
The Journal of Logic and
Algebraic Programming 64 (2005) 135–154

��� �����	
��


��� 	��
	
����	�
�����	����

www.elsevier.com/locate/jlap

Taylor models and floating-point arithmetic: proof
that arithmetic operations are validated in COSY�

N. Revola,∗, K. Makinob, M. Berzc

a INRIA, LIP (UMR CNRS, ENS Lyon, INRIA, Univ. Claude Bernard Lyon 1),
École Normale Supérieure de Lyon, 46 allée d’ltalie, 69364 Lyon Cedex 07, France

b Department of Physics, University of Illinois at Urbana-Champaign, 1110 Green Street, Urbana,
IL 61801-3080, USA

c Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

Abstract

The goal of this paper is to prove that the implementation of Taylor models in COSY, based
on floating-point arithmetic, computes results satisfying the “containment property”, i.e. guaranteed
results.

First, Taylor models are defined and their implementation in the COSY software by Makino and
Berz is detailed. Afterwards IEEE-754 floating-point arithmetic is introduced. Then the core of this
paper is given: the algorithms implemented in COSY for multiplying a Taylor model by a scalar, for
adding or multiplying two Taylor models are given and are proven to return Taylor models satisfying
the containment property.
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1. Introduction

Computing with floating-point arithmetic and rounding errors and still being able to
provide guaranteed results can be achieved in various ways. In this paper, techniques
are studied for Taylor model computations. Taylor models constitute a way to rigorously
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manipulate and evaluate functions using floating-point arithmetic. They are composed of a
polynomial part, which can be seen as an expansion of the function at a given point, and
of an interval part which brings in the certification of the result, i.e. an enclosure of all
errors which have occurred (truncation, roundings). Thus the Taylor models are a hybrid
between conventional floating-point arithmetic and computer algebra. Their data size is
limited even after a long sequence of operations, many operations can be defined, and yet
the results of computations are rigorous like with interval methods (which correspond to
Taylor models of order 0). Various algorithms exist for solutions of ODEs [7], quadrature
[8] and range bounding [16,15,17], implicit equations [13,6], etc.

The focus in this paper is to prove that the implementation in the COSY software [3]
provides validated results, i.e. enclosures of the results, even if operations are performed
using floating-point operations. The considered arithmetic operations are the multiplication
of a Taylor model by a scalar in Section4, the addition in Section5 and the product in Sec-
tion 6 of two Taylor models. Section2 defines Taylor models and Section3 recalls useful
facts about IEEE-754 floating-point arithmetic. The algorithms are detailed before being
proven correct: they are taken from COSY sources. They can also be found in Makino’s
thesis [15], along with the details of the data structure which are not recalled here.

2. Taylor models

A Taylor model is a convenient way to represent and manipulate a function on a com-
puter. In the following, we first introduce Taylor models from the mathematical point of
view, i.e. an exact arithmetic is assumed. Then the use of floating-point arithmetic and the
modifications it implies are detailed. Finally, another, computationally more convenient,
way of storing Taylor models on a computer using floating-point arithmetic and a sparse
representation is given. This last subsection corresponds to the way Taylor models are
represented in the COSY software [3].

2.1. Taylor models with exact arithmetic

Let f be a function onv variables:f : [−1, 1]v → R, a Taylor model of orderω for f

is a pair(Tω, IR) whereTω is the Taylor expansion of orderω for f at the point(0, . . . , 0)

and IR is an interval enclosing the truncation error,IR will also be called theinterval
remainderof the Taylor model.

The interval remainder is required to satisfy the following so-called high orderscaling
property: if we consider the functionfh defined for−1 � h � 1, by1 fh(x) = f (h × x)

and determine its remainder boundIR,h, then ash → 0, the width ofIR,h behaves as
O(hω+1). For instance,IR could be computed as a Lagrange remainder as:

IR = [−α, α] with α = 1

(ω + 1)! ‖f
(ω+1)‖∞

where the‖‖∞ norm is taken over[−1, 1]v. However, determiningIR from a Lagrange
remainder is in practice very difficult, certainly more so than bounding the original func-

1 Throughout this paper,× will be used as symbol for the multiplication in order to be visible when needed.
In particular, it will not be needed inside a monomial, since monomials will be “transparent”, cf. end of Section
2.3.
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tion itself, and so it is not very practical in most cases. In particular, in the COSY ap-
proach, remainder bounds are calculated in parallel to the computation of the floating-point
representation of the coefficients from previous remainder bounds and coefficients [15].
It suffices that the scaling property and the followingcontainment propertyhold: ∀x ∈
[−1, 1]v, f (x) ∈ [Tω(x), Tω(x)] + IR.

This property may be better illustrated in figures. Fig.1 shows a graphical represen-
tation of the functionf . On the left the vertical bar represents an interval enclosure of
the range off over the whole domain. In Fig.2 a solid line corresponds tof whereas
the dashed line corresponds toTω; for several argumentsx, the vertical interval represents
[Tω(x), Tω(x)] + IR, and it containsf (x). If this is repeated for every argumentx, one
obtains an enclosure of the graph of the functionf in the dotted tube, shown on the right
of Fig. 2.

To simplify notations and algorithms, without loss of generality all considered Taylor
models will be considered as having the same orderω, which must be in practice less or
equal to the minimum of their actual orders. Indeed, it is meaningless to consider an order
higher than the smallest of the orders of the summands when adding two Taylor models
for instance, and the order of the result cannot exceed this value either.

Various operations can be performed on Taylor models, such as arithmetic operations
(+, ×, /), computing their exponential or other algebraic or elementary functions
(
√

, log, sin, arctan, cosh, . . .), composing Taylor models, integrating or differentiating
them and so on. In the following, we will focus on the multiplication of a Taylor model
by a scalar (cf. Section4), the addition (cf. Section5) and multiplication (cf. Section6) of
two Taylor models.

Fig. 1. Graphical representation of the functionf and an enclosure of its range.

Fig. 2. Enclosures off(x) for variousx (left) and enclosure of the graph off (right).
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2.2. Taylor models using floating-point arithmetic

In the previous definition, exact arithmetic is assumed: for instance the coefficients of the
Taylor expansion are exactly represented. If floating-point arithmetic is assumed, then the
coefficients of the polynomial must be floating-point numbers (typically double precision
floating-pointnumbersof IEEE-754arithmetic).Somustbe the representationof the remain-
der interval (its lower and upper bounds if intervals are represented by their endpoints).

Furthermore, rounding errors will inevitably occur during various computations involv-
ing Taylor models. To get validated results, the rounding errors due to approximate repre-
sentation and to computations must be accounted for.

When floating-point arithmetic is used, a Taylor model is defined in the following way:
let f be a function onv variables:f : [−1, 1]v → R. In floating-point arithmetic, a Taylor
model of orderω for f is a pair(Tω, IR). In this pair,Tω is a polynomial inv variables
of orderω with floating-point coefficients, these coefficients being floating-point repre-
sentations of the coefficients of the exact Taylor expansion of orderω for f at the point
(0, . . . , 0). The second member of this pair,IR, is an interval;IR encloses on the one hand
the truncation error and on the other hand the rounding errors made in the construction
of this Taylor model, both in the approximation of exact coefficients by floating-point
arithmetic and during the various floating-point operations. It can be thought of as the sum
of the interval remainder and of an enclosure of rounding errors.

Again, with floating-point arithmetic, the containment property still holds:∀x ∈
[−1, 1]v, f (x) ∈ [Tω(x), Tω(x)] + IR if Tω(x) is assumed to be exact, or if the rounding
errors implied by its evaluation are accounted for inIR.

2.3. Taylor models using floating-point arithmetic and sparsity

Since the algorithms analysed in this paper are the ones implemented in COSY, let us
consider Taylor models as they are represented in COSY. COSY uses a sparse represen-
tation of Taylor models, i.e. it stores only the monomials that have a non-zero coefficient.
In addition to this, COSY only stores coefficients with a “relevant” magnitude, i.e. whose
absolute value is greater than a prescribed threshold. To preserve the property of validated
results, monomials with a coefficient below this threshold are “swept” into the interval
part, according to the following inclusion property:

∀(x1, . . . , xv) ∈ [−1, 1]v, ∀c ∈ R, and naturalωi, c × x
ω1
1 . . . xωv

v ∈ [−|c|, |c|].
Sweeping a monomialc × x

ω1
1 . . . x

ωv
v corresponds to adding[−|c|, |c|] to the interval

remainder.

To sum up, in COSY, a Taylor model of orderω for a functionf in v variables on
[−1, 1]v is a pair(Tω, I ). In this pair,Tω is a polynomial inv variables of orderω with
floating-point coefficients; these coefficients are floating-point representations of the coef-
ficients of the exact Taylor expansion of orderω for f at the point(0, . . . , 0) whose abso-
lute value is greater than a prescribed threshold. The second part of the pair,I , is an interval
enclosing the sum of the following contributions:
• the truncation error,
• the rounding errors made in the construction of this Taylor model,
• the swept terms.
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Conventions
• Every Taylor model is assumed to be initialized to 0, i.e. every coefficient is initialized

to 0 and the interval to [0, 0]. This is used in the algorithms of Sections4–6, given
without initializations. For instance, in Section6, the coefficientsbk are not set to 0
prior to their use as accumulators.

• To avoid tedious notations, the polynomial partTω will be represented as a tuple of
coefficients(ai)1�i�n and the exact correspondance between the indexi and the degree
(i1, . . . , iv) of the corresponding monomialxi1 . . . xiv will never be detailed.

3. IEEE-754 floating-point arithmetic and Taylor models in COSY

In order to bound rounding errors from above and to incorporate these estimates into
the interval part of Taylor models, it is necessary to detail rounding errors for arithmetic
operations with floating-point operands. This section introduces floating-point arithmetic,
as it is defined by the IEEE-754 standard, as well as some properties satisfied by this
floating-point arithmetic and useful later on. To avoid burdening the reader, for the results
presented in this section, the proofs are relegated to the Appendix.

3.1. IEEE-754 floating-point arithmetic

3.1.1. IEEE-754 floating-point numbers
The IEEE-754 standard [1] defines a binary floating-point system and an arithmetic that

behaves in the same manner on every architecture (see also [2,9,14]). The goals of this
standardization are the portability of numerical codes and the reproducibility of numerical
computations. Furthermore it provides sound specifications that make possible proofs of
the correct behaviour of programs, as in the remainder of this paper. The standard also
specifies the handling of arithmetic exceptions.

Definition 1 (IEEE-754 floating-point number system). A floating-point number system
F with baseβ, precisionp and exponent boundsemin and emax is composed of a sub-
set ofR and some extra values; as far as real values are concerned, it containsfloating-
point numberswhich have the form±mantissa×βe, whereβ is the base––in the following
β will be equal to 2––and mantissa is a real number whose representation in baseβ is
m0.m1 · · ·mp−1 with digits mi satisfying 0� mi � β − 1 for 0 � i � p − 1; finally e

is an integer such thatemin−1 � e � emax+1. In particular, 0 is represented twice, as+0 ×
βemin−1 and−0 × βemin−1 . The other elements ofF are+∞, −∞, and NaN (Not a Number,
used for invalid operations).

F containsnormalizedandsubnormal numbers. A normalized number is a number with
emin � e � emax andm0 /= 0; when the baseβ equals 2, this implies thatm0 = 1 andm0
does not have to be represented. A subnormal number is a number withe = emin − 1 and
m0 = 0. The threshold between normalized and subnormal numbers, also calledunderflow
threshold, is εu = βemin.

With subnormal numbers, 0 can be represented and results between−εu andεu have
more accuracy.

The IEEE-754 standard defines two floating-point formats: for both of them, the base is
β = 2. The single precision format has mantissas of length 24 bits(p = 24) and



140 N. Revol et al. / Journal of Logic and Algebraic Programming 64 (2005) 135–154

emin = −126, emax = 127 (a floating-point number fits into a single word: 32 bits). The
double precision format is defined byp = 53,emin = −1022 andemax = 1023 (a floating-
point number is stored in 64 bits).

3.1.2. Ulp, rounding modes and rounding errors

Definition 2 (u: ulp (unit in the last place)). Let 1+ denote the smallest floating-point
number strictly larger than 1, thenu = 1+ − 1 : u is calledulp for unit in the last placeof
the number 1.

With the notations of Definition 1,u = β−p+1. For formats defined by the IEEE-754
standard, in single precisionu = 2−23 � 1.2 × 10−7 and in double precisionu = 2−52 �
2.2 × 10−16.

A floating-point number system contains only a finite number of elements and it is thus
not possible to represent every real number. A floating-point approximation fl(x) to a real
numberx is one of the two floating-point numbers surroundingx (except ifx is exactly
representable as a floating-point number, then fl(x) = x, or for exceptional cases where|x|
is too large:overflow). The choice of one of these two floating-point numbers is determined
by the active rounding mode. The IEEE-754 standard defines four rounding modes: round-
ing to nearest (even), rounding to+∞, rounding to−∞ and rounding to 0. With directed
rounding modes, fl(x) is chosen as the floating-point number in the indicated direction. With
rounding to nearest (even), fl(x) is chosen as the floating-point which is the nearest ofx; in
case of a tie, i.e. whenx is the middle of these two surrounding floating-point numbers, the
one with the last bitmp−1 equal to 0 is chosen. The IEEE-754 standard also defines the behav-
iourof the fourarithmeticoperations+, −, ×, /andof√.The result of theseoperationsmust
be the same as if the exact result (inR) were computed and then rounded.

Notation. Symbols without a circle denote exact operations and symbols with a circle
denote either floating-point operations or, if some operands are intervals, outward rounded
interval operations.

In the following,εM will denote an upper bound of the rounding error; it equalsu/2 for
rounding to nearest andεM = u for the other rounding modes.

A consequence of the specifications for the arithmetic operations given by the IEEE-754
standard is the following: let∗ be an arithmetic operation and� be its rounded counterpart,
if a � b is neither a subnormal number nor an infinity nor a NaN, then|(a � b) − (a ∗ b)| �
εM |a ∗ b|, i.e.

|(a � b) − (a ∗ b)| � 1
2u|a ∗ b| with rounding to nearest (even),

|(a � b) − (a ∗ b)| � u|a ∗ b|with the other rounding modes.

Furthermore, it is possible to prove that the relative rounding error performed by each
floating-point operation can be bounded from above using floating-point operations, as it
is detailed in the following lemma.

Lemma 1 (Estimating the rounding error using floating-point arithmetic).In what follows,
a andb are assumed to be normalized floating-point numbers.

(1) If the floating-point numbersa, b are such thata × b neither overflows nor falls
belowεu (the underflow threshold) in magnitude, then the producta × b differs from
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the floating-point multiplication resulta ⊗ b by no more than|a ⊗ b| ⊗ (2εM). Since
the floating-point multiplication by 2 in“(2εM)” is exact, there is no need to explicit
it with × or ⊗.

(2) The suma + b of floating-point numbersa andb differs from the floating-point addi-
tion resulta ⊕ b by no more than|a ⊕ b| ⊗ (2εM), if a ⊕ b neither overflows nor
falls belowεu.

(3) With the same assumption, the suma + b of floating-point numbersa and b

differs from the floating-point addition resulta ⊕ b by no more thanmax(|a|, |b|) ⊗
(2εM).

The proof of this lemma can be found in Appendix.

3.1.3. Rounding errors in sums
Let us denote bySn = ∑n

j=1 sj andŜn = ⊕n
j=1 sj this sum computed using floating-

point arithmetic and any order on thesj .
In the following, only non-negative terms are added. The following lemma gives a for-

mula using the computed sum that bounds the error from above.

Lemma 2. If ∀j ∈ {1, . . . , n}, sj � 0 and if (n − 1) × εM < 1 then the errorEn = Sn −
Ŝn is bounded as follows:

|En| � (n − 1) × εM ×

 n⊕

j=1

sj


 .

This implies thatSn = ∑n
j=1 sj �

(
1 + (n − 1)εM

)
Ŝn = (1 + (n − 1)εM)

(⊕n
j=1 sj

)
.

The Lemmas1 and2 will be used in the following to prove that the algorithms studied in
this paper provide guaranteed bounds even if they compute using floating-point operations
only.

3.2. Taylor models in COSY and IEEE-754 floating-point arithmetic

Some notations and assumptions used in COSY are now introduced. One of these
assumptions is classical in rounding error analysis [12]: it stipulates that the number of
floating-point operations multiplied by the rounding error boundεM is less than a given
quantityη < 1, and quite oftenη is chosen as 1/2. It has been proven in [5, Chapter 2,
p. 96, Eq. (2.60)] that for Taylor models of orderω in v variables, the maximal number
of floating-point operations involved in an operation between two Taylor models is less
or equal to(ω + 2v)!/(ω!(2v)!). A last lemma, using these assumptions, is then given: it
relates an exact sum to its computed counterpart.

Notations and assumptions: constants in Taylor model arithmetic
Let ω andv be the order and dimension of the Taylor models. We fix constants denoted

by
εm : an error factor which only has to satisfyεm � 2εM (cf. [15])

εc : cutoff threshold
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η : accumulated rounding errors

e : contribution bound (a floating-point number)

such that the following inequalities hold:
(1) ε2

c > εu,

(2) 1 > η > εm(ω + 2v)!/(ω!(2v)!),
(3) e � (1 + εm/2)3 × (1 + η).
In a conventional double precision floating-point environment, typical values for these

constants may beεu ∼ 10−307 andεm ∼ 10−15. The Taylor arithmetic cutoff thresholdεc
can be chosen over a wide possible range, but since it is used to control the number of
coefficients actively retained in the Taylor model arithmetic, a value not too far belowεm,
like εc = 10−20, is a good choice.

A classical value forη is 1/2 and it then implies that assumption (3) is satisfied with
e = 2 for usual floating-point precisions.

The following lemma derives from Lemma 2 and will be intensively used to prove that
rounding errors in Taylor models operations are properly accounted for in the computation
of the interval remainder.

Lemma 3 (Link between a floating-point sum and an exact sum).If the previous assump-
tions are satisfied and if∀j, sj � 0, then:

n∑
j=1

(εM ⊗ sj ) � e ⊗ εM ⊗
n⊕

j=1

sj .

The proof is to be found in Appendix.
Our “floating-point arithmetic toolbox” is now complete. We can turn to the core of

this paper, which is the proof that arithmetic operations on Taylor models, as they are
implemented in COSY using floating-point operations, are correct.

4. Multiplication of a Taylor model by a scalar

The first operation considered here is the simplest one, in terms of its proof. Further-
more, the structure of the proof appears clearly and this scheme will be reproduced and
adapted for the other operations.

4.1. Algorithm using exact arithmetic

Let us multiply the Taylor modelT = ((ai)1�i�n, I ) by a floating-point scalarc and let
us denote byT ′ = ((bk)1�k�n,J ) the result of this multiplication.

The algorithm is the following:

for k = 1 ton do
bk = c × ak

J = c × I
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4.2. Identification of rounding errors

The goal is now to identify the source of rounding errors and to give an upper bound of
these errors using only floating-point operations. The previous algorithm is recalled on the
left and rounding errors are mentioned in the right column.

Previous algorithm Rounding error bounded by

for k = 1 ton do
bk = c × ak εm ⊗ |c ⊗ ak|

J = c × I no error since interval arithmetic is used

Furthermore, in COSY implementation of Taylor models, only coefficients above the
given thresholdεc are kept, the others are temporarily swept into asweeping variableand
then into the interval part. The corresponding algorithm is given below, withs denoting the
sweeping variable, and again rounding errors are identified in the right column.

Algorithm Rounding error bounded by

s = 0
for k = 1 ton do

bk = c × ak εm ⊗ |c ⊗ ak|
if |bk| < εc then

s = s + |bk| εm ⊗ max(s, |bk|), with s taken before assignment
bk = 0

J = c × I + [−s, s] no error since interval arithmetic is used

4.3. Algorithm using floating-point arithmetic

One more variablet, called thetallying variable, is introduced:εm ⊗ t collects every
upper bound of the rounding errors shown in the right column above. More precisely,t

collects every rounding factor and is multiplied byεm and bye as a safety factor before
being incorporated into the interval part, as it is shown in the following algorithm, which
corresponds to the COSY implementation:

t = 0
s = 0
for k = 1 ton do

bk = c ⊗ ak

t = t ⊕ |bk|
if |bk| < εc then

s = s ⊕ |bk|
bk = 0

J = c ⊗ I ⊕ e ⊗ (εm ⊗ [−t, t]) ⊕ e ⊗ [−s, s]
Algorithm for the multiplication of a Taylor model by a scalar in COSY.
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In the last line, circled interval operations denote outward rounded interval operations,
i.e. guaranteed floating-point interval operations.

4.4. Proof that this algorithm is correct

To prove that this algorithm returns a Taylor model satisfying the property

∀yx ∈ [T (x), T (x)] + I, c × yx ∈ [T ′(x), T ′(x)] + J,

we have to prove thatJ encloses the intervalc × I plus all rounding errors and swept terms.
This means that we have to prove that the “extra” terme ⊗ (εm ⊗ [−t, t]) ⊕ e ⊗ [−s, s]
encloses the exact sum of all rounding error bounds and of all swept terms. The proof is
decomposed into the following sub-tasks:

(1) prove that the rounding errors are correctly bounded bye ⊗ εm ⊗ t : the rounding
errors made in each multiplication plus the rounding errors made in the accumulation
in t;

(2) prove that the swept terms and the rounding errors made in the computation ofs are
correctly bounded from above bye × s;

(3) the last computation is an interval computation and thus there is no need to take care
of rounding errors. Actually, only the multiplicationc ⊗ I , the multiplication bye
and the two additions need to be performed using interval arithmetic, the multipli-
cationεm ⊗ t can be done using floating point arithmetic. Ife = 2 and IEEE-754
arithmetic is employed, then the multiplication bye is exact and again no interval
arithmetic is required.

Proof of(1)
Let us first prove that the tallying termt takes correctly into account the accumulation

of rounding errors made on the multiplications “c ⊗ ak”.
For eachk, the error onbk is bounded byεm ⊗ |bk| (cf. Lemma1) thus the sum of

every such error is bounded by
∑n

k=1 εm ⊗ |bk|. That
∑n

k=1 εm ⊗ |bk| is less or equal to
the term added toJ , e ⊗ εm ⊗ (⊕n

k=1 |bk|
)

is given by Lemma3 and assumption (3) of
the definition of Taylor model arithmetic constants, sincenεm

2 is bounded from above by
η.

Proof of(2)
Let us now prove that the terme ⊗ [−s, s] takes correctly into account the swept terms

along with the rounding errors induced by the floating-point computation ofs. Since⊗ is
here an interval operation,e ⊗ [−s, s] enclosese × [−s, s].

Let K denote the set{k : |bk| < εc} and�K its number of elements, we have to prove
the inequalitye × s = e × (⊕

k∈K |bk|
)

�
∑

k∈K |bk|+ error on this sum.
We already know that (first part of Lemma2) the error on this sum is smaller than

�K × εm/2 × (⊕
k∈K |bk|

)
, thus, using also the second part of Lemma2 to bound∑

k∈K |bk|,
∑
k∈K

|bk| + error on this sum� (1 + �K × εm)
⊕
k∈K

|bk|
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and again, using assumption (2):�K × εm � η and assumption (3): 1+ η � e in the defi-
nition of Taylor model arithmetic constants, we obtain that

∑
k∈K

|bk| + error on this sum� e ×
⊕
k∈K

|bk| = e × s.

The tallying variable and the sweeping variable, as computed in the previous algorithm
using floating-point arithmetic, thus fulfill their role.�

5. Addition of two Taylor models

In this section, the algorithm for adding two Taylor models using floating-point arith-
metic and the proof that the computed Taylor model satisfies the containment property are
given.

5.1. Algorithm using exact arithmetic

Let us add the Taylor modelT (1) = (
(a

(1)
i )1�i�n, I

(1)
)

to the Taylor modelT (2) =(
(a

(2)
i )1�j�n, I

(2)
)

and let us denote byT = ((bk)1�k�n, J ) the result of this addition.
The algorithm is the following:

for k = 1 ton do

bk = a
(1)
k + a

(2)
k

J = I (1) + I (2)

5.2. Identification of rounding errors

Let us proceed as in Section4.3. The sweeping variables is incorporated in the algo-
rithm (left column) and the right column gives bounds on the rounding errors, every time
such an error occurs.

Algorithm Rounding error bounded by

s = 0
for k = 1 ton do

bk = a
(1)
k + a

(2)
k εm ⊗ max

(|a(1)
k |, |a(2)

k |)
if bk < εc then

s = s + |bk| εm ⊗ max(s, |bk|), with s taken before assignment

bk = 0
J = I (1) + I (2) + [−s, s] no error since interval arithmetic is used

5.3. Algorithm using floating-point arithmetic

The final algorithm is the following: the tallying variablet is invoked to collect all
rounding errors.
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t = 0
s = 0
for k = 1 ton do

bk = a
(1)
k ⊕ a

(2)
k

t = t ⊕ max(|a(1)
k |, |a(2)

k |)
if |bk| < εc then

s = s ⊕ |bk|
bk = 0

J = I (1) ⊕ I (2) ⊕ e ⊗ (εm ⊗ [−t, t]) ⊕ e ⊗ [−s, s]
Algorithm for the addition of two Taylor models in COSY.

We note that in the actual implementation, because of the sparsity, addition of elements
in the loop happens only if both of the matching entries are non-zero; if one of them
vanishes, a mere copying is executed, and if both of them vanish, a zero is generated.

5.4. Proof that this algorithm is correct

Again, the goal is to prove thatJ correctly encloses the interval remainder plus all
rounding errors and swept terms. As in Section4.4, the proof is split into three sub-proofs.

(1) Proof that the rounding errors are correctly bounded from above bye ⊗ εm ⊗ t , i.e.
the accumulation of rounding errors made in each addition. To achieve this, the cor-
responding sub-proof of Section4.4applies.

(2) Proof that the swept terms and the rounding errors made in the computation ofs

are correctly bounded from above bye × s. Again, the corresponding sub-proof of
Section4.4can be copied without a single modification.

(3) Again, the last computation is an interval computation and thus there is no need
to take care of rounding errors. Actually, only the three additions and possibly the
multiplications bye, if e /= 2 or if an arithmetic not having 2 as radix is used, need to
be performed using interval arithmetic, the multiplicationεm ⊗ t can be done using
floating-point arithmetic.

6. Multiplication of two Taylor models

In this section, the algorithm multiplying two Taylor models using floating-point arith-
metic is given: for multiplication, operations can be performed in various orders and here
we stick to the one implemented in COSY. Then the proof that the computed Taylor model
satisfies the containment property is presented.

6.1. Algorithm using exact arithmetic

Let us multiply the Taylor modelT (1) = (
(a

(1)
i )1�i�n, I

(1)
)

by the Taylor modelT (2) =(
(a

(2)
j )1�j�n, I

(2)
)

and let us denote byT = ((bk)1�k�n, J ) the result of this multiplica-
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tion. The polynomial part ofT is the truncated product of the polynomial parts ofT (1)

andT (2), with a truncation at orderω. The interval part ofT contains an enclosure of
the truncated terms plus the productI (1) × I (2) and also plus the product ofI (1) by an
enclosure of the range of theT (2)

ω over[−1, 1]v and the product ofI (2) by an enclosure of
the range of theT (1)

ω over[−1, 1]v. If necessary, more details can be found in [15].
Let us just recall that an enclosure of the range of a monomiala × x

ω1
1 . . . x

ωv
v over

[−1, 1]v is simply[−|a|, |a|]. Let us finally denote byJtmp a temporary interval variable.

The algorithm is the following:

for i = 1 ton do
Jtmp = [0, 0]
for j = 1 ton do

if the corresponding monomial in the product is of order� ω then

p = a
(1)
i × a

(2)
j (*)

bk = bk + p (**)
else

Jtmp = Jtmp + [−|a(2)
j |, |a(2)

j |]
J = J + [−|a(1)

i |, |a(1)
i |] × (Jtmp + I (2))

J = J + I (1) ×
(
I (2) + ∑n

j=1[−|a(2)
j |, |a(2)

j |]
)

For the sake of readability, the determination of the indexk from theith monomial of
T (1) and thej th monomial ofT (2) is not detailed in the given algorithms because it is
immaterial for the purpose of validation; details can be found in [4].

6.2. Identification of rounding errors

The only rounding errors that occur happen for (∗), the productp = a
(1)
i × a

(2)
j , and for

(∗∗), the accumulation inbk : bk = bk + p.
For (∗), the rounding error is bounded from above byεm ⊗ |a(1)

i × a
(2)
j | and for (∗∗),

it is bounded byεm ⊗ max(|bk|, |p|) (with the value ofbk before the assignment). Every
other arithmetic operation being an interval operation, no other rounding error occurs.

Finally, coefficientsbk below the thresholdεc are swept. This is achieved by the follow-
ing lines which are appended at the end of the previous algorithm.

s = 0
for k = 1 ton do

if |bk| < εc then

s = s + |bk|
bk = 0

J = J + e × [−s, s]

6.3. Algorithm using floating-point arithmetic

In the final version of the algorithm, rounding errors (up to a factore × εm) are accu-
mulated in the tallying variablet .
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t = 0
for i = 1 ton do

Jtmp = [0, 0]
for j = 1 ton do

if the corresponding monomial in the result is of order� ω then

p = a
(1)
i ⊗ a

(2)
j

t = t ⊕ |a(1)
i ⊗ a

(2)
j |

t = t ⊕ max(|bk|, |p|)
bk = bk ⊕ p

else

Jtmp = Jtmp ⊕ [−|a(2)
j |, |a(2)

j |]

J = J ⊕ [−|a(1)
i |, |a(1)

i |] ⊗
(
Jtmp ⊕ I (2)

)

J = J ⊕ I (1) ⊗
(
I (2) ⊕ ⊕n

j=1[−|a(2)
j |, |a(2)

j |]
)

s = 0
for k = 1 ton do

if |bk| < εc then

s = s ⊕ |bk|
bk = 0

J = J ⊕ e ⊗ εm ⊗ [−t, t] ⊕ e ⊗ [−s, s]
Algorithm for the product of two Taylor models in COSY.

For the sake of completeness, let us mention that this algorithm is performed twice in
COSY, with the loops oni andj exchanged the second time. This leads to the computation
of two different intervals forJ and the resultingJ is the intersection of these two intervals;
it is expected that frequently a tighterJ is returned. Anyway, the following proof also
applies to the algorithm with the two loops exchanged and thus the intersection of the two
computed intervals encloses the truncation and rounding error terms.

6.4. Proof that this algorithm is correct

Again, the goal is to prove thatJ correctly encloses the interval remainder plus
all rounding errors and swept terms. As in Section4.4, the proof is split into three sub-
proofs.

(1) Proof that the rounding errors, i.e. the accumulation of rounding errors made in each
addition or multiplication, are correctly bounded from above bye × εm × t .
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(2) Proof that the swept terms and the rounding errors made in the computation ofs

are correctly bounded from above bye × s. Again, the corresponding sub-proof of
Section4.4can be copied without a single modification.

(3) Again, for every interval computation, there is no need to take care of rounding
errors.

Proof of(1)
Let us prove thate × εm × t is greater than the sum of all rounding errors. As previ-

ously, in the following formulaek is implicitly a function of i andj . It is known from
Lemma1 that∑

|rounding error| �
∑
i,j

εm

(
|a(1)

i ⊗ a
(2)
j | + max(|bk|, |a(1)

i ⊗ a
(2)
j |)

)
� εm

∑
i,j

(
|a(1)

i ⊗ a
(2)
j | + max(|bk|, |a(1)

i ⊗ a
(2)
j |)

)

Let us denote byN the total number of operations. From the second part of Lemma2,
the right hand side satisfies

εm

∑
i,j

(
|a(1)

i ⊗ a
(2)
j | + max(|bk|, |a(1)

i ⊗ a
(2)
j |)

)
� εm × (

1 + N εm

2

) ⊕i,j

(
|a(1)

i ⊗ a
(2)
j | ⊕ max(|bk|, |a(1)

i ⊗ a
(2)
j |)

)
where the floating-point sum is performed in an arbitrary order: in particular this sum can
bet . Thus

εm

∑
i,j

(
|a(1)

i ⊗ a
(2)
j | + max(|bk|, |a(1)

i ⊗ a
(2)
j |)

)
� εm ×

(
1 + N

εm

2

)
× t

� εm × e × t

sinceN � (ω + 2v)!/(ω!(2v)!) holds [5].
Finally, it has been proven that∑

|rounding error| � e × εm × t

and, since the interval added toJ is e ⊗ εm ⊗ [−t, t] where⊗ are (outward rounded)
interval multiplications, this proves thatJ encloses the rounding errors made during the
computation.

7. Conclusion

In this paper, the multiplication of a Taylor model by a scalar and the sum or product of
two Taylor models are proven to return an interval enclosing every possible rounding error
in addition to the truncation error. This means that the evaluation of a Taylor model at a
point, using Horner’s scheme, will also return an enclosure of the result.

So-called “intrinsics”, such as division or square root and elementary functions (exp,
log, sin, arctan, cosh. . .) are also available in COSY. They are computed using their Taylor
expansions and an explicit knowledge of a bounding term for the truncated part. It is thus
possible to compose an intrinsic (in 1 variable) with a Taylor model, using this explicit
bounding term to compute its interval remainder and using Horner’s scheme for its polyno-
mial part. However, let us compose a functionf (x) = f0 + f1x + · · · by exp for instance:
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exp(f (x)) is performed as exp(f0)× exp(f1x + · · ·) = exp(f0) × (1 + g(x) + g(x)2/2 +
· · ·) whereg(x) = f (x) − f0 = f1x + · · · and evaluating exp(f0) must be possible. Thus,
for the implementation of intrinsics, what is needed is a bound on the rounding errors made
during the floating-point evaluation of these functions. Unfortunately, such bounds do not
exist in the IEEE-754 standard for elementary functions. . .

More sophisticated mechanisms are implemented in COSY. In particular thelinear dom-
inated boundsalgorithm, or in short LDB [17], computes an enclosure of the range of a
function, given by a Taylor model, over an interval; the result is usually tighter than the one
obtained by simply replacing variables by the corresponding intervals in the polynomial
part. The LDB algorithm is also based on floating-point arithmetic and it would be worth
proving that it returns an enclosure of the sought range. Integration of ODEs with initial
conditions is also performed in COSY [7]; it is based on Picard’s iterations. Again, this
algorithm should be proven to return validated results, using the same approach as in this
paper.

In the algorithms presented in this paper, rounding errors are bounded from above using
formulae of Lemma1. It is a question to determine for which kind of algorithms such
estimate of rounding errors could reveal useful, i.e. return tight upper bound of the rounding
errors. Indeed, tightness was not an issue of this paper. In fact, in actual calculations for
reasonable orders [5,15], the contributions to the remainder bounds due to the truncation
of the series usually dominate the contributions due to floating-point errors, and so the
computed intervals are usually satisfactorily narrow. It is still a question, anyway, to study
and possibly improve the tightness of these bounds: more elaborate results of floating-point
arithmetic [11,19,20], such as thefast-two-sumalgorithm [10] or Sterbenz theorem [21],
could yield tighter results than the systematic application of Lemma1, probably at the
price of a loss of speed.

Appendix: Proofs of the lemmas of Section 3

A.1. Proof of Lemma1

Lemma 1. We use hereεm = 2εM . The original version of the lemma holds since floating-
point multiplications and divisions by 2 are exact.

(1) If the floating-point numbersa, b are such thata × b neither overflows nor falls
belowεu (the underflow threshold) in magnitude, then the producta × b differs from
the floating-point multiplication resulta ⊗ b by no more than|a ⊗ b| ⊗ εm.

(2) The suma + b of floating-point numbersa andb differs from the floating-point addi-
tion result a ⊕ b by no more than|a ⊕ b| ⊗ εm, if a ⊕ b neither underflows nor
overflows.

(3) With the same assumption, the suma + b of floating-point numbersa andb differs
from the floating-point addition resulta ⊕ b by no more thanmax(|a|, |b|) ⊗ εm.

Proof of(1)
A consequence of the correct rounding assumption in IEEE-754 arithmetic is that

|(a ⊗ b) − (a × b)| � 1

2
εm|a × b|
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(from [12], Eq. (2.4):(a � b) = (a ∗ b)(1 + δ) with |δ| � εm/2), and

|(a ⊗ b) − (a × b)| � 1

2
εm|a ⊗ b|

(from [12], Eq. (2.5):(a � b) = (a ∗ b)/(1 + δ) with |δ| � εm/2 with ∗ = +, −, × or /).
It follows that, if εm ⊗ |a ⊗ b|/2 does not fall belowεu,

|(a ⊗ b) − (a × b)| � 1

2
εm|a ⊗ b| � (1 + εm/2)

(
1

2
εm ⊗ |a ⊗ b|

)
.

Since 1+ εm/2 � 2 and since floating-point multiplications by 2 are exact, eventually
it holds

|(a ⊗ b) − (a × b)| � εm ⊗ |a ⊗ b|.
In caseεm ⊗ |a ⊗ b|/2 � εu, it is still greater or equal toµ the smallest positive (sub-

normal) floating-point number, and from [18],

εm ⊗ |a ⊗ b|/2 � εm ⊗ |a ⊗ b|/2 + µ � εm ⊗ |a ⊗ b|
i.e. assumption (1) is satisfied.

Proof of(2)
A proof similar to the previous one establishes that|(a ⊕ b) − (a + b)| � εm ⊗ |a ⊕ b|.

Proof of(3)
If a andb have opposite signs, then|a ⊕ b| � max(|a|, |b|) and thus|(a ⊕ b) − (a +

b)| � εm ⊗ max(|a|, |b|), since|(a ⊕ b) − (a + b)| � εm ⊗ |a ⊕ b|.

If a andb are of the same sign, without loss of generality they can be assumed to be
both non-negative with 0� b � a. The proof distinguishes several cases.
• If a = b, thena + b = a ⊕ b = 2a since floating-point multiplications by 2 are exact

in IEEE-754 arithmetic (as long as no overflow occurs) and the error is zero. It holds
that error= 0 � εm ⊗ max(|a|, |b|).

• If b < a and if b can be written asa × (1 − β) with εm � β � 1 then a + b =
(2 − β) × a = (2 − β) × max(|a|, |b|) whereas a ⊕ b = (1 + δ) × (2 − β) × a =
(1 + δ) × (2 − β) × max(|a|, |b|) with |δ| � εm/2.

(a ⊕ b) − (a + b) = (2 − β) × δ × max(|a|, |b|)
|(a ⊕ b) − (a + b)| � (2 − β) × (1 + δ′) × 1

2 ×
(
εm ⊗ max(|a|, |b|)

)
with |δ′| � εm/2.

Sinceεm � β � 1 and−εm/2 � δ′ � εm/2, we have

0 � 1/2 × (2 − β) × (1 + δ′) � (1 − εm/2) × (1 + εm/2) = 1 − ε2
m/4 � 1,

and thus|(a ⊕ b) − (a + b)| � εm ⊗ max(|a|, |b|).
• If b < a andb = (1 − β) × a with 0 < β < εm, all possibilities forb are enumerated

and checked. The study must distinguish between whether the rounding mode is to the
nearest (and thusεm = u) or not (and thenεm = 2u); a distinction is made between
a being a power of 2 or not; in the case of another rounding mode, one must further
distinguish betweena− being a power of 2 or not (in what follows, the exponent “−”
on anyx denotes the largest floating-point number strictly smaller thanx).
In each subcase,b can take only a small number of values (1, 2 or 3) and for each value

of b the error|(a + b) − (a ⊕ b)| can be exactly expressed and bounded from above, as
shown in the table below.
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rounding to nearest (even) other rounding modes
εm = u εm = 2u

b error b error

a− ua/2 � εm ⊗ a a− ua/2 � εm ⊗ a
a = 2t a−− 0 � εm ⊗ a a−− 0 � εm ⊗ a

a−−− ua/2 � εm ⊗ a

a− = 2t

∣∣∣∣∣∣∣
a− ua− � εm ⊗ a

a−− 3ua−/2 � εm ⊗ a

a−−− 0 � εm ⊗ a

2t < a < 2t+1 a− u2t � εm ⊗ a

2t < a−
∣∣∣∣∣a

− u2t � εm ⊗ a

a−− 0 � εm ⊗ a �

A.2. Proof of Lemma2

Lemma 2. If ∀j ∈ {1, . . . , n}, sj � 0 and if (n − 1) × εM < 1 then the errorEn = Sn −
Ŝn is bounded as follows:

|En| � (n − 1) × εM ×

 n⊕

j=1

sj


 .

This implies that

Sn =
n∑

j=1

sj � (1 + (n − 1)εM)Ŝn = (1 + (n − 1)εM)


 n⊕

j=1

sj


 .

Proof of Lemma2
Inequality (4.2) in [12] states that:

En = Sn − Ŝn =
n∑

i=2

δi T̂i

whereT̂i is the computed sum ofi terms among{s1, . . . , sn} (depending on which order
is used to sum thesj ) andδi is the rounding error performed when summing one of the

sj to T̂i−1 to obtainT̂i . Theδis satisfy|δi | � εM and here we use the fact that, since thesj
are non-negative,̂Ti �

⊕n
j=1 sj .

Using these two inequalities to bound the left hand side, we get

|En| = |Sn − Ŝn| � εM ×
n∑

i=2

n⊕
j=1

sj � (n − 1)εM

n⊕
j=1

sj .

Finally, this leads to

−(n − 1)εMŜn � Sn − Ŝn � (n − 1)εMŜn

and using only the right inequality yields the desired bound forSn. �
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A.3. Proof of Lemma3

Let us multiply both sides of the inequality of Lemma3 by 2 and use the fact that
floating-point multiplications and divisions by 2 are exact.

Lemma 3. We use hereεm = 2εM . If the assumptions of Section3.2on Taylor models are
satisfied and if∀j, sj � 0, then:

n∑
j=1

εm ⊗ sj � e ⊗ εm ⊗
n⊕

j=1

sj .

It is assumed that no overflows occurs. Considering the case of an overflow would not
be useful for our purpose: here the sum of thesj is also computed, and the rounding error
on this sum is of interest if the sum has a finite floating-point representation.

Proof of Lemma3
Let us first prove that

∑n
j=1 εm ⊗ sj � εm(1 + εm/2)

∑n
j=1 sj : to get rid of the float-

ing-point operations, which are neither associative nor distributive, let us go back to exact
arithmetic; we have to multiply everything by(1 + εm/2) to be able to do it:

εm ⊗ sj � (1 + ε/2)εmsj .

The right hand side of the inequality to be proven is

e ⊗ εm ⊗
n⊕

j=1

sj

and, getting rid of the floating-point multiplication in the same manner:a ⊗ b � 1/(1 +
εm

2 )a × b,

e ⊗ εm ⊗
n⊕

j=1

sj � eεm(
1 + εm

2

)2

n⊕
j=1

sj .

The question is now whether the following inequality holds:

εm

(
1 + εm

2

) n∑
j=1

sj � eεm(
1 + εm

2

)2

n⊕
j=1

sj ? (1)

Using Lemma2:
n∑

j=1

sj �
(
1 + n

εm

2

) n⊕
j=1

sj ,

the left hand side part of inequality (1) can be upper bounded as follows:

εm

(
1 + εm

2

) n∑
j=1

sj � εm

(
1 + εm

2

) (
1 + n

εm

2

) n⊕
j=1

sj .

Is the right part, in turn, upper bounded by the greatest part of inequality (1)? In other
words, does the following inequality hold?(

1 + εm

2

)3 (
1 + n

εm

2

)
� e?
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The answer is yes, it is given by assumption (3) of the definition of Taylor model arith-
metic constants, sincenεm

2 is bounded above byη. �
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