
Higher Order Multivariate Automatic Differentiation and
Validated Computation of Remainder Bounds

MARTIN BERZ and KYOKO MAKINO
Department of Physics and Astronomy

Michigan State University
East Lansing, MI 48824

USA
berz@msu.edu, makino@msu.edu http://bt.pa.msu.edu/

Abstract: High order automatic differentiation has been used in recent years for simultaneous computation
of Taylor expansions of functional dependencies as well as validated enclosures for the remainder over a
certain domain. The resulting Taylor model methods offer certain advantages compared to other validated
methods, including an approximation by a functional form with an accuracy scaling with a high order, as
well as the ability to suppress the dependency problem.

In this paper we describe the implementation of the method in a validated setting. Several steps are
taken to increase computational efficiency. Computations of coefficients are not performed in interval
arithmetic, but rather in floating point arithmetic with simultaneous accurate accounting of the possible
computational errors. Furthermore, the storage and elementary operations of the objects supports sparsity
of the coefficients.

Key-Words: Multivariate, automatic differentiation, validation, interval, Taylor model, COSY Infinity.

1 Introduction
Taylor model methods[1, 2, 3] represent a combina-
tion of high order automatic differentiation[4, 5, 6,
7, 8] and interval methods[6, 9] to simultaneously
determine a Taylor expansion as well as an enclo-
sure for the remainder bound for a given functional
dependency. The method allows a far reaching
suppression of the dependency problem[10] that
often hinders sharp enclosures by interval meth-
ods. Different from Interval Automatic Differenti-
ation methods, the contributions to the remainder
bounds are always computed from the currently
accumulated floating point Taylor coefficients, and
not via interval evaluation of AD code for deriva-
tives; for all but simple functional dependencies,
this significantly increases the sharpness of the re-
sulting bounds.

To satisfy the requirements of rigor demanded
by validated computations, it is necessary to prop-
erly account for errors in the coefficient arithmetic.
This could be achieved by representing each coef-
ficient by an interval; however, this approach has

several disadvantages, including the need to rep-
resent each coefficient by two numbers instead of
one, additional computational cost, and the un-
desirable growth of the size of the coefficients in
extended calculations.

We set the stage by determining the require-
ments imposed on the floating point unit of the
system as well as a set of interval tools. Next we
address the tools for storage and addition of Tay-
lor models, followed by the discussion of algorithms
for multiplication and advanced operations.

2 Requirements for Floating
Point and Interval Arithmetic
In the following, we describe in detail the current
implementation of Taylor model arithmetic in ver-
sion 8.1 of the code COSY INFINITY. Since in the
Taylor model approach, the coefficients are float-
ing point (FP) numbers, care must be taken that
the inaccuracies of conventional FP arithmetic are
properly accounted for. We begin with the require-

Makino
WSEAS TRANSACTIONS ON MATHEMATICS Issue 1, Vol. 3, January 2004 37

Makino
ISSN: 1109-2769

Makino

ments we impose on the underlying floating point
arithmetic.

Definition 1 (Admissible FP Arithmetic)
We assume computation is performed in a floating
point environment supporting the four elementary
operations ⊕, ⊗, �, �. We call the arithmetic ad-
missible if there are two positive constants denoted

εu : underflow threshold

εm : relative accuracy of elementary operations

such that

1. If the FP numbers a, b are such that a∗ b ex-
ceeds εu in magnitude, then the product a ∗ b
differs from the floating point multiplication
result a⊗ b by not more than |a⊗ b| ⊗ εm.

2. The sum a+ b of FP numbers a and b differs
from the floating point addition result a ⊕ b
by not more than max(|a|, |b|)⊗ εm.

Definition 2 (Admissible Interval Arith-
metic) We assume that besides an admissible
FP environment, there is an interval arithmetic
environment of four elementary operations ⊕, ⊗,
�, �, as well as a set S of intrinsic functions.
We call the interval arithmetic admissible if for
any two intervals [a1, b1] and [a2, b2] of floating
point numbers and any © ∈ {⊕, ⊗, �, �} and
corresponding real operation ◦ ∈ {+,×,−, /}, we
have

[a1, b1]© [a2, b2] ⊃ {x ◦ y|x ∈ [a1, b1], y ∈ [a2, b2]},

and furthermore, for any interval intrinsic s ∈ S
representing the real function s, we have

s([a, b]) ⊃ {s(x)|x ∈ [a, b]}.

Remark 1 (Testing of the COSY Interval
Arithmetic) Besides the tests performed in the
development of the program, various other tests
have been performed. Corliss and Yu performed
extensive tests of the COSY interval tools by port-
ing of COSY interval results to Maple in binary
format and comparison with Maple computations

with nearly 1000 digits of accuracy. Several thou-
sand cases that are to be considered particularly
difficult as well as around 106 random tests span-
ning all orders of magnitude of allowed domains of
the intrinsics were performed[11]. Independently,
Revol performed around 108 random tests of the in-
terval arithmetic by comparison with a guaranteed
precision library for elementary operations and in-
trinsic functions[12].

For the specific purposes of Taylor model arith-
metic, some additional considerations are neces-
sary. First we note that combinatorial arguments
show [13] that the number of nonzero coefficients
in a polynomial of order n in v variables cannot ex-
ceed (n+v)!/(n!·v!). Furthermore, as also shown in
[13], the number of multiplications necessary to de-
termine all coefficients up to order n of the product
polynomial of two such polynomials cannot exceed
(n+ 2v)!/ (n! · (2v)!) .

Definition 3 (Taylor Model Arithmetic
Constants) Let n and v be the order and di-
mension of the Taylor model computation. Then
we fix constants denoted

εc : cutoff threshold

e : contribution bound

such that

1. ε2
c > εu

2. 2 ≥ e > 1 + 2 · εm · (n+ 2v)!/ (n! · (2v)!)

We remark that in a conventional double preci-
sion floating point environment, typical values for
the constants of the admissible FP arithmetic may
be εu = 10−307 and εm = 10−15. The Taylor arith-
metic cutoff threshold εc can be chosen over a wide
possible range, but since it is later used to control
the number of coefficients actively retained in the
Taylor model arithmetic, a value not too far below
εm, such as εc = 10−20, is a good choice for many
cases. Furthermore, for essentially all practically
conceivable cases of n and v, the choice e = 2 is
satisfactory, and this is the number used in our
implementation.

Makino

Makino
WSEAS TRANSACTIONS ON MATHEMATICS Issue 1, Vol. 3, January 2004

Makino
ISSN: 1109-2769

Makino
38

Under the assumption of the above proper-
ties of the floating point arithmetic, interval arith-
metic, and the Taylor model arithmetic constants,
we now describe the algorithms for Taylor model
arithmetic, which will lead to the definition of ad-
missible FP Taylor model arithmetic.

3 Storage, Error Tallying, and
Sweeping
In the COSY implementation, a Taylor model T
of order n and dimension v is represented by a col-
lection of nonzero floating point coefficients ai, as
well as two coding integers ni,1 and ni,2 that con-
tain unique information allowing to identify the
term to which the coefficient ai belongs. The co-
efficients are stored in an ordered list, sorted in
increasing order first by size of ni,1, and second,
for each value of ni,1, by size of ni,2. For the pur-
poses of the present discussion, the details about
the meaning of the coding integers ni,1 and ni,2
is immaterial; their significance will become ap-
parent in the discussion of algorithms for multi-
plication discussed below. There is also other in-
formation stored in the Taylor model, in particular
the information of the expansion point and the do-
main, as well as various intermediate bounds that
are useful for the necessary computation of range
bounds; however this information is not critical for
the further discussion. For simplicity of the subse-
quent arguments, all coefficients are always stored
normalized to the interval [−1, 1] with expansion
point 0.

Only coefficients ai exceeding the cutoff thresh-
old εc in magnitude, i.e. satisfying |ai| > εc, are
retained, which in many practical cases can save
significant computational expense. This is done
for two reasons; first, in many high order cal-
culations, the derivative vectors are often rather
sparse. One reason for this effect is that a given
intermediate variable does not depend at all on a
certain initial variable. While in the first order
case, this entails that one of the v + 1 component
vanishes, in higher orders the effects are more sig-
nificant. Of the (n + v)!/n!/v! components, only
(n+v−1)!/n!/(v−1)! are nonzero, which is a frac-
tion of v/(n + v). So for problems around n = 10

and v = 6 less than half of the terms prevail. Of
course, if the intermediate variable is independent
of even more than one original variable, the results
are even more noticeable.

Another important aspect is that over the nor-
malized interval [−1, 1], Taylor models with a re-
mainder bound that is meaningfully small are char-
acterized by coefficients that fall of quickly in
higher orders; thus it is likely that many of those
of high order are actually of reduced significance
and can be safely eliminated by ramping them into
the remainder bound.

Since by requirement, ε2
c > εu, the multipli-

cation of two retained coefficients can never lead
to underflow. Besides the coefficients and coding
integers, each TM also contains an interval I com-
posed of two floating point numbers representing
rigorous enclosures of the remainder bound.

In the elementary operations of Taylor models,
the errors due to floating point arithmetic are ac-
cumulated in a floating point “tallying variable” t
which in the end is used to increase the remain-
der bound interval I by an interval of the form
e⊗ εm ⊗ [−t, t]. The factor e assures a safe upper
bound of all floating point errors of adding up the
(positive) contributions to t. Accounting for the er-
ror through a single floating point variable t with
the factor e · εm “factored out” notably increases
computational efficiency. In addition, there is a
“sweeping variable” s that will be used to absorb
terms that fall below the cutoff threshold εc and
are thus not explicitly retained.

4 Scalar Multiplication and Ad-
dition
The multiplication of a Taylor model T with coeffi-
cients ai, coding integers (ni,1, ni,2) and remainder
bound interval I with a floating point real number
c is performed in the following manner. The tal-
lying variable t and the sweeping variable s are
initialized to zero. Going through the list of terms
in the Taylor polynomial, each floating point coef-
ficient ai is multiplied by the floating point number
c to yield the floating point result bk = ai⊗ c. The
tallying variable t is incremented by |bk|, account-
ing for the roundoff error in the calculation of bk. If

Makino

Makino
WSEAS TRANSACTIONS ON MATHEMATICS Issue 1, Vol. 3, January 2004 39

Makino
ISSN: 1109-2769

|bk| ≥ εc, the term will be included in the resulting
polynomial, and k will be incremented. If |bk| < εc,
the sweeping variable s is incremented by |bk|. Af-
ter all terms have been treated, the total remainder
bound of the result of the scalar multiplication is
set to be [c, c] ⊗ I ⊕ e ⊗ εm ⊗ [−t, t] ⊕ e ⊗ [−s, s],
which is performed in outward rounded interval
arithmetic.

Addition of two Taylor models T (1) and T (2)

with coefficients a
(1)
i and a

(2)
j , coding integers (n

(1)
i,1 ,

n
(1)
i,2) and (n

(2)
j,1 , n

(2)
j,2), and remainder bounds I1,

I2, respectively, is performed similar to the merg-
ing of two ordered lists. The pointers i, j of the
two lists and pointer of the merged list k are ini-

tialized to 1. Then iteratively, the terms (n
(1)
i,1 , n

(1)
i,2)

and (n
(2)
j,1 , n

(2)
j,2) are compared. In case (n

(1)
i,1 , n

(1)
i,2) 6=

(n
(2)
j,1 , n

(2)
j,2), the term that should come first ac-

cording to the ordering is merely copied, and its
pointer as well as k are incremented. In case

(n
(1)
i,1 , n

(1)
i,2) = (n

(2)
j,1 , n

(2)
j,2), we proceed as follows.

We determine the floating point coefficient bk =

a
(1)
i ⊕ a

(2)
j . To account for the error, we incre-

ment t by max(|a(1)
i |, |a

(2)
j |). If |bk| ≥ εc, the term

will be included in the resulting polynomial, and
k will be incremented. If |bk| < εc, the sweeping
variable s is incremented by |bk|. Finally i, j are
incremented by one. After both the lists of T (1)

and T (2) are completely transversed, the remain-
der bound is determined via interval arithmetic as
I1⊕ I2⊕ e⊗ εm⊗ [−t, t]⊕ e⊗ [−s, s], which is per-
formed in outward rounded interval arithmetic.

5 Multiplication
The multiplication of two Taylor models T (1) and

T (2) of order n with coefficients a
(1)
i and a

(2)
j and

coding integers (n
(1)
i,1 , n

(1)
i,2) and (n

(2)
j,1 , n

(2)
j,2), respec-

tively, is performed as follows.

Suppose the N = (n+v)!/n!/v! monomials are
arranged in a certain order. Let Mi denote the
monomial identified with the ith component, and
let IM denote the position of the monomial M .

In order to multiply two vectors and find the
contribution to the ith component, it is necessary

to find all factorizations of the monomial Mi:

ci =
∑

0 ≤ ν, µ ≤ N
Mν ·Mµ = Mi

aν · bµ.

The computation of all these factorizations
presents a difficult algorithm and could be quite
time consuming. Thus in practice it is advanta-
geous to rephrase the problem such that no factor-
izations in submonomials are searched, but rather
each component of the first vector is multiplied
by each component of the second vector and the
product is stored at the place where the product
monomial belongs.

Next, the terms of the polynomial T (2) are

sorted into pieces T
(2)
m of exact order m respec-

tively. Then, each term in T (1) with order k is mul-
tiplied with all those terms of T (2) of order (n−k)
or less.

As a first step, we describe the determination
of the location l of the product based on the cod-

ing integers (n
(1)
1 , n

(1)
2) and (n

(2)
1 , n

(2)
2), which is re-

lated to perhaps the main algorithmic difficulty of
the method. For the purpose of being sufficiently
transparent, we begin with a simplified version of
the method, and in the next step present the full
algorithm in detail.

All (n + v)!/n!/v! monomials M are coded
with an integer nc(M) in the following way: Let
M = xi11 · ... ·xivv , then nc(M) is defined as follows:

nc(M) = nc(x
i1
1 · ... · xivv)

= i1 · (n+ 1)0 + i2 · (n+ 1)1 + ...+ iv · (n+ 1)v−1.

So the exponents are just “digits” in a base (n+1)
representation. Note that since iν ≤ n, the func-
tion M → n(M) is injective and hence the coding
unique. Note also that no coding exceeds (n+ 1)v,
but not all such codings occur.

Now suppose two monomials M and N have
to be multiplied and suppose their product has an
order less than or equal to n. Since the multiplica-
tion corresponds to an addition of the exponents,
it follows that

nc(M ·N) = nc(M) + nc(N).

Makino

Makino
WSEAS TRANSACTIONS ON MATHEMATICS Issue 1, Vol. 3, January 2004

Makino
ISSN: 1109-2769

Makino
40

To exploit this for the finding of the desired co-
ordinate position IM of the product of two mono-
mials, an array p is required that has the property

IM = p(nc(M)).

This array can be generated easily once the order
n and number of variables v are fixed, and has
to be computed only once. Since the codings are
bounded by (n+1)v, the array has to have at least
this length. With 6 variables, this allows orders of
8 or 9 if one wants to stay below say 106 entries;
with 8 variables the order would decrease to about
4, and this is too strict a limitation. To circum-
vent this, the two-stage generalization of the above
coding and decoding based on two coding integers
mentioned above is useful. It will become appar-
ent how the method can be generalized to more
stages at the expense of increased computational
effort and reduced storage requirements.

Without loss of generality, we assume the num-
ber of variables v to be even; if it is not even, in-
crease it by one and ignore the additional variable.
We define two coding numbers n1 and n2 for any
monomial in the following way:

n1(xi11 · · · · · xivv) =i1 · (n+ 1)0 + i2 · (n+ 1)1

+ · · ·+ i v
2
· (n+ 1)(v

2
−1)

n2(xi11 · · · · · xivv) =i v
2

+1 · (n+ 1)0 + i v
2

+2 · (n+ 1)1

+ · · ·+ iv · (n+ 1)(v
2
−1). (1)

Next we store the N(n, v) monomials in a par-
ticular way. We note that this storage differs from
the one used for the introduction of the lexico-
graphical ordering described in [14]; interestingly
enough, however, the arrangement presented here
defines another lexicographical total ordering.

We start with all monomials that have
n2(M) = 0 and group them by order; within one
order, the monomials are stored according to as-
cending values of n1(M). Then we store all those
with n2(M) = 1, again by order, and so forth, go-
ing through all possible values of n2. Because of
the order-by-order arrangement within the mono-
mials belonging to the same n1(M), it follows that

again

n1(M ·N) = n1(M) + n1(N)

n2(M ·N) = n2(M) + n2(N).

Finally we introduce some “inverse” arrays p1 and
p2 in the following way: For all n1 and n2 that ap-
pear as valid coding integers, we set p1(n1) = (IM
of first monomial M with first coding integer n1)
and p2(n2) = (IM of first monomial M with second
coding integer n2)− 1.

Again the arrays p1 and p2 can be generated
once during the setup process. Using the defini-
tions of n1, n2, p1 and p2 and the storage scheme
outlined above, it now follows that the address of
the product of the monomials M and N can be
found directly as

IM ·N = p1[n1(IM)+n1(IN)]+p2[n2(IM)+n2(IN)].
(2)

For the sake of clarity, table 1 shows an exam-
ple for the arrays n1, n2, p1 and p2 for n = 3 and
v = 4. This example also illustrates equations (1)
through (2).

In a system with s > 2 stages, the exponents
will be grouped into s blocks, and arranged in such
a way that the ordering of block s takes precedence
over block s− 1, which takes precedence over that
of block s − 2, etc. Each monomial is assigned s
coding integers n1...ns, and there are s “inverse”
arrays p1...ps. The address computation computa-
tion generalizing eq. (2) then comprises s terms,
each consisting of the addition of the ni of the fac-
tors and the lookup of the sum in pi.

The coding defined in (1) entails that the re-
quired length of the arrays p1 and p2 is much
smaller, namely only (n + 1)

v
2 . For a maximum

length of 106, this limits the maximum order for
a given number of variables to the values given in
table 2.

In the two-stage scheme, each multiplication
of two monomials now requires three integer ad-
ditions and six integer array look-ups besides the
double precision multiplication of the coefficients.
Since integer additions are usually executed much
faster than double precision multiplications and ar-
ray look-ups are faster yet, the extra amount of

Makino

Makino
WSEAS TRANSACTIONS ON MATHEMATICS Issue 1, Vol. 3, January 2004 41

Makino
ISSN: 1109-2769

IM i1 i2 i3 i4 n1 n2

1 0 0 0 0 0 0
2 1 0 0 0 1 0
3 0 1 0 0 4 0
4 2 0 0 0 2 0
5 1 1 0 0 5 0
6 0 2 0 0 8 0
7 3 0 0 0 3 0
8 2 1 0 0 6 0
9 1 2 0 0 9 0

10 0 3 0 0 12 0
11 0 0 1 0 0 1
12 1 0 1 0 1 1
13 0 1 1 0 4 1
14 2 0 1 0 2 1
15 1 1 1 0 5 1
16 0 2 1 0 8 1
17 0 0 0 1 0 4
18 1 0 0 1 1 4

IM i1 i2 i3 i4 n1 n2

19 0 1 0 1 4 4
20 2 0 0 1 2 4
21 1 1 0 1 5 4
22 0 2 0 1 8 4
23 0 0 2 0 0 2
24 1 0 2 0 1 2
25 0 1 2 0 4 2
26 0 0 1 1 0 5
27 1 0 1 1 1 5
28 0 1 1 1 4 5
29 0 0 0 2 0 8
30 1 0 0 2 1 8
31 0 1 0 2 4 8
32 0 0 3 0 0 3
33 0 0 2 1 0 6
34 0 0 1 2 0 9
35 0 0 0 3 0 12

j p1 p2

0 1 0
1 2 10
2 4 22
3 7 31
4 3 16
5 5 25
6 8 32
7 0 0
8 6 28
9 9 33

10 0 0
11 0 0
12 10 34

Table 1: The arrangement of the 35 monomials M = xi11 · ... · xivv for order n = 3 and number of variables
v = 4 for the two-stage addressing scheme. Also shown are the coding integers C1 and C2 and the arrays
D1 and D2. For all M, one verifies IM = D1(C1(M)) +D2(C2(M))

v 4 6 8 10 12 16 20

n l = 106 999 99 30 14 9 4 2
n l = 108 9999 463 99 38 20 9 5

Table 2: The maximum order for different numbers of variables due to the limitation of the length l of
the reverse addressing arrays D1, D2

time for the bookkeeping is quite limited. To
be specific, on a typical UNIX computer, all the
bookkeeping integer operations together take only
about one third of the time required for the one
double precision multiplication. Since the latter
can of course never be avoided, the algorithm here
is very nearly optimal and it should be very hard
to improve significantly.

We now address the error counting and the
proper determination of the contributions to the
remainder bound. As the first step of the mul-
tiplication, the contributions I to the remainder
bound due to orders greater than n are computed
using interval arithmetic as outlined in [1]. Then,
for each of the monomial multiplications, after
the address calculation is completed, we determine

the floating point product a = a
(1)
i ⊗ a

(2)
j of the

coefficients. To account for the error, we increment
t by |a|. We add the term a to the coefficient
bl. To account for the error, we increment t by
max(|a|, |bl|).

After all monomial multiplications have been
executed, all resulting total coefficients bl of the
product polynomial will be studied for sweeping.
If |bl| ≥ εc, the term will be included in the re-
sulting polynomial, and l will be incremented. If
|bl| < εc, the sweeping variable s is incremented by
|bl|, but l will not be incremented, i.e. the term is
not retained. In the end, the remainder bound I is
incremented by e⊗εm⊗ [−t, t]⊕e⊗ [−s, s] which is
executed in outward rounded interval arithmetic.

6 Summary
We have discussed the basic operations of the val-

Makino

Makino
WSEAS TRANSACTIONS ON MATHEMATICS Issue 1, Vol. 3, January 2004

Makino
ISSN: 1109-2769

Makino
42

idated methods for the Taylor model coefficient
arithmetic, and we summarize the results in a se-
ries of remarks. First we note that intrinsic func-
tions, while their actual mathematical description
is somewhat involved, can now be readily treated
from an algorithmic point of view.

Remark 2 (Intrinsic Functions) All intrinsic
functions can be expressed as linear combinations
of monomials of Taylor models, plus an interval
remainder bound Ii[1]. The coefficients are ob-
tained via interval arithmetic, including elemen-
tary interval operations and interval intrinsic func-
tions. The necessary scalar multiplications, addi-
tions, and multiplications are executed based on the
previous algorithms, and in the end the interval re-
mainder bound Ii is added to the thus far accumu-
lated remainder bound.

The treatment of validated Taylor models via
interval coefficients has certain performance ad-
vantages:

Remark 3 (Floating Point Versus Interval
Coefficients) Apparently the storage required is
only approximately half of what would be required
with intervals, and so for the same amount of stor-
age, the accuracy of the representation can be in-
creased; in the one dimensional case, this amounts
to twice the order as would be possible with inter-
val coefficients. Also, the amount of floating point
arithmetic necessary to perform validated compu-
tations is reduced by about a factor of two compared
to an interval implementation.

The various algorithms just discussed form
the basis of a computer implementation of Tay-
lor model arithmetic; we state the COSY contains
such an arithmetic, and comment on a variety of
tests of it.

Definition 4 (Admissible FP Taylor Model
Arithmetic) We call a Taylor model arithmetic
admissible if it is based on an admissible FP and
interval arithmetic and it adheres to the algorithms
for storage, scalar multiplication, addition, multi-
plication, and intrinsic functions described above.

Remark 4 (FP Taylor Model Arithmetic
in COSY INFINITY) The code COSY
INFINITY[15, 16, 17] contains an admissible Tay-
lor model arithmetic in arbitrary order and in ar-
bitrarily many variables. The code consists of
around 50, 000 lines of FORTRAN77 source that
also cross-compiles to standard C. It can be used
in the environment of the COSY language, as well
as in F77 and C. It is also available as classes
in F90 and C++. The code is highly optimized
for performance in that any overhead for address-
ing of polynomial coefficients amounts to less than
30 percent of the floating point arithmetic neces-
sary for the coefficient arithmetic. It also has full
sparsity support in that coefficients below the cutoff
threshold do not contribute to execution time and
storage.

Remark 5 (Verification and Validation of
the COSY FP Taylor Model Arithmetic) The
FP TM arithmetic implemented in COSY is cur-
rently being verified and validated by two outside
groups[11, 12] with a suite of challenging test prob-
lems. Independently, the validity of the algorithms
forming the core of the COSY Taylor model FP
algorithm have been verified by Revol[18].

Acknowledgements
We gratefully acknowledge financial support
through the US Department of Energy, Grant
Number DE-FG02-95ER4093, the National Sci-
ence Foundation, the German National Merit
Foundation, the Illinois Consortium for Acceler-
ator Research, and an Alfred P. Sloan Fellowship.

References:

[1] K. Makino. Rigorous Analysis of Nonlinear
Motion in Particle Accelerators. PhD the-
sis, Michigan State University, East Lansing,
Michigan, USA, 1998. Also MSUCL-1093.

[2] K. Makino and M. Berz. Remainder dif-
ferential algebras and their applications.
In M. Berz, C. Bischof, G. Corliss, and
A. Griewank, editors, Computational Dif-
ferentiation: Techniques, Applications, and
Tools, pages 63–74, Philadelphia, 1996.
SIAM.

Makino

Makino
WSEAS TRANSACTIONS ON MATHEMATICS Issue 1, Vol. 3, January 2004 43

Makino
ISSN: 1109-2769

[3] K. Makino and M. Berz. New applications
of Taylor model methods. In G. Corliss,
C. Faure, A. Griewank, L. Hascoët, and
U. Naumann, editors, Automatic Differenti-
ation of Algorithms from Simulation to Op-
timization, pages 359–364. Springer, 2002.

[4] A. Griewank. Evaluating Derivatives - Prin-
ciples and Techniques of Algorithmic Differ-
entiation. SIAM, Philadelphia, 2000.

[5] L. B. Rall. Automatic Differentiation: Tech-
niques and Applications. Springer-Verlag,
Berlin; Heidelberg; New York, 1981.

[6] R. E. Moore. Interval Analysis. Prentice-Hall,
Englewood Cliffs, NJ, 1966.

[7] A. Griewank and G. F. Corliss, editors. Auto-
matic Differentiation of Algorithms: Theory,
Implementation and Application. SIAM,
Philadelphia, 1991.

[8] M. Berz, C. Bischof, A. Griewank, G. Corliss,
and Eds. Computational Differentiation:
Techniques, Applications, and Tools. SIAM,
Philadelphia, 1996.

[9] R. E. Moore. Methods and Applications of In-
terval Analysis. SIAM, 1979.

[10] K. Makino and M. Berz. Efficient control
of the dependency problem based on Taylor
model methods. Reliable Computing, 5(1):3–
12, 1999.

[11] George F. Corliss. Private communication.
[12] Nathalie Revol. Private communication.
[13] M. Berz. Modern Map Methods in Particle

Beam Physics. Academic Press, San Diego,
1999.

[14] M. Berz. Automatic differentiation as non-
Archimedean analysis. In Computer Arith-
metic and Enclosure Methods, page 439, Am-
sterdam, 1992. Elsevier Science Publishers.

[15] M. Berz and K. Makino. COSY INFIN-
ITY Version 8.1 - user’s guide and refer-
ence manual. Technical Report MSUHEP-
20704, Department of Physics and As-
tronomy, Michigan State University, East
Lansing, MI 48824, 2001. see also
http://cosy.pa.msu.edu.

[16] M. Berz, J. Hoefkens, and K. Makino.
COSY INFINITY Version 8.1 - program-
ming manual. Technical Report MSUHEP-
20703, Department of Physics and As-
tronomy, Michigan State University, East
Lansing, MI 48824, 2001. see also
http://cosy.pa.msu.edu.

[17] M. Berz et al. The COSY INFINITY web
page. http://cosy.pa.msu.edu.

[18] N. Revol, K. Makino, and M. Berz. Taylor
models and floating-point arithmetic: Proof
that arithmetic operations are validated in
COSY. submitted, 2003. University of Lyon
LIP Report RR 2003-11, http://www.ens-
lyon.fr/pub/LIP/Rapports/RR/RR2003/RR2003-
11.ps.Z, INRIA Report RR-4737,
http://www.inria.fr/rrrt/rr-4737.html, MSU
Department of Physics Report MSUHEP-
30212, http://bt.pa.msu.edu/pub.

Makino

Makino
WSEAS TRANSACTIONS ON MATHEMATICS Issue 1, Vol. 3, January 2004

Makino
ISSN: 1109-2769

Makino
44

