to R based on
a theory of power series on R and their power series representation. The
concept of weak convergence on which the theory of power series on R is
based can be extended directly to R, in the same way as before based on
the family of seminorms

lallr = max _ (ofas, - a0]):
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In this way, one obtains that the conventional power series all converge
in the same way as in R, and thus all conventional intrinsic functions are
available in the same fashion.

However, the canonical treatment of intrinsics via power series only ap-
plies to arguments within the finite radius of convergence, and thus for ex-
ample does not cover infinitely large numbers, limiting their use for cases
where also in all intermediate computations, the arguments stay finite, and
precludes the study of cases like f(z) = 2% -log(z) (z # 0), £(0) = 0 at the
origin. Within the framework of R and R,, it is however also desirable to
assign values to intrinsics for non-finite numbers.

We now extend the common intrinsic functions to R,, beyond the domains
in which they can be represented by power series by representing their
asymptotic behavior in terms of intervals, and as a consequence we will be
able to study cases like z? log(z).

Definition 6 (Intrinsic Functions)

2i41

sin(x) = { 220(_1)”1% AMz) 20

[-1,1] x infinitely large
Yo o Mz) >0
exp(z) = ¢ [0,00]-d{° -...-dle =z positive and infinitely large
[0,00] - d¥* -...-di* 1z negative and infinitely large
log(Re(z)) + Yooy %‘zgl)i x positive and M\(z) =0
log(z) = ¢ [—o0,0] x positive and infinitely small
[0, o] x positive and infinitely large

where q, and q, are the largest and smallest representable rational num-
bers introduced above, and Re(zx) denotes the real part z[0, ..., 0] introduced
above.

Apparently these definitions have a slight similarity with assigning things
such as “NAN” etc. for floating point exceptions, where here in addition it is
possible to distinguish different speed of divergence by assigning “different
kinds of infinity.” The sine stays bounded asymptotically, the exponential
diverges faster than any rational power, and the logarithm, while diverging,
does so slower than any rational power. With these and similar definitions
for the other intrinsics not explicitly listed, it is now possible to treat many
different kinds of branch points and exceptions, as exemplified below.

We have similar theorems as in R :

Theorem 2 (Continuity and Differentiability)

The function f is infinitely often partially differentiable ot x in RY, and
is totally differentiable if it can be evaluated for some true interval inclu-
sion that has x in its interior without tripping a code branch during its
evaluation. In this case, all partial derivatives of f can be evaluated up to
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infinitely small error by the corresponding divided difference formulae with
infinitely small differences.

The function f is continuous in the direction of unit vector e, if it can
be evaluated for an interval that may have x on its boundary, as well as
x+d,, and if the evaluation f(x) and f(x=xd,) agree up to infinitely small
error, even if x and x £ d, lie on different code branches.

The function f is partially differentiable in direction e, if it can be eval-
wated for an interval that may have x on its boundary as well as x+d, and
if the difference quotients (f(z+d,) — f (z))/dy and (f (z) — f(z —d,))/d,
agree up to infinitely small error, even if x and x = d, lie on different code
branches.

The function f is higher-order partially differentiable in direction e, if it
can be evaluated for an interval that may have x on its boundary as well as
X+ Y ¢;d; for suitable coefficients c; and if the corresponding higher-order
difference quotients agree up to infinitely small error, even if x and the
x + Y ¢jd; lie on different code branches.

In this view, the treatment of branch conditions in IF structures etc.
through intervals I are to be viewed in a set theoretical sense with a partial
order I} < Iy if z; < x5 for all x; € I; and x4 € Iy. This is similar to other
interval-based treatment of branches [2, 10]. In the first case, if there is
a true inclusion that is “safe” for evaluation, this already implies that all
the arguments in the divided difference schemes can be evaluated. The
other cases parallel the situation in R [4], except that now also partial
derivatives are possible, and there is no reliance on the accuracy of floating
point arithmetic.

45.4 Critical Points of Computer Functions and Their
Distribution

It has been widely recognized [2, 8, 10] that the detection of critical points
during code execution is a difficult task without relying on verified tech-
niques such as interval methods or the interval-Levi Civita numbers intro-
duced above. However, it is frequently at least assumed that any critical
points that can occur in computer code to be processed by automatic dif-
ferentiation tools through branching or inherent singularities of intrinsic
functions are isolated and hence easily distinguishable. However, this intu-
itive notion is indeed rather misleading, as we shall illustrate with a few
examples. In particular, it is possible to construct computer functions with
critical points at nearly every computer number in a certain range. Consider
for example the function f and its critical points

f(z) = 1/sin(exp(1/x)) (45.6)
2" = 1/1In(n) (45.7)
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Apparently the critical points of f are spread all over the interval [0, 1], and

they get closer together as we approach 0. Table 45.1 shows the distribution
of the critical points of f in (0,1). Furthermore, any point in the interval

TABLE 45.1. Distribution of the critical points of f in (0, 1)

Subinterval Number of critical points of f
(&, %] 2,827,587

6’
(%, 10| 25,134,688,039,947
(a1> 35 more than 1.9 x 10?7

(0,0.03] is less than 1076 away from a critical point of f. In passing we
note that the actual size of the interval is rather immaterial since through
a simple appropriate re-scaling we can apparently obtain the same result
in (0,1] rather than in (0,0.03]. Between any two computer numbers in
(0,0.03], there lies a critical point of f, and thus critical points cannot
computationally be distinguished from non-critical points.

To illustrate this point, we investigate what happens if we evaluate f at
the critical point = 1/In (10'®7) € (0,0.03]. We first evaluate z numer-
ically with 14, 16, 18, 20 digits precision and then we evaluate f with the
same precision, using Maple. The results are given in Table 45.2 The results

TABLE 45.2. Critical points cannot computationally be distinguished from
non-critical points

Digits z =1/1n(10'%7) f ()
14 2.8024151890566 x 102 —1.410081 5827607
16 2.802415189056 638 x 102 1.000812471 855461
18 2.802415189056 63788 x 102 —9.237866 180822 37943

20 2.802415189056 6378791 x 1072  —791.989471416 7853338

apparently do not reflect the fact that z is a critical point of f, but each
individual evaluation looks rather inconspicuous. The situation is rather
similar for other choices of critical points. With only minor additional ef-
fort, the situation can become even much more complicated; for example,
consider the function g(x) with critical points zy, ,, given by

9 (z) =1/sin(f(z)) = 1/sin (1/ sin(exp(1/2))) ;

1
Cc —
T In (nm + arcsin (=)

x where m,n are nonzero integers.

Thus, to every critical point of f in (0,1) there corresponds a whole fam-
ily of infinitely many critical points of g. All these difficulties that are not
transparent in a floating point environment are overcome more or less di-
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rectly when working in any kind of rigorous interval environment. This is
also the case for the interval Levi-Civita numbers RZ.

45.5 Examples

To conclude, we illustrate the behavior of the method for various patholog-
ical cases, some of which have been considered previously [2, 7, 8, 9, 10, 12].

Problem 1 fi(z) =1 for 22 > 2, and 0 otherwise, at x = /2.

Depending on whether the floating point result of the calculation of /2
is above or below the true value of v/2, using floating point methods, the
value of f; would be chosen as 1 or 0. The derivative would be returned
as 0. Evaluation with interval arithmetic would recognize the branch and
conclude that it cannot decide differentiability. Depending on implementa-
tion of the IF structure and the possibility of launching branch threads, an
implementation may even return the result [0,1]. Evaluation in R} would
recognize the branch and conclude that it cannot decide differentiability.

Problem 2 fy(z) = z-exp(1/z) for x # 0 and f2(0) =0, at z =0

Evaluation R} for f(0) and f(0+d) yields [0,0]-d° and d-[0, oo]-d*-...-dde.
Since f(0) and f(0+ d) differ by more than an infinitely small amount, we
conclude that f> is discontinuous at the origin.

Problem 3 f3(z) = z -sin(1/+/]z]) for z #0 and f3(0) =0, at z =0

Since f35(0) = 0, f3(—d) = —d - [-1,1], f3(d) = d-[-1,1] all differ
only by infinitely small amounts, we conclude f3 is continuous at 0. Since
(f3 (d) — f5(0))/d = [-1,1] is finite, we know f is not differentiable at 0.

Problem 4 f4(z) = |z|3/2 - log(|z|) for  #0 and f4(0) =0, at z =0

Since f4(0) = 0, fa(—d) = d*/? - [~0,0], fa(d) = d*/? - [~o0,0] all differ
only by infinitely small amounts, we conclude f4 is continuous at 0. Since
(f4(d) — f4(0))/d = (4 (0) — fo(—d))/d = d*/? - [0, 0] are equal and thus
differ by not more than infinitely small amounts, f; is differentiable at 0.

Problem 5 f5(z,y) = 0 if 22 = y and (z,y) # (0,0), f5(0,0) = 2, and
f5(z,y) = 2z + 1)(|y| + 2) otherwise, at x =y = 0.

Evaluating the function at any small interval containing the origin trig-
gers a code branch, avoiding the affirmative answer that the function is
totally differentiable at the origin. Moreover, if within the implementation
of code transformation, all branches can be followed, it is concluded that
the resulting interval has width of at least [0, 2], and hence the function is
concluded not to be totally differentiable. Testing partial differentiability in
the z direction, we have f5(0,0) = 2, f5(dz,0) = 2+4d,, and f5(—d,,0) =
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2—4d,. Hence (f5(d;,0)— f5(0,0))/dz = (f5(—dz,0)— f5(0,0))/(—d,) = 4,
and we conclude that f is partially differentiable in the z direction with
derivative 4. On the other hand, evaluating f5(0,0) = 2, f5(0,d,) = 2+d,,
and f5(0,—dy) = 2 + dy, we have (f5(0,dy) — f5(0,0))/d, = 1, while
(f5(0,—dy) — f5(0,0))/(—dy) = —1, and so we conclude f5 is not partially
differentiable in the y direction.
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