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Abstract: A detailed comparison between Taylor model methods and
other tools for validated computations is provided. Basic elements of the
Taylor model (TM) methods are reviewed, beginning with the arithmetic
for elementary operations and intrinsic functions. We discuss some of
the fundamental properties, including high approximation order and the
ability to control the dependency problem, and pointers to many of the
more advanced TM tools are provided. Aspects of the current imple-
mentation, and in particular the issue of floating point error control, are
discussed.

For the purpose of providing range enclosures, we compare with
modern versions of centered forms and mean value forms, as well as the
direct computation of remainder bounds by high-order interval auto-
matic differentiation and show the advantages of the TM methods.

We also compare with the so-called boundary arithmetic (BA) of
Lanford, Eckmann, Wittwer, Koch et al., which was developed to prove
existence of fixed points in several comparatively small systems, and
the ultra-arithmetic (UA) developed by Kaucher, Miranker et al. which
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was developed for the treatment of single variable ODEs and boundary
value problems as well as implicit equations. Both of these are not
Taylor methods and do not provide high-order enclosures, and they do
not support intrinsics and advanced tools for range bounding and ODE
integration.
A summary of the comparison of the various methods including a

table as well as an extensive list of references to relevant papers are
given.

AMS Subject Classification: 65L20, 65L06
KeyWords: Taylor model methods, high approximation order, depen-
dency problem, centered forms, mean value forms, boundary arithmetic,
ultra-arithmetic

1. Introduction

The Taylor model (TM) methods were originally developed to solve a
practical problem from the field of nonlinear dynamics, namely providing
range bounds for normal form defect functions[17]. These functions are
typically comprised of (computer generated) code lists involving 104 to
105 terms and usually have a large number of local extrema; to make
matters worse, they exhibit a very significant cancellation problem. The
normal form defect functions themselves are obtained from the high-
order dependence of solutions of ODEs on initial conditions. In various
meetings and a large number of private discussions, the authors posed
this combined range bounding and integration problem to the interval
community as an interesting project. However, it was uniformly believed
that because of dependency problem in the normal form defect functions,
the dimensionality, and the need to determine high-order dependencies
on initial conditions in the ODE integration, the problem is intractable
through any of the tools known in the community. And indeed, the
attempt to apply various state of the art packages was not successful.
As a remedy to this problem, we developed the Taylor model ap-

proach as an augmentation to earlier work on high-order multivariate
automatic differentiation and the differential algebraic methods to solve
ODEs. Specifically, final variables in a code list are expressed in terms of
a high-order multivariate floating point Taylor polynomial of initial vari-
ables, plus a remainder bound accounting for the approximation error.
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Over suitably small domains, the polynomial representation is naturally
free of most of the dependency problem that the underlying function
may have had. At each node of the code list, the remainder bound is
calculated in parallel to the floating point coefficients; since this only re-
quires information about the current Taylor coefficients, its calculation
itself is also free of much of the dependency problem of the original code
list; details will become clear in the definition of the arithmetic and in
the various examples that will be provided.
For the purpose of motivation, consider the problem of studying the

behavior of the polynomial function

f(x) = −371.9362500− 791.2465656 · x+ 4044.944143 · x2
+ 978.1375167 · x3 − 16547.89280 · x4 + 22140.72827 · x5
− 9326.549359 · x6 − 3518.536872 · x7 + 4782.532296 · x8
− 1281.479440 · x9 − 283.4435875 · x10 + 202.6270915 · x11
− 16.17913459 · x12 − 8.883039020 · x13 + 1.575580173 · x14
+ 0.1245990848 · x15 − 0.03589148622 · x16
− 0.0001951095576 · x17 + 0.0002274682229 · x18 (1.1)

in a validated way over a sufficiently small range including the point x =
2. Because of the large coefficients and the alternating signs, a treatment
with interval arithmetic, or more advanced tools like centered forms,
will suffer from significant overestimation because of the cancellation of
terms. However, if before evaluation of the function, the function is first
re-expanded in powers of (x− 2), it assumes the following form

f(x) = −.1181179453− 4.339394861 · (x− 2)− 23.05727974 · (x− 2)2
+ 14.04340823 · (x− 2)3 + 316.6727626 · (x− 2)4
+ 583.1235424 · (x− 2)5 − 157.0468495 · (x− 2)6
− 1261.784612 · (x− 2)7 − 858.7604751 · (x− 2)8
+ 271.5211596 · (x− 2)9 + 454.2310790 · (x− 2)10
+ 107.4309653 · (x− 2)11 − 33.62710460 · (x− 2)12
− 18.29248130 · (x− 2)13 − 1.838912469 · (x− 2)14
+ 0.3548444855 · (x− 2)15 + 0.09668534124 · (x− 2)16
+ 0.007993746467 · (x− 2)17 + 0.0002274682229 · (x− 2)18.
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For the sake of compactness, the coefficients are shown only to 10 digits.
It is apparent that now, an evaluation with a reasonably small interval
including 2 will provide a much better result, since the contributions
of the various higher orders decrease in importance, and hence the de-
pendency effect which often leads to the dreadful increase of width of
intervals during evaluation is reduced. We forgo numerical details about
dependency at this point, but refer to a later discussion of the matter
(see Figure 5), where the behavior of the function is studied and ana-
lyzed in detail.

If it is desirable to limit the total amount of information, it is pos-
sible to bound the terms beyond a certain order into an interval and
henceforth deal only with the lower order part and this interval. For
example, if P12(x− 2) is the polynomial comprised of orders 0 through
12 of f and we are interested in studying over the domain [1.9, 2.1], then
over this domain we can assert f(x) ∈ P12(x−2)+ [−2 ·10−12, 2 ·10−12].
Even in this truncated form, we can study much of the behavior of the
function; for example, range bounding will only incur an additional over-
estimation of about 10−12, and integration can be done to that accuracy
as well. So we observe that the simple trick of re-expanding around a
suitable point greatly simplified the functional behavior for the purpose
of using validated methods.

Apparently the idea applies to any polynomial function, also in more
than one variables. It also easily generalizes to rational functions, since
these can be written as ordered pairs (P,Q) of polynomials that can be
studied separately. The ordered pairs can be added and multiplied in
the obvious way.

The Taylor model methods introduced in [112], [113] and discussed
below capitalize on this observation by representing any functional de-
pendency in terms of a (Taylor) polynomial of sufficiently high order,
plus a small interval bound capturing the parts of the function that de-
viate from the polynomial. As such it is merely a validated extension of
automatic differentiation methods[63], [20], namely those of high order
in many variables [11], [14], [61]; or in a more general context, the fact
known to scientists of all backgrounds that locally, smooth functions can
be “well” represented by their Taylor expansion. The only, but of course
crucially important, augmentation lies in the fact that we will rigorously
quantify the meaning of “well”.

The remainder of the paper is structured as follows. First we present
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an arithmetic that allows the computation of Taylor models for any com-
puter representable function expressed in terms of elementary binary
operations and intrinsic functions. Subsequently, and more importantly,
algorithms are reviewed that allow to perform a variety of common an-
alytical operations. These include efficient range bounding for global
optimization, integration of functions, ODEs, DAEs, determining in-
verses, solutions of fixed point problems and of implicit equations, and
a variety of others. Subsequently, we will compare the behavior of Tay-
lor models (TM) with those a variety of other tools and approaches for
some of the typical applications. We will study the interval method (I),
as well as the more advanced inclusion methods of the centered form
(CF) and the mean value form (MF). We also compare with various
interval polynomial methods, the foundations of which were already dis-
cussed by Moore [128]. Specifically, we study the method of interval
automatic differentiation (IAD) to compute a Taylor polynomial and a
remainder bound, as well as the advanced interval polynomial methods
known as boundary arithmetic (BA) of Lanford, Eckmann, Wittwer and
Koch, as well as ultra-arithmetic (UA) by Kaucher and Miranker et al.
We conclude with a summary of the comparison of the various methods.

2. Taylor Model Arithmetic

In the following we provide an overview about the various aspects of
the Taylor model approach. As we shall see in the development of the
next sections, the Taylor model method has the following fundamental
properties:

1. The ability to provide enclosures of any function given by a finite
computer code list by a Taylor polynomial and a remainder bound
with a sharpness that scales with order (n+1) of the width of the
domain.

2. The ability to alleviate the dependency problem in the calculation.

3. The ability to scale favorable to higher dimensional problems.

We begin with a review of the definitions of the basic operations.

Definition 1. (Taylor Model) Let f : D ⊂ Rv → R be a function
that is (n+1) times continuously partially differentiable on an open set



384 K. Makino, M. Berz

containing the domain D. Let x0 be a point in D and P the n-th order
Taylor polynomial of f around x0. Let I be an interval such that

f(x) ∈ P (x− x0) + I for all x ∈ D. (2.1)

Then we call the pair (P, I) an n-th order Taylor model of f around x0
on D.

Apparently P + I encloses f between two hypersurfaces on D. As a
first step, we develop methods to calculate Taylor models from those of
smaller pieces.

Definition 2. (Addition and Multiplication of Taylor Models)
Let T1,2 = (P1,2, I1,2) be n-th order Taylor models around x0 over the
domain D. We define

T1 + T2 = (P1 + P2, I1 + I2)

T1 · T2 = (P1·2, I1·2)

where P1·2 is the part of the polynomial P1 · P2 up to order n and

I1·2 = B(Pe) +B(P1) · I2 +B(P2) · I1 + I1 · I2
where Pe is the part of the polynomial P1 ·P2 of orders (n+1) to 2n, and
B(P ) denotes a bound of P on the domain D. We demand that B(P )
is at least as sharp as direct interval evaluation of P (x− x0) on D.

We note that in many cases, even tighter bounding of B(P ) is pos-
sible.

Definition 3. (Intrinsic Functions of Taylor Models) Let T =
(P, I) be a Taylor model of order n over the v-dimensional domain
D = [a, b] around the point x0. We define intrinsic functions for the
Taylor models[112] by performing various manipulations that will allow
the computation of Taylor models for the intrinsics from those of the ar-
guments. In the following, let f(x) ∈ P (x−x0)+I be any function in the
Taylor model, and let cf = f(x0), and f̄ be defined by f̄(x) = f(x)− cf .
Likewise we define P̄ by P̄ (x− x0) = P (x− x0)− cf , so that (P̄ , I) is a
Taylor model for f̄ . For the various intrinsics, we proceed as follows.



TAYLOR MODELS AND OTHER VALIDATED... 385

Exponential. We first write

exp(f(x)) = exp
¡
cf + f̄(x)

¢
= exp(cf) · exp

¡
f̄(x)

¢
= exp(cf) ·

½
1 + f̄(x) +

1

2!
(f̄(x))2 + · · ·+ 1

k!
(f̄(x))k

+
1

(k + 1)!
(f̄(x))k+1 exp

¡
θ · f̄(x)¢¾ , (2.2)

where 0 < θ < 1. Taking k ≥ n, the part

exp(cf) ·
½
1 + f̄(x) +

1

2!
(f̄(x))2 + · · ·+ 1

n!
(f̄(x))n

¾
is merely a polynomial of f̄ , of which we can obtain the Taylor model
via Taylor model addition and multiplication. The remainder part of
exp(f(x)), the expression

exp(cf) ·
½

1

(n+ 1)!
(f̄(x))n+1

+ · · ·+ 1

(k + 1)!
(f̄(x))k+1 exp

¡
θ · f̄(x)¢¾ , (2.3)

will be bounded by an interval. One first observes that since the Taylor
polynomial of f̄ does not have a constant part, the (n + 1)-st through
(k + 1)-st powers of the Taylor model (P̄ , I) of f̄ will have vanishing
polynomial part, and thus so does the entire remainder part (2.3). The
remainder bound interval for the Lagrange remainder term

exp(cf)
1

(k + 1)!
(f̄(x))k+1 exp

¡
θ · f̄(x)¢

can be estimated because, for any x ∈ D, P̄ (x − x0) ∈ B(P̄ ), and
0 < θ < 1, and so

(f̄(x))k+1 exp
¡
θ · f̄(x)¢ ∈ ¡B(P̄ ) + I

¢k+1
× exp ¡[0, 1] · (B(P̄ ) + I)

¢
. (2.4)

The evaluation of the “exp” term is mere standard interval arithmetic.
In the actual implementation, one may choose k=n for simplicity, but it
is not a priori clear which value of k would yield the sharpest enclosures.



386 K. Makino, M. Berz

Logarithm. Under the condition ∀x ∈ D, B(P (x − x0) + I) ⊂
(0,∞), we first write as follows

log(f(x)) = log cf +
f̄(x)

cf
− 1
2

(f̄(x))2

c2f
+ · · ·+ (−1)k+1 1

k

(f̄(x))k

ckf

+ (−1)k+2 1

k + 1

(f̄(x))k+1

ck+1f

1¡
1 + θ · f̄(x)/cf

¢k+1 . (2.5)

Again, evaluating the first line is mere Taylor model addition and multi-
plication, and the second line yields an interval contribution only, since
the Taylor model (P̄ , I) of f̄ , when raised to the (n+ 1)-st power, van-
ishes and produces no polynomial part.

Multiplicative inverse. Under the condition ∀x ∈ D, 0 /∈ B(P (x−
x0) + I), we write as follows:

1

f(x)
=
1

cf
·
(
1− f̄(x)

cf
+
(f̄(x))2

c2f
− · · ·+ (−1)k (f̄(x))

k

ckf

)

+ (−1)k+1 (f̄(x))
k+1

ck+2f

1¡
1 + θ · f̄(x)/cf

¢k+2 (2.6)

and again observe that, when evaluated in Taylor model arithmetic, the
second line merely yields an interval contribution.

Square root. Under the condition ∀x ∈ D, B(P (x − x0) + I) ⊂
(0,∞), we first re-write the square root in the following way
p
f(x) =

√
cf ·

(
1 +

1

2

f̄(x)

cf
− 1

2!22
(f̄(x))2

c2f

+ · · ·+ (−1)k−1 (2k − 3)!!
k!2k

(f̄(x))k

ckf

)

+ (−1)k√cf · (2k − 1)!!
(k + 1)!2k+1

(f̄(x))k+1

ck+1f

1¡
1 + θ · f̄(x)/cf

¢k+1/2
and evaluate in Taylor model arithmetic, obtaining a pure interval con-
tribution from the remainder term.
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Multiplicative inverse of square root. Under the condition ∀x ∈
D, B(P (x− x0) + I) ⊂ (0,∞), we rewrite the expression

1p
f(x)

=
1√
cf
·
(
1− 1

2

f̄(x)

cf
+
3!!

2!22
(f̄(x))2

c2f

+ · · ·+ (−1)k (2k − 1)!!
k!2k

(f̄(x))k

ckf

)

+ (−1)k+1 1√
cf
· (2k + 1)!!
(k + 1)!2k+1

(f̄(x))k+1

ck+1f

1¡
1 + θ · f̄(x)/cf

¢k+3/2
and evaluate in Taylor model arithmetic, obtaining a pure interval con-
tribution from the remainder term.

Sine. We use the addition theorem and power series expansion of
the sine function and obtain

sin(f(x)) = sin(cf) + cos(cf) · f̄(x)− 1

2!
sin(cf) · (f̄(x))2

− 1

3!
cos(cf) · (f̄(x))3+ · · ·+ 1

(k + 1)!
(f̄(x))k+1 · J,

where

J =

½ −J0 if mod(k, 4) = 1, 2,
J0 else,

J0 =

½
cos(cf + θ · f̄(x)) if k is even,
sin(cf + θ · f̄(x)) else,

and evaluate in Taylor model arithmetic; the last term generates merely
an interval contribution.

Cosine. Similarly, we have

cos(f(x)) = cos(cf)− sin(cf) · f̄(x)− 1

2!
cos(cf) · (f̄(x))2

+
1

3!
sin(cf) · (f̄(x))3+ · · ·+ 1

(k + 1)!
(f̄(x))k+1 · J,

where

J =

½ −J0 if mod(k, 4) = 0, 1,
J0 else,

J0 =

½
sin(cf + θ · f̄(x)) if k is even,
cos(cf + θ · f̄(x)) else.
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Hyperbolic sine. In a similar vein, we have

sinh(f(x)) = sinh(cf) + cosh(cf) · f̄(x) + 1

2!
sinh(cf) · (f̄(x))2

+
1

3!
cosh(cf) · (f̄(x))3+ · · ·+ 1

(k + 1)!
(f̄(x))k+1 · J,

where

J =

½
cosh(cf + θ · f̄(x)) if k is even,
sinh(cf + θ · f̄(x)) else.

Hyperbolic cosine. We write

cosh(f(x)) = cosh(cf) + sinh(cf) · f̄(x) + 1

2!
cosh(cf) · (f̄(x))2

+
1

3!
sinh(cf) · (f̄(x))3+ · · ·+ 1

(k + 1)!
(f̄(x))k+1 · J,

where

J =

½
sinh(cf + θ · f̄(x)) if k is even,
cosh(cf + θ · f̄(x)) else.

Arcsine. Under the condition ∀x ∈ D, B(P (x−x0)+I) ⊂ (−1, 1),
using an addition formula for the arcsine, we re-write

arcsin(f(x)) = arcsin(cf)+arcsin
³
f(x) ·

q
1− c2f − cf ·

p
1− (f(x))2

´
.

Utilizing that

g(x) ≡ f(x) ·
q
1− c2f − cf ·

p
1− (f(x))2

does not have a constant part, we have

arcsin(g(x)) = g(x) +
1

3!
(g(x))3 +

32

5!
(g(x))5 +

32 · 52
7!

(g(x))7

+ · · ·+ 1

(k + 1)!
(g(x))k+1 · arcsin(k+1)(θ · g(x)),

where

arcsin0(a) = 1/
√
1− a2, arcsin00(a) = a/(1− a2)3/2,
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arcsin(3)(a) = (1 + 2a2)/(1− a2)5/2, ...

A recursive formula for the higher order derivatives of arcsin

arcsin(k+2)(a) =
1

1− a2
{(2k + 1)a arcsin(k+1)(a) + k2 arcsin(k)(a)}

is useful [132]. Then, evaluating in Taylor model arithmetic yields the
desired result, where again the terms involving θ only produce interval
contributions.

Arccosine. Use arccos(f(x)) = π/2− arcsin(f(x)).
Arctangent. Using an addition formula for the arctangent, we have

arctan(f(x)) = arctan(cf) + arctan

µ
f(x)− cf
1 + cf · f(x)

¶
.

Utilizing that

g(x) ≡ f(x)− cf
1 + cf · f(x) =

f̄(x)

1 + cf · f(x)
does not have a constant part, we obtain

arctan(g(x)) = g(x)− 1
3
(g(x))3 +

1

5
(g(x))5 − 1

7
(g(x))7

+ · · ·+ 1

k + 1
(g(x))k+1

· cosk+1 (arctan(θ · g(x)) · sin
³
(k + 1) ·

³
arctan(θ · g(x)) + π

2

´´
and proceed as usual.

Antiderivation. We note that a Taylor model for the integral with
respect to variable i of a function f can be obtained from the Taylor
model (P, I) of the function by merely integrating the part Pn−1 of order
up to n−1 of the polynomial, and bounding the n-th order into the new
remainder bound. Specifically, we have

∂−1i (P, I) =
µZ xi

0

Pn−1(x)dxi , (B(P − Pn−1) + I) · (bi − ai)

¶
. (2.7)

Thus, given a Taylor model for a function f, the Taylor model in-
trinsic functions produce a Taylor models for the composition of the
respective intrinsic with f. Furthermore, we have the following result.



390 K. Makino, M. Berz

Theorem 1. (Taylor Model Scaling Theorem) Let f, g ∈ Cn+1(D)
and (Pf,h, If,h) and (Pg,h, Ig,h) be n-th order Taylor models for f and
g around xh on xh + [−h, h]v ⊂ D. Let the remainder bounds If,h and
Ig,h satisfy If,h=O(hn+1) and Ig,h=O(hn+1). Then the Taylor models
(Pf+g, If+g,h) and (Pf ·g, If ·g,h) for the sum and products of f and g
obtained via addition and multiplication of Taylor models satisfy

If+g,h = O(hn+1), and If ·g,h = O(hn+1). (2.8)

Furthermore, let s be any of the intrinsic functions defined above, then
the Taylor model (Ps(f), Is(f),h) for s(f) obtained by the above definition
satisfies

Is(f),h = O(hn+1). (2.9)

We say the Taylor model arithmetic has the (n + 1)-st order scaling
property.

Proof. The proof for the binary operations follows directly from the
definition of the remainder bounds for the binaries. Similarly, the proof
for the intrinsics follows because all intrinsics are composed of binary
operations as well as an additional interval, the width of which scales at
least with the (n + 1)-st power of a bound B of a function that scales
at least linearly with h. ¤
Remark 1. (High Order Scaling Property) The high order scaling

property of Taylor model arithmetic states that a given function f can
be approximated by another function P (a polynomial) with an error
that scales with high order as the domain decreases. This approximation
statement follows standard mathematical practice. However, in the in-
terval community it is customary to study another related but different
meaning of scaling: namely the behavior of the overestimation of a given
method to determine the range of a function. In the conventional in-
terval community, this scaling property is important because intervals,
including range intervals, play a leading role. In the world of Taylor
model algorithms, the use of intervals themselves is much reduced, since
as a general rule, expressions are kept in Taylor model form as much as
possible, for example to retain the ability to suppress dependency. Thus
in general, the high order scaling property as stated in the previous the-
orem is the relevant one. This, however, applies only in a limited sense
to the question of range bounding; more about this matter below and
in [120].
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Having defined the intrinsics of Taylor model arithmetic as above,
we can summarize the main property of Taylor model arithmetic in the
following theorem:

Theorem 2. ( FTTMA, Fundamental Theorem of Taylor Model
Arithmetic) Let the function f : Rv→Rv be described by a multivari-
ate Taylor model Pf + If over the domain D ⊂ Rv. Let the function
g :Rv→R be given by a code list comprised of finitely many elementary
operations and intrinsic functions, and let g be defined over the range
of the Taylor model Pf ,+If . Let P + I be the Taylor model obtained by
executing the code list for g, beginning with the Taylor model Pf + If .
Then P + I is a Taylor model for g ◦ f.
Furthermore, if the Taylor model of f has the (n+1)-st order scaling

property, so does the resulting Taylor model for g.

Proof. The proof follows by induction over the code list of g from
the elementary properties of the Taylor model arithmetic. ¤

As an elementary example for the use of Taylor model arithmetic, we
show some results of a computation of the function sin2(exp(x + 1)) +
cos2(exp(x+1)), executed with an implementation of Taylor model arith-
metic as discussed in the next section. Of course the function is identical
to 1, but the validated methods cannot capitalize on this information;
so this function can serve as a good example to assess the tightness of
various enclosure schemes. The left picture in Figure 1 shows the result
of the enclosure of the function by intervals, mean value form, centered
form, and the result of the Taylor model range bounding algorithm for
the domains [−2−j, 2−j] for j = 1, ..., 7; more comparisons about these
methods and Taylor models follow below. Also shown in the right pic-
ture are empirically computed approximation orders as a function of j.
Indeed it can be seen that the width of the computed higher order re-
mainder intervals scale with order (n+ 1) for Taylor models of order n,
until near the floor of machine precision, at which point rounding effects
dominate.
As a side note we also observe that in the representation of a function

through its Taylor model, it is apparent that some functions that can be
represented exactly by intervals cannot be represented exactly by Tay-
lor models; a situation that also occurs with other advanced inclusion
tools like centered forms. As an example of this effect, we consider the
function f(x) = 1/x. Figure 2 shows the behavior of the TM method
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Figure 1: Overestimation q (left) and empirical approximation orders
(right) for the function sin2(f) + cos2(f), with f = exp(x + 1), in the
domain [−2−j , 2−j].

of various orders in comparison to the interval method and the centered
form and mean value form for the domains 2+[−2−j, 2−j] for j = 1, ..., 7.
Intervals represent the result exactly, while Taylor models produce over-
estimation. However, for higher orders, the overestimation produced by
Taylor models is significantly less than that produced by centered forms,
although it of course never reaches the accuracy of the interval represen-
tation. For completeness we note that the bounding of the polynomial
part is here done with the LDB method [120]. The order of approxima-
tion is shown on the right of the figure. Many more examples showing
the behavior of Taylor model methods can be found below.

3. Implementation of Taylor Model Arithmetic

In the following, we describe in detail the current implementation of
Taylor model arithmetic in version 8.1 of the code COSY INFINITY.
Since in the Taylor model approach, the coefficients are floating point
(FP) numbers, care must be taken that the inaccuracies of conventional
FP arithmetic are properly accounted for. Algorithmically the methods
are rather straightforward; however for practical use of the methods,
the more important question is that of the soundness of the actual im-
plementation. Besides the tests performed in the development of the
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Figure 2: Relative overestimation q (left) and empirical approxima-
tion order (right) for the function 1/x with LDB range bounder in
2 + [−2−j, 2−j].

program, various other tests have been performed. Corliss and Yu per-
formed extensive tests of the COSY interval tools by porting of COSY
interval results to Maple in binary format and comparison with Maple
computations with nearly 1000 digits of accuracy. Several thousand
cases that are to be considered particularly difficult as well as around
106 random tests spanning all orders of magnitude of allowed domains
of the intrinsics were performed[36]. Independently, Revol performed
around 108 random tests of the interval arithmetic by comparison with
a guaranteed precision library for elementary operations and intrinsic
functions[156]. In addition, Revol proved the soundness of the algo-
rithms in the floating point coefficient treatment of the Taylor model
implementation and checked the actual coding [157].

Definition 4. (Admissible FP Arithmetic) We assume computa-
tion is performed in a floating point environment supporting the four
elementary operations ⊕, ⊗, Ä, ®. We call the arithmetic admissible if
there are two positive constants denoted

εu: underflow threshold,

εm: relative accuracy of elementary operations,

such that

1. If the FP numbers a, b are such that a∗b exceeds εu in magnitude,
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then the product a∗b differs from the floating point multiplication
result a⊗ b by not more than |a⊗ b|⊗ εm.

2. The sum a + b of FP numbers a and b differs from the floating
point addition result a⊕ b by not more than max(|a|, |b|)⊗ εm.

Definition 5. (Admissible Interval Arithmetic) We assume that
besides an admissible FP environment, there is an interval arithmetic
environment of four elementary operations ⊕, ⊗, Ä, ®, as well as a set
S of intrinsic functions. We call the interval arithmetic admissible if for
any two intervals [a1, b1] and [a2, b2] of floating point numbers and any
° ∈ {⊕, ⊗, Ä, ®} and corresponding real operation ◦ ∈ {+,×,−, /},
we have

a[a1, b1]° [a2, b2] ⊃ {x ◦ y|x ∈ [a1, b1], y ∈ [a2, b2]}, (3.1)

and furthermore, for any interval intrinsic s ∈ S representing the real
function s, we have

s([a, b]) ⊃ {s(x)|x ∈ [a, b]}. (3.2)

For the specific purposes of Taylor model arithmetic, some addi-
tional considerations are necessary. First we note that combinatorial
arguments show [17] that the number of nonzero coefficients in a poly-
nomial of order n in v variables cannot exceed (n+v)!/(n! · v!). Further-
more, as also shown in [17], the number of multiplications necessary to
determine all coefficients up to order n of the product polynomial of two
such polynomials cannot exceed (n+ 2v)!/ (n! · (2v)!) .
Definition 6. (Taylor Model Arithmetic Constants) Let n and v

be the order and dimension of the Taylor model computation. Then we
fix constants denoted

εc: cutoff threshold,
e: contribution bound

such that

1. ε2c > εu

2. 2 ≥ e > 1 + 2 · εm · (n+ 2v)!/ (n! · (2v)!)
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We remark that in a conventional double precision floating point en-
vironment, typical values for the constants of the admissible FP arith-
metic may be εu = 10−307 and εm = 10−15. The Taylor arithmetic cutoff
threshold εc can be chosen over a wide possible range, but since it is later
used to control the number of coefficients actively retained in the Taylor
model arithmetic, a value not too far below εm, such as εc = 10

−20, is
a good choice for many cases. Furthermore, for essentially all practically
conceivable cases of n and v, the choice e = 2 is satisfactory, and this is
the number used in our implementation.
Under the assumption of the above properties of the floating point

arithmetic, interval arithmetic, and the Taylor model arithmetic con-
stants, we now describe the algorithms for Taylor model arithmetic,
which will lead to the definition of admissible FP Taylor model arith-
metic.
Storage. In the COSY implementation, a Taylor model T of order

n and dimension v is represented by a collection of nonzero floating point
coefficients ai, as well as two coding integers ni,1 and ni,2 that contain
unique information allowing to identify the term to which the coefficient
ai belongs. The coefficients are stored in an ordered list, sorted in in-
creasing order first by size of ni,1, and second, for each value of ni,1,
by size of ni,2. For the purposes of our discussion, the details about the
meaning of the coding integers ni,1 and ni,2 is immaterial; we merely
note in passing that the efficiency of our implementation depends crit-
ically on them, and details can be found in [11]. There is also other
information stored in the Taylor model, in particular the information
of the expansion point and the domain, as well as various intermediate
bounds that are useful for the necessary computation of range bounds;
however this information is not critical for the further discussion. For
simplicity of the subsequent arguments, all coefficients are always stored
normalized to the interval [−1, 1] with expansion point 0.
Only coefficients ai exceeding the cutoff threshold εc in magnitude,

i.e. satisfying |ai| > εc, are retained. In many practical cases, this en-
tails significant savings in space and execution time; more on how the
non-retained terms are treated is described below. Since by require-
ment, ε2c > εu, the multiplication of two retained coefficients can never
lead to underflow. Besides the coefficients and coding integers, each
TM also contains an interval I composed of two floating point numbers
representing rigorous enclosures of the remainder bound.
Error collection. In the elementary operations of Taylor models,
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the errors due to floating point arithmetic are accumulated in a float-
ing point “tallying variable” t which in the end is used to increase the
remainder bound interval I by an interval of the form e ⊗ εm ⊗ [−t, t].
The factor e assures a safe upper bound of all floating point errors of
adding up the (positive) contributions to t. Accounting for the error
through a single floating point variable t with the factor e · εm “factored
out” notably increases computational efficiency. In addition, there is a
“sweeping variable” s that will be used to absorb terms that fall below
the cutoff threshold εc and are thus not explicitly retained.

Scalar multiplication. The multiplication of a Taylor model T
with coefficients ai, coding integers (ni,1, ni,2) and remainder bound
interval I with a floating point real number c is performed in the fol-
lowing manner. The tallying variable t and the sweeping variable s are
initialized to zero. Going through the list of terms in the Taylor polyno-
mial, each floating point coefficient ai is multiplied by the floating point
number c to yield the floating point result bk = ai ⊗ c. The tallying
variable t is incremented by |bk|, accounting for the roundoff error in the
calculation of bk. If |bk| ≥ εc, the term will be included in the result-
ing polynomial, and k will be incremented. If |bk| < εc, the sweeping
variable s is incremented by |bk|. After all terms have been treated, the
total remainder bound of the result of the scalar multiplication is set to
be [c, c]⊗I⊕e⊗εm⊗ [−t, t]⊕e⊗ [−s, s], which is performed in outward
rounded interval arithmetic.

Addition. Addition of two Taylor models T (1) and T (2) with coef-
ficients a(1)i and a

(2)
j , coding integers (n

(1)
i,1 , n

(1)
i,2 ) and (n

(2)
j,1 , n

(2)
j,2), and re-

mainder bounds I1, I2, respectively, is performed similar to the merging
of two ordered lists. The pointers i, j of the two lists and pointer of the
merged list k are initialized to 1. Then iteratively, the terms (n(1)i,1 , n

(1)
i,2 )

and (n(2)j,1 , n
(2)
j,2) are compared. In case (n

(1)
i,1 , n

(1)
i,2 ) 6= (n(2)j,1 , n

(2)
j,2), the term

that should come first according to the ordering is merely copied, and
its pointer as well as k are incremented. In case (n(1)i,1 , n

(1)
i,2 ) = (n

(2)
j,1 , n

(2)
j,2),

we proceed as follows. We determine the floating point coefficient bk =
a
(1)
i ⊕a(2)j . To account for the error, we increment t by max(|a(1)i |, |a(2)j |).
If |bk| ≥ εc, the term will be included in the resulting polynomial, and k
will be incremented. If |bk| < εc, the sweeping variable s is incremented
by |bk|. Finally i, j are incremented by one. After both the lists of T (1)
and T (2) are completely transversed, the remainder bound is determined
via interval arithmetic as I1 ⊕ I2 ⊕ e⊗ εm ⊗ [−t, t]⊕ e⊗ [−s, s], which
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is performed in outward rounded interval arithmetic.

Multiplication. The multiplication of two Taylor models T (1) and
T (2) of order n with coefficients a(1)i and a

(2)
j and coding integers (n(1)i,1 ,

n
(1)
i,2 ) and (n

(2)
j,1 , n

(2)
j,2), respectively, is performed as follows. The con-

tributions I to the remainder bound due to orders greater than n are
computed using interval arithmetic as outlined in [112]. Next, the terms
of the polynomial T (2) are sorted into pieces T (2)m of exact order m re-
spectively. Then, each term in T (1) with order k is multiplied with all
those terms of T (2) of order (n− k) or less.

For each one of the contributions, using the coding integers (n(1)i,1 , n
(1)
i,2 )

and (n(2)j,1 , n
(2)
j,2), we determine the location l of the product using the

method described in [11]. We determine the floating point product
p = a

(1)
i ⊗ a

(2)
j of the coefficients. To account for the error, we incre-

ment t by |p|. We add the term p to the coefficient bl. To account for
the error, we increment t by max(|p|, |bl|).
After all monomial multiplications have been executed, all result-

ing total coefficients bl of the product polynomial will be studied for
sweeping. If |bl| ≥ εc, the term will be included in the resulting poly-
nomial, and l will be incremented. If |bl| < εc, the sweeping variable
s is incremented by |bl|, but l will not be incremented, i.e. the term
is not retained. In the end, the remainder bound I is incremented by
e⊗εm⊗[−t, t]⊕e⊗[−s, s] which is executed in outward rounded interval
arithmetic.

Intrinsic Functions. All intrinsic functions can be expressed as
linear combinations of monomials of Taylor models, plus an interval
remainder bound Ii [112]. The coefficients are obtained via interval
arithmetic, including elementary interval operations and interval intrin-
sic functions. The necessary scalar multiplications, additions, and mul-
tiplications are executed based on the previous algorithms, and in the
end the interval remainder bound Ii is added to the thus far accumulated
remainder bound.

Remark 2. (Floating Point Versus Interval Coefficients) One may
wonder why we are choosing to represent Taylor models via floating
point coefficients and then having to separately address floating point
errors instead of merely storing the coefficients as intervals. The main
reason for this is performance. Apparently the storage required is only
approximately half of what would be required with intervals, and so for
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the same amount of storage, the accuracy of the representation can be
increased;in the one dimensional case,this amounts to twice the order as
would be possible with interval coefficients! Also, the amount of floating
point arithmetic necessary to perform validated computations is reduced
by about a factor of two compared to an interval implementation.

The various algorithms just discussed form the basis of a computer
implementation of Taylor model arithmetic:

Definition 7. (Admissible FP Taylor Model Arithmetic) We call
a Taylor model arithmetic admissible if it is based on an admissible FP
and interval arithmetic and it adheres to the algorithms for storage,
scalar multiplication, addition, multiplication, and intrinsic functions
described above.

Remark 3. (FP Taylor Model Arithmetic in COSY INFINITY )
The code COSY INFINITY contains an admissible Taylor model arith-
metic in arbitrary order and in arbitrarily many variables. The code
consists of around 50, 000 lines of FORTRAN’ 77 source that also cross-
compiles to standard C. It can be used in the environment of the COSY
language, as well as in F77 and C. It is also available as classes in F90
and C++. The code is highly optimized for performance in that any
overhead for addressing of polynomial coefficients amounts to less than
30 percent of the floating point arithmetic necessary for the coefficient
arithmetic [11]. It also has full sparsity support in that coefficients be-
low the cutoff threshold do not contribute to execution time and storage.

Remark 4. (Verification and Validation of the COSY FP Taylor
Model Arithmetic) The FP TM arithmetic implemented in COSY is
currently being verified and validated by two outside groups [36], [156]
with a suite of challenging test problems. Independently, the validity of
the algorithms forming the core of theCOSY Taylor model FP algorithm
have been verified by Revol [157].

4. Taylor Model Algorithms

The above algorithms for Taylor model arithmetic assure that also in
a computer environment subject to floating point errors, any computa-
tions using Taylor models lead to rigorous enclosures, and we obtain the
following result.
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Theorem 3. (Taylor Model Enclosure Theorem) Let the function
f : Rv → Rv be contained within Pf + If over the domain D ⊂ Rv.
Let the function g : Rv → R be given by a code list comprised of
finitely many elementary operations and intrinsic functions, and let g
be defined over the range of an enclosure of Pf ,+If . Let P + I be the
result obtained by executing the code list for g in admissible FP Taylor
model arithmetic, beginning with the Taylor model Pf + If . Then P + I
is an enclosure for g ◦ f over D.

Proof. The proof follows by induction over the code list of g from
the elementary properties of the Taylor model arithmetic. ¤

Apparently the presence of the floating point errors entails that P is
not precisely the Taylor polynomial. In a similar fashion, also the scaling
properties of the remainder bound in a rigorous sense is lost. However,
these properties of Taylor models are retained in an approximate fashion.

Remark 5. (Influence of Floating Point Arithmetic) In the pres-
ence of floating point errors, the polynomial P will be a floating point
approximation of the Taylor polynomial of g ◦ f if Pf was an approxi-
mate Taylor polynomial for f. Furthermore, any (n+1)-st order scaling
property for the remainder interval will prevail approximately until near
the floor of machine precision.

As an immediate consequence, we obtain the following:

Algorithm 1. (Range Bounding with Taylor Models)
Input: a finite code list involving elementary operations and intrin-

sics describing the function f over the multivariate domain box D
Output: an enclosure of f in a Taylor model Pf +If , and an interval

bound B(f) for the range of f over D

1. Set up a Taylor model TI enclosing the identity function. This is
comprised of the linear multivariate polynomial P (x) = x plus the
remainder bound [0, 0].

2. Evaluate the code list for f in Taylor model arithmetic. As a
result, obtain Pf + If .

3. Bound the range B(Pf) of the polynomial Pf , obtain a range
bound B(f) for f as B(f) = B(Pf) + If .
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Apparently the sharpness of the range bounding depends on the
method to obtain the bound of the polynomialB(Pf).It turns out that in
many practical cases,even mere evaluation with intervals yields suitable
results that are significantly sharper than what can be obtained with
centered and mean value forms. Furthermore, there are various ways to
obtain sharper enclosures for B(Pf) that in many cases asymptotically
lead to a scaling of the overall error with order (n+ 1) [120].
Another nearly immediate algorithm is the following.

Algorithm 2. (Quadrature with Taylor Models)
Input: a finite code list involving elementary operations and intrinsics

describing the function f over the multivariate domain box D
Output: an enclosure of

R
D
f the sharpness of which scales with order

(n+ 1) with D

1. Set up a Taylor model TI enclosing the identity function. This is
comprised of the linear multivariate polynomial P (x) = x plus the
remainder bound [0, 0].

2. Evaluate the code list for f in Taylor model arithmetic. As a
result, obtain P + I.

3. Integrate the polynomial by manipulation of coefficients to obtain
a primitive P I for P, and insert the endpoints of D into P I to
obtain the integral

R
D
P.

4. Obtain an enclosure for
R
D
f as

R
D
f ⊂ R

D
P + |D| · I

Various applications of the method are described in detail in [25].
It is possible with relative ease to determine integrals in eight variables
with Taylor models of order 10, yielding a global sharpness that scales
with order 10.

There are several other Taylor model algorithms that we briefly sum-
marize here; for full details, see the respective literature that is cited in
each algorithm.

Algorithm 3. (Solving Implicit Equations with Taylor Models)
Input: an n-th order multivariate Taylor model
Output: a domain box over which this Taylor model in invertible,

as well as an n-th order Taylor model enclosure for the inverse.
Described in detail in [21], [70], [69]. An example of the performance

is given below in Figure 13.



TAYLOR MODELS AND OTHER VALIDATED... 401

Algorithm 4. (Solving ODEs with Taylor Models)
Described in detail in [112], [24], [121].

Algorithm 5. (Solving implicit ODEs and DAEs with Taylor
Models)
Described in detail in [69] as well as [72], [74].

Algorithm 6. (Complex Arithmetic with Taylor Models)
To this end, merely represent the analytic function f by a pair of

Taylor models in two variables (x, y). Since each of the components of
an analytic function is itself infinitely often differentiable as a function
of the real variables x and y, the Taylor model method can be applied to
them individually [144]. This yields enclosures in sets with a sharpness
that scales with order (n+ 1), and alleviates the dependency problem.

In the following sections, comparisons with centered forms (CF) and
mean value forms (MF) for range bounding are performed, and compar-
isons with interval automatic differentiation (IAD), boundary arithmetic
(BA) and ultra arithmetic (UA) are given.

5. Centered and Mean Value Forms

It has recently been suggested that it would be useful to have a de-
tailed comparison between Taylor models and the centered form (CF)
and mean value form (MF) [127], [100], [155], [98], [2], [1], [131] for range
bounding. Since the latter two usually provide sharper enclosures than
intervals and earlier comparisons of Taylor models were mostly with in-
tervals, it was suspected that for mere range bounding, the performance
of Taylor models would be rather similar to CF and MF, which are
known to have the quadratic approximation property. In this section we
attempt a comparison based on what we believe to be a limited collec-
tion of meaningful examples. We compare with Taylor model methods
of various orders, and subsequent bounding schemes based on either
naive interval evaluation of the Taylor polynomial, or based on the lin-
ear dominated bounder LDB [120]. To increase the demand on the LDB
method, in all examples shown no domain subdivisions as utilized in the
various Bernstein-based schemes [133], [134] are allowed. Apparently
allowing subdivision before applying LDB would increase the applica-
bility of LDB to larger domains. We observe that overall, Taylor models
suppress dependency much better than centered forms and mean value
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forms, resulting in frequently much sharper inclusions. Furthermore, in
many cases the LDB method leads to higher order enclosures of esti-
mated ranges.

All computations are performed using COSY for the Taylor models,
while intervals, centered forms, and slopes were evaluated using the im-
plementation in the INTLAB toolbox for Matlab [165]. Specifically, we
used INTLAB Version 3.1 under Matlab Version 6. We believe we have
used the code in the proper way, although documentation is somewhat
terse; as the author puts it, “To be frankly, there is not much other
documentation about INTLAB. In every routine, of course, the func-
tionality is documented. Otherwise, we think INTLAB code is much
self-explaining.”. However, we are less sure about whether our use is
near optimal; some of the multivariate centered form computations for
the normal form problem discussed below took 45 minutes of CPU time,
while the Taylor model evaluation of the same function even of order
seven could be done in about 20 seconds on the same machine.

We assess the behavior of various algorithms to bound functions with
a measure q of relative overestimation [141],

q =
(estimated range)-(exact range)

(exact range)
. (5.1)

We provide logarithmic plots of q as a function of domain width for cen-
tered forms (CF), mean value forms (MF), and Taylor models of various
orders. Usually, the domain we study has the formD = x0+[−2−j, 2−j].
We also study the behavior of the linear dominated bounder LDB [120],
an enhancement to the Taylor model bounding that often provides for
sharper inclusions.

We will also determine empirical approximation orders (EAO) by
computing the magnitude of the local slopes of q in a logarithmic plot
and adding 1, i.e. EAO = 1+ |d (log(q)) /d (log(|D|))|. With this defin-
ition, the interval evaluation will commonly have EAO of 1, while cen-
tered forms and mean value forms will have order 2. However, in case the
function under consideration has vanishing slope at the point of interest,
q will be reduced by 1 (or possibly more) since the exact range width in
the denominator then scales with the second (or a higher) power of the
domain width. We usually list the EAO only until the floor of machine
precision is reached. We frequently also list the average empirical ap-
proximation order (AEAO) for various methods, which is obtained by
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averaging the EAO data for the given method over all choices of the
domain width.
For notational simplicity, in the following pictures, results obtained

using interval evaluation will be denoted by the symbol ¡, reminiscent
of an interval box, while those obtained by the mean value form and
centered form will be denoted by the symbols ∇ and 4, reminiscent of
a gradient and a difference quotient, respectively. Taylor models will be
identified by numbers corresponding to their orders.
We begin our discussion with the study of a simple three dimensional

example function with modest dependency but overall rather innocent
behavior studied in [112]. The function has the form

f1(x, y, z) =
4 tan(3y)

3x+ x
q

6x
−7(x−8)

− 120− 2x− 7z(1 + 2y)

− sinh
µ
0.5 +

6y

8y + 7

¶
+
(3y + 13)2

3z

− 20z(2z − 5) + 5x tanh(0.9z)√
5y

− 20y sin(3z), (5.2)

and the function is defined for 0 < x < 8, y > 0, and z 6= 0. We study
the behavior on the domain interval boxes (2, 1, 1)+ [−2−j, 2−j]3 and
show the results in Figure 3. As a function of j, we show log10(q) for
interval evaluation, centered and mean value form as well as TM range
bounding by mere interval evaluation of the Taylor polynomial, and TM
range bounding through LDB of orders 3, 6, and 9. We also plot the
EAO for both of these cases, and compute the AEAO.
It can be seen that all Taylor model methods achieve enclosures

that are significantly sharper than CF and MF, showing the ability of
the Taylor model method to suppress whatever dependency there is in
the function. Without LDB, the approximation order of CF, MF and
all TM methods is 2. CF uniformly provides slightly sharper enclosures
as MF, as is frequently observed. The first order Taylor model method
behaves similar to CF, and is in fact slightly superior. The higher order
Taylor models, while still showing order 2 scaling, provide enclosures
that is about 1 order of magnitude sharper than those of CF.
With LDB, the approximation order of the Taylor model of order n

increases to (n+ 1), until the floor of machine precision is reached. At
the most favorable point, the sharpness of the 9-th order Taylor model
method is about 11 orders of magnitude higher than that of CF.
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Figure 3: Relative overestimation q, EAO and AEAO for the function
f1(x, y, z) in the domain (2, 1, 1)+ [−2−j, 2−j], without LDB (left), with
LDB (right).
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In order to study the behavior of the suppression of dependency in
more detail, let us study in the same domain the following function

f2(x, y, z) = f1(x, y, z) +
10X
j=1

(f1(x, y, z)− f1(x, y, z)) , (5.3)

which is obtained by repeatedly adding and subtracting the function,
such that for the actual function values we have f2(x, y, z) = f1(x, y, z),
but the code list for f2 exhibits a more pronounced cancellation problem.
The results are shown in Figure 4.
Overall the behavior of the methods is similar to before; however,

we observe that now, the non-LDB Taylor model methods of orders 6
and 9 uniformly provide a sharpness of enclosure that is around 2 orders
of magnitude better than those of CF; The third order Taylor model
reaches this level only at j = 4. This difference in sharpness is 10 times
greater than in the previous example. Apparently the TM method is
affected very little by the fact that the function is added and subtracted
from itself 10 times. In fact, direct comparison of the TM curves shows
that the actual overestimation is very nearly the same as in the previous
example, while it increases by a factor of 10 for CF, MF, and first order
Taylor models.
As another example, we study a simple one-dimensional function

which is known to have a very significant dependency problem, the so-
called Gritton function from Gritton’s second problem in chemical engi-
neering. This function was already encountered in equation (1.1). For
all subsequent computations, we represent the function in Horner form,
which reads

f3(x) = −371.9362500 + x · (−791.2465656 + x · (4044.944143
+ x · (978.1375167 + x · (−16547.89280 + x · (22140.72827
+ x · (−9326.549359 + x · (−3518.536872 + x · (4782.532296
+ x · (−1281.479440 + x · (−283.4435875 + x · (202.6270915
+ x · (−16.17913459 + x · (−8.883039020 + x · (1.575580173
+ x · (1245990848 + x · (−0.03589148622 + x · (−0.0001951095576
+ x · (0.0002274682229)))))))))))))))))). (5.4)

We again evaluate using TM, CF, and MF, and intervals. We choose
two different expansion points, namely x0 = 2, and also the point x0 =
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Figure 4: q, EAO and AEAO for the repeated function f2(x, y, z) in the
domain (2, 1, 1) + [−2−j, 2−j], without LDB (left), with LDB (right).
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1.4 where the function f3 is known to have very strong cancellation.
Figures 5 and 6 show the results for domains of the form x0+[−2−j, 2−j].
It is seen that the TM method of order 1 behaves very similar to

CF, while higher order TMs suppress the dependency very efficiently.
Different from the previous example, the TM of order 3 initially does
not reach the same level of accuracy as those of orders 6 and 9, where
the latter show a sharpness that is about 4 orders of magnitude higher
than that of CF. As the right hand side shows, the LDB method begins
to improve the sharpness from j = 3 for the ninth order method, which
then outperforms CF by about 12 orders of magnitude.
At the expansion point x0 = 1.4, which is characterized by a very

significant dependency problem, sixth and ninth order TM without LDB
outperforms CF by about 4 orders of magnitude, while using LDB now
only brings and improvement from j = 5, and for j = 6, CF is outper-
formed by 12 orders of magnitude.
As another challenging example we study a normal form defect func-

tion, an example of the class of functions that originally led to the de-
velopment of the Taylor model methods. Details of the background of
the functions and their relevance to the study of dynamical systems can
be found in [17]. The function has the form

f4(x1, .., x6) =
3X

i=1

µq
y22i−1 + y22i −

q
x22i−1 + x22i

¶2
where �y = �P1

³
�P2
³
�P3(�x)

´´
(5.5)

and �P1, �P2 and �P3 are six-dimensional vectors of polynomials in six vari-
ables of degrees ranging from around 5 to around 10. For our purposes,
the relevant properties of the function is that it has function values
very near to zero, while each of the polynomials �P1, �P2 and �P3 can ex-
hibit large coefficients. Since the polynomials themselves have several
thousand terms, there is thus a very pronounced dependency problem.
Furthermore, the dependency problem increases more and and more for
larger values of the arguments, and so the functions offer a convenient
way to study the behavior of bounding tools at various levels of depen-
dency. In the examples of our calculation, the polynomials �P1, �P2 and
�P3 are of degree 5, and they are available at [22]; in this case, the degree
of the function f4(x1, .., x6) is 250.
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Figure 5: q, EAO and AEAO for the Gritton function f3(x) around the
expansion point x0 = 2, without LDB (left), with LDB (right).
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Figure 6: q, EAO and AEAO for the Gritton function f3(x) around
the expansion point x0 = 1.4 where the cancellation problem is very
significant, without LDB (left), with LDB (right).
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We again compare the performance of Taylor models with CF, MF,
and intervals. For technical reasons connected to the evaluation of the
polynomials inCOSY, the order of computation had to be chosen at least
as high as that of the polynomials �Pi, and we picked orders 5, 6 and 7. In
Figure 7, we show the results for the domainsD = 0.1·(1+[−2−j, 2−j])6.
The non-LDB evaluation with Taylor models yields a sharpness that is
uniformly around 3 orders of magnitude higher as that of CF. The LDB
enhanced method starts similar to the original method, and from j = 3
begins to improve the accuracy. For j = 7, the TM method of order
7 outperforms CF by around 14 orders of magnitude, while the TM of
order 5 outperforms CF by around 8 orders of magnitude. As the plots
of EAO shows, the non-LDB TMs asymptotically achieve 2-nd order,
while the LDB TM of order n achieves orders (n+ 1) as expected.
The subsequent Figure 8 shows the results for domains D = 0.2 ·

(1+[−2−j, 2−j])6; the results are overall worse, but the general behavior
of the methods is roughly similar, except that LDB now only begins to
provide an improvement from j = 5.
As another example, we study a function recently investigated [133],

[134].

f5(�x) =
vX

i=1

Ã
v −

Ã
vX
i=1

cos(xi)

!
+ i(1− cos(xi))− sin(xi)

!2
.

While appearing complicated, the function has the property that al-
ready for moderately small domains, interval evaluation can frequently
yield the exact range enclosure, since the occurring trigonometric func-
tions can be bounded exactly and there is no dependency. On the other
hand, CF, MF, and TM do not have the ability to treat the trigonomet-
ric functions exactly, and will in these cases necessarily perform worse
than interval evaluation. We study the function f5 for dimension v = 10
for the domains xi ∈ 1.75 + [−2−j, 2−j]. While the interval method per-
forms well as expected, CF, MF and non-LDB TM behave very similar,
with the TMmethods only showing a very marginal advantage;this is at-
tributed to the fact that the function has only a very limited dependency
problem, which prevents TM from providing any significant advantage.
The LDB TM, on the other hand, shows an increase in sharpness from
j = 1, leading to order (n + 1) convergence. We should also note that
the execution time of the LDB bounding in the ten dimensional case lay
in the range of a small fraction of a second; in contrast to the (n+ 1)-
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Figure 7: q, EAO and AEAO for the 6D normal form deviation function
f4(�x) in the domain 0.1 · (1 + [−2−j, 2−j])6, without LDB (left), with
LDB (right).
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Figure 8: q, EAO and AEAO for the 6D normal form deviation function
f4(�x) in the domain 0.2 · (1 + [−2−j, 2−j])6, without LDB (left), with
LDB (right).
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st order bounder for Taylor models proposed by Nataraj and Kotecha
[133], [134], which for the v = 6 problem is reported to require about
one hour of execution time on a similar computer.
As a last example in this section, we show results for a function that

can easily be studied by hand for the various methods under consider-
ation, yet can already illustrate many of the major points in question.
We use an approximation of the function cos(x) by its power series of
order 60; so

f6(x) =
30X
i=0

(−1)i x
2i

(2i)!
.

For the domain [0, 4π], this power series represents the cos function to an
accuracy of better than 10−15, which is sufficient for work in conventional
double precision. Although of course this is one of the worst ways to
obtain validated bounds for the cos function, this function is useful for
comparisons of bounding methods because it has the following useful
features:

1. Properties of the function are well known

2. Dependency increases with x from very small to very large

3. Periodicity allows the study of the same functional behavior with
various amounts of dependency

4. Study at points with both non-stationary and stationary points is
possible

In Figure 10, we study the behavior over the domain x0+[−2−3, 2−3]
of fixed width at the expansion points x0 = π/4 + 0, π/4 + π, π/4 +
2π, π/4+3π.While without LDB, the increase of sharpness of TM versus
CF reaches around 3-4 orders of magnitude, with LDB this increases up
to 13 orders of magnitude.
After providing various examples comparing the behavior of TM to

other bounding methods, we now come back to the statement of three
fundamental properties about Taylor models that were mentioned in the
beginning of the section: the high-order scaling property, the alleviation
of the dependency problem, and the alleviation of the dimensional curse.
The above examples illustrate the behavior of the TM method with
respect to these properties; we summarize:
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Figure 9: q, EAO and AEAO for the 10D function f5(�x) around the
expansion point �x0 = 1.7510, without LDB (left), with LDB (right).
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Figure 10: The behavior of f6 (x) over the domain x0 + [−2−3, 2−3] at
the expansion points x0 = π/4, π/4 + π, π/4 + 2π, π/4 + 3π, without
LDB (left), with LDB (right).

Remark 6. (High Order Scaling Property) TM methodsof ordern
provide enclosures of the function whose width scales with the (n+1)-st
order of the domain width. In algorithms requiring extended calcula-
tions, this (n+1)-st order scaling property can be maintained until the
end. In algorithms requiring range bounding, as in global optimization,
advanced polynomial bounding schemes such as the LDB bounder can
frequently provide range enclosure of (n+ 1)-st order sharpness.

Remark 7. (Alleviation of the Dependency Problem) Because the
bulk of the functional dependency is always represented by the polyno-
mial part where dependency in computation does not occur except due
to the small errors due to the floating point representation of the coeffi-
cients, TMs can suppress the dependency problem very well. The advan-
tage of the TM methods increase with the complexity of the functional
dependency. All examples show this property, regardless of whether the
final range bounding is done with LDB or not.

Remark 8. (Alleviation of the Dimensional Curse) In multivariate
settings,the useof Taylormodels can often be particularly advantageous
compared to enclosure with less accurate methods.Suppose we are given
a multivariate function f with similar complexity in all dimensions that
needs to be represented over an extended domainD with a certain sharp-
ness. Suppose in each dimension roughly k centered form evaluations
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are necessary to achieve the same sharpness as a single Taylor model. As
the above examples show, such values of k can be large. The informa-
tion necessary to represent the function is roughly NC = kv compared
to NTM = (n+ v)!/n!/v! (see [17]). For a specific conservative example
case of k = 10 and n = 5, this leads to a size of the Taylor model of
NTM = (v + 1) · ... · (v + 5)/5! ≈ v5/5!, while NC = 10v. Already for
moderate values of v, we have NTM << NC .

6. Remainder Bounds from Interval AD

The use of automatic differentiation (AD) methods [149], [63], [20], [62],
[27] for the computation of accurate derivatives from code lists has a
history nearly as long as that of interval analysis itself[127]. The topic
also appears again in [128], and also other enclosures by polynomials
with interval coefficients along the lines of the BA and UA methods
below are discussed. In the interval framework, the method can be used
to provide enclosures for derivatives by merely executing AD code with
interval coefficients, where the initial interval has to enclose the domain
of interest for the derivatives. In our context, this interval automatic
differentiation (IAD) method allows to compute remainder bounds of
functions by using Taylor’s remainder formula, and rigorously bounding
the high-order partial derivatives that appear in the remainder term.
The floating point polynomial coefficients may be obtained in one of

two ways. Either one may execute IAD using a narrow starting interval
enclosing the expansion point, picking the center points of the resulting
interval coefficients, and lumping the errors into the IAD remainder
bound; or alternatively one may execute Taylor model arithmetic over a
narrow domain and add the resulting TM remainder bound due to the
floating point arithmetic into the IAD remainder.
A practical inconvenience of this approach is that one has to perform

two independent executions of the code list, one with narrow intervals
to obtain the Taylor coefficients, and another one with wide intervals
to obtain the remainder bound. However, the major limitation of the
method is that, different from the Taylor model approach which can of-
ten alleviate the dependency problem of a given function, this approach
cannot alleviate dependency, but frequently even has the tendency to
enhance the dependency problem.
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The reason for this behavior lies in the fact that the actual code list
for the derivative computation, which is evaluated with wide intervals
making it susceptible to dependency, contains all parts of the code of
the function,plus the additional code necessary to propagate derivatives.
The length of the resulting code list, and hence the potential for overes-
timation, apparently increases with both order and dimensionality, and
so the IAD method is thus expected to suffer more and more just in the
terrain where the Taylor model method becomes better and better. Be-
sides, of course we also expect that the performance of IAD suffers more
if the code list itself becomes longer, just as any other interval evalua-
tion. On the other hand, in the case of the Taylor model computation,
the new contributions to the remainder bounds are always computed
from the Taylor expansion of the current intermediate variables in the
code list, which is not subject to dependency.
To illustrate the dependence of the effects on dimensionality, order,

and complexity, we study various example functions and compare the
IAD remainder bounds and the TM remainder bounds. For complete-
ness, it is also important to note that the by virtue of the algorithms
for TM arithmetic, the TM remainder bounds include the floating point
errors from the coefficient arithmetic. On the other hand, the IAD
remainder bounds are computed independent of the floating point coef-
ficients, and thus do not include those contributions. For a very precise
comparison and the situations where remainder bounds become very
small, it would be necessary to somehow try to account for these effects,
but for study at hand, we forego this question.
We begin the study with the following example functions based on

the Gritton polynomial G, which was already used for the function f3
in equation (1.1).

f7(�x) = G(2 +
Xv

i=1
xi)

f8(x) = G(2 + x+
Xm

i=1
(x− x)).

In f7, more and more dimensions are added, while in f8, artificially more
and more complexity is created. Figure 11 shows the ratio of the width
of the IAD remainder bound and the TM remainder bound as a function
of dimension. The situation is shown for order 2, 4, 6 and 8. It can be
seen that indeed, an increase in dimension enhances the overestimation
of the IAD remainder bound. Similarly, increasing the complexity by
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Figure 11: Ratio of the remainder interval width,
width(IIAD)/width(ITM), for the Gritton function. Left: Dimen-
sionality dependence of f7. Right: Complexity dependence of f8.

enlarging m in f8 leads to an increase of the overestimation for the re-
mainder bounds obtained via IAD.

In order to study a realistic and demanding example, we also investi-
gate the normal form defect function f4 in equation (5.5). We again look
at the remainder bounds calculated by IAD and TMs of order 5, 6 and 7.
The left picture in Figure 12 shows the actual magnitude of the remain-
der bounds calculated by both methods for the domain (0.2 + [−2j, 2j])6
for various values of j. We see that due to the complexity of the func-
tion, both methods have large overestimation for j = 1. Around j = 3,
the remainder bounds calculated with TM fall below 1, while at this
point, those calculated by IAD are still near 1030. It is important to
note that in the TM calculations, the remainder bounds also absorb the
errors of the polynomial coefficient arithmetic, which ultimately puts a
lower limit on their size. On the other hand, in the case of the IAD
computation, these terms are not included because the polynomial part
is computed separately and not even known in our computation; so for
small domains and sharp enclosures, the IAD results are expected to be
overly optimistic. The right picture shows the ratio between the IAD
remainder bound and those obtained by TMs for orders 5 and 7. The
ratio ranges from 1042 to about 108, and as expected, for higher orders,
TMs show a more favorable behavior.
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Figure 12: Remainder intervals of the normal form function f4. Left:
Width. Right: width(IIAD)/width(ITM). ITM includes the bounds for
the floating point error of the polynomial coefficient part, which is not
included in IIAD.

Altogether it is apparent that while IAD can be used to obtain re-
mainder bounds with the high order scaling property, the dependency
of the examples makes the TM remainders overall much more favorable.
For computations of limited length and limited dependency, this may be
of minor significance, but its effects will become more and more dramatic
for more complicated functional dependencies. Furthermore, there are
no dedicated algorithms for using Taylor polynomials and IAD for global
optimization, dependency suppression, or limitations of the dimensional
curse; there are also no algorithms for higher order functional inversion.
IAD in one variable has, however, been used successfully for bounding
the time stepping error in validated ODE integrators.

7. The Boundary Arithmetic of Lanford, Eckmann, Wittwer,
Koch, et al.

In this section we provide an overview of the methods of arithmetic
on so-called boundaries (BA) developed by Lanford, Eckmann, Wittwer
and Koch et al. (see for example [105], [46], [47], [49], [50], [48], [91]) for
the purpose of proving several interesting theorems about fixed points
of various functions. In particular, the authors prove the Feigenbaum
conjecture, as well as other universality of area-preserving maps. Of
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these references, [47] and [49] are the most detailed, and they both
contain complete lists of the codes used to perform the operations.
The method is based on performing addition, scalar multiplication,

and multiplication on sets of polynomials with interval coefficients and
remainder bounds, the so-called boundaries. It applies fixed point theo-
rem methods, usually the contracting mapping principle, to solve ques-
tions of existence and uniqueness of solutions of certain functional equa-
tions. To this end, the original mathematical problems are carefully
rephrased via coordinate transformations and other manipulations by
hand, and broken down into individual steps until in the end they reach
fixed point form f = A(f). The operators A in these problems are usu-
ally rather simple with only around ten arithmetic operations and up
to two variables. In our opinion, this work has great appeal because it
represents the first use of interval Taylor methods for theorem proving,
and because of the significance of the theorems that could be proved
in this way. In order to analyze some of the details, we begin with a
definition of the structure in question, which is taken from [47], p. 48f.
With minor modifications, the definition also appears in [49], p. 76f,
and in more recent work[91].

Definition 8. (Boundary) Let D be the two dimensional unit disk
on C2, i.e. D = {x, y ∈ C2| |x| < 1, |y| < 1}, and let A be the set of
analytic functions on D with real Taylor coefficients with finite l1 norm
| |1defined via

¯̄̄P
i,j>0 fi,jx

iyj
¯̄̄
1
=
P

i,j |fi,j|. For a given positive integer
n, let vi,j for i + j ≤ n be intervals, let vg, vh ∈ R+. The quantity
v = {vi,j , i + j ≤ n, vg, vh}, called the boundary, determines a subset
A(v) of functions, called the ball associated with v, via

A(v) = {f ∈ A| ∃fi,j ∈ vi,j, 0 ≤ i+ j ≤ n, fg, fh ∈ A such that

f(x, y) =
X

0≤i+j≤n
fi,jx

iyj + fg(x, y) + fh(x, y) with |fg,h|1 ≤ vg,h, and

∀(x, y) ∈ D̄, lim
s→0

fh(sx, sy)

sn+1
is finite.

Thus A(v) is the set of functions of A that can be written as

f = P + fh + fg

where P is a polynomial with coefficients pi,j ∈ vi,j, and fh is a higher
order function with norm bounded by vh,and fg is a general function
with norm bounded by vg.
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Compared to Taylor models, the polynomial coefficients are inter-
vals. Furthermore, there are two types of remainder terms vh and vg, of
which vh has the higher order scaling property typical of Taylor mod-
els, while vg, often referred to as the “general term”, does not have the
higher order scaling property. In later work (see for example [91]), vg is
sometimes generalized to be of linear approximation order.
Various arithmetic and operations are introduced for the boundaries.

First, there are addition ⊕, scalar multiplication ¯, and multiplication
⊗ [47], and later also division for polynomials with unity constant part
(see [48], p. 154) and what seems to be a general division tool, although
documentation is terse [49], p. 95. The algorithms of these is simi-
lar to those of Taylor models, except that there are the two separate
remainder terms vh and vg. Furthermore, there is a composition oper-
ation }. Intrinsics do not exist except for the square root [49], p. 96.
There are also versions of exp and log that are only applicable to the
special case of polynomials with constant parts exactly equal to 0 and
1, respectively [49], p. 96f, which are apparently more straightforward
than those shown in (2.2), (2.5) for the general case. It is possible in
principle to construct enclosures for intrinsics via their power series rep-
resentation and their composition; but more about this approach below.
Complete code lists of the supported operations exits in [47] and [49],
and a complete list of supported operations is in [50], p. 463f.
The reason for the clear separation into two remainder terms vg

and vh is that some of the operations in the BA method populate the
non-higher order vg remainder term, even if the argument(s) originally
have no such non-higher order term. One example is the composition
operation }, the rules for which are derived in detail in [47], p. 52ff; see
also [48] p. 154. It is used frequently in breaking the general problem
into smaller pieces - see for example [50], p. 457.
The reason for the phenomenon of loss of the high order is easily

understood: suppose we have two functions f1, f2 ∈ A of the form fi ∈
Pi+fh,i, where Pi are interval polynomials, and fh,i are the higher order
terms with bounds vh,i; so we assume they have no general term. Then
we have

(f1 ◦ f2)(x, y) = P1(P2(x, y) + fh,2(x, y)) + fh,1(P2(x, y) + fh,2(x, y)).

The action of P1 on P2 + fh,2 is merely executed via additions and
multiplications. However, examining the composition fh,1(P2(x, y) +



422 K. Makino, M. Berz

fh,2(x, y)) as the arguments decrease, we find

fh,1(P2(sx, sy) + fh,2(sx, sy))→ fh,1(P2(0, 0)) as s→ 0.

However, unless P2(0, 0) = 0, not much is known about this limit; it is of
course bounded by vh,1. So the limit as s→ 0 does not in general vanish.
Hence a remainder term is generated that does not have the high order
scaling property, which leads to a vg for the composition. For details in
their own notation, see for example [47], p. 52 and p. 105f as well as
[49], p. 91.
There are other operations that do not have the high-order scaling

property, in particular the Dilate-Translate operation, and the direct
use of intrinsics through their elementary power series. But perhaps
most importantly, the inclusion of functions by virtue of the fixed point
argument, which is the backbone of all proofs, also does not provide for
higher order enclosures, but populates the general remainder bound vg.
A more detailed analysis for this will be provided below.
The fact that the methods are not of high order is usually not of

concern for the problems addressed by Lanford, Eckmann, Wittwer and
Koch, mostly because the functions f are very simple, and the presence
of vg has only very limited possibility of affecting performance. Fur-
thermore, sharpness is of almost no significance since the questions are
connected to existence of solutions, and not very much on their bound-
ing. Furthermore, the vg that results from the enclosure of the fixed
point theorem is often of not much consequence, since usually the proof
is completed once enclosure is shown, and no further work is necessary.
This is in sharp contrast to some of the uses of fixed point arguments
in the Taylor model framework, for example in the time step for ODE
integration [24], [121], or for the solution of implicit equations necessary
for DAE solvers [72], [71], [74], where there are usually hundreds if not
thousands of such operations following each other, and great care must
be taken to retain optimal sharpness.
Let us study in more detail the central tool to provide the existence

proofs in the work of the authors is the following algorithm (see for
example [47], p. 3, [49], p. 51, [91], p. 22), which in slight variations
can be found in most of their papers.

Algorithm 7. (Existence proof by Lanford, Eckmann, Wittwer,
Koch)
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1. Write the mathematical problem as an at most two dimensional
fixed point problem A(f) = f over the domain [−1, 1] by using
operations supported by the arithmetic, including addition, scalar
multiplication, multiplication, division, composition.

2. Provide an approximate polynomial solution by iteration. Begin
with some P0, say P0 = 0, and iterate until a sufficiently good
approximate solution Pn is found (in practice typically around 20
to 30 times).

3. By hand and trial and error, inflate individual coefficient intervals
of Pn and/or the two remainder bounds vg and vh until it is possible
to show that the gradient function �∇f has norm bounded by a
q less than one on the inflated set. By the contracting mapping
principle, this asserts that a fixed point is included in the boundary
{vi, vg, vh}.

First let us study the determination of the approximate fixed point
by iteration, which is discussed for example in [47], p. 22, [91], p. 23.
First we observe that iterating Pn further usually leads to different co-
efficients in Pn+1. Thus the Taylor polynomial P ∗ of the fixed point
does in general not agree with Pn, unless by coincidence the polynomial
iteration converges in finitely many steps. However, this entails that
the boundary containing the fixed point must at least contain both Pn,
around which the boundary is placed, and the fixed point P ∗. Estimates
for this distance directly from the contraction factor and the difference
Pn+1 − Pn follow from standard arguments in Banach fixed point the-
ory, and are applied in various places in the work of the authors; see
for example [91]. Since usually these polynomials will already disagree
in lower order, the boundary around Pn containing the fixed point will
necessarily have vg 6= 0, or wide intervals for the lower order coefficients,
which amounts to the same.
We remark that it is possible to also provide an alternative approach

for the theorem proving work along the lines of employing Schauder’s
fixed point theorem instead of the Banach contracting mapping prin-
ciple; this is also the approach followed by Kaucher and Miranker in
the work on ultra-arithmetic discussed below. To this end, one would
have to construct a subfamily of functions in the boundary that is com-
pact and convex, similar to what is done for the fixed point arguments
we use in each time step of the Taylor model validated integrator[24],
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[112]. Compactness and convexity can usually be achieved along the
lines of standard arguments in functional analysis by considering classes
of suitable Lipschitz functions and employing the Ascoli-Arzela theorem
(see for example [24]). Whether or not this approach is indeed applica-
ble needs to be studied on a case-by-case basis. This approach is also
followed in the approach by Kaucher and Miranker discussed in the fol-
lowing section.

To give an example for the performance of the method for the so-
lution of a fixed point problem, we study the operator O(f) = (g −
f2 − 1)/2, which has a fixed point f = √g − 1 and can thus be used to
find an enclosure for the root function. We study the behavior for the
cases g1 = 2+ x and g2 = 3+ x. For simplicity we employ the Schauder
version of the fixed point theorem; the restriction to a suitable class of
Lipschitz functions can be done by establishing a crude a priori bound
on the norm of the fixed point operator for the domain in which we want
to apply it.

In its original form, this task lies outside of what can be done with the
strict definition of the arithmetic, which assumes that all arguments lie
in [−1, 1]. However, it is obvious that with a suitable scaling, the prob-
lem can be re-phrased in the proper form - a technique often employed
by the authors in the stage of mathematical and analytic manipulation
preceding the actual proof attempt. Beginning iteration with P1 = 0,
we iterate the polynomial part for n = 20 iterations, and then try to ob-
tain an enclosure of the solution by selecting a remainder bound I such
that A(Pn + I) ⊂ Pn + I over the domain in question. For the purpose
of comparison, we also show the results for the TM inclusion, obtained
by the inversion scheme from [21], [70], which in n steps produces a
polynomial that satisfies A(P ) = P exactly to order n. The results for g1
and g2 are shown in the upper pictures of Figure 13 for various domain
widths of [−2−j, 2−j]. It can be seen that the TM method provides a
high order enclosure that is only limited by the precision of the arith-
metic. On the other hand, apparently the asymptotic sharpness of the
BA approach reaches a certain minimum and does not fall below it as j
increases, as expected from the existence of a vg term in the boundary
enclosing the fixed point.

Apparently the sharpness of the asymptotic sharpness of the BA
method can be improved by executing a larger number of pre-iterations
in the test polynomial Pn. The lower pictures in Figure 13 show the
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results of the sharpness that can be achieved for 10, 20, 40, and 80
pre-iterations.
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Figure 13: The width of remainder intervals of fixed point problems
O(f) = (g − f2 − 1)/2 for g = 2 + x (Left) and g = 3 + x (Right). The
top pictures show the comparison between BA method and TM. The
bottom pictures show the BA performance depending on the number of
pre-iterations.

Again, for the purpose of the problems studied by the authors, the
fact that the enclosures obtained in the fixed point search are not overly
sharp is hardly a fundamental detriment. The typical problems are of
very small scale, usually involving only a few handfuls of elementary
operations; and most importantly, the fixed point operation has to be
carried out only once, and the error made in the enclosure will thus not
propagate to subsequent operations.
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On the other hand, more sophisticated techniques are necessary for
situations of complicated fixed point problems, or cases where they have
to be solved repeatedly. The situation is particularly striking for the
solution of implicit ODEs and DAEs as recently developed by Hoefkens
and Berz. In this framework, every step of the ODE solver requires some
local solution of a set of implicit equations [72], [74], and of course any
local error made will propagate through the subsequent solution. So
unless utmost care is taken, the errors made in the solution of implicit
equations will detrimentally affect subsequent steps. To address these
difficulties, the method in [21] provides a solution of both implicit equa-
tions and the (related) fixed point problems that has the higher order
scaling property. The method consists of three steps. The first is the
assertion of the existence of an inverse, which in higher dimensions is
a difficult questions for large domains because of the cancellation prob-
lem in the linear algebra. This is solved in a method with much reduced
dependency in [70]. For comparison, the method developed for such
purposes by Eckmann, Koch and Wittwer [47], p. 58 suffers from a se-
vere dependency problem and resulting pessimism in higher dimensions
because it is simply based on attempting to invert a matrix with wide
interval coefficients. Again, for the lower dimensions and simple func-
tional dependencies studied in the BA problems, this may likely not be
a limitation. The second step is the determination of a polynomial that
satisfies the implicit equation or fixed point problem up to order n ex-
cept for floating point errors (which is developed already in [10], [13],
[12], [17]). The final step is to provide a remainder bound self-enclosure
of the solution.

Although the method has never been used in this way and was ap-
parently not intended for this purpose, let us now address the question
to what extent the BA approach can be used for range bounding of non-
polynomial functions in global optimization. In particular, as mentioned
above, using the composition operation of the arithmetic, it is possible
to treat all intrinsic functions merely by representing them by their Tay-
lor series of the respective order, and adding a remainder term for the
BA domain [−1, 1]. After scaling, this allows to treat intrinsics over any
domain. Methods for intrinsics as derived above for TMs do not exist;
but it is obvious how to at least improve the approach by preparatory
steps of rephrasing the problem, for example using the double angle rule
for the trigonometric functions for range reduction at the cost of greater
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computational expense as suggested in recent work [91].
To study the characteristics of the performance of this method, we

implemented a suite of intrinsics based on this prescription. As a first
check, we come back to the function sin2(f)+cos2(f) for f(x) = exp(x+
0.5) and for f(x) = exp(x + 1), a function that has already been con-
sidered in Figure 1. We compare the bounding by naive intervals, BA
methods, and Taylor models in the domain with various sizes [−2−j.2−j]
for j = 1, 2, . . . , 7. We begin with a representation of the identity func-
tion as a BA or TM element. Figure 14 lists the width of the range
evaluated by naive intervals and the remainder intervals evaluated by
BA methods and Taylor models. The polynomial part of Taylor models
agrees with 1. However, the polynomial part of the BA methods deviates
from 1 as shown in the Tables 1 and 2.
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Figure 14: The width of intervals and remainder intervals by the BA
method and TM for sin2(f) + cos2(f) with f = exp(x + 0.5) (left) and
f = exp(x+ 1) (right).

Next we try to assess the capability of the BA method by applying it
to the small three dimensional function f1(x, y, z) defined in (5.2). We
study whether the evaluation of the function is possible for 0 < x ≤ 2,
0 < y ≤ 2, and −2 ≤ z < 0 or 0 < z ≤ 2. For the choice of the reference
point, we scan all points in the region in increments of 0.1, resulting in
20 scanning points for each x and y, and 40 scanning points for z, for a
total of 20 × 20 × 40 = 16, 000 grid points. We set the domain for the
function evaluation around each scanning point with half width 10−6,
and both the naive interval evaluation and the Taylor model evaluation
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Exponent Coefficient of Polynomial
TM BA 3-rd order BA 5-th order

0 1. 0.9406417675328824 1.009226797576015
1 0.8557824711577218 -.1714972387102398E-01
2 4.891630583584551 -.3001830876976634
3 12.51227485245093 -1.125746172927255
4 -2.393997670129284
5 -3.309842436880216

Table 1: Approximating polynomials for the function sin2(f) + cos2(f)
with f(x) = exp(x+0.5) obtained with Taylor models as well as the BA
approach based on intrinsics from composition to orders 3 and 5.

Exponent Coefficient of Polynomial
TM BA 3-rd order BA 5-th order

0 1. 6.774729461972259 0.5467625825910201
1 40.38408779149519 -2.809445053719823
2 125.6186556927297 -2.732473802461288
3 240.9844535893918 29.68274767382299
4 163.8836731026558
5 483.4944251018200

Table 2: Approximating polynomials for the function sin2(f) + cos2(f)
with f(x) = exp(x+ 1) obtained with Taylor models as well as the BA
approach based on intrinsics from composition to orders 3 and 5.

with 5-th order and 9-th order perform the computation without any
difficulty. On the other hand, the BA evaluation can never succeed
for the computation at any of the scanning point, and even reducing
to a narrower domain with half width 10−8 cannot help the situation
anywhere for the studied orders of 5, 9 and 11.
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Figure 15: Width of remainder error intervals determined by the BA
method and TMs and range enclosures by naive intervals for the 2d
function f1−2(x, y) (Left) and the 3d function f1−3(x, y, z) (Right).
The expansion points are (1, 0.4), (1, 0.5), (1, 1) for the 2d case, and
(0.9,−0.2, 0.2), (0.9, 0, 0.2), (0.9,−0.5, 0.3) for the 3d case, from top to
bottom.
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Thus the function was simplified until a point was reached where it
could be evaluated with the intrinsic-enhanced BA method. Changing
the above three dimensional function to the following two dimensional
and three dimensional ones, we successfully found expressions for our
purpose:

f1−2(x, y) =
tan(3y)

y +
√
x
− sinh(0.5 + 6y),

which is defined for x > 0, y > 0, and

f1−3(x, y, z) =
tan(3(y − z))

y + log(0.5 + x+ 2z)

− exp(0.5 + z) · sinh(0.5 + 5y(2 + x− z)),

which is defined for 0.5 + x+ 2z > 0 and y + log(0.5 + x+ 2z) 6= 0.
For the two dimensional function f1−2(x, y), we scanned for 0 < x ≤

2, 0 < y ≤ 2 in increments of 0.1. Both the naive interval evaluation and
the Taylor model evaluation are possible around all the 20 × 20 = 400
scanned points. However, the BA evaluation is only possible for x ≥ 0.4
and y ≤ 1.5, altogether at 17× 15 = 255 points. In the area where the
BA evaluation is possible, it shows rather large over-estimation when y =
0.5. Also, y = 1.5 leads to substantial growth of the over-estimation. We
pick the following three points, (x0, y0) = (1, 0.4), (1, 0.5) and (1, 1), to
compare the size of the range enclosures computed by the naive interval
method, and the remainder interval computed by the BA evaluation
with 6-th and 9-th order and the Taylor model computation with 6-th
and 9-th order in the domain (x0, y0)+ [−2−j, 2−j]2, as shown in the left
of Figure 15.
For the three dimensional function f1−3(x, y, z), we scanned with

increment 0.1 for −2 ≤ x, y, z ≤ 2, except for the region where the
function cannot be defined; the total number of points where the arith-
metic could be carried out is 38, 233 points. Again, both the naive
interval evaluation and the Taylor model evaluation are possible around
all the valid points scanned. On the other hand, the BA evaluation
with domain half width 10−8 and 11-th order is only possible at 12, 988
points. As an example, we show the resulting enclosures for the points
(x0, y0, z0) = (0.9,−0.2, 0.2), (0.9, 0, 0.2), and (0.9,−0.5, 0.3) in the right
pictures of Figure 15; the other parameters are similar to those of the
two dimensional case. It can be seen that in this example, the remainder
intervals of the BA method are about as large as the range enclosures
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f1 f1−2 f1−3
Interval 100% 100% 100%
TM Order 5 100% 100% 100%
TM Order 11 100% 100% 100%
BA Order 5 0% 34% 22%
BA Order 11 0% 64% 34%

Table 3: Percentages of function evalutations that could be carried out
successfully by various methods. Domain half widths were 10−6 for
Interval, TM and BA of order 5 and 10−8 for TM and BA of order 11.

evaluated by naive intervals. The behavior of the BA method using the
composition-based intrinsics is summarized in Table 3.

Altogether, the BA algorithms allow, probably for the first time, to
prove existence of solutions of fixed point problems in functions spaces.
They have been applied very successfully for numerous problems that
are very significant in the wider mathematical community, beginning
with the work on Feigenbaum and other universality, and branching out
into several other directions. The size of these problems, however, is
comparatively small, and the inclusions of functions and the resulting
inclusions of the solutions of the fixed point problems do usually not
have the high order enclosure property that TMs have. The lack of the
high order enclosure property also has two other consequences. First,
the method is not a Taylor method, since the interval coefficients do not
necessarily enclose the Taylor expansion of the function. Second, the ef-
ficiency of suppression of the dependency problem, which is achieved so
well with Taylor models, is reduced, since it is possible to have two rep-
resentations of the same function by two different interval coefficients,
so that cancellation in the coefficients will usually not happen fully.

In its current state, the BA methods are by no means able to solve
the original problem that the TM methods were developed for, of de-
termining the dependence of the solution of a nonlinear ODE on initial
conditions, and then subjecting this resulting flow to a normal form
transformation and subsequent global optimization of the defect func-
tion. Specifically, there is no theory of intrinsic functions providing
higher order enclosures. There are no applications to validated global
optimization, or to the suppression of the dependency problem or bene-
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ficial treatment of higher dimensions. There is no application to quadra-
ture. There is no theory of integration of ODEs, let alone suppression of
the wrapping effect problem. There is no treatment of high-order multi-
variate inversion of functional dependencies, and advanced applications,
like the solutions of DAEs that have recently become possible with Tay-
lor model methods are not possible within the framework. The codes of
the original work until around 1990 for problems in two variables and
apparently order 19, in a straightforward coefficient addressing scheme
are published in their entirety in [47], [49]; they do not seem to be avail-
able except for scanning the text and performing character recognition,
which should rather easily reproduce the original compilable FORTRAN
source. Updated implementations of the methods also exist; see for ex-
ample [91].

8. The Ultra-Arithmetic of Kaucher, Miranker et al.

An arithmetic involving addition, subtraction, multiplication, division
and integration on various spaces of interval polynomials were devel-
oped under the name ultra-arithmetic by Kaucher and Miranker et al.
It was applied to the solution of one dimensional fixed point problems for
the solution of implicit equations, and in particular ODEs and bound-
ary value problems. For good introductions to the matter, see [86],
[78], [80] and [83]; the book [86] also contains an extensive treatment
of the fixed point theorems forming the mathematical backbone of the
existence and uniqueness proofs that can be employed. Other relevant
papers are [55], [29], [122], [54], [82], [81], [80], [123]; see also [85], [84].
In our opinion, the work is particularly noteworthy for the realization
of the seamless connection of explicit or implicit differential equations
or boundary value problems, and algebraic equations, by virtue of rec-
ognizing the anti-derivative as an elementary operation. This approach
is much in the spirit of the study of differential algebras, i.e. algebras
equipped with a derivation operation obeying the conventional sum and
product rules. The study of these structures has been developed to
an advanced level [158], [159], [95], [96] within the wider framework of
symbolic computation and is also employed in the (non-validated) poly-
nomial tools developed by the authors for the field of beam physics; for
a summary see [17].
The methods of ultra-arithmetic are based on the projection into
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spaces spanned by various suitable basis functions; for validation pur-
poses, the coefficients are chosen as intervals. The various spaces and
the projections into them are referred to as “roundings”, in obvious anal-
ogy to the similar projection of a real number into its decimal digits.
The rounding schemes discussed include monomial powers, Chebyshev
polynomials [83], [55], Bernstein polynomials [55], [122], [123], Legendre
polynomials [55], Lagrange and Newton interpolation polynomials [55],
spline rounding [86], and a variety of other types as well as “mixed”
representations [86]; a comprehensive summary is provided on p. 38 of
[86]. An actual implementation is described only for the transparent
case of polynomial bases and dimension 1; see section 7.1.4 in [86]. In
this case, addition and subtraction merely corresponds to the addition
and subtraction of intervals with polynomial coefficients. Multiplication
is carried out by first generating a polynomial of order 2n, and then
“rounding” each term of orders n + 1 to 2n into the lower orders, i.e.
approximating it trough a polynomial following the prescription of the
approximation method used. Because of linearity of the approximation,
in practice this can be achieved via a pre-computed table listing the
respective low-order coefficients for each of the high-order terms; for an
example, see p. 43 in [86]. For higher dimensions, the table represen-
tation would have to be replaced with another method because of the
exceedingly large number of polynomials of orders (n+ 1) and 2n. The
integration operation is performed conceptually similar to the multipli-
cation by first generating a polynomial of order (n + 1) representing
the integral of the polynomial in question. We will later refer to vari-
ous examples performed in Taylor rounding; for an example executed in
Chebyshev rounding, see for example p. 85 in [86].

However, in practice a fundamental limitation appears here, since
the projection into basis functions usually does not commute with mul-
tiplication and other elementary operations. A special case is the Taylor
representation, because for two functions f1 and f2, the Taylor repre-
sentation for the product f1 · f2 can be obtained merely from the Taylor
expansions of the factors (by multiplying the polynomials and discard-
ing the orders n + 1 to 2n). But for other “roundings”, usually the
correct representation of the product f1 · f2 can not be inferred from
the representations of the factors f1 and f2.For example, the Chebyshev
polynomial of a product f1 · f2 of two functions f1 and f2 can in general
not be obtained from the Chebyshev representations of the factors f1
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and f2, and the prescription on how to perform multiplication above
apparently does not attempt to do so in practice. As a consequence, the
methods can not be used to compute Chebyshev or other non-Taylor
representations of extended functions, and the approximation will be
sub-optimal. Thus the well known advantage of non-Taylor approxima-
tions cannot generally be explicitly maintained within the implementa-
tion of the arithmetic. Another potential limitation for the Chebyshev
and other non-Taylor rounding schemes is that they may lead to an
increase in the magnitude of the coefficients, since low order approxima-
tions of high-order monomials like xn usually involve larger low order
terms cancelling each other. Over extended calculations, this will likely
increase the computational error in the coefficient arithmetic as well as
the difficulty of finding enclosures in fixed point arguments like those
discussed below.

Division is described on p. 214ff in [86] for the one dimensional case,
and consists of a sequence of steps. The first is the determination of the
interval Taylor series coefficients of the multiplicative inverse by interval
arithmetic. The computation is carried out in interval arithmetic and
leads to interval coefficients for the approximate inverse. The second
step consists of an iterative refinement of the solution by a Newton-
like method, which may reduce the width of the interval coefficients
and assures that the right projection is carried out. The third step at-
tempts to validate the obtained approximation ṽ of the inverse of q by
a self-inclusion of a Newton-like operator similar to the one used for the
refinement. It is interesting to note that the validation of the inverse
of the object q will likely fail if ||1 − ṽq|| ≥ 1, and it may also fail
for other cases. In particular, in higher dimensions and higher orders,
which naturally involve more extended interval arithmetic, this is more
likely to happen. This is in contrast to the computation of the inverse of
the Taylor model, which does not require the success of a self-enclosure
method for validation.

Miranker et al. [55], [122], [123] provide an alternative, albeit expen-
sive, mechanism to preserve the quality of the approximation in light
of the non-commutation of elementary operations and “rounding” dis-
cussed above. The authors address the general question of obtaining
the tightest possible enclosure of the product of interval polynomials
[p1, p2] and [q1, q2], where p1,2 and q1,2 are conventional polynomials. In
a conceptually analogous way the multiplication of intervals with poly-
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nomial coefficients can also be studied. The method is not based on any
particular rounding, but on the observation that if

P = {p · q : p ∈ [p1, p2], q ∈ [q1, q2]},

then P ⊂ [r1, r2] for polynomials r1and r2 if

r1(x) ≤ min(p1(x)q1(x), p1(x)q2(x), p2(x)q1(x), p2(x)q2(x)} and
r2(x) ≥ max(p1(x)q1(x), p1(x)q2(x), p2(x)q1(x), p2(x)q2(x)}.

The search for optimally tight r1 and r2 is simplified by transforming the
polynomials p1,2 and q1,2 into Bernstein form, since then a priori bounds
for the products can be readily obtained from the well-known fact that
a polynomial in Bernstein form is bounded by the maxima and minima
of its coefficients. This can be interpreted as a linear programming
problem, i.e. a linear optimization problem with linear constraints [55],
[122], [123]. It is apparent that while this approach is optimal and
in fact to a certain extent relieves the user from a choice of rounding,
it is also very involved computationally, especially if attempted in a
multi-dimensional setting, because of the necessary linear programing
tools using simplex or related methods that are required to obtain the
polynomial coefficients.
In a conceptually similar way to multiplication, it is also possible

to develop schemes for division: see [55], [122], [123]. Specifically, let
0 < b ≤ p1(x), and let P−1 = {p−1 : p ∈ [p1, p2]}. An apparent upper
bound for the quotient is b−1, and, as the authors point out, this is also
sometimes the only one. To obtain a better bound requires finding an
optimally small q2 such that 1 ≤ p1(x) · q2(x). The resulting search for
the coefficients of q2 is similar to the case of multiplication discussed
above, and in Bernstein representation again leads to linear program-
ming problem.
It is interesting to note that in the context of “rounding” into sub-

spaces, neither the Taylor model (TM) arithmetic nor the boundary
arithmetic (BA) correspond to the obvious Taylor “rounding” in ultra-
arithmetic. Rather, besides the necessary Taylor monomials in the basis,
there is one additional term describing the higher order TM remainder
bound, and two additional terms describing the higher order and “gen-
eral” BA remainder bounds; the rounding operation following the con-
ventional elementary operations populates these terms in a characteristic
way. Because of the different arithmetic rules, these terms cannot merely
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be combined with the coefficient of the constant part (see for example
p. 121 of [86]), or (at least in the multivariate setting) with any other
monomial of the Taylor basis. In fact, lumping TM and BA remainder
terms into the constant part, as done in the ultra-arithmetic, has the
disadvantage that this interval enters coefficients of all orders over the
course of further computations, and thus over extended operations leads
to an unnecessary widening of the interval coefficients.
There is no treatment of common intrinsic functions. It is mentioned

in various situations (e.g. [83]) that they can be obtained as the result
of integration of the well-known characteristic ODEs that are comprised
of only elementary operations. While this is conceptually true, it may
be practically of limited use. For wide interval arguments of the intrin-
sics, the resulting fixed point algorithms for the ODEs may likely fail to
find inclusions; similar problems may occur for arguments of the intrin-
sics that are themselves objects of the ultra-arithmetic. There is also
no discussion at all of possible uses for UA for the question of global
optimization.
As mentioned above, the key algorithm employed in the UA is an it-

erative scheme for the validation of approximate solutions of fixed point
problems, which we take from [86], pages 194-195:

Algorithm 8. (Approximation and Validation of Fixed Point
Problem in UA by Kaucher and Miranker)

1. Write the problem at hand as a one dimensional fixed point prob-
lem A(f) = f by using operations supported by the arithmetic,
including addition, subtraction, multiplication, division, and inte-
gration.

2. Provide an approximate polynomial solution by iteration. Begin
with some P0, say P0 = 0, and iterate Pn+1 = A(Pn) until a
sufficiently good approximate solution Pn is found; as a stopping
criterion, use ||Pn+1 − Pn|| ≤ ||Pn|| · 10−8.

3. Switch to validated computation, and from now on consider poly-
nomials as having interval coefficients.

4. Continue iteration with Pn by setting Pn+1 = A(Pn), until Pn+1 ⊂
Pn.

5. If a self-enclosure has been found, continue iteration to improve
the quality of the solution.
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Apparently the algorithm has great similarity to the one used in the
context of boundary arithmetic (BA) by Lanford, Eckmann, Wittwer
and Koch (7), with the exception that the stopping criterion in the ap-
proximation step is not a fixed number of iterations, but rather is based
on relative accuracy. However, as in the BA algorithm, and different
from the TM approach for implicit functions and fixed point problems
[21], [70], in general the polynomial approximation Pn found in Step 2
will not be an exact fixed point, and hence the Taylor polynomial P ∗

of the fixed point does in general not agree with Pn. However, this en-
tails that the enclosure containing the fixed point must at least contain
both Pn, around which the boundary is placed, and the fixed point P ∗.
Thus the resulting enclosure will necessarily have non-tight interval co-
efficients for terms of low order. Overall, the example given in Figure
13 also is characteristic of the behavior of the BA fixed point method.

From our reading and the examples provided in [86], the inclusion
requirement in the validation step means inclusion of matching interval
coefficients. The approach could be generalized to mean just a set the-
oretical inclusion of the family of functions enclosed by each of the Pn,
which would however require a bounding scheme for polynomials, the
overestimation of which can potentially increase the difficulty of valida-
tion. Perhaps because of this difficulty, this approach does not seem to
have been followed in the examples in the literature.

In any case, the termination criterion as specified is likely going to
fail to provide termination even in many cases where the operator is
known to be contracting in a conventional sense. For example, this will
be the case if one begins iteration with a polynomial that satisfies the
fixed point problem exactly up to the order of interest n. In this case,
because of inclusion monotonicity, the size of the coefficient intervals
will necessarily grow in each step, regardless of the contractivity of the
operator; thus self-inclusion will not be possible to achieve. The sit-
uation is expected to be similar if the polynomials Pn and Pn+1 are
sufficiently close to each other; which for the purpose of finding a sharp
enclosure is of course desirable. Another problem lies in the large num-
ber of coefficient enclosures that have to be achieved, which especially
in a multidimensional setting may decrease the odds of success; on the
other hand, in the TM approach, only one remainder bound will have
to be checked for enclosure.

In the light of these observations, it is not clear to what extent the
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stopping criterion and related algorithms have been extensively tested
on a large number of practical examples. The literature does not provide
much information about such tests; and indeed, for most examples being
given (for example the validations on p. 117 of [86] and on p. 139 of the
same book), various manual reformulations of the algebraic structure
of the problem are performed until a set of interval coefficients provid-
ing a self-enclosure can be determined directly. The question of what
choice of interval coefficients may provide a self enclosure automatically
does not seem to be conclusively studied; however, especially for precise
algorithms, or generalizations to multivariate cases (which are not stud-
ied) where the number of coefficients can easily lie in the thousands,
this question is of prime importance for the practical usefulness of the
method.

The situation becomes particularly difficult in case, where several
validation steps have to be performed successively, for example, because
the domain has to be broken into smaller pieces as necessary when solv-
ing ODEs over extended domains.In this case, the results of the previous
steps which will serve as initial or boundary conditions of the new steps
will necessarily be themselves intervals, and whatever strategy is chosen,
these intervals have to be enclosed. In the one-dimensional systems stud-
ied in the UA framework, this is expected to be doable in a reasonable
fashion, but in a multi-dimensional setting, it leads to a manifestation
of the wrapping effect problem common to validated ODE solvers [127],
[171], [53], [108], [58], [110], [107], [37], [109], [142], [8], [38], [112], [24],
[135], [102], [138], [137], [136], [73], [121]. Within the UA method, no
strategies are developed to alleviate or deal with this problem.

9. Conclusion

The main aspects of the Taylor model (TM) method have been reviewed,
including details on the treatment of intrinsics, their implementation
in a computer environment, and references to the main algorithms for
their use. The method is then compared to a variety of other state of
the art tools. When compared with the centered forms (CF) and mean
value form (MF) for purposes of range bounding, it is found that first
order TMs behave similar to CF which in turn behaves generally better
than MF, although the first order TMs seem to have a tendency to out-
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perform CF by a slight margin. However, higher order TMs are found
to suppress the dependency problem significantly better than either CF
and MF. When used for range bounding by mere interval evaluation of
the polynomial part of the Taylor polynomial, the approximation order
of the range enclosures agrees with that of CF and MF, but the result-
ing sharpness is usually significantly higher for higher order TMs; and
the effect is more pronounced the more dependency the function under
consideration exhibits.

It is shown that the remainder bound of the TM of order n scales
with order (n+ 1), and this behavior is also observed in practical com-
putations. When TMs are combined with advanced bounders for the
polynomial part such as the linear dominated bounder LDB [120] or
other tools [133], [134], the range bounding of TMs leads to an order
(n+ 1) method. However, the main purpose of the TM methods in our
opinion lies not in range bounding, which is tantamount to projecting
back to an interval. Rather, it lies in the ability to provide validated
approximations of complicated functional dependencies with an accu-
racy that scales with a high order of the domain width, and in various
advanced algorithms that obtain such high-order dependencies for solu-
tions of ODEs, fixed points, implicit equations, and other tasks.

The interval automatic differentiation (IAD) method can also be
used to obtain bounds for the remainder of a Taylor expansion. However,
different from the TM approach, this method suffers from a dependency
problem that is usually significantly worse than that of the original func-
tion. As a consequence, the practical performance is often significantly
affected, and in general for sufficiently complicated functions, the sharp-
ness of the resulting remainder bounds cannot come close to those that
can be obtained via TMs.

The Boundary Arithmetic (BA) of Lanford, Eckmann, Wittwer and
Koch provides enclosures of a functional dependencies by an interval
polynomial as well as a high-order and a “general” (i.e. low order)
remainder bound. The operations of addition, subtraction, multipli-
cation, and composition are developed. There are no advanced tools
for the treatment of intrinsics. The methods have been used for auto-
mated theorem proving of comparatively small problems via Banach’s
fixed point theorem. The “general” remainder bound is populated by
the composition operation as well as the frequently used fixed point
methods.
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Applications to global optimization have not been done or envi-
sioned; furthermore, the absence of intrinsics all but prevents such use,
and the use of the composition operation leads only to low-order enclo-
sures and cannot compensate for the lack of dedicated intrinsics. Differ-
ent from the TM methods, the solution of fixed point problems or the
related implicit equations is not performed to high orders. There is no
application to the solution of ODEs.

The Ultra-Arithmetic (UA) of Kaucher, Miranker et al. provides en-
closures of functional dependencies by linear combinations of basis func-
tions with interval coefficients; the most prominent use is also in interval
polynomials. The operations of addition, subtraction, multiplication, di-
vision (with certain limitations) and integration are developed. An ex-
tensive discussion of fixed point methods leads to applications in explicit
and implicit one dimensional ODEs. The practical extension to higher
dimensions is limited by the lack of any treatment for the wrapping prob-
lem, which will necessarily occur in the multistep settings necessary to
tackle realistic problems.

Intrinsics are not developed, although it is stated that these could be
obtained from the ODE tools. The practical usefulness of this approach,
however, is expected to be limited. For wide interval arguments of the
intrinsics, the resulting fixed point algorithms for the ODEs may likely
fail to find inclusions; similar problems may occur for arguments of the
intrinsics that are themselves objects of the ultra-arithmetic, which is
necessary for the use in a general setting. Applications to global opti-
mization have not been carried out or envisioned, and the absence of
advanced intrinsics also prevents such use.

Both the BA and UA methods rest on the use of fixed point argu-
ments to solve the questions of interest, which in the BA case lie mostly
in the domain of computational theorem proving, and in the UA case
mostly relate to generic studies of implicit equations and ODEs. Differ-
ent from the TMmethods, the polynomial truncations of the fixed point
solutions are not obtained exactly, and thus the solution is not obtained
with high order accuracy. It is noteworthy that there is a far-reaching
lack of referencing; for example, the Kaucher-Miranker book on the UA
method [86] contains less than 20 references, many just to the authors
themselves; the information and references in Moore’s 1979 book [128]
are not referred to. A similar situation exists in the works about the
BA methods; in particular, there is almost no cross referencing between
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these two methods themselves that were developed in close temporal
proximity.
The pertinent properties of the various methods are summarized in

Table 4. We study the following properties, and list in parentheses the
identifier of the respective row in the table; the order of approximation
by enclosure functions as in Theorem 1 (Order); the order obtained for
range enclosures (Range Order); whether or not the method in itself
provides suppression of the dependency problem for typical computer
functions (Dep Supp);the dimension to which the theoretical arguments
have been developed (Dim Theory); the dimension of the implementa-
tion (Dim Impl); whether or not common intrinsic functions are sup-
ported (Intrinsics); whether tools for global optimization were developed
(Glob Opt); if a theory for fixed point problems is developed, to what
order fixed points are enclosed (FP Order); and if a theory exists for
ODE solving, to what order in initial conditions wrapping is suppressed
(ODE Wrap).

TM I CF MF IAD BA UA
Order (n+ 1) 1 2 2 (n+ 1) 0 0
Dep Supp yes no no no no n/a n/a
Range Order 2,..,(n+ 1) 1 2 2 2,..,(n+ 1) n/a n/a
Dim Theory ∞ ∞ ∞ ∞ ∞ ∞ low
Dim Impl high high high high high 2 1
Intrinsics yes yes yes yes yes no no
Glob Opt yes yes yes yes no no no
FP Order (n+ 1) 1 n/a n/a n/a 0 0
ODE Wrap (n+ 1) n/a n/a n/a 1 n/a 0

Table 4: Brief summary of the comparison of the TM method with
various other methods.
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