Available online at www.sciencedirect.com

NUCLEAR
° INSTRUMENTS
SCIENCE(dDIRECT & METHODS
- IN PHYSICS
e RESEARCH
ELSEVIER Nuclear Instruments and Methods in Physics Research A 519 (2004) 53-62 SectionA

www.elsevier.com/locate/nima

New approaches for the validation of transfer maps using
remainder-enhanced differential algebra

M. Berz**, K. Makino®

& Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
® Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801-3080, USA

Abstract

High-order transfer maps of particle systems play an important role in the design and optimization of particle optical
systems, both for satisfying the basic design needs as well as for the correction of aberrations and non-linear effects, and
the differential algebraic (DA) method has proved useful for this problem. Since the high-order maps represent an
approximation of the motion, in particular in strongly nonlinear cases in which convergence of the maps may be slow, it
is important to know the quality of the approximation. Recent work has shown that it is in principle possible to not
only propagate the conventional differential algebraic high-order objects, but also adjoint remainder terms that
rigorously account for any errors made by the approximation by the Taylor expansion over the domain of interest.

In this paper we describe various recent enhancements of the original method of computations with remainder
bounds that allow the control of the errors made both by the integrator scheme and any possible inaccuracy of the
description of the system.

Using suitable extensions of the DA and Taylor model operators used in the Schauder fixed point theorem
formulation of the ODE problem leads to a very transparent approach for the calculation of enclosures for the
intergration errors. Under the presence of a scheme for effective treatment of sparsity in the DA vectors, such as the
method available in the code COSY INFINITY, the additional resources necessary for this algorithm are very modest.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We begin with a recent enhancement of the
original DA methods that allows to not only
obtain transfer maps to high order, but at the same
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time and with very limited additional computa-
tional effort also determine fully rigorous bounds
for the remainders in the Taylor expansion of a
given order. The approach is based on utilizing the
three differential algebraic (DA [1]) operations of
addition, multiplication, derivation and their
inverses on so-called Taylor model [2-4] objects
for the direct solution of the Picard fixed point
form of the differential equation. Employing
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Schauder’s theorem and compactness and con-
vexity arguments for certain function spaces
described by Taylor models, it is possible to
construct verified integrators that perform a
rigorous error analysis of their steps [3].
Compared to other verified integrators, the
ones developed here avoid the so-called wrapp-
ing effect problem [6-8], which hampers conven-
tional such approaches, and would otherwise
prevent the treatment of typical beam physics
problems.

One of the applications of the availability of
maps with rigorous remainder bounds is the
determination of optimal generators for symplectic
tracking [9—11]. Besides the conventionally known
four generators, there is an infinite family of
others, all of which can be determined with DA
methods. It is possible to identify those of the
family that yield optimal symplectification in the
sense of a metric that is invariant under symplec-
tomorphisms. This assures that the generator is
not only optimal for a given Poincare sections, but
simultaneously for all others around the ring, and
that it works as well for the millionth turn as it
does for the first.

Using the rigorous remainder bounds of
maps, it is possible to not only assure the existence
of the generators locally, but to determine regions
of phase space over which with certainty the map
can be represented by a given generator. In
practical examples it is found that as expected,
the optimal generators maximize this region
[11,12].

The methods are particularly useful for the
study of systems where conventional symplectic
tracking via kick approximations is not possible
because the Hamiltonian cannot be decomposed
into two explicitly solvable parts, as in all split-
operator approaches. This is for example the case
when the so-called kinematic correction is rele-
vant, as in the case of the various accelerators and
rings for neutrino machines. Symplectification can
in this case be achieved with the use of generating
functions; but because of the inherent strong non-
linearity, the use of optimal symplectification is of
prime importance. Various examples of the per-
formance of the methods for such machines are
given in [11].

All the methods discussed here have been
implemented within the DA environment of
COSY INFINITY [13]. In order to facilitate
interaction with other language environments,
the COSY system has been ported to a language
independent environment, which allows auto-
matic code generation for use as F90 and C++
objects [4]. The advantage of the resulting tight
and robust wrappers is that most of the inherent
speed and efficiency of the original FORTRAN-
based COSY tools is maintained, which has not
been possible with native object oriented imple-
mentations.

2. Differential algebras

The differential algebraic approach [14-16] took
the computation of Taylor maps

Zp = M(Z)) (M

of dynamical systems from the customary third
[17-20] or fifth order [21] all the way to arbitrary
order in a unified and straightforward way. The
Taylor maps have many applications, as many of
the physical quantities that are encountered in
practice are more or less directly connected to
Taylor coefficients. Since its introduction, the
method has been widely utilized in a large number
of new map codes [13,22-28]

The basic idea behind the method is to bring
the treatment of functions to the computer in a
similar way as the treatment of numbers. In a strict
sense, neither functions (for example, C*) nor
numbers (for example, the reals R) can be treated
on a computer, since neither of them can be
represented with the finite amount of information
that can be stored on computers. However, from
the early days of computers we are used to
dealing with numbers by extracting information
deemed relevant, which in practice usually means
the approximation by floating point numbers
with finitely many digits. In a formal sense this
is possible since for every one of the operations
on real numbers, like addition and multiplica-
tion, we can craft an adjoint operation on the
floating point numbers such that the following
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diagram commutes:

abeR T abcFP
_—
* ® (2)
_—

axb T a®b

Of course, much to the chagrin of those doing
numerics, in reality the diagrams commute only
“approximately”, which typically makes the errors
grow over time.

The approximate character of these arguments
can be removed by representing a real not by one
floating point number, but rather by an interval of
floating point numbers providing a rigorous upper
and lower bound [6,8,29,30]. By rounding opera-
tions down for lower bounds and up for upper
bounds, rigorous bounds can be found for sums and
products, and adjoint operations can be made such
that the above diagram commutes exactly. In
practice, while always maintaining rigor, the method
sometimes becomes rather pessimistic, as over time
the intervals often have a tendency to grow.

Historically, the treatment of functions in
numerics has been done based on the treatment
of numbers; and as a result, virtually all classical
numerical algorithms are based on the mere
evaluation of functions at specific points. As a
consequence, numerical methods for differentia-
tion, which are so relevant for the computation of
Taylor representations of the map (1), are very
cumbersome and prone to inaccuracies because of
cancellation of digits, and not useful in practice for
our purposes.

The success of the DA methods is based on the
observation that it is possible to extract more
information about a function than its mere values.

fi9

9.1 9

Indeed, considering the commuting diagram in
Eq. (2), one can demand the operation T to be the

T
—_
+5_,"/l
—

extraction of the Taylor coefficients of a pre-
specified order n of the function. In mathematical
terms, 7 is an equivalence relation, and the
application of T corresponds to the transition
from the function to the equivalence class com-
prising all those functions with identical Taylor
expansion to order n. Since Taylor coefficients of
order n for sums and products of functions as well
as scalar products with reals can be computed
from those of the summands and factors, it is clear
that the diagram can be made to commute; indeed,
except for the underlying inaccuracy of the floating
point arithmetic, it will even commute exactly. In
mathematical terms, this means that the set of
equivalence classes of functions can be endowed
with well-defined operations, leading to the so-
called Truncated Power Series Algebra (TPSA)
[14,15].

This fact was realized in the first paper on the
subject [15], which led to a method to extract maps
to any desired order from a computer algorithm
that integrates orbits numerically. Similar to the
need for algorithms within floating point arith-
metic, the development of algorithms for functions
followed, including methods to perform composi-
tion of functions, to invert them, to solve non-
linear systems explicitly, and to introduce the
treatment of common elementary functions
[31,32]. Very soon afterwards it became apparent
[33,16] that this only represents a half-way point,
and one should proceed beyond mere arithmetic
operations on function spaces of addition and
multiplication and consider their analytic opera-
tions of differentiation and integration. This
resulted in the recognition of the underlying
differential algebraic structure and its practical
exploitation [1], based on the commuting diagrams
for addition, multiplication, and differentiation
and their inverses:

F,G f T F
J@,@@,@ 0,0” l Jao,a— 3)
FSGFOG  of,07'f T doF, 04 F

In passing we note that in order to avoid loss of
order, in practice the derivations have the form
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0= h-d/dx;, where h is a function with /(0) = 0.
As a first consequence, it allowed to construct
integration techniques to any order that for a
given accuracy demand are substantially faster
than conventional methods [32]. Subsequently, it
was realized that the differential algebraic opera-
tions are useful for a whole variety of other
questions connected to the analytic properties of
the transfer map [31]. It was possible to determine
arbitrary order generating function representa-
tions of maps [34,32]; factorizations into Lie
operators [35] could be carried out for the first
time to arbitrary order [32]; normal form methods
[36,37] could be performed to arbitrary order
[38,32]. And last but not least, the complicated
PDE:s for the fields and potentials stemming from
the representation of Maxwell’s equations in
particle optical coordinates could be solved to
any order in finitely many steps [1].

Of course the question of what constitutes
“information deemed relevant” for functions does
not necessarily have a unique answer. Formula
manipulators, for example, attack the problem
from a different perspective by attempting to
algebraically express functions in terms of certain
elementary functions linked by algebraic opera-
tions and composition. In practice the Achilles
heel of this approach is the complexity that such
representations can take after only a few opera-
tions. But compared to the mere Taylor expansion,
they have the advantage of rigorously representing
the function under consideration. In the following
we will show how such rigor can be maintained
without the computational expense of formula
manipulation by a suitable augmentation of the
Taylor approach.

3. Remainder-enhanced differential algebras

Compared to techniques of formula manipula-
tion and to other rigorous mathematical efforts on
computers, the Taylor DA methods do not make
any statements about the remainder of Taylor’s
formula. By extending the theory, it is possible to
obtain rigorous bounds for the remainder terms.
In this endeavour, we demand to be fully
mathematically rigorous in that no approxima-

tions are allowed. All this is achieved by keeping
the idea of providing commuting diagrams for
elementary operations, however, the objects on
which these operations are to be carried out are
not mere truncated Taylor series any more, but
rather new objects called Taylor models [2,3].

Furthermore, in order to keep the mathematical
rigor for the solution of the differential equations
defining the maps of the systems, we had to derive
a new method to perform integration [5]. As in
many other automated approaches for integration
of functions and differential equations on compu-
ters, we utilize differential algebraic techniques for
this purpose. While in the conventional computa-
tion of Taylor maps, in principle also conventional
integrators can be used, this is not the case here,
and one is more or less forced to develop new
techniques. Our method relies on an inclusion of
the remainder term of a Taylor expansion in an
interval. However, to quell misunderstandings
from the beginning, it is important to note that
our approach is not equivalent to interval methods
that have been applied extensively for many types
of verified calculations [6,8,29,30]. Our method
provides remainder bounds with an accuracy that
does not scale merely linear with the domain
interval, but rather as a high power of the domain
interval; this feature is essential if high accuracy is
required over an extended range of arguments, as
is the case with the transfer map. Furthermore, it
alleviates the so-called dependency problem [39],
which among other things entails that extended
conventional interval computations sometimes
“blow up” and yield rather pessimistic and some-
times even useless bounds.

We begin with the definition of a Taylor model.
Let f be C"*D on Dy R, and B = [d,b]< Dy an
interval box containing the point Xy. Let T be the
Taylor polynomial of f around X,. We call the
interval I an nth order remainder bound of / on B
if

f(®) — T(®)el, VxeB.

In this case, we call the pair (7,7) an nth-order
Taylor model of f. It is clear that a given function
f can have many different Taylor models, as with
(T,I), also (T,I) with Io1I is a Taylor model.
Furthermore, we see that low-order polynomials
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have trivial remainder bounds; since every poly-
nomial of order not exceeding n agrees with its nth
order Taylor polynomial, the interval [0,0] is a
remainder bound. For practical purposes, it is
important that if the original interval box B
decreases in size, then according to the various
formulas of the Taylor remainder, the remainder
bounds can decrease in size with a power of n + 1
and hence will become small quickly. In particular,
this entails that the knowledge of a good Taylor
model of a function on an interval box B allows a
rather accurate estimate of the range of the
function.

Now we define arithmetic operations on Taylor
models. In this case, the operation “7” that turns
a function into its Taylor polynomial has to be
replaced by the inclusion operation <. So we must
craft new adjoint operations on Taylor models
that make the diagram

fige ™o (Trdp).(Ty1)

_—
* ®
_
f*yg c (Il ®(I,1,)

commute in a similar way as in the case of the
differential algebra on truncated power series in
Eq. (3).

Let (Ty,Ir) and (T,,1;) be nth-order Taylor
models of the functions f and g on B. Clearly, the
Taylor polynomial of (f' + g) is simply 7y + T,; on
the other hand, we know that on B, SX)eTr(X) +
Iy and g(X)e T,(X) + I,. Then obviously,

(f + 9F) e(Ty + T)E) + Iy +1,) VxeB,

and so (Ty + T,, Iy + I,) is a Taylor model for (f' +
g) on B. And for practical purposes, it is also
important to note that if I, I, are “fine of order
B ie. their size scales with the size of B to the
(n+ 1)st power, so is Iy, = Iy + 1,. In the same
way we see that (Ty — T,,I; —I;) is a Taylor
model for (f — g). So by simply defining

(T/'a I/')@(Tg’lg) = (T/ + Tg’lf + Ig)’

we are able to close the commuting diagram for
addition.

The nth-order Taylor polynomial Ty, of f-g
can be obtained by multiplication of 7y and T
and subtraction of the polynomial Ty, consisting
of the terms whose order exceeds n. For any X €B,
there are values e; €Iy and ¢, €1, such that f(X) =
Ty(X) + er and g(X) = T,(X) + ¢,. So we obtain

(f - ()
= (Ty(X) + ep) - (Ty(X) + ¢y),
=Tp(X) - Ty(X) + Ty(X) - g + Ty(X) - ey + s - ¢,
= Tpy(R) + {T7g(X) + Tr(X) - ey + Ty(X) - ¢
+er- eg}.

The first term is the nth-order Taylor polynomial
of f-g. The term in curly brackets describes the
behavior of the remainder; it is a polynomial in the
v+ 2 variables (¥,er,e,)eB x Iy x I, and is de-
noted by R(X,er,e4). So by bounding R(X, er,e,)
[2,3] with an interval Iz, we are able close the
diagram with the definition

(Tf» If)@(Tgv Ig) = (Tf'g’ IR)-

We note that the necessary computation of Ty,
from Ty and T, is of course the standard multi-
plication within TPSA.

The operations @ and O for Taylor models, in
themselves, are already useful for several problems
in Beam Physics, in particular for the notoriously
difficult bounding of approximate invariants of
non-linear motion [40]. Besides them, there are a
variety of other operations that have to be ported
to the Taylor models, especially the intrinsic
functions, the composition of functions, and
several operations derived from these [2,3], and a
complete set of standard functions on computers
was implemented in COSY INFINITY [3,4].

Before proceeding further, let us investigate the
inverse derivation operation 661 on Taylor mod-
els. Given an nth-order Taylor model (77, Ir) of a
function f, we can determine a Taylor model for
the indefinite integral 8;'f = [f dx, with respect
to variable i. The Taylor polynomial part is
obviously just given by f Ty -1 dx}, where Ty,
is the (n — 1)th-order Taylor polynomial, and a
remainder bound can be obtained as (B(Ty —
Trn-1) + Iy) - B(x;), where B(x;) is an interval
bound for the variable x; obtained from the range
of definition of x;, and B(Ty — Ty,-1) is a bound
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for the part of T that is of exact order n. We thus
define the operator 665 on the space of Taylor
models as

00 (T Ip) = ( [ T s BT = T+ 1
X B(X,)) .

The introduction of the operator 0o, is also
possible, however at an additional effort, since
from the knowledge of a remainder bound of a
function, no conclusions can be drawn regarding a
remainder bound for its derivative.

4. Computation of remainder bounds for flows of
differential equations

We now establish a Taylor model for the
transfer map .# (¥, t), and in particular a rigorous
bound for the remainder term of the flow of the
differential equation describing the motion over a
domain [Fo, 702] X [fo, t1]- As pointed out before,
this need precludes us from the direct use of
conventional numerical integrators, as they cannot
provide rigorous bounds for the integration error
but only approximate estimates. Rather, we have
to start from scratch from the foundations of the
theory of differential equations [5].

We use Taylor models for the solution of the
initial value problem

d =
q, "0 =F@F@,0, (1) =T,

where F is continuous and bounded. We are
interested in both the case of a point initial
condition 7y, and the case in which the initial
condition 7, is a variable. In the latter case, our
interest is in the flow of the ODE

(1) = A (Fo, 1),

describing the values of final coordinates in terms
of initial coordinates and time. The solutions
should be fully rigorous for all initial conditions
7o and times ¢ that satisfy

FoelFor,Foal,  t€[to, t1].

In particular, 7y itself may be a Taylor model, as
long as its range is known to lie in [Fo1, Fo2].

As is commonly done, we re-write the ODE as
an integral equation

t

70 =fo+ [ FG0L .
1o

and introduce the operator 4 : C%[to, 11]— C°[t0, 11]

on the space of continuous functions from [z, #{]

to RY via

t
MD@:%+/‘ﬁﬂﬁJmﬁ
to
Then the problem of finding a solution to the ODE
is transformed to a fixed-point problem on the
space of continuous functions

7 = A®P).

We apply Schauder’s fixed point theorem to
rigorously obtain a Taylor model for the flow.

Theorem (Schauder). Let A be a continuous op-
erator on the Banach Space X. Let M cX be
compact and convex, and let A(M)< M. Then A has
a fixed point in M, i.e. there is an ¥e M such that
A(F) =7.

In our specific case, X = éo[to,tl], the Banach
space of continuous functions on [#y, ¢1], equipped
with the maximum norm, and the integral
operator A is continuous on X. The process to
apply Schauder’s theorem consists of the following
steps:

e Determine a family Y of subsets of X, the
Schauder candidate sets. Each set in Y
should be compact and convex, it should
be contained in a suitable Taylor model,
and its image under 4 should be in Y.

e Using differential algebraic (DA) methods on
Taylor models, determine an initial set Mye Y
that satisfies the inclusion  property
A(My)<= My. Then all requirements of Schau-
der’s theorem are satisfied, and M, contains a
solution.

e Iteratively generate the sequence M,;=
AM;_y) for i=1,2,3,...,. Each M; also
satisfies A(M;)cM;, and we have
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M >M,>---. We continue the refinement
iteration until the size stabilizes sufficiently.
e If integration over extended time intervals is
needed, as is commonly the case, split the
interval into sufficiently small pieces and
successively apply the above technique.

The first step can be satisfied by the mathema-
tical properties of Taylor models and the right
hand side of the ODE, F. For details of these
rather mathematical matters, we refer the reader to
[S]- The second step can be simplified greatly by
choosing the optimal polynomial P for the initial
set My; choose the n-th order flow .# (¥, t) for P
using the DA fixed point algorithm [1]. Since
M (7o, 1) 1s the DA fixed point, the remaining task
for the inclusion requirement and the refinement
iteration boils down to a mere comparison task of
the two intervals involved, which is computation-
ally straightforward.

The method turned out to be extremely success-
ful for validated initial value problems [41,42]. As
mentioned earlier, the interval method is prone to
blowup, making mere interval solutions difficult in
practice. In the case of multidimensional systems,
a further source of overestimation arises from the
need of geometric repackaging of the solution at
each integration time step, called “wrapping
effect”” [6-8]. Fig. 1 illustrates the evolving wrap-
ping effect in a harmonic oscillator, an error which

15

-05

-1.5 -1 -0.5 0 0.5 1 15

Fig. 1. The wrapping effect occurring in a harmonic oscillator.

grows exponentially unless controlled. This phe-
nomenon makes the conventional interval based
integration schemes difficult to obtain verified
solutions for any practical problems [8,43]. In
addition to the fact that remainder bounds in
Taylor models are sharp, our scheme allows the
initial condition 7, to be variables and thus
represents the current flow not by an interval,
but by a Taylor model in the initial conditions; this
helps to control the wrapping effect optimally. We
illustrate this effect with an example frequently
used in the study of ODEs [8], the Volterra
equations.
Specifically, the problem is to solve the ODE

W n ), 2w

with the initial condition domain interval box
around (1, 3) [44]. It can be shown that the solution
trajectory forms a closed orbit for a point initial
condition if both xjjp; and xyiy; are positive. Thus
the solution trajectories with the initial condi-
tion interval box around (1,3) should form a
band, and an effective verified integration
scheme should provide a solution trajectory
band without much inflation of the band width.
We compared our Taylor model based verified
integrator and AWA [45], a very popular verified
integrator, for the initial condition interval box

Xini€ 1 4+ [~0.05,0.05], Xaini €3 -+ [~0.05,0.05].

While AWA suffers from the wrapping effect and
cannot proceed beyond about one half of the cycle,
the Taylor model-based integrator completes the
cycle even without any visible inflation of the band
width. The developing elongation of the solution
region in Fig. 2 along the trajectory is due to the
different cycle periods of closed orbits.

5. Validated maps of particle optical systems

In the following we apply the validated inte-
grator to the computation of some verified transfer
maps in particle optics. In both cases, the motion
is split into small sub-pieces, as is commonly done
in numerical integration, and over the sub-piece
expansion in time is performed. In the first
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x1

Fig. 2. Solution regions of the Volterra equations starting from
the initial condition interval box xjyel +[—0.05,0.05],
X2ini €3 + [—0.05,0.05] by Taylor models (solid regions) and
AWA (dashed boxes).

example we analyze the motion of a charged
particle in a dipole magnet with constant magnetic
field over an extended phase space. Since the
motion in the dipole can be solved analytically
based on simple geometrical arguments related to
intersections of circles and straight lines, this
problem represents a useful check of the practical
validity of the remainder bounds. For our
example, we chose a magnet with a deflection
radius R = 1 m. The integration was carried out
over a deflection angle of 36° with a fixed step size
of 4°. The four initial conditions for horizontal
position x, horizontal relative momentum a =
Px/po, vertical position y, and vertical relative
momentum b = p,/po all lie within the interval
[—0.02,0.02], and the Taylor polynomial describ-
ing the dependence of the four final coordinate
values on the four initial coordinate values was
determined. The order in time and initial condi-
tions was chosen to be 12, so that the expansion in
time could be carried over a sufficiently large
interval. In the present implementation, for
technical reasons this also entails that the expan-
sion in the phase space variables is carried to the
same order, although it is observed that the orders
beyond 7 contribute only insignificantly. The
actual step size was estimated so as to ascertain
an overall accuracy below 10~; since no auto-
matic step size control was utilized, the estimate
proved conservative and the actual resulting

remainder bounds were somewhat smaller; they
were found to be

[—0.4496880372277553E — 09,
+0.3888593417126594E — 09]

[—0.1301070602141642E — 09,
+0.1337099965985420E — 09]

[—0.3417079805637740E — 10,
+0.3417079805637740E — 10]

[—0.0000000000000000E + 00,
-+0.0000000000000000E + 00]

for the x, a, y and b coordinates in common
particle optical terminology [1].

The resulting Taylor polynomials describing the
dependence of final on initial coordinates were
compared with the corresponding dipole transfer
map obtained by the standard DA method, and
agreement was found. Furthermore, the final
coordinates for a large collection of rays were
studied to compare between the geometric deter-
mination and the Taylor polynomial computation,
and the difference was within the calculated
remainder bounds.

The next example is to verify the mapping
functions for a more complicated beam optics
system, a typical FODO cell of an accelerator
lattice. The cell is set up consisting of the following
sequence of elements: drift, defocusing quadrupole
superimposed with a sextupole, drift, dipole, drift,
defocusing quadrupole superimposed with a sex-
tupole, and drift. The defocusing quadrupoles
have the same strength k= —0.0085, and the
sextupole strength is 4 = 0.06. The lengths are
1 m for the drifts and 0.5 m for the magnets; the
dipole’s curvature radius is 2.5 m and the reference
particle is a proton with an energy of 1 MeV.

We performed a verified integration through the
cell using the 17th-order Taylor models on the
relatively large initial condition domain interval
box of [—0.1,0.1] in each direction of phase space.
An automatic step size control scheme was applied
to suppress the growth of the remainder bound
optimally. Integration of the system yielded a
Taylor model containing the true solution of
the corresponding differential equations. In the
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following we list the first ten terms of the Taylor
model containing the x-component of the flow,
which is the function mapping the initial condi-
tions X, dg, Vo, and by to the x position at the end
of the cell.

RDA VARIABLE: NO=17, NV=4

I COEFFICIENT ORDER EXPONENTS
1 0.1398389113940111 1 1 000
2 0.1038317686361456 1 0100
3 -.2447944264979660E-01 2 2 000
4 -.1183394850192213E-01 2 1100
5 -.2119694344941219E-02 2 0200
6 0.2361409770673162E-01 2 0020
7 0.1212766097410308E-01 2 0011
8 0.2185093364668458E-02 2 0 00 2
9 0.9944830763540945E-03 3 3000
10 0.8715481705011164E-03 3 2100

with the remainder bound as follows.

[—.2157121190249145E — 012,
0.2178948979195422E — 012]

It should be noted that the Taylor model encloses
the flow with a relative overestimation of better
than 107!°, which shows the ability of the Taylor
model approach to integrate over the length of the
entire FODO cell with a large size domain for the
initial condition.
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