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New Applications of Taylor
Model Methods

Kyoko Makino and Martin Berz

ABSTRACT Taylor model methods unify many concepts of high-order
computational differentiation with verification approaches covering the Tay-
lor remainder term. Not only do they provide local multivariate derivatives,
they also allow for highly efficient and sharp verification. We present several
recent results obtained with Taylor model methods, including verified opti-
mization, verified quadrature and verified propagation of extended domains
of initial conditions through ODEs, approaches towards verified solution
of DAEs and PDEs. In all cases, the methods allow the development of
new numeric-analytic tools that efficiently capitalize on the availability of
derivatives and sharp inclusions over extended ranges. Applications of the
methods are given, including global optimization, very high-dimensional
numeric quadrature, particle accelerators, and dynamics of near-earth as-
teroids.

43.1 Taylor Model Arithmetic

The remainder of any (n + 1) times continuously partially differentiable
function f approximated by the nth order Taylor polynomial P, ; at the
expansion point #y can be bounded by an interval I,, ; satisfying

VZ € [@,b], f(Z)€ Pns(@—70)+Ins (43.1)
that scales with |# — Zo|"*1. In practice, over reasonable box sizes, the
remainder bound interval I, y can be made very small. A pair (P, s, I, ¢)
satisfying (43.1) is called a Taylor model of f and denoted by

Tn,f = (Pn,f;In,f)-

Any computer representable function f(Z) can be modeled by Taylor mod-
els if the function f satisfies the above mentioned mathematical conditions
in [d, I;] The expansion point Zy and the order n specify the Taylor polyno-
mial part P, ¢(Z—Zp) uniquely with coefficients described by floating point
numbers on a computer. The remainder interval part I, ¢ further depends
on the domain [Ei,l;] and the details of the algorithm to compute it.

The dependency problem in interval arithmetic [1, 14, 18, 19, 20] is
typically caused by cancellation effects. For example, if I = [a,b], then
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I — I, if not recognized to represent the same number, is computed as
[a,b] — [a,b] = [a,b] + [-b,—a] = [a — b,b — a], resulting in a width that
is not zero, but twice as large as before. In Taylor models, the bulk of the
functional dependency is kept in the Taylor polynomial part, and the can-
cellation of the dependency happens there, thus the dependency problem in
interval computations is suppressed except for the small remainder bound
interval part. Thus, not only do Taylor models provide local multivariate
derivatives, they also allow for highly efficient and sharp verification. The
benefit of the sharpness becomes dramatic for multi-dimensional problems,
which otherwise require an unrealistically large number of subdivision of
the interested multi-dimensional domain box.

The tools to calculate Taylor models for standard computer representable
functions have been developed and implemented in the code COSY Infinity,
starting from sums and products and covering intrinsic functions [3, 15,
16]. The arithmetic starts from preparing the variables of the function, Z,
represented by Taylor models; the polynomial part is Zy + (¥ — %), and
there is no error involved. Then, Taylor model arithmetic is carried through
binary operations and intrinsic functions which compose the function f
sequentially. Because the resulting objects represent functions, it is very
advantageous to use the antiderivation operation

6;1(Pn7-[n) = (/ Pr1dzi, (B(Pp— Py1) + 1) - |bz - a") , (432)

where B denotes the bounds of the argument, as a new intrinsic function
in the spirit of the differential algebraic approach [15].

43.2 Sharp Enclosure of Multivariate Functions and
Global Optimization

The straightforward Taylor model computation of a function f(Z) starting
from the identity functions 4;(F) = x; gives a resulting Taylor model of the
function f, which carries the information on the derivatives as well as the
sharp verification of the range enclosure of the function. This can be used
directly for the exclusion procedure of domain decomposition approaches
in verified global optimization methods.

To increase the accuracy of range enclosures, in general, the very first
step should be a subdivision of the domain of interest. In naive interval
arithmetic, the accuracy of the range enclosures increases linearly with the
width of the argument; while in Taylor model arithmetic, the accuracy of
the remainder intervals increases with (n + 1)st power, so the increase of
the order of computation also could be the very first step.

Technically there are three questions for practical computation. First,
the method requires an efficient mechanism to compute multivariate Tay-
lor polynomials with floating point coefficients. The tools supplied in the
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TABLE 43.1. Widths of the local bounds of Gritton’s function around zo = 1.5
by non-verified rastering, the naive interval method, and the 10th order Taylor
model method as well as the widths of the remainder intervals.

Subdomain Widths of Local Bounds TM Remainder
Width Rastering Interval TM 10th TM 10th
0.4000 0.2323 144507. 0.7775 2.998 x 1079

0.1000 1.854 x 1072 24555. 3.349 x 102 6.360 x 10~'3
0.0250 5478 x 1073 5788.  6.000 x 1072  1.472 x 10~'°

code COSY Infinity for more than ten years, have been used for various
practical problems mostly in the field of beam physics [2, 3, 10]. The imple-
mentation of the Taylor model computation uses the existing multivariate
Taylor polynomial computation tools [15]. The second problem is the rig-
orous estimation of the cumulative computational errors in the floating
point arithmetic of the Taylor coefficients, which are all lumped into the
remainder bound.

Finally, if the purpose of computation is to bound the range of a function,
it is necessary to bound sufficiently sharply the range of the Taylor poly-
nomial part. A variety of verified methods exist, and several methods are
implemented in COSY Infinity, beginning with centered Horner methods.
Because of the inherent dominance of lower order terms in the Taylor pol-
ynomial, it is possible to develop special-purpose tools that are sufficiently
accurate while still being very fast. The key idea is to combine exact range
solvers for the lower order parts of the polynomials with interval-based tools
to enclose the higher order terms [15]. In most cases, however, already the
majority of the benefit of the Taylor model approach can be achieved by
very simple bounding techniques based on mere interval evaluation of the
Taylor polynomial via Horner’s scheme. In order not to distract the flow
of the argument by discussing bounding techniques, we use this approach
throughout the remainder of the chapter.

We show some challenging example problems for verified global opti-
mization. The first example is Gritton’s second problem from chemical
engineering, addressed by Kearfott [13], which is known to suffer from a
severe dependency problem. The function is an 18th order polynomial in
one dimension, having 18 roots in the range [—12,8]. The function varies
roughly from —4 x 10'® to 6.03 x 10, and all the local maxima and min-
ima have different magnitudes. As an illustration of its complicated struc-
ture, we note that there are four local extrema in the range [1.4,1.9] with
function values varying only between around -0.1 and 0.1. Mere interval
computation shows a severe blow up due to cancellation as summarized in
Table 43.1. For intervals, to achieve the comparable result to the Taylor
models in the 0.1 width subdomain, the domain would have to be cut to a
practically hard to achieve size of 1077.

The pictures in Figure (1) show the absolute value of the function in
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FIGURE 43.1. Gritton’s function in [—12, 8] evaluated by 40 (left top) and 120
(left bottom) subdivided intervals, and by 40 subdivided Taylor models with
fourth order (right top) and eighth order (right bottom). The pictures show the
absolute value of the function in logarithmic scale.

logarithmic scale. Any of the eighteen visible dips to the lower picture
frame corresponds to a zero of the function. The left two pictures show
enclosures by subdivided intervals; when the local bound interval contains
zero, the lower end of the interval range box reaches the lower frame. In the
pictures, the advantage of smaller subdivisions is hardly visible for z > 0.
The right two pictures are obtained with 40 subdivided Taylor models. At
order four (right top), there still remains a visible band width of the Taylor
models in the range 0.5 < z < 3, but at order eight (right bottom), the
verified enclosure of the original function reaches printer resolution.

Another challenging example is the pseudo-Lyapunov function of weakly
nonlinear dynamical systems [4]. The function is a six dimensional poly-
nomial up to roughly 200th order which involves a large number of local
minima and maxima, but the function value itself is almost zero. Hence,
there is a large amount of cancellation, and the problem is a substantial
challenge for interval methods. The study showed the Taylor model in sixth
order already gives fairly tight enclosure of the function comparable to the
rastering result in the domain box with the width 0.02 in each dimension.
To achieve the similar sharpness in naive interval methods requires 10%*
subdivided domains [15, 17].
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TABLE 43.2. Bounds estimates of an eight dimensional integral, where the ana-
lytical answer is = 99.4896438

Division Step Rule Trapezoidal 10th Taylor Models
18 [8E-15,164.73] 80.25 [99.105950,99.910689]
28 [63.06,137.03] 94.61 [99.489371,99.489920]
48 [77.25,119.51] 98.28 [99.489643,99.489644]
Points Monte-Carlo Method
1 72.406666
100 95.614737
10000 99.865452
1000000 99.503242

43.3 Multidimensional Verified Quadratures

Using the handily available antiderivation operator (43.2), quadratures are

computed with sharp verification straightforwardly, yet lead to a powerful

method especially for the multi-dimensional case [8], where otherwise the

Monte Carlo method often represents the only other viable approach.
Based on the following double definite integral

/%/% sinyy/1 — k2sin® zsiny ™
0 Jo

de dy = ———,
1—k2sin’y T VIR

we construct an eight dimensional integral, having as integrand the sum-
mation of four terms [8], which is to have the value of 77 /(32v/1 — k2), or
approximately 99.4896438 for k2 = 0.1. Even the evaluation with the sim-
ple trapezoidal rule without verification is quite expensive. The results are
shown in Table 43.2 by the step rule with verification, the trapezoidal rule
without verification, the tenth order Taylor model, and the non-verified
Monte Carlo method with some numbers of subdivisions and sampling
points. The tenth order Taylor model computation without any domain
division already gives a remarkably good bound estimate.

43.4 Verified Integration of ODEs

ODE solvers in the Taylor model methods start from the integral form of
the ODE to use the antiderivation operator (43.2), then bring it to a fixed
point problem, where the nth order polynomial part P, can be found in at
most (n + 1) steps. The rest involves tasks to check the inclusion of inter-
vals, which are trivially done [7]. Our Taylor model ODE solver carries the
functional dependency of the solutions to the initial conditions in the frame
work of Taylor models. Thus it can optimally eliminate the wrapping ef-
fect, which has been the most challenging issue in verified ODE solvers [5].
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Here again, in the Taylor model approach, the fact that the bulk of the
functional dependency is kept in the polynomial part is key. The suppres-
sion of the wrapping effect allows the method to deal with larger domains
of initial conditions. When combined with methods for verified solutions
of constraint conditions over extended domains using Taylor models, the
ODE solver forms a natural basis of a verified DAE solver [11].

An important application of the method is the dynamics of near-earth
asteroids, addressed by Moore [21] and described by the six dimensional
ODEs

Cemimion) [ 2849 s
r_GziT? 1-=— Gzr—j—
i J iz
el + (L +y)E> 20+, . 3 [@c—ri) & ?
c? c? c? t2¢? T
3+4’y m;t;
+ 502 s (i—r1)-F } GZ .

1GZ [ — 1] - [(2+ 29)E — (1 + 29)8]} (F — ),

where r; is the solar-system barycentric position of body 4, including the
sun, the planets, the moon and the five major asteroids; r; = |r; —r|; 8 and
v are the parametrized post-Newtonian parameters [12, 22]. The problem
is challenging since initial conditions for asteroids are usually not very well
known. To perform verified integrations it is thus necessary to transport a
large box over an extended period of time. Hence the system is very sus-
ceptible to wrapping effect problems, but poses no difficulty for the Taylor
model based integrator. Refer to, for example, [9], which discusses the re-
sulting Taylor models for the position of the asteroid 1997XF11 obtained
via verified integration over a period of about 3.47 years, with relative over-
estimation of the size of the resulting domain of less than a magnitude of
10~?, showing the far-reaching avoidance of the wrapping effect.

Acknowledgments: We thank many colleagues for various stimulating dis-
cussions. The work was supported in part by the US Department of Energy
and an Alfred P. Sloan Fellowship.



43. New Applications of Taylor Model Methods 365

[1] Gotz Alefeld and Jiirgen Herzberger. Introduction to Interval Compu-
tations. Academic Press, New York, 1983.

[2] Martin Berz. Forward algorithms for high orders and many variables
with application to beam physics. In Andreas Griewank and George F.
Corliss, editors, Automatic Differentiation of Algorithms: Theory, Im-
plementation, and Application, pages 147-156. STAM, Philadelphia,
Penn., 1991.

[3] Martin Berz. COSY INFINITY Version 8 reference manual. Techni-
cal Report MSUCL-1088, National Superconducting Cyclotron Labo-
ratory, Michigan State University, East Lansing, MI 48824, 1997. See
cosy.nscl.msu.edu.

[4] Martin Berz. Modern Map Methods in Particle Beam Physics. Aca-
demic Press, San Diego, 1999.

[5] Martin Berz. Higher order verified methods and applications. In
Procedings of SCAN 2000. Kluwer Academic Publishers, Dordrecht,
Netherlands, 2001, submitted.

[6] Martin Berz, Christian Bischof, George Corliss, and Andreas
Griewank, editors. Computational Differentiation: Techniques, Ap-
plications, and Tools. STAM, Philadelphia, Penn., 1996.

[7] Martin Berz and Kyoko Makino. Verified integration of ODEs and
flows with differential algebraic methods on Taylor models. Reliable
Computing, 4:361-369, 1998.

[8] Martin Berz and Kyoko Makino. New methods for high-dimensional
verified quadrature. Reliable Computing, 5:13-22, 1999.

[9] Martin Berz, Kyoko Makino, and Jens Hoefkens. Verified integration
of dynamics in the solar system. Nonlinear Analysis, 2001, in print.

[10] Martin Berz, Kyoko Makino, Khodr Shamseddine, Georg H. Hoffstét-
ter, and Weishi Wan. COSY INFINITY and its applications to non-
linear dynamics. In Berz et al. [6], pages 363-365.

[11] Jens Hoefkens, Martin Berz, and Kyoko Makino. Efficient high-order
methods for ODEs and DAEs. In George Corliss, Christéle Faure,
Andreas Griewank, Laurent Hascoét, and Uwe Naumann, editors, Au-
tomatic Differentiation: From Simulation to Optimization, Computer
and Information Science, chapter 41, pages 343—-348. Springer, New
York, 2001.



366

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]
[22]

Kyoko Makino and Martin Berz

Jet Propulsion Laboratory. JPL Solar System Dynamics. See ssd.
jpl.nasa.gov.

R. Baker Kearfott and Alvard Arazyan. Taylor series models in de-
terministic global optimization. In George Corliss, Christéle Faure,
Andreas Griewank, Laurent Hascoét, and Uwe Naumann, editors, Au-
tomatic Differentiation: From Simulation to Optimization, Computer
and Information Science, chapter 44, pages 365-372. Springer, New
York, 2001.

Ulrich W. Kulisch and Willard L. Miranker. Computer Arithmetic in
Theory and Practice. Academic Press, New York, 1981.

Kyoko Makino. Rigorous Analysis of Nonlinear Motion in Particle
Accelerators. PhD thesis, Michigan State University, East Lansing,
Michigan, USA, 1998. Also MSUCL-1093 and bt.nscl.msu.edu/
papers-cgi/display.pl?name=makinophd.

Kyoko Makino and Martin Berz. Remainder differential algebras and
their applications. In Berz et al. [6], pages 63—-74.

Kyoko Makino and Martin Berz. Efficient control of the dependency
problem based on Taylor model methods. Reliable Computing, 5(1):3—
12, 1999.

Ramon E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs,
N.J., 1966.

Ramon E. Moore. Methods and Applications of Interval Analysis.
SIAM, Philadelphia, Penn., 1979.

Ramon E. Moore, editor. Reliability in Computing: The Role of In-
terval Methods in Scientific Computing. Academic Press, San Diego,
1988.

Ramon E. Moore. Private communication, 1998.

P. K. Seidelmann, editor. Ezplanatory Supplement to the Astronomical
Almanac. University Science Books, Mill Valley, California, 1992.



Index

application
near-earth asteroids, 364

COSY Infinity, 360

dependency problem, 359
differential algebraic equations, 359

floating point, 359

global optimization, 361
Gritton’s second problem, 361

high order derivatives, 359
interval arithmetic, 359
near-earth asteroids, 364

ordinary differential equations, 359
ordinary differential equations, ver-
ified integration, 363

quadrature, multidimensional ver-
ified, 363

Taylor model, 359, 363
tools
COSY Infinity, 360

This is page 367
Printer: Opaque this



