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Summary. The Tevatron accelerator, currently the particle accelerator with the
highest energy in the world, consists of a ring with circumference of four miles
in which protons are brought into collision with antiprotons at speeds very close
to the speed of light. The accelerator currently under development at Fermilab
represents a significant upgrade, but experienced significant limitations during initial
operation. The correction of some of the problems that appeared using techniques of
automatic differentiation are described. The skew quadrupole correction problems
are addressed in more detail, and different schemes of correction are proposed.
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1 Introduction

The dynamics in a large particle accelerator is governed by relativistic equations of
motion that are usually solved relative to those of a reference orbit. The simulation
of an accelerator in this manner is a very demanding undertaking since particles
orbit for in the order of 10° revolutions, and it is necessary to study many different
orbits. Thus from the early days of particle accelerators, it has been customary to
determine Taylor expansions of the flow, usually to orders two and three. Automatic
differentiation methods, in particular in combination with ODE solving tools based
on differential algebraic methods, have allowed us to increase this computation order
very significantly, and now orders around 10 are routinely used in the code COSY
INFINITY [38]. For the tracking pictures presented here, the order of calculation
is usually taken to be seven for speed, but for some final results orders 11 or 13
are used. Furthermore, it is now possible to represent the devices by much more
accurate models. A wide range of standard elements with the ability to simulate all
nonlinearities and associated error fields is available in COSY INFINITY.
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2 The Tevatron Accelerator — Machine Description

The Tevatron is currently the most powerful particle accelerator in the world with
a circumference of the ring of four miles. The beams of protons and antiprotons
moving in opposite directions are brought to collision at energies close to 1 TeV
each. Hence, their relativistic kinetic energy is more than 1000 times that of their
rest mass. Besides colliding two beams, it is necessary to make as many particles
interact as possible. The effectiveness of the collision is characterized by a single
value called luminosity. Calculating and optimizing the dynamics of the particle
motion in the accelerator to reach higher and higher luminosity is one of the main
goals of this work.

Particles in the Tevatron have velocities close to the speed of light, a fact which
has several advantages and disadvantages for the modeling. COSY INFINITY takes
all the resulting relativistic effects into account automatically.

The Tevatron consists of six arcs connected with six straight sections. Two of
the straights are the well-known collision detectors CDF and DO0. Each arc is a
periodic structure having 15 FODO cells with 8 dipoles each to provide the necessary
bending. However, each of these magnets has some error terms that are commonly
called multipole moments. One of these errors is due to the fact that the coils of the
dipoles are not parallel as they should be, which introduces a skew quadrupole term.
This has a very detrimental effect on the motion of the particles, because it provides
a coupling of the otherwise independent horizontal and vertical motion and thus
affects the stability of the particles. A circuit of skew quadrupole correctors serves
to compensate for these errors. The main problem addressed in this article is the
scheme of such a correction and the view that only a part of the errors in the dipoles
can be removed during the next Tevatron planned shutdown.

3 The Model, Criteria and Parameters to Control

We began with the basic model of the machine by V. Lebedev currently available
at Fermi National Accelerator Laboratory [326-328] and converted the source code
to run under COSY INFINITY. The tool converting the lattice description works
automatically, so all the updates to the lattice easily can be taken into account.
The current model implements elements: dipoles, quadrupoles, skew quadrupoles,
sextupoles, skew sextupoles, solenoids with fringe field, and separators.

The recent upgrade of the Tevatron accelerator led to an undesirable coupling
between the horizontal and vertical motion [202,354,491-494], while usually great
care is taken to keep these two motions decoupled. Mere integration of orbits makes
the task of decoupling very difficult, since it is very hard to assess from ray co-
ordinates whether a coupling happens. On the other hand, in the framework of
the Taylor expansion of final coordinates in terms of initial coordinates, decoupling
merely amounts to
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for nonlinear effects, where z1 is the horizontal position, 2 = ps/po is the reduced
horizontal momentum, y; is the vertical position, y2 = py/po is the reduced vertical
momentum, po is some previously chosen scaling momentum; 41, 42 : 41 > 0; 72 >
0; 41 4142 < n, n is the order of calculations, and the superscripts (i) and (f) denote
the initial and final conditions, respectively.

At the same time, the main operating parameters of the machine, the two tunes
(phases of the eigenvalues of the linear map), have to be kept constant. This is vital
for the stability of the motion of the particles to help avoid resonances. In terms of
partial derivatives, this condition amounts to the preservation of
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Thus with the availability of Taylor expansions, it is merely necessary to adjust
suitable system parameters such that the ten conditions (in the linear case) described
by (1) and (3) are met. While by no means an easy feat, this task is significantly more
manageable than the attempt to optimize performance based on particle coordinates.

We are to control the strengths of several skew quadrupole correctors around
the ring both in arcs and straight sections. Each arc has six to eight correctors, but
it is preferable to have them all at the same strength as they have one power supply.
Moreover, it would be advantageous to optimize them all to the same strength in all
the arcs. The study shows that this can be done effectively and efficiently with AD
methods implemented in COSY INFINITY. Without use of AD techniques all the
calculations and especially optimization of the structure requiring intensive multiple
recalculating of the transfer maps would take a prohibitively long time and could
never be done for such a high order.

To keep the tune of the system constant, the strength of the main bus quadrupoles
can be slightly changed. As all the quadrupoles have the same strength this task
is a one-parameter optimization; besides it does not require high-order calculation.
Even in this problem the high-order calculations are unavoidable, as checks should
be made that changing the tune back to the original value after skew quadrupole
correction optimization does not lead to degradation in the behavior of the particles
described by the multi-revolution tracking picture.

4 Map Methods

The particles in most accelerators (the Tevatron is not an exception) usually stay
close together, forming a beam. Therefore, it is convenient to choose a reference
particle — the one that moves undisturbed through the centers of all the magnets of
the machine and make use of perturbative techniques to obtain good approximation
of the dynamics of motion of all the particles in the beam relative to this reference
particle.

The motion of the particles is considered in 2-dimensional phase space: each
particle has four coordinates 1, 2 = pz/po, y1, and y2 = py/po, where po is the
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momentum of the reference particle, and the arc length s along the center of the ring
is used as an independent variable. Thus, the dynamics is described by the vector

Z1

x2
z(s) = R
=1,

Y2

which depends on s. The action of the accelerator lattice elements can be expressed
by how they change the components of the vector z(s). Denoting by zo the initial
coordinates at so, the final coordinates of each particle at s can be obtained from
the system of equations

Z(S) = M(So,s) (Zo, 6) s

relating zo and a set of control parameters § at so to z at s > so, where M(so, s)
is a function which formally summarizes the action of the system. M is called the
transfer function or transfer map of the system. The transfer map satisfies

M(s1, s2) 0 M(s0, s1) = M(s0, s2) -

Therefore, the transfer map of the system can be built up from the transfer maps
of individual elements. As the accelerator structure is regular, the set of different
elements is not that big, a fact that allows us to seriously reduce the amount of
calculations.

M is usually weakly nonlinear and can be considered as a sum of two maps: a
purely linear part M, and a purely nonlinear part NV, i.e. M = M + N For a simple
analysis of the relative motion, often a linear approximation is enough, but for full
understanding of the motion, the understanding of the nonlinear effects is essential.

Map methods are particularly useful for the study of the motion in circular
accelerators, as one has to run the particles through the same system many times.
The number of revolutions necessary to estimate the behavior of the particles in the
Tevatron lies in the orders of 10° —107. Having a transfer map of one full revolution,
one easily can perform repetitive tracking of the particles through the system.

In case of the first order of calculations, the transfer map can be represented as
a matrix of coefficients:
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For higher orders the numbering and processing of the coefficient is much more
sophisticated. As an example, we here show a piece of a high-order transfer map:

I COEFFICIENT ORDER EXPONENTS
1 -.7246219112151764 1 10 00
2 -.9122414947039915 1 01 00
3 0.1588622636737591E-07 1 00 10
4 -.5419413125727635E-09 1 00 01
5 603.2477358626691 2 20 00
6 -1149.461216254035 2 11 00
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7  783.4790397865372 2 02 00
8 -23.83485869335665 2 10 10
9  50.34274836239869 2 01 10
10 -222.4936370747880 2 10 01
11 98.21519926034055 2 01 01
12 -73.88432808806901 2 00 20
13 149.0913750043664 2 00 11
14 -223.3498687001470 2 00 02
15 -71088.03707913239 3 30 00
16 164852.2891153482 3 21 00
325 -16401453090653.15 7 00 43
326  29169856173501.98 7 00 34
327 -42361303120466.99 7 00 25
328  54860608468975.03 7 00 16
329 -43643493779626.68 7 00 07

Each row describes one term of the Taylor expansion of final coordinates in terms
of initial coordinates. The columns labeled “EXPONENTS” describe the exponents
of each of the independent variables appearing in the respective term. The “OR-
DER” column contains the total order of the term, i.e. the sum of the exponents,
and the first column lists the double precision coefficient belonging to the respective
term. As an example, the sixth row describes the Taylor series term depending on
the power one of variable 1 and the power one of variable 2.

The map coefficients are the results of integrating the equations of motion of the
particles through different lattice elements: quadrupoles, sextupoles, solenoids. The
built-in ODE solver in COSY INFINITY works with differential algebra vectors —
coefficients of Taylor expansion for the coordinates of the particles, which achieves
very high orders of computations even on somewhat slow machines.

For the optimization of the linear coupling, the linear map is sufficient, as (1)
and (3) affect only the linear part of the map. For subsequent correction of the
nonlinear effects as in (2), it is necessary to determine higher order Taylor expansions
of the map. More on the work with map methods and differential algebra approaches
can be found in [37,40]. The optimization works the following way.

1. Choose a correction scheme with different skew quadrupole circuits settings;

2. Perform the two-stage optimization. The first stage removes the linear coupling
in each of the six arcs (the objective function is the sum of the derivatives in the
left hand sides of the expressions (1)). The second stage removes the coupling
for the whole machine (the objective function is the sum of the derivatives in
the left hand sides of the expressions (1)) and brings the tune back to its initial
value (the objective function is the sum of the expressions
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where C; and Cy are some fixed values);
3. Perform high-order tracking to check the stability of the motion after optimiza-
tion.

The qualitative results of the optimization for two different skew quadrupole circuits
are presented in Sect. 5, the quantitative results are discussed in Sect. 6.
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5 Different Optimization Schemes and Proposals

Currently, 85% of the dipoles in the Tevatron still have the above-mentioned coil
displacement. As a result, skew quadrupole components act on the particles. A first
study consisted of leaving all the errors in place, but moving some of the correctors.
The results for such optimization scheme are not shown, because this scheme was
only interesting as a starting point, since subsequently it proved impossible to move
any of the skew quadrupole correctors. At the same time, the scheme shows that
good correction can be performed even if all the errors stay the same.

More realistic are the schemes with some of the errors in dipoles fixed and all
or only the part of the correctors in their places. The forecast says up to 50% of
the dipoles can be fixed during the upcoming Tevatron shutdown. The high-order
analysis helps to determine exactly what should be done, which dipoles to correct
and what the strength of the correctors should be to achieve the most predictable
particle behavior, avoid resonances, and decouple the motion.

Sector E scheme I

FODO 1 D*2 FQ SQC D*2 D*2 FIX DQ  D*2FIX
FODO 2 D*2 FQ D*2 D*2 FIX DQ  D*2FIX
FODO 3 D*2 FQ SQC D*2 D*2 FIX DQ  D*2FIX
FODO 4 D*2 FQ D*2 D*2 FIX DQ  D*2FIX
FODO 5 D*2 FQ SQC D*2 D*2 FIX DQ  D*2FIX
FODO 6 D*2 FQ D*2 D*2 FIX DQ  D*2FIX
FODO 7 D*2 FQ SQC D*2 D*2 FIX DQ  D*2FIX
FODO 8 D*2 FQ D*2 D*2 FIX DQ  D*2FIX
FODO 9 D*2 FQ SQC D*2 D*2 FIX DQ  D*2FIX
FODO 10 D*2 FQ D*2 D*2 FIX DQ  D*2FIX
FODO 11 D*2 FQ SQC D*2 D*2 FIX DQ  D*2FIX
FODO 12 D*2 FQ D*2 D*2 FIX DQ  D*2FIX
FODO 13 D*2 FQ SQC D*2 D*2 FIX DQ  D*2FIX
FODO 14 D*2 FQ D*2 D*2 FIX DQ  D*2FIX
FODO 15 D*2 FQ SQC D*2 D*2 FIX DQ  D*2FIX

Fig. 1. Correction scheme I, errors in dipoles fixed in each cell around defocusing
quadrupole.

The first scheme layout is shown in Fig. 1 in the form of the description of one
sector. All the other sectors look similar except for some dipoles that have been
fixed before this study was initiated. This scheme proposes to fix skew quadrupole
errors in the dipoles (D*2 FIX) on both sides of the defocusing quad (DQ). All the
skew quadrupole correctors stay in their places (SQC). The errors in dipoles around
focusing quadrupole (FQ) remain unfixed (D*2).

The results of the optimization are given in Figs. 2 — 5. The first two pictures
show the phase portraits in x1, 2 = p,/po and y1, y2 = py/po planes for particle
trajectories before the optimization. The next two show the results after the opti-
mization. The scale of each picture is 2.4 x 10~% m horizontal and 4.0 x 102 vertical.
For stable particles the trajectories look like closed curves. For the y plane picture
they are very close to ellipses, for the = plane the trajectories have a somewhat
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Fig. 2. z-plane phase portrait before the optimization with 85% skew quadrupole
errors in dipoles.

Fig. 3. y-plane phase portrait before the optimization with 85% skew quadrupole
errors in dipoles.
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Fig. 4. x-plane phase portrait after the optimization with 50% skew quadrupole
errors in dipoles, errors are fixed around each defocusing quadrupole.

Fig. 5. y-plane phase portrait after the optimization with 50% skew quadrupole
errors in dipoles, errors are fixed around each defocusing quadrupole.
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triangular shape because of the proximity of a resonance. For unstable particles,
the trajectories are fuzzy. For some extremely bad cases (like the one in the Figs. 2
and 3), the particles do not show stable behavior at all. After several turns most of
the particles can be considered to be lost (their traces go beyond the scale of the
picture).

The figures show great improvement in the behavior of the particles: fewer parti-
cles are lost, and the motion remains stable further from the reference particle that
goes through the centers of all the magnets undisturbed. The picture of the x plane
is still not perfect; there appears to be a possibility that the stable region can be
increased further.

FODO 1 D*2 FQ SQC RMV D*2 D*2 DQ D*2
FODO 2 D*2 FIX FQ D*2 FIX Dx*2 FIX DQ D*2 FIX
FODO 3 D*2 FQ SQC RMV D*2 D*2 DQ D*2
FODO 4 D*2 FIX FQ D*2 FIX Dx*2 FIX DQ D*2 FIX
FODO 5 D*2 FQ sQcC D*2 D*2 DQ D*2
FODO 6 D*2 FIX FQ Dx2 FIX Dx2 FIX DQ D*2 FIX
FODO 7 D*2 FQ sSQcC D*2 D*2 DQ D*2
FODO 8 D*2 FIX FQ D*2 FIX Dx*2 FIX DQ D*2 FIX
FODO 9 D*2 FQ SQC D*2 D*2 DQ D*2
FODO 10 D#*2 FIX FQ D*2 FIX Dx2 FIX DQ D*2 FIX
FODO 11 D*2 FQ sSQcC D*2 D*2 DQ D*2
FODO 12 D*2 FIX FQ Dx2 FIX Dx2 FIX DQ D*2 FIX
FODO 13 D*2 FQ SQC D*2 D*2 DQ D*2
FODO 14 D*2 FIX FQ Dx2 FIX Dx2 FIX DQ D*2 FIX
FODO 15 D*2 FQ SQC RMV D*2 D*2 DQ D*2

Fig. 6. Correction scheme II, skew quadrupole errors in dipoles are fixed in each
even FODO cell.

Scheme II (Fig. 6) answers this question. There are two differences in the second
scheme: the dipoles are to be fixed in all the even FODO cells, while skew quadru-
pole correctors are located in odd cells. In addition, some of the correctors can be
removed, and that makes the results even better (marked SQC RMYV in Fig. 6).

Figures 7 and 8 present the results of particle tracking for correction scheme II.
Clearly the improvement can be seen with the naked eye. All the particles remain
stable for 10,000 turns. This result is achieved with only one corrector strength
per arc, which will work fine with one power supply for all the skew quadrupole
correctors in each arc. Moreover, optimization gives only slightly worse results for
the case where all the skew quadrupole correctors have the same strength around
the entire ring, which means the correction scheme under consideration appears to
be the best choice to implement.

6 Transfer Map Comparison

Since one of the aims of the optimization was the removal of coupling between the x
and y planes, it is worth showing the first order transfer map of the machine before
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Fig. 7. x-plane phase portrait after the optimization with 50% skew quadrupole
errors in dipoles, errors are fixed in each even FODO cell.

Fig. 8. y-plane phase portrait after the optimization with 50% skew quadrupole
errors in dipoles, errors are fixed in each even FODO cell.
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and after optimization. The map before optimization looks like this:

—0.7553149 0.3637584 0.0663166 —0.0971958

—0.8640196 —0.9507699 —0.4305946 0.1421480 (4)
—0.0251393 —0.0621722 —0.8060247 0.3353297 ’

—0.4966847 0.0614653 —0.7083212 —0.9862029

and after optimization:

—0.8023857 0.3107970 0.0059011 —0.00254055
—0.7143330 —0.9696470 —0.0058075 —0.00487758 5
0.0043365 —0.0022290 —0.8445417  0.28890307 ' (5)
—0.0077313 —0.0060658 —0.5409385 —0.99907987

The coupling terms shown in bold (four terms in the upper-right and lower-left
corners) in (5) became up to 74 times smaller than in (4).

7 Conclusions

Without the use of AD techniques implemented in COSY INFINITY, achieving the
results would be a hard, if not impossible task. The speed COSY tracking particles
is remarkable. One procedure tracking in both x and y planes takes about 3 minutes
for 7th order calculation or up to 8 hours (depending on the one-turn map) for order
11 on a 1.5 GHz Pentium processor.

The results of the study are very promising, and the correction scheme II pre-
sented above is the one being implemented during the Tevatron shutdown planned
for Fall 2004.






