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Nonlinear effects of the various electric field and magnetic field components of storage

rings to confine the particles and bend their trajectory can cause substantial amplitude
dependent tune shifts within the beam. Furthermore, tune shifts are often sensitive to
variations of system parameters, e.g. total particle momentum offsets δp. Such amplitude

and parameter dependent tune shifts influence the dynamics and stability of a beam
in particle storage rings. Thus, it is critical for high precision measurements to analyze
and understand these influences. On this basis, we present normal form methods for the
calculation of high order amplitude and system parameter dependencies of the horizontal
and vertical tunes in storage rings using the differential algebra framework within COSY

INFINITY. A storage ring is simulated using COSY INFINITY to generate a differential
algebra Poincaré return map describing the transverse phase space behavior after each
revolution in the storage ring. The map is expanded around the parameter dependent

closed orbit of the system before transforming the resulting map into normal form
coordinates to extract the high order tune dependencies on the phase space amplitude
and variation in the system parameters. As a specific example, a storage ring similar to

the Storage Ring of the Muon g-2 Experiment at Fermilab (E989) is investigated.

Keywords: Betatron tune shifts; high order transfer maps; nonlinear effects; normal form
methods; storage ring

1. Introduction

In the limit of infinitely many revolutions in the storage ring, the horizontal and

vertical tunes can be interpreted as the fractional part of the average number of

horizontal and vertical phase space revolutions around the fixed phase space state of

a reference particle per storage ring revolution. Tune shifts indicate how the tunes

change depending on variations of the phase space amplitude relative to the reference

particle and on variations in system parameters, for example, offsets in the initial

momentum relative to the reference particle.

Accordingly, amplitude and parameter dependent tune shifts relative to the tune

of the reference particle lead to particles within the beam that oscillate at different
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frequencies, which potentially influences the beam’s susceptibility to resonances.

In this paper, we present methods to calculate the horizontal and vertical tune

shifts and show their behavior dependent on the phase space amplitude ~rNF relative to

the fixed phase space state of a reference particle on the closed orbit of the respective

storage ring and dependent on variations in the system parameters ~η. Each storage

ring is simulated using the differential algebra (DA) framework implemented within

COSY INFINITY.1,2 From the storage ring simulation, a Poincaré return map is

obtained, which describes the horizontal and vertical phase space behavior after each

storage ring revolution within a Poincaré surface corresponding to the transverse

cross section of the storage ring at a specific azimuth location. The Poincaré return

map is expanded in the phase space coordinates ~z relative to the ideal orbit of the

storage ring and is also expanded in ~η.

Using DA normal form methods, we analyze the phase space behavior relative to

the fixed point of the Poincaré return map which corresponds to the closed orbit of

the storage ring model. The normal form algorithm transforms the Poincaré return

map to normal form coordinates in which the motion is rotationally invariant. Hence

the phase space orbits are circular and the phase space angle advancement after each

revolution in the storage ring is constant along the phase space orbit. This allows

for a straightforward extraction of the tunes and tune shifts from the constant angle

advancement which is given in high order dependence on the normal form phase

space amplitudes ~rNF and on ~η.

In section 4.1, we investigate specific example storage rings with our methods,

namely storage rings with properties very similar to the Storage Ring of the Muon

g-2 Experiment at Fermilab (E989).3,4 The results are presented and compared with

preliminary measurements of the tunes and results on the decoherence rate of the

muon g-2 beam presented in Ref. 5.

2. Differential Algebra Methods

The methods in this paper are hybrids of numerical and analytical techniques, based

on a DA framework which was first developed to its current extent by Berz et al.

(Refs. 6–8). The following summary and introduction to the DA framework, DA

maps and the DA normal form algorithm are based on Ref. 6.

2.1. The Differential Algebra Framework

The basic goal of the DA framework is the representation and manipulation of

analytic functions. To standardize the notation, an analytic function f is expressed

up to order m in terms of its Taylor polynomial expansion Tf , similar to how real

numbers are approximated to a certain arbitrary number of significant digits. Instead

of just using ‘≈’ to represent the approximation, the notation ‘=m’ is used to indicate

that both sides agree up to expansion order m. Because of the approximation,

multiple functions may be represented by the same Taylor polynomial of order m

and are therefore equivalent up to that order.
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This gives rise to the definition of equivalence classes following Ref. 6. The

equivalence class [f ]m represents all elements f of the vector space of infinitely

differentiable functions C∞(Rn) with n real variables that have identical derivatives

at the origin up to order m. The origin is chosen out of convenience and without loss

of generality, any other point may be selected. In the DA framework, the equivalence

class [f ]m is represented by a DA vector which stores all the coefficients of the

Taylor expansion of f and corresponding orders of the variables in an orderly fashion.

Operations are now defined on the vector space mDn of all the equivalence classes

[ ]m.

There are three operations: vector addition, vector multiplication, and scalar

multiplication, which are equivalent to the truncated result of adding two polynomials,

multiplying two polynomials and multiplying a polynomial with a scalar, respectively.

The first two operations on the equivalence classes represented by DA vectors turn

it into a ring. The scalar multiplication makes the three operations on the real

or complex DA vectors an algebra, where not every element has a multiplicative

inverse. An intuitive example of such elements with no inverse are functions expanded

at zero without a constant part. To make the algebra a differential algebra, the

derivation ∂ satisfying Leibniz’s law ∂(fg) = f∂(g) + g∂(f) is introduced (see Ref.

6 for details), which is almost trivial in the context of differentiating polynomial

expansions. The derivation allows the algebraic treatment of ordinary and partial

differential equations as it is common in the study of differential algebras.9–11

Implemented in COSY INFINITY,1,2 the DA framework allows preserving the

algebraic structure up to arbitrary order while manipulating the coefficients of the

DA vectors with floating point accuracy. An example of DA vectors in the application

of DA transfer maps and Poincaré maps is given below.

2.2. DA Transfer Maps and Poincaré Maps

Transfer maps are a standard tool in dynamical systems theory to represent the

effect of the flow generated by a set of ordinary differential equations (ODE). They

are also called flows, propagators, or simply maps. Basically, a transfer map M
algebraically expresses how a final state ~zf depends on an initial state ~zi and the

system parameters ~η,

~zf =M (~zi, ~η) . (1)

In the DA framework, a map is represented by a local expansion of M in (~z, ~η) up

to order m around an expansion point ~z0 and a reference set of parameters ~η0.

There are special transfer maps, called Poincaré maps,12 that constrain the initial

and final state to Poincaré surfaces Si and Sf , respectively. For the simulation of

storage rings and their particle optical elements, this concept is used to represent

how the state directly after an element depends on system parameters and the state

directly before the element. A set-up of multiple consecutive storage ring elements

is described by the composition of their Poincaré maps.
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Poincaré return maps represent the case where Si is equal to Sf . Poincaré return

maps are particularly useful for repetitive systems like the one considered in this

paper, where multiple applications of the Poincaré return map correspond to a

propagation of the system, for example, multiple storage ring revolutions. For these

applications, it is advantageous if the map is origin preserving, i.e. the expansion

point is a fixed point of the map, because system dynamics represented by origin

preserving Poincaré return maps can be further analyzed by normal form methods

and for the asymptotic stability of the system.

Constraining the map to the Poincaré surface S is often done by calculating

the flow of an ODE and projecting the flow onto the surface S to generate the

Poincaré map. An implementation of a timewise projection onto a surface S defined

by σ(~z, ~η) = 0 is outlined in Ref. 13.

2.3. DA Normal Form Algorithm

For an origin preserving Poincaré return map M of a repetitive Hamiltonian system

dependent on phase space coordinates ~z = (~q, ~p), the DA normal form algorithm6

performs a nonlinear change of variables to rotationally invariant normal form coor-

dinates (~qNF, ~pNF) by an order-by-order transformation. For parameter ~η dependent

systems, the first step of the algorithm is determining the parameter dependent fixed

point of the map and expanding the map around it. This will be further discussed

with regard to closed orbits of the specific system in section 3.2.

In the first order transformation, the map is diagonalized. For this we require that

the map is linearly stable, i.e. eigenvalues λi with |λi| ≤ 1, and that the eigenvalues

are distinct. Most relevant and particularly important for the application in this

paper are symplectic maps, for which the eigenvalues come in complex conjugate

pairs λ±k = exp(±iµk) of magnitude 1. The corresponding diagonalization transforms

the system into the basis of the complex conjugate eigenvector pairs of its linear

part.

The nonlinear transformationsAm are determined one order after another starting

with order m = 2. The transformations are given by Am =m I + Tm, where Tm
consists of polynomials of order m only and I is the identity of the current variables.

The goal is finding Tm such that the mth order of the map Mm−1 is simplified or

even eliminated when the transformation Am and its inverse A−1m =m I − Tm are

applied to it. The following equations illustrate how Tm is determined for the mth

order.

Given the mapMm−1, representingM simplified up to order m−1, and applying

Am and its inverse to it, as shown in Eq. 7.60 in Ref. 6, yields

Am ◦Mm−1 ◦ A−1m =m (I + Tm) ◦ (R+ S?<m + Sm) ◦ (I − Tm)

=m (I + Tm) ◦ (R−R ◦ Tm + S?<m + Sm)

=m R+ S?<m + Sm + [Tm,R] , (2)

where R is the diagonalized linear part and S?<m are the simplified terms of previous
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transformations of order < m. [Tm,R] denotes the commutator of Tm and R and

Sm represents only the mth order terms of the map Mm−1, namely the leading

order of terms that are not simplified yet. In the equations above, only terms up

to order m are considered, since terms of order m+ 1 and larger are irrelevant for

determining Tm. Nonetheless, the influence of the mth order transformation on the

higher orders of the map is non-trivial and can affect higher order transformations

and the resulting normal form significantly.

The maximum simplification of the order m terms of Mm−1, namely Sm, would

be achieved by finding Tm such that the commutator Cm = Tm◦R−R◦Tm = [Tm,R]

and Sm cancel each other, which would eliminate all nonlinear terms of order m.

The following calculation illustrates why this not always possible.

In the jth subspace, the coefficients of the terms
∏
i q
k+i
i p

k−i
i of Cm are denoted

with (C+m,j |~k+,~k−) for the position component of the subspace, and (C−m,j |~k+,~k−)

for the complex conjugate momentum component of the subspace. In particular, the

commutator coefficient(
C±m,j |~k

+,~k−
)

=
(
T ±m,j |~k

+,~k−
)
·
(
ei~µ·(

~k+−~k−) − e±iµj

)
(3)

is zero for mod2π(~µ · (~k+ − ~k−)∓ µj) = 0. This condition is satisfied for terms with

aj − bj = ±1 and ai = bi ∀i 6= j. Accordingly, the corresponding nonlinear terms

(S±m,j |~k+,~k−) cannot be canceled and hence survive. These surviving terms S?m of

Sm describe the entire dynamics of the systems in a nutshell and are the key elements

of the further dynamic analysis. All the other nonlinear terms (S±m,j |~k+,~k−) are

canceled by choosing

(
T ±m,j |~k

+,~k−
)

=
−
(
S±m,j |~k+,~k−

)
ei~µ·(~k+−~k−) − e±iµj

. (4)

Note that the surviving terms of higher order transformations can be influenced

significantly by the previous transformations and hence their coefficients of Tm. Eq.

4 indicates that a coefficient of Tm is large, if the denominator is close to zero i.e.

satisfying the resonance condition, and/or the corresponding coefficient of Sm in the

numerator is large.

After the nonlinear transformations, the map is transformed back into real space

by using the real and imaginary components of each of the current complex conjugate

eigenvector pairs as new basis. As a result of the order-by-order transformation and

the transformation to real space, the original map is significantly simplified up to

an arbitrary order to a rotationally invariant normal form map MNF with only

amplitude ~rNF and parameter ~η dependent angle advancements Λ(~rNF, ~η) in the

normal form phase space (see one-dimensional example in Fig. 1).

In the jth subspace, the map in normal form coordinates is given by

MNF,j =

(
cos (Λ (~rNF, ~η)) − sin (Λ (~rNF, ~η))

sin (Λ (~rNF, ~η)) cos (Λ (~rNF, ~η))

)
·
(
qNF,j

pNF,j

)
. (5)
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Fig. 1. In a), the phase space state (q0, p0) is iterated 16 times with the Poincaré return map.
The phase space angle advancement Λk→k+1 and the phase space radii rk change along each of

the phase space orbits. In b), the corresponding normal form state (qNF, pNF) is iterated 16 times
with the corresponding normal form map. The normal form phase space behavior is rotationally
invariant with a constant normal form radius rNF for each of the phase space orbits, and a constant

but amplitude and parameter dependent angle advancement Λ(rNF, ~η) for each of the phase space
orbits.

The rotational invariance implies an interpretation of the normal form as an averaged

representation of the Poincaré return map in the limit where the map application is

repeated infinitely many times. In one dimension, the normal form radius corresponds

the invariant amplitude of the original phase space motion. For systems with more

dimensions, the association of the original phase space subspaces with normal form

subspaces and its angle advancement and invariant normal form radius is only

appropriate if there is no or only very weak linear coupling between the original

phase space subspaces, since the normal form space corresponds to the decoupled

phase space from the diagonalization.

The normal form transformation A(~q, ~p, ~η) provides the connection between

the original coordinates and the normal form coordinates and is the result of the

composition of all the involved transformations: the parameter dependent fixed point

transformation, diagonalization, nonlinear transformations and the transformation

back to real space.

3. From storage ring models to tune dependencies

3.1. Storage ring simulation using Poincaré maps

A storage ring is composed of various particle optical elements, each of which can be

simulated in COSY INFINITY,1,2 mostly by a multipole expansion of the involved

fields or corresponding potentials.

For each particle optical element, there is a hypothetical ideal orbit for which it

is calibrated, usually along the center of the element. The ideal orbit is characterized



October 17, 2019 23:57 WSPC/INSTRUCTION FILE
Revised˙Manuscript˙Weisskopf

High order amplitude and parameter dependent tune shifts for high precision measurements 7

by a predetermined set of system parameters ~η0, for example a specific total reference

momentum of the particles. If the element is simulated as ideal, namely without

perturbations, the actual trajectory of a particle initiated on the ideal orbit when

entering the element (at ~z0) follows the ideal orbit throughout the element. However,

with perturbations like imperfections in the associated fields of the element, a particle

initiated at ~z0 might follow a trajectory different from the ideal orbit. Hence the ideal

orbit describes the actual trajectory of a particle initiated at ~z0 in the unperturbed

case.

To analyze how an element influences the transverse phase space behavior around

the ideal orbit, Poincaré maps are used. The Poincaré surfaces correspond to the

vertical storage ring cross section before (Si) and after the element (Sf ). The Poincaré

map P is expanded around the ideal orbit and expresses how the relative phase space

state ~zf ∈ Sf after the particle optical element depends on variations in ~η and on the

relative phase space state ~zi ∈ Si before the element, with ~zf = P(~zi, ~η). The phase

space states relative to the ideal orbit ~z consist of the horizontal (q1, p1) = (x, a) and

vertical (q2, p2) = (y, b) phase space components within the Poincaré surface S. For

unperturbed elements, the Poincaré map P is origin preserving, with P(~0,~0) = ~0,

since the trajectory follows the ideal orbit - the expansion point of the map.

The transverse phase space behavior after a full revolution in the storage ring is

given by the Poincaré return mapM, which is generated by composing the individual

Poincaré maps Pi of the individual storage ring elements according to the storage

ring set-up (M = Pk ◦ Pk−1 ◦ ... ◦ P2 ◦ P1) such that the composed ideal orbit is a

closed orbit.

3.2. Closed orbits under perturbation

For the use of the DA normal form algorithm, it is essential that the Poincaré

return map is origin preserving, hence a fixed point map where the expansion point

belongs to a closed orbit that returns to itself after each storage ring revolution. If

all components are simulated to be unperturbed, then the Poincaré return map is a

composition of origin preserving Poincaré maps and hence also origin preserving.

However, if the simulation considers perturbations, the actual trajectory of the

expansion point may be distorted from the ideal orbit and hence not a closed orbit.

Hence the expansion point of the associated Poincaré return map may not be a fixed

point and the map may not be origin preserving.

However, if the perturbation is sufficiently small, then a fixed point ~zFP will

continue to exist, as we will show now. Parameterizing the strength of the per-

turbation with ~η, the origin preserving fixed point map of the unperturbed sys-

tem is given by M (~z, ~η = 0). To analyze the preservation of the parameter de-

pendent fixed point, an extended map N (~z, ~η) = (M(~z, ~η)− ~z, ~η) is defined. If

det(Jac(N (~z, ~η)))|(~z,~η)=(~0,~0) 6= 0 then, according to the inverse function theorem, an

inverse of the map N exists for a neighborhood D around the evaluation point (~0,~0)

of the Jacobian.
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The parameter dependent fixed point ~zFP(~η) of M and hence the closed orbit of

the system exists as long as (0, ~η) is within the neighborhood for which invertibility

has been asserted. If this is the case and the inverse N−1 around (~0,~0) is given, then

the parameter dependent fixed point can be calculated via

(~zFP(~η) , ~η) = N−1
(
~0, ~η
)
. (6)

Re-expanding the map around the parameter dependent fixed point yields the origin

preserving Poincaré return map under perturbations in the system parameters.

3.3. Tunes, tune shifts, normal form radii and resonances

DA normal form methods are used to transform the origin preserving phase space

Poincaré return map to the rotationally invariant normal form as shown in Eq. 5.

From the normal form, the angle advancement Λ(~rNF, ~η) as a function of amplitude

~rNF and system parameter ~η is particularly straightforward to extract. Scaling the

angle advancement to 1 instead of 2π provides the number of phase space revolutions

per system revolution, represented by the Poincaré return map. In beam physics

terminology, the parameter independent frequency of normal form phase space

revolutions is known as the tune ν, whereas the frequencies change dependent on ~rNF

and ~η are called the amplitude and parameter dependent tune shifts δν(rNF,k, ~η),

respectively.

The tune νk corresponds to the scaled phase µk of the complex conjugate

eigenvalues λ±k of the linear transformation. Hence the tune is related to the linear

motion around the expansion point - the motion ‘infinitely near’ the expansion point.

Interpreting the tune and its tune shifts as the phase space rotation frequency

suggests that the tune - the phase space rotation frequency of the expansion point -

is a rotation with no amplitude, where the frequency is determined by the linear

motion around the expansion point. In particular, this means that maps with the

same expansion point can have different tunes depending on the linear motion around

it. For parameter dependent systems, the tunes of the parameter dependent closed

orbit can already be determined by ~ν(~η) = ~µ(~η)/2π in the parameter dependent

linear transformation.

The tune shifts indicate the change of the phase space rotation frequency depen-

dent on the phase space amplitudes ~rNF and variations in the system parameters ~η.

Since the normal form transformation is symplectic, it preserves the phase space

volume, which helps to understand the connection between the original coordinates

and their normal form radii. Given sufficiently linearly decoupled phase space sub-

spaces, the normal form radius rNF,k is a measure for the invariant phase space area

of the kth subspace. Hence the original coordinates of an invariant phase space orbit

in the kth subspace enclosing the area Ak correspond to the normal form radius

rNF,k =
√
Ak/π.

The normal form radii are the link between the tune dependencies and the

original coordinates. The dependency of the tune shifts on the normal form radii is



October 17, 2019 23:57 WSPC/INSTRUCTION FILE
Revised˙Manuscript˙Weisskopf

High order amplitude and parameter dependent tune shifts for high precision measurements 9

a result of the surviving terms Sm of the nonlinear normal form transformations.

But the crucial terms are the Tm from Eq. 4 that are used to cancel all the other

nonlinear terms Sm. On the one hand, the Tm terms determine how the original

coordinates ~z = (~q, ~p) and the system parameters ~η relate to the normal from radii

~rNF, since the Tm are the essential part of the normal form transformation. On the

other hand, they influence the higher order nonlinear terms Sl with l > k, which

either survive and determine the dependency of the tune shifts on the normal form

radii, or they determine the higher order terms Tl.
The denominator of Tm in Eq. 4 has a potentially large effect on its size the

closer it is to satisfying the resonance condition

mod2π((k+1 − k
−
1 ) · µx + (k+2 − k

−
2 ) · µy ∓ µi) = mod1(u · νx + w · νy) = 0, (7)

where the order of the transformation m = kη +
∑
i(k

+
i + k−i ) relates to the order

of the resonance n = |u|+ |w| with m = n± 1 and k+i , k
−
i , kη, u, w ∈ Z. kη denotes

the order of the parameter dependence. So if the tunes ~ν are close to satisfying a

resonance condition of order n, the nonlinear transformations of order m = n± 1

have potentially large terms Tm, which determine the relation of original coordinates

to normal form coordinates and influence the higher order, potentially surviving

terms of the map and hence the tune shifts. Resonances of order n = |u|+ |w| are

denoted with n(u,w).

4. Storage ring simulation and example results

In the following we present an illustrative example for the methods derived above.

We choose a small ring that is to be expected to show a large amount of amplitude

dependent tune shifts due to the presence of strong high order nonlinearities. The

purpose of the ring is to store muons and analyze their magnetic moment, and the

presence of the nonlinearities affects the ability to store particles without losses.

4.1. Storage ring simulation

For the simulation of the muon g-2 storage ring, a detailed nonlinear model14 of

the storage ring has been set up using COSY INFINITY. The simulation considers

the magnetic field that guides the beam around the storage ring and the four-

fold symmetric electrostatic quadrupole system15 (EQS), which focuses the beam

vertically. Additionally, perturbations due to the EQS fringe fields and imperfections

in the vertical magnetic field are taken into account.

The model14 represents the magnetic field inhomogeneities by fitting 2D magnetic

multipoles up to fifth order to measurement data of the magnetic field within the

muon g-2 storage ring (see Ref. 14 for details). The EQS is considered by the

corresponding electrostatic potential as a 2D multipole expansion up to tenth order

to accurately model the nonlinearities of the system up to the significant contribution

of the 20th-pole. The fringe fields of the EQS - the fall-off of the electric field at
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the edges of the EQS components - are simulated based on numerical calculations

performed with the code COULOMB.16

From the earlier mentioned cases, Poincaré return maps of order ten of the muon

g-2 storage ring are obtained following section 3.1 and expanded in the horizontal

(x, a) and vertical (y, b) phase space coordinates relative to the ideal orbit of the

respective storage ring simulation. Additionally, the maps are expanded in relative

offset p = ∆p/p0 with respect to the initial reference momentum p0 to represent

particles within the momentum acceptance range of ±0.5% of the E989 storage ring.

The relative change δp corresponds to the change of the system parameter ~η.

To distinguish the influences of various elements of the storage ring and their

perturbations, it is useful to simulate different configurations of the components. For

the muon g-2 storage ring, we simulate the following three storage ring configurations

to analyze the influence of perturbations due to EQS fringe fields and imperfections

in the vertical magnetic field:

• E0B0: No EQS fringe fields and a perfect magnetic field

• EfB0: With EQS fringe fields and a perfect magnetic field

• E0Bi : No EQS fringe fields and an imperfect magnetic field

The Poincaré return map of a storage ring considering both the EQS fringe fields and

the imperfections of the magnetic field simultaneously, EfBi in the nomenclature

from above, is still under investigation, since superimposing two perturbations is

problematic for technical reasons. Hence the EfBi case is not considered here.

Additionally, each of the configurations is considered at two different EQS voltage

VEQS , namely at 18.3 kV and 20.4 kV. These specific voltages were chosen to recreate

similar employed operating points during initial runs of E989.

The calculated Poincaré return maps expanded around the ideal orbit of the

muon g-2 storage ring show strong ninth order nonlinearities, which are associated

to the significant field contributions of the 20th order multipole of the EQS potential.

The relevance of these dominant ninth order nonlinear terms will be discussed

throughout the next subsections.

4.2. Closed orbits of storage ring models

The ideal orbit of the E989 storage ring is the closed orbit of the unperturbed case

E0B0. It lies within the horizontal plane along the center of the storage ring.

Due to the symmetry of the EQS with respect to the horizontal plane and its

calibration for the ideal orbit, under prefect conditions, its influences cancel out

perfectly along the ideal orbit. Accordingly, the Poincaré return map expansion of

E0B0 around the ideal orbit it is an origin preserving fixed point map.

Considering the fringe fields for EfB0 as a perturbation to the E0B0 case slightly

breaks the symmetry of the EQS, but since this influence is negligibly small along

the ideal orbit, it can also be considered the closed orbit of the EfB0 case. Hence for

all four cases of the muon g-2 storage ring model with a perfectly vertical magnetic
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field, the ideal orbit is a closed orbit of the respective system.

However, the cases with imperfections in the magnetic field (E0Bi) introduce

uneven vertical and radial forces along the ideal orbit and break the symmetry with

respect to the horizontal plane. Thus, expanding the Poincaré map M around the

ideal orbit (fixed point of the magnetically unperturbed system) does not yield a

origin preserving fixed point map. Since the conditions for the preservation of the

fixed point is satisfied under this perturbation, the maps of the E0Bi cases are

re-expanded around their respective fixed points ~zFP relative to the ideal orbit along

the center of the simulated example muon g-2 storage ring:

~zFP = (-0.65 mm, -0.13 mrad, 2.24 mm, 0.07 mrad) for 18.3 kV and

~zFP = (-0.58 mm, -0.11 mrad, 1.99 mm, 0.07 mrad) for 20.4 kV. (8)

4.3. Momentum dependence of closed orbit

Following Eq. 6, the parameter dependent fixed point of the origin preserving Poincaré

return maps are calculated, which correspond to the dependence of the respective

closed orbits on offsets δp from the reference momentum p0. Fig. 2 illustrates how

each of the phase space components of the respective closed orbits depends on δp at

the specific azimuth location of the Poincare surface in the storage ring.
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Fig. 2. Changes of the closed orbits due to relative changes δp in the total initial momentum.

Changes to the horizontal components of the respective closed orbit are shown in the upper plots:
a) x and b) a. Changes to the vertical components, which only occur in the E0Bi case, are shown
in the lower plots: c) y and d) b. The plots only illustrate changes and no absolute position of the

closed orbits. The influence of the EQS and its fringe fields on the closed orbit are minimal such
that the plots represent both cases at 18.3 kV and 20.4 kV EQS voltage.
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The primary effect of the momentum change, namely, the change of the orbit

radius, is clearly visible in the illustration of the horizontal components for all three

cases. The associated dependence of the horizontal momentum is caused by the

changing orientation of the momentum dependent closed orbit with respect to the

Poincare surface. The illustration also shows that the secondary effects from the

nonlinearities of the EQS, its fringe fields and the imperfections in the magnetic

field are weak in comparison over the momentum acceptance range of ±0.5%.

Due to the symmetry of the EQS with respect to the horizontal plane, the

vertical components of the EQS and its fringe fields cancel out within the horizontal

plane and hence do not by themselves introduce vertical motion for the momentum

dependent. Hence the closed orbit of the cases with a perfectly vertical magnetic

field (E0B0 and EfB0) stay within the horizontal plane for relative offsets δp from

the reference momentum p0.

Since the magnetic field imperfections already force the closed orbit of the E0Bi
case out of the horizontal plane and the combined nonlinear effects distort it from its

original circular shape, a relative offset from the reference momentum causes primary

effects in the horizontal components and secondary effects in both the horizontal

and vertical components. In particular, it shows that the secondary effects of the

E0Bi case in the vertical components are about three orders of magnitude weaker

than the primary effect in the horizontal components.

The results for the two EQS voltages over the illustrated range are very similar

(hence not displayed) but not identical, which further indicates the magnitude of

the secondary effects due to the EQS and changes to its voltage compared to the

primary radius change.

The primary effect in the horizontal fixed point component is linearly dominated

over the momentum acceptance range of ±0.5%, with about 80 mm/% for x and

about -0.53 mrad/% for a. For the E0Bi case, the secondary effects in the vertical

components can be linearly approximated over a momentum spread of ±0.25%,

where y changes with about 130 µm/% and b changes with about -2.6 µrad/%.

4.4. Tunes and their parameter dependence

Given the parameter dependent fixed point map representing the phase space

behavior around the momentum dependent closed orbit of the muon g-2 storage ring

model, the diagonalization in the DA normal form algorithm is used to determine

the tunes of the closed orbits and their momentum δp dependence. Table 1 shows the

values of the tunes and their linear dependencies on δp, which are called chromaticities

and denoted with ξi. Fig. 3 illustrates the full dependencies of the tunes on relative

offsets δp from the reference momentum p0.

The tunes in Table 1 indicate a strong influence of the EQS voltage on the linear

motion around the respective expansion points. Hence an appropriate EQS voltage

is critical to ensure tunes far away from resonance conditions as given in Eq. 7.

The perturbations in the storage ring configuration, namely the EQS fringe
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Table 1. Horizontal and vertical tunes νi and their chromaticities (linear

momentum dependence) ξi for the simulation of the muon g-2 storage ring of
E989 at EQS voltages of 18.3 kV and 20.4 kV.

Case νx νy ξx ξy

E0B0(18.3 kV) 0.94445665 0.33082727 -0.13144836 0.39090599

EfB0(18.3 kV) 0.94446284 0.33080860 -0.13145198 0.39093897

E0Bi(18.3 kV) 0.94456336 0.33051804 -0.15174178 0.44714448

E0B0(20.4 kV) 0.93792503 0.34941528 -0.14993480 0.42115341
EfB0(20.4 kV) 0.93793195 0.34939552 -0.14993843 0.42118673

E0Bi(20.4 kV) 0.93803328 0.34911988 -0.17052048 0.47444158
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Fig. 3. Vertical and horizontal tune dependence in the model of the muon g-2 storage ring of E989
on relative offsets δp from the reference momentum p0. The plots represent both EQS voltages

since the differences are smaller than visible in this illustration. Note that only changes relative to

the tunes from Table 1 are shown.

fields (EfB0) and the imperfections in the magnetic field (E0Bi), change the tunes

and chromaticities relative to the unperturbed E0B0 case by different magnitudes.

The shifts due to the magnetic field imperfections is about one order of magnitude

stronger for the tunes, and three to four orders of magnitude stronger for the

chromaticities than the influence of the EQS fringe fields. Both perturbations shift

the tunes to larger values for νx and smaller values for νy.

While the tunes and chromaticities are majorly influenced by the perturbations

in the magnetic and electric field, and especially the EQS voltage, the tune shifts

behave very similarly for all three cases and for both EQS voltages.

All momentum dependent tune shifts in Fig. 3 show predominantly linear behavior

for |δp| < 0.25%, which makes the values for the chromaticities in Table 1 particularly

useful. For |δp| > 0.33%, the momentum dependent tune shifts are dominated by

an order eight dependence on relative momentum offsets δp. This eighth order

dependence results from the strong ninth order terms in the original map, which

are linear in the phase space components and of order eight in the momentum

dependence, representing the earlier mentioned significant influence of the 20th-pole

of the EQS potential. For large momentum offsets of |δp| > 0.33%, the tune shifts

are positive for the horizontal component and negative for the vertical component.
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4.5. Amplitude dependent tune shifts

The DA normal form algorithm provides the amplitude and parameter dependent

tune shifts δνi(rNF,1, rNF,2, δp), where the amplitudes are given by the normal

form radii rNF,i - the invariants up to the calculation order. In this section of the

analysis, we are considering only the amplitude dependence (δp = 0) of the tune

shifts for each of the normal form radii separately: δνi(rNF,1, rNF,2=0, δp=0) and

δνi(rNF,1=0, rNF,2, δp=0).

The normal form transformation A(~z, δp) provides the relation between the

normal form radii ~rNF and the original coordinates ~z dependent on the system

parameter δp. Table 2 shows how the normal form radii depend on the individual

original coordinates in regions where the dependence is linear. The constant of

proportionality κzi,j yields rNF,j(zi, zl 6=i = 0, δp = 0) = κzi,j · |zi|. The linear

approximation of the normal form radii is given for (|x|, |a|, |y|, |b|) ≤ (5 cm, 6 mrad,

4 cm, 2 mrad). Note that the region of linear dependence between the original

coordinates and normal form radii might larger than the given region for certain

cases and variables.

Table 2. Linear dependence of the normal form radii rNF,i on indi-

vidual original coordinates for (|x|, |a|, |y|, |b|) ≤ (5 cm, 6 mrad, 4 cm,
2 mrad). Note that rNF,2 is about three times more sensitive to b than

rNF,1 is to a, while the each of the position components have about

the same influence on the respective normal form radii.

EQS voltages κ|x[cm]|,1 κ|a[mrad]|,1 κ|y[cm]|,2 κ|b[mrad]|,2
18.3 kV 0.222 0.167 0.243 0.519

20.4 kV 0.221 0.168 0.250 0.505

Due to the symplecticity of the normal form transformation and the associated

conservation of phase space volume, the linear relation between the normal form

radii and the original coordinates for the given range provides the invariant phase

space ellipses in the subspace of the original coordinates with

q2i κ
2
qi,i + p2iκ

2
pi,i = r2NF,i(qi, pi, qj 6=i = 0, pj 6=i = 0, δp = 0). (9)

Accordingly, Table 2 and Eq. 9 help relate the following results dependent on normal

form radii to amplitudes in the original coordinates.

The amplitude dependent tune shifts of the simulated cases are illustrated in

Fig. 4. The amplitude dependence is never linear but always appears as even orders.

Just like for the momentum dependent tune shifts, the amplitude dependent tune

shifts are only weakly influenced by the EQS voltages and the field perturbations.

Additionally, the amplitude dependent tune shifts are also positive for δνx and

negative for δνy. Furthermore, there is also the dominating eighth order dependence

for rNF,i ≥ 0.5, related to the strong ninth order nonlinear terms resulting from the

20th-pole of the EQS potential.

In Fig. 4 in Ref. 5, the decoherence rate Γ determined by preliminary tracking

measurements and simulations of the amplitude dependent tune shifts show overall
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Fig. 4. Amplitude dependent tune shifts in the model of the muon g-2 storage ring of E989. The

influence of the EQS voltage and perturbations in the fields are minimal. The amplitudes are given
in terms of the normal form radii rNF,i. Note that only relative changes of the tunes in Table 1 are
shown. The influence of rNF,2 on δνy is an order of magnitude smaller compared to rNF,1.

negative tune shifts when looking at the EQS influences, which are dominated by

the 20th-pole of the EQS potential. These results agree with our analysis shown in

Fig. 4 considering that the negative dependence of the vertical tune shifts on the

normal form radius of the horizontal subspace rNF,1 are about an order of magnitude

larger compared to the other positive and negative amplitude dependent tune shifts.

Reasons for this particular sensitivity of the vertical tune shifts to phase space

amplitudes in the horizontal subspace are given in Ref. 16.

4.6. Combined effects and tune footprint

In order to analyze combined effects of amplitude and momentum dependent tune

shifts to the full extent in storage ring models, it is useful to evaluate the tunes

for a realistic beam distribution. For the example storage rings, a model14 of the

muon g-2 storage ring model based on COSY INFINITY is used to generate the

beam distribution from orbit tracking of the muon beam until it is circulating in

the storage ring, prepared for data analysis. In particular, the model considers the

imperfect injection process, which attempts to align the injected beam with the

ideal orbit of the storage ring as good as possible. The model also considers the

mispowered EQS components to imitate the preparation mechanism during the first

turns of the beam in the storage ring at E989. Ref. 14 further elaborates on the

details of the tracking model and how a distribution is obtained.

The distributions of the variables (x, a, y, b, δp) for the most realistic configuration

of this paper (E0Bi) are considered at 18.3 kV and 20.4 kV EQS voltage. The

distributions relative to their respective closed orbit are illustrated in Fig. 5 as

projections into the (x, a), (y, b), (x, y) and (a, b) subspaces.
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Fig. 5. Projections of the distribution of the variables (x, a, y, b, δp) in the realistic beam simulation

at 18.3 kV and 20.4 kV EQS voltage in the E0Bi case.

In the distributions in Fig. 5, the strong positive correlation between x and

δp is clearly visible, which is a result of the momentum dependence of the orbits

radius: the larger δp, the larger the radius of the orbit and hence the larger x. The

distributions also show a tendency to higher total momenta while overall staying

well within the momentum acceptance range of ±0.5%. The spread of the vertical

momentum component b is about a factor two to three smaller than its horizontal

counterpart a, while the (x, y) projection in position space shows an almost circular

distribution, which agrees with the dependence of the normal form radii in Table 2.

Using DA normal form methods, the normal form transformation of the E0Bi
map at 18.3 kV and 20.4 kV EQS voltage are calculated. The dataset of all particles

in the simulation (xi, ai, yi, bi, δpi) is used to calculate the corresponding normal

form radii, rNF,1 and rNF,2, and tunes, νx and νy.

The distributions of the horizontal and vertical tunes at 18.3 kV and 20.4 kV

EQS voltage in the E0Bi configuration are illustrated by tune footprints in Fig.

6, where the vertical tunes of the particle distribution are plotted against their

horizontal tunes as previously done in Ref. 17.

The tune footprints in Fig. 6 are shown together with resonance lines up to order

11. The closeness of the tunes, indicated by a circle in each of the distributions, to

these resonance lines can explain stronger or weaker nonlinearities in the tune shifts

and/or the normal form transformation, causing more spread-out tune footprints.

According to Eq. 7, the normal form algorithm up to order m is only sensitive to

resonances up to order n = m+ 1, which is why resonances of order ten and 11 are

indicated differently compared to resonances of order n ≤ 9, since they only have an

effect on the calculation of order 10.

The apparent difference between the tune footprint from the calculation with

order eighth compared to the calculations with order ten are associated to the strong
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nonlinearities of ninth order in the original maps. The short-dashed line in the middle shall clarify
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ninth order nonlinearities of the original map, since the additional resonance lines of

tenth and 11th order are not closer to the reference tunes compared to the resonance

lines of order n ≤ 9.

The tune footprint for the different EQS voltages have a similar distribution for

the order eight and order ten calculations, respectively. While the reference tunes are

mainly determined by the EQS voltage, the relative tune shifts behave very similar.

If the EQS voltage were to place the reference tunes very close to a resonance line,

we expect the tune distribution and tune shifts to behave differently.

The distribution of the tenth order tune footprint has a T-shape. The positive

horizontal tune shifts and negative vertical tune shifts are related to the generally

positive horizontal and negative vertical tune shifts from phase space amplitudes

and large momentum offsets. The negative horizontal tune shifts are combined

effects with small positive momentum offsets |δp| ≤ 0.25%, which are negative in

the horizontal component. It is likely that positive vertical tune shifts from small

positive momentum offsets are canceled by the strong negative vertical tune shifts

dependence on the horizontal phase space amplitude.

4.7. Comparison to preliminary tune measurements

A preliminary measurement18 using Fiber Harps in the muon g-2 storage ring

investigated the tunes for the following EQS voltages: 13.0 kV, 15.0 kV, 17.6 kV,

19.0 kV, 20.2 kV and 20.5 kV. An interpolation of the data provides the following
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relationship between the tunes νi and the EQS voltage VEQS

νx = 1.00155± 0.00024− VEQS(0.00310± 0.00001) and (10)

νy = −0.0063± 0.0022 +
√
VEQS(0.0784± 0.0006). (11)

Evaluating the equations above for the two EQS voltages of our investigation yields

18.3 kV: νx = 0.9448± 0.0005 νy = 0.3291± 0.0048 and

20.4 kV: νx = 0.9383± 0.0005 νy = 0.3478± 0.0049. (12)

The horizontal and vertical tunes νx and νy from our simulation are given in

Table 1 are within the error margin of the interpolated measurement for both EQS

voltages. The horizontal tunes from our simulation are generally smaller than the

interpolated measurements, while the vertical tunes are generally larger. For both

EQS voltages, the tunes of the most realistic simulation, namely E0Bi, are always

closest to the results from the interpolated measurement above. Large parts of the

tune footprints in Fig. 6 are contained within the error margins of the respective

measurement interpolation above. Thus, the preliminary tune measurement and our

simulation show far reaching agreement.

5. Conclusion

DA normal form methods applied to Poincaré return maps of storage ring models

provide a very versatile quantitative analysis of the tune shifts of the respective

systems. Influences on the tune shifts can be associated to horizontal and vertical

phase space amplitudes, changes in the system parameters, perturbations in the

fields of components of the simulated storage ring, the closeness to resonances, the

order of the calculation and nonlinearities in the original Poincaré return map.

For the example storage ring of the Muon g-2 Experiment, the results agree

well with measurement results. In particular, the strong ninth order nonlinearities

of the map caused by the 20th-pole of the EQS potential have a significant effect

on amplitude and parameter dependent tune shifts. This manifests itself in the

dominating eighth order dependencies in the amplitude and momentum dependent

tune shifts and the drastic change in the tune footprint for calculations of order

m > 8, which include the ninth order terms of the original map.

Future efforts focus on analyzing the more realistic EfBi case, for which the

preparation of the transfer maps is still being studied, and investigating the re-

lated tune footprints in more detail, especially with regard to influences of nearby

resonances.

Acknowledgments

This work was supported by the U.S. Department of Energy under Contract No.

DE-SC0018636 and DE-AC02-07CH11359, and by the Studienstiftung des deutschen

Volkes with a scholarship to one of the authors (A. W.). We thank A. Chapelain



October 17, 2019 23:57 WSPC/INSTRUCTION FILE
Revised˙Manuscript˙Weisskopf

High order amplitude and parameter dependent tune shifts for high precision measurements 19

for the data of the preliminary tune measurements with Fiber Harps, and we also

thank K. Makino for various discussions and suggestions. Additionally, we greatly

appreciate the insightful comments from the two reviewers of this paper.

References

1. M. Berz and K. Makino, COSY INFINITY Version 10.0 Beam Physics Manual, Tech.
Rep. MSUHEP-151103-rev, Michigan State University (2017).

2. K. Makino and M. Berz, Nuclear Instruments and Methods 558, 346 (2006), doi:
10.1016/j.nima.2005.11.109.

3. J. P. Miller, E. De Rafael and B. L. Roberts, Rept. Prog. Phys. 70, 795 (2007),
doi:10.1088/0034-4885/70/5/R03, arXiv:hep-ph/0703049.

4. J. Grange, V. Guarino, P. Winter, K. Wood, H. Zhao, R. Carey, D. Gastler, E. Hazen,
N. Kinnaird, J. Miller et al., arXiv:1501.06858 (2015).

5. D. Rubin, A. Chapelain, S. Charity, J. Crnkovic, F. Gray, W. Morse, J. Mott, J. Price,
V. Tishchenko and W. Wu, Muon beam dynamics and spin dynamics in the g-2 storage
ring, in 9th International Particle Accelerator Conference, (2018), pp. 5029–5034.

6. M. Berz, Modern Map Methods in Particle Beam Physics (Academic Press, 1999).
7. M. Berz, Nuclear Instruments and Methods A 258, 431 (1987), doi:10.1016/0168-

9002(87)90927-2.
8. M. Berz, Part. Accel. 24, 109 (1988).
9. J. F. Ritt and J. Liouville, Integration in finite terms: Liouville’s theory of elementary

methods (Columbia Univ. Press, 1948).
10. J. F. Ritt, Differential equations from the algebraic standpoint (American Mathematical

Soc., Washington, D.C., 1932).
11. E. R. Kolchin, Differential algebra & algebraic groups (Academic press, 1973).
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