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Abstract. Numerical methods assuring confidence involve the treat-
ment of entire sets instead of mere point evaluations. We briefly review
the method of interval arithmetic that is long known for rigorous, verified
computations, and all operations are conducted on intervals instead of
numbers. However, interval computations suffer from overestimation, the
dependency problem, the dimensionality curse, and the wrapping effect,
to name a few, and those difficulties often make conventional interval
based verified computational methods useless for practical challenging
problems.
The method of Taylor models combines Taylor polynomials and remain-
der error enclosures, and operations are now conducted on Taylor mod-
els, where the bulk amount of the functional dependency is carried in
the polynomial part, and the error enclosures provides a safety net to
rigorously guarantee the result. Using simple and yet challenging bench-
mark problems, we demonstrate how the method works to bring those
conventional difficulties under control. In the process, we also illustrate
some ideas that lead to several Taylor model based algorithms and ap-
plications.

Keywords: Taylor model, interval arithmetic, verified computation, re-
liable computation, range bounding, function enclosure, verified global
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1 Interval Arithmetic

Numerical methods assuring confidence involve the treatment of entire sets in-
stead of mere point evaluations. The method of interval arithmetic (see, for
example, [1–3] and many others) is a long known method to support such rigor-
ous, verified computations. Instead of numbers, all operations are conducted on
intervals. Furthermore, floating point inaccuracies are accounted for by round-
ing lower bounds down and upper bounds up. Here are some basic operations of
interval arithmetic for intervals I1 = [L1, U1], I2 = [L2, U2].
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I1 + I2 = [L1 + L2, U1 + U2],

I1 − I2 = [L1 − U2, U1 − L2],

I1 · I2 = [min{L1L2, L1U2, U1L2, U1U2},max{L1L2, L1U2, U1L2, U1U2}] ,
1/I1 = [1/U1, 1/L1], if 0 /∈ I1. (1)

One can obtain rigorous range bounds of the function by evaluating a function
in interval arithmetic.

The basic concept is rather simple, hence the computation is reasonably
fast in practice, however interval computations have some severe disadvantages,
limiting their applicability for complicated functions. First, the width of resulting
intervals scales with the width of the original intervals. Second, artificial blow-up
usually occurs in extended calculations. The next trivial example illustrates the
blow-up phenomenon dramatically. We compute the subtraction of the interval
I = [L,U ] from itself, where the width of I is w(I) = U − L.

I − I = [L,U ]− [L,U ] = [L− U,U − L],

w(I − I) = (U − L)− (L− U) = 2(U − L). (2)

The resulting width w(I − I) is twice the original width, even though x−x = 0.
This artificial blow-up is caused by lack of the dependency information. There
are various attempts to avoid such a situation like detecting such cancellations
ahead of time, but ultimately it is unavoidable in complicated function evalua-
tions. Another practical limitation is the dimensionality curse. As we will see in
an example below, practical interval computations require to divide a domain
of interest into much smaller sub-intervals, and in the case of multiple dimen-
sions, the computational expense grows very fast. Thus, while providing rigorous
estimates, the method suffers from some practical difficulties. The dependency
problem leads to overestimations to the extent that in some cases, the estimates
may be rigorous but practically useless.

2 A Simple and Yet Challenging Example

To review some range bounding methods, we use a one dimensional function,
which is simple enough so that some of the estimates can be performed even by
hand calculations. The problem was originally proposed by Ramon Moore [4].
Bound the function [5, 6]

f(x) = 1 + x5 − x4 in [0, 1]. (3)

The problem appears to be exceedingly simple, but conventional function range
bounding methods on computers find it rather difficult to perform the task near
the minimum, which is the reason why Moore was interested in it.

The function profile is shown by solid curve in Fig. 1, and the exact bound
Bexact can be hand calculated easily, thus the problem serves as an excellent
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benchmark test for rigorous computation methods. The function takes the max-
ima at the end points x = 0 and x = 1, and the minimum at x = 4/5.

Bexact =
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Fig. 1. Range bounding of the function f(x) = 1+x5−x4 in [0, 1] in divided subdomains
[5, 6]. Using interval arithmetic in (a) 16, (b) 128, (c) 1024 subdomains. Using Taylor
models (TM) in 16 subdomains (d) by first order naive TM bounding, (e) by fifth order
naive TM bounding, (f) by LDB [6–8] on the fifth order TMs.
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We note in passing that the two numerical values in the above estimates happen
to be exact as written and are not merely approximations.

To begin the investigation on the function range bounding performance in
interval arithmetic, we evaluate the function on the entire domain [0, 1].

f([0, 1]) = 1 + [0, 1]5 − [0, 1]4 = 1 + [0, 1]− [0, 1] = [0, 2],

w(f [0, 1]) = 2. (5)

The function range bound f([0, 1]) certainly encloses the exact bound Bexact,
but it is uselessly overestimated.

The next step is to divide the entire domain into smaller subdomains. This
helps to decrease the overestimation to obtain much sharper function range
bound. The entire domain [0, 1] is divided into smaller and smaller equi-sized
subdomains, and interval arithmetic is conducted to evaluate the function range
bound in each subdomain. Fig. 1(a) shows the situation using 16 equi-sized sub-
domains, and we observe still quite large overestimations around the minimum.
The frame size is fixed for all the pictures in Fig. 1 to compare different meth-
ods and settings easily. Most of the function sub range bounds are out of the
vertical frame size in the case of 16 domain intervals. Much smaller equi-sized
subdomains are shown in Fig. 1(b), (c). With 128 equi-sized subdomains (b),
the function sub range bounds almost fit in the vertical frame size, however one
observes the difficulty near the minimum and the rightward. With 1024 equi-
sized subdomains (c), the function sub range bounds get quite sharp. The bound
over the entire domain is obtained as the union of all the sub bounds. See the
resulting bound estimates in Table 1. Despite the simple appearance of the prob-
lem description, indeed the interval method has a hard time to deal with this
problem.

3 The Method of Taylor Models

We have been proposing the method of Taylor models, consisting of Taylor ex-
pansions and the remainder error enclosures, hence supporting rigorous, verified
computations. As we describe below, Taylor models carry richer information,
and despite the more complicated structures of the method compared to con-
ventional rigorous numerical methods like interval arithmetic, the method offers
an economical means to complicated practical problems.

For a function f : D ⊂ Rv → R that is (n + 1) times continuously partially
differentiable, denote the n-th order Taylor polynomial of f around the expansion
point x0 ∈ D by P (x − x0), and bound the deviation of P from f by a small
remainder bounding set e.

f(x)− P (x− x0) ∈ e, ∀x ∈ D where x0 ∈ D. (6)

We call the combination of P and e as a Taylor model.

T = (P, e) = P + e. (7)
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T depends on the order n, the domain D, and the expansion point x0. For two
Taylor models T1 = (P1, e1) and T2 = (P2, e2) with the same conditions n, D,
and x0, we define Taylor model addition and multiplication as follows:

T1 + T2 = (P1 + P2, e1 + e2),

T1 · T2 = (P1·2, e1·2), (8)

where P1·2 is the part of the polynomial P1 ·P2 up to the order n, and the higher
order part from (n+ 1) to 2n is kept in P>n. Denoting an enclosure bound of P
over D by B(P ), we have

e1·2 = B(P>n) + B(P1) · e2 + B(P2) · e1 + e1 · e2 (9)

where operations on remainder bounding sets ei follow set theoretical operations
and outward rounding in other suitable representative sets.

Using these, intrinsic functions for Taylor models can be defined by perform-
ing various manipulations. Refer to [7, 9] for the details on definitions of standard
intrinsic functions as well as the computer implementations. Obtaining the in-
tegral with respect to variable xi of P is straightforward, so one can obtain an
integral of a Taylor model straightforwardly. Thus we have an antiderivation ∂−1

i

in Taylor model arithmetic.
The method provides enclosures of any function given by a finite computer

code list by an n-th order Taylor polynomial and a remainder error enclosure
with a sharpness that scales with order (n + 1) of the width of the domain D.
It alleviates the dependency problem in the calculation, and it scales favorably
to higher dimensional problems.

4 Range Bounding of the Example by Taylor Models

As mentioned, Taylor models can be used for range bounding of functions. Even
a crude method of evaluating a bound of P provides good function range bounds
compared to conventional range bounding methods in interval arithmetic; evalu-
ate bounds of all the monomials, then sum them up together with the remainder
enclosure. Taylor polynomials in the structure of Taylor models allow more so-
phisticated algorithms such as the Linear Dominated Bounder (LDB) and the
Fast Quadratic Bounder (QFB) [6–8].

First, we demonstrate a function evaluation in Taylor model arithmetic by
hand calculation. We express the variable x covering the entire domain [0, 1] by
a Taylor model as

x ∈ Tx = Px + ex with Px = 0.5 + 0.5 · x0, ex = 0, x0 ∈ [−1, 1]. (10)

Before proceeding to the next step, let us examine the self subtraction as in
Eq. (2) in the interval case. We subtract the Taylor model Tx from itself.

Tx − Tx = (Px − Px, ex − ex)

= ((0.5 + 0.5 · x0)− (0.5 + 0.5 · x0) , 0− 0) = (0, 0). (11)
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After performing the necessary cancellation in the polynomial part, the resulting
Taylor model is (0, 0). We note that the corresponding calculations of Eqs. (10)
and (11) on computers produce nonzero remainder error enclosures by accounting
for floating point representation errors associated to the polynomial arithmetic
of Taylor models on computers. So, the error enclosure ex is nonzero even though
it is extremely tiny near the floating point accuracy floor, and the error enclosure
of Tx−Tx is a few times of ex, where the part ex−ex produces the same effect as
seen in Eq. (2), though the size is negligible, i.e., about 10−15 in double precision
computations.

With Tx prepared in Eq. (10), we now evaluate the function f of Eq. (3) in
the fifth order Taylor model arithmetic. This can be done by hand calculation
with moderate effort:

Tf,5 = f(Tx) = 1 + (Tx)5 − (Tx)4

= 1 + (0.5 + 0.5 · x0 + 0)
5 − (0.5 + 0.5 · x0 + 0)

4

= 1 + 0.55 ·
(
1 + 5x0 + 10x2

0 + 10x3
0 + 5x4

0 + x5
0 + 0

)
−0.54 ·

(
1 + 4x0 + 6x2

0 + 4x3
0 + x4

0 + 0
)

= 1 + 0.55 ·
(
−1− 3x0 − 2x2

0 + 2x3
0 + 3x4

0 + x5
0

)
+ 0. (12)

The function f(x) is a fifth order polynomial, thus the most accurate Taylor
model representation of the function is achieved by a fifth order Taylor model,
resulting in a zero remainder error enclosure. When the Taylor model arithmetic
computation is performed on computers, a tiny nonzero remainder error enclo-
sure will result. If lower order Taylor models are used, the order of the polynomial
is truncated by the order used, and the higher order polynomial contributions
are lumped into the remainder error enclosure.

Using Tf,5 in Eq. (12), we evaluate a function range bound. The simplest way
is to sum up the bound contributions from each monomial in the polynomial part
of Tf,5 utilizing x0, x

3
0, x

5
0 ∈ [−1, 1] and x2

0, x
4
0 ∈ [0, 1]. This method is called naive

Taylor model bounding.

fTM5
∈ 1 + 0.55 · (−1− 3 · [−1, 1]− 2 · [0, 1] + 2 · [−1, 1] + 3 · [0, 1] + [−1, 1])

∈ 1 + 0.55 · [−9, 8] = [0.71875, 1.25],

w(fTM5
) = 0.55 · (8 + 9) = 0.53125, (13)

where we note that the numerical values happen to be exact as written and
not merely approximated. Compared to the interval estimate in Eq. (5), this
estimate is much sharper but still much wider than the exact bound Bexact.

As a usual procedure, one divides the entire domain into smaller subdomains.
We divide the entire domain [0, 1] into 16 equi-sized subdomains, and a function
range bound is evaluated in each subdomain by the naive fifth order Taylor model
bounding, and the resulting situation is shown in Fig. 1(e). As a reference, we
also performed the naive first order Taylor model bounding as shown in Fig. 1(d).
The 5th order naive Taylor models bound the function range quite accurately, in
fact better than the 1024 divided intervals, but even the first order naive Taylor
models with 16 subdomains perform better than the 128 divided intervals.
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To further improve the accuracy in Taylor model based computations, it is
more efficient and economical to use advanced bounding algorithms than divid-
ing the subdomains further. The behavior of a function is characterized primarily
by the linear part, and the accuracy of the linear representation increases as the
domain becomes smaller, except when there is a local extremum, in which case
the quadratic part becomes the leading representative of the function. Taylor
models carry the information on the Taylor expansion to the order n by defini-
tion, and this means that there are linear and quadratic, and also higher order
terms explicitly as coefficients of the polynomial P, and one does not elaborate
to obtain them. This is a significant advantage of the Taylor model method com-
pared to other rigorous methods like the interval method that does not have any
automated mechanism to obtain such information.

The Linear Dominated Bounder (LDB) and the Fast Quadratic Bounder
(QFB) utilize the linear, and the quadratic part respectively, and both are prac-
tically economical methods while providing excellent range bounds [6–8]. In the
16 equi-sized subdomains, we evaluated the fifth order Taylor models of the func-
tion as before, and we applied the LDB method for function range bounding.
The resulting situation is shown in Fig. 1(f), having very tight range bounding.
Table 1 summarizes the bounding performances. Both LDB and QFB are ap-
plicable to multivariate functions, and both can be used for multi-dimensional
pruning to eliminate the area in the domain which does not contribute to range
bounding.

Table 1. Range bounding of the function f(x) = 1 + x5 − x4 in [0, 1]. Unless ex-
act, the bound values are rounded outward. The GO method does not use equi-sized
subdomains, involving pruning and deleting of subdomains.

Method Division Lower bound Upper bound Width Ref.

Exact 1 0.91808 1 0.08192 Eq. (4)

TM GO, 5th 3 (8 steps) 0.918079 1.000001 0.081922 Sect. 4.1
LDB, 5th 16 0.918015 1.000001 0.081986 Fig. 1 (f)
naive, 5th 16 0.916588 1.000030 0.083442 Fig. 1 (e)
naive, 1st 16 0.906340 1.011237 0.104897 Fig. 1 (d)
naive, 5th 1 0.71875 1.25 0.53125 Eq. (13)

Interval 1024 0.916065 1.003901 0.087836 Fig. 1 (c)
128 0.901137 1.030886 0.129749 Fig. 1 (b)
16 0.724196 1.227524 0.503328 Fig. 1 (a)
1 0 2 2 Eq. (5)

4.1 Verified Global Optimizations Using Taylor Models

We have seen the sharpness and the efficiency of function range bounding tasks
when Taylor models are utilized. Using the above discussed methods, we have
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developed an efficient rigorous, verified global optimization (GO) tool for gen-
eral purposes, combining all the economically available information of the ob-
jective function and the tools in a smart way. In the search domain, which is
a multi-dimensional box in general, we apply a branch-and-bound approach,
and the reached solution is a guaranteed range bound of the true minimum in
the entire search domain. The Taylor model based verified global optimization
tool has been successfully applied to challenging optimization problems, starting
from benchmark problems such as Eq. (3) to practical optimization problems in
chaotic dynamical systems, astrodynamics, and particle accelerators. We refer
the reader for the details to, for example, [5, 6, 8].

The resulting function range bound of the global optimization tool for the
problem in Eq. (3) is listed in Table 1, showing that it provides an optimal
solution, agreeing with the exact bound Bexact up to the floating point repre-
sentation errors. The division of the domain is not made ahead of time, but
a division is done as needed in the branch-and-bound approach. Furthermore,
pruning and discarding of subdomains are performed for the purpose of narrow-
ing the search area. In this example, starting from the initial search domain [0, 1]
as the first step, the optimal solution is reached in 8 branch-and-bound steps,
involving 2 bi-secting divisions (thus 3 subdomains), 3 LDB-then-QFB pruning,
and 2 QFB-alone pruning.

5 Applications Utilizing Taylor Models

Besides the function range bounding and the verified global optimization meth-
ods discussed above, there are various other Taylor model based algorithms
possible for obtaining verified solutions, for example, integrations of functions,
differential equations, determining inverses, fixed point problems, implicit equa-
tions, and some others [9]. Having an antiderivation ∂−1

i in the Taylor model
arithmetic is particularly useful to deal with the problems involving integrations.
Especially verified ODE integrations using Taylor models have been successfully
applied to many benchmark problems and practical problems in chaotic dynam-
ical systems, astrodynamics, and particle accelerators.

5.1 Verified Integrations of ODEs

The various techniques of rigorous integrations using Taylor models have been
developed to carry out a long-term integration; see, for example, [7, 10–12]. Con-
ventional verified ODE integration methods based on intervals further suffer
from the wrapping effect in addition to the standard difficulties such as the de-
pendency problem, the overestimation problem, and the dimensionality curse.
When conducting numerical ODE integrations, the solution of the previous time
step is carried over to the next time step, where it is treated as the initial condi-
tion in the momentary one time step. In verified ODE integrations, the solutions
of the time steps as well as the initial conditions are sets with nonzero volume
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instead of mere points, and the shape of the sets necessarily deforms as the in-
tegration evolves. So, even though one starts an integration from a box shaped
initial condition set, for which intervals can describe the set perfectly, after one
time step, the solution set would not have a boxed shape. Then, the solution set
has to be re-packaged into a larger box to include the deformed solution set, and
intervals can describe a re-packaged larger box again. Such geometric inflation
due to re-packaging is called the wrapping effect. There are various techniques
to reduce the wrapping effect, but, one way or another, it cannot be avoided in
interval based ODE integrators.

In the framework of Taylor models, an initial condition set is described by
Taylor models as in Eq. (10), where the Taylor model Tx expresses the variable
x covering a domain. A solution set of a one time step of a Taylor model based
ODE integration is again Taylor models; the comparable situation is Eq. (12),
where the result of the function evaluation via Taylor model arithmetic is a
Taylor model. The solution Taylor models of the one time step are carried over
to the next time step as the initial condition Taylor models for the next time
step. Other than the treatment of the remainder term enclosures, which are
of substantially smaller magnitude, here is no re-packaging necessary, thus no
wrapping effect. There are various ways to effectively treat remainder enclosures,
see, for example, [12].

To conduct a successful long term verified integration using Taylor models,
nevertheless, it is important to control the growth of the remainder error en-
closures and the nonlinearity of the solutions, as otherwise the error enclosures
eventually grow too large to continue the computation. An analogous idea to the
sub-divisions in the function range bounding tasks is to control the time step size
and the object size of the solution. A combination of the automatic time step
size control and the automatic domain decomposition of Taylor model objects
allows more robust and longer time verified ODE integrations.

5.2 The Volterra Equations

We illustrate the performance of the Taylor model based verified integration
method using a classical problem in the field of verified ODE integrations. The
Volterra equations describes dynamics of two conflicting populations.

dx

dt
= 2x(1− y),

dy

dt
= −y(1− x). (14)

The fixed points are (0, 0) and (1, 1), and the solutions satisfy the constraint
condition

C(x, y) = xy2e−x−2y = Constant. (15)

In x, y > 0, the contour curves of C(x, y) form closed curves, and a solution
follows a closed orbit counterclockwise around the fixed point (1, 1), where outer
orbits take longer to travel one cycle. The nonlinearity combined with the peri-
odicity makes the problem a classical benchmark case for verified ODE solvers
[2, 11].
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We choose the initial condition set as a big square centered at (1, 3), and the
period of the closed orbit of the center point (1, 3) is about 5.488138468035 [11].
We integrate the next big initial condition box

(xi, yi) ∈ (1, 3) + ([−0.5, 0.5], [−0.5, 0.5]) = ([0.5, 1.5], [2.5, 3.5]) (16)

using various Taylor model based techniques until T = 5.488. And the Taylor
model solution manifold at T = 5.488 is shown in Fig. 2 in solid red curves. The
solution manifold consists of 17 Taylor model pieces as a result of the automatic
domain decomposition technique. The outer part revolves slower, thus it gradu-
ally drags behind, causing the difficulty to verified ODE integrators due to the
quickly developing nonlinearity. By controlling the size of the momentary Taylor
model solution piece by the automatic domain decomposition, the Taylor model
integration can keep integrating forward for a much longer time while producing
more Taylor model solution pieces. In Fig. 2, three contour curves are drawn
in dashed green, corresponding to the center point and the outermost and the
innermost points in the initial condition box, serving as a visual guide for the
solution to stay inside. In this example case, the remainder error enclosures of
the solution Taylor model pieces stayed below 3× 10−4, a size is unrecognizable
in the picture.

To put the results into perspective, let us look at some performances in the
conventional rigorous ODE integration methods based on the interval method.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5

Fig. 2. Taylor model based verified integration of the Volterra equations for the initial
condition box (1, 3) ± 0.5. The true solution stays inside the guiding contour curves
(dashed green). The TM solution at T = 5.488 consists of 17 pieces (solid red) as a
result of the automatic domain decomposition without noticeable overestimation.
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Earlier in [11], we discussed about Taylor model integration performances for
the Volterra equations with the initial condition set centered at the same point
(1, 3) but with a much smaller box, namely (1, 3) + ([−0.05, 0.05], [−0.05, 0.05])
that is 10× 10 times smaller than the problem in Eq. (16). We investigated the
performances by AWA [13] that is one of well made and widely spread inter-
val based verified ODE integrators. We started from the much smaller initial
condition box, and when starting to turn rightward after going down at left,
AWA already started to develop the overestimation. Then, during traveling at
the bottom rightward, nonlinearity develops quickly, and the AWA integration
broke down around x = 3.5 at the bottom at the time around t = 5. Despite of
various sophisticated techniques utilized in AWA in the limited framework of the
interval method, AWA got defeated by the wrapping effect, as the interval based
methods cannot represent deformed nonlinear objects well without significant
overestimation.

Acknowledgments. For numerous interesting and stimulating discussions, we
are thankful to Ramon Moore.

References

1. R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.
2. R. E. Moore. Methods and Applications of Interval Analysis. SIAM, 1979.
3. G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic

Press, New York, London, 1983.
4. Ramon E. Moore. Private communication. 2004.
5. K. Makino and M. Berz. Rigorous global optimization for parameter selection.

Vestnik Mathematica, 10,2:61–71, 2014.
6. K. Makino and M. Berz. Range bounding for global optimization with Taylor

models. Transactions on Computers, 4,11:1611–1618, 2005.
7. K. Makino. Rigorous Analysis of Nonlinear Motion in Particle Accelerators. PhD

thesis, Michigan State University, East Lansing, Michigan, USA, 1998. Also
MSUCL-1093.

8. M. Berz, K. Makino, and Y.-K. Kim. Long-term stability of the Tevatron by
validated global optimization. Nuclear Instruments and Methods, 558:1–10, 2006.

9. K. Makino and M. Berz. Taylor models and other validated functional inclusion
methods. International Journal of Pure and Applied Mathematics, 6,3:239–316,
2003.

10. M. Berz and K. Makino. Verified integration of ODEs and flows using differential
algebraic methods on high-order Taylor models. Reliable Computing, 4(4):361–369,
1998.

11. K. Makino and M. Berz. Suppression of the wrapping effect by Taylor model-
based verified integrators: The single step. International Journal of Pure and
Applied Mathematics, 36,2:175–197, 2006.

12. K. Makino and M. Berz. Suppression of the wrapping effect by Taylor model-
based verified integrators: Long-term stabilization by preconditioning. Interna-
tional Journal of Differential Equations and Applications, 10,4:353–384, 2005.

13. R. J. Lohner. AWA - Software for the computation of guaranteed bounds for
solutions of ordinary initial value problems. 1994.


