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Abstract. An interesting question posed by Paul Erdös around 1950 pertains
to the maximal number of points in n-dimensional Euclidean Space so that no
subset of three points can be picked that form an obtuse angle. An unexpected
and surprising solution was presented around a decade later. Interestingly
enough the solution relies in its core on properties of measures in n-dimensional
space. Beyond its intuitive appeal, the question can be used as a tool to assess
the complexity of general vector spaces with Euclidean-like structures and the
amount of similarity to the conventional real case.

We answer the question for the specific situation of non-Archimedean
Levi-Civita vector spaces and show that they behave in the same manner as
in the real case. To this end, we develop a Lebesgue measure in these spaces
that is invariant under affine transformations and satisfies commonly expected
properties of Lebesgue measures, and in particular a substitution rule based
on Jacobians of transformations. Using the tools from this measure theory, we
will show that the Obtuse Angle Theorem also holds on the non-Archimedean
Levi-Civita vector spaces.

1. Introduction

In order to formulate the obtuse angle problem more clearly and put it into
context, we begin with some observations about the matter at hand. First, let us
formulate it in appropriate mathematical terminology. Let V be a vector space over
a totally ordered field F . Let ( , ) denote an inner product, i.e. a function from
V 2 → F that has the common linearity properties under vector addition and scalar
multiplication on both sides. We say three points p0, p1 and p2 form an obtuse
angle at p0 if the vectors p1 − p0 and p2 − p0 have negative inner product, i.e. if
(p1 − p0, p2 − p0) < 0. We say the three points form an obtuse angle if any one of
the three permutations form an obtuse angle. Furthermore, we say a set of n points
forms an obtuse angle if there are three points in the set that do so. Apparently this
algebraic notation generalizes the concept of obtuse angles in elementary geometry
and the well-known Euclidean vector spaces of Rd.

Let us now provide some perspective on the matter of point sets admitting
obtuse angles for the vector spaces Rd and the common inner product. We begin
by observing that apparently in Rd it is always possible to find sets of 2d points
that only admit non-obtuse angles, namely by merely picking the corner points of
the unit cube [0, 1]d. More specifically, because of the rotational symmetry of the
unit cube, without loss of generality we can assume p0 = (0, ..., 0); and since any of
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the other corner points have only non-negative components, the inner products of
any two of them will always be positive or zero, and so no obtuse angles exist. The
natural question now is whether 2d is indeed the maximal number of any collection
of points so that no obtuse angles exist, which was posed as a challenge by Paul
Erdös [9].

To study this in some more depth, note that in the one dimensional case R, any
three distinct points form an obtuse angle; merely choose p0 to be the middle point
and observe that the differences p1 − p0 and p2 − p0 have opposite signs. In R2 it
is easily possible to find three points that do not form obtuse angles; any subset
of corner points of the unit cube will do, and so will the points in any equilateral
triangle, etc. etc.

Now consider the case of five points in the plane. If these points are arranged
so as to form a convex pentagon, i.e. every point forms a corner of the convex hull
of the five points, then there must be at least one angle of 108◦or more since the
sum of angles in a pentagon is 540◦. On the other hand, let one point be inside
the convex hull of the other four. Split the rectangle forming the convex hull of
said four points into the union of two triangles and note that the interior point is
inside at least one of these triangles. Drawing the connection lines of the interior
point to the three corner points of the triangle we note that the angles between
these connection lines add up to 360◦, so at least one of them is 120◦ or more. The
situation in R3 is already significantly more complicated, and while elementary
proofs exist, we forego their discussion.

In the following we will develop a proof of the theorem, trying to parallel the
original result of Danzer and Grünbaum[8]. Various concepts need to be ported
to Levi-Civita vector spaces, beginning the concepts of linear algebra, and most
importantly, an extended measure theory for Levi-Civita vector spaces going beyond
the natural generalization of the one dimensional measure based on intervals.

To provide the necessary foundations, we begin the discussion with an intro-
duction of terminology and a review of some properties of totally ordered fields. Let
K be a totally ordered non-Archimedean field extension of the real numbers R and
≤ its order, which induces the K-valued absolute value | |. We use the following
notation common to the study of non-Archimedean structures.

Definition 1.1 (∼,≈,�, H). For x, y ∈ K, we say x ∼ y if there are n,m ∈ N

such that n · |x| > |y| and m · |y| > |x| x � y if for all n ∈ N, n · |x| < |y|, and
x �� y if x � y does not hold x ≈ y if x ∼ y and (x− y) � x.

We also set [x] = {y ∈ K|y ∼ x} as well as H = {[x]|x ∈ K} and λ(x) = [x].

Apparently the relation ”∼” is an equivalence relation; the set of classes H of
all nonzero elements of K is naturally endowed with an addition via [x]+[y] = [x ·y]
and an order via [x] > [y] if x � y, both of which are readily checked to be well-
defined. The class [1] is a neutral element, and for x �= 0, [1/x] is an additive inverse
of [x]; thus H forms a totally ordered group, often referred to as the Hahn group
or skeleton group. The projection λ from K to H satisfies λ(x · y) = λ(x) + λ(y)
and is a valuation.

We say x is infinitely larger than y if x 	 y, x is infinitely small or large if
x � 1 or x 	 1, respectively, and we say x is finite if x ∼ 1. For r ∈ H, we say
x =r y if λ(x− y) > r; apparently, ” =r ” is an equivalence relation.

The fundamental theorem of Hahn [12] (for more easily readable and modern
versions see [13] as well as [6], [7], [10], [11][27], and also the overview in [24])
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provides a classification of any non-Archimedean extension K of R in terms of its
skeleton group H. In fact, invoking the axiom of choice it is shown that the elements
of K can be written as generalized formal power series over the group H with real
coefficients, and the set of appearing ”exponents” forms a well-ordered subset of H.

Particular examples of the large variety of such fields are the quotients of poly-
nomials as the smallest totally ordered non-Archimedean field, and the formal Lau-
rent series as the smallest non-Archimedean field that is Cauchy-complete, both of
which have the integers Z as Hahn group. The rationals Q form the Hahn group of
the quotients of polynomials with rational exponents, as well as the Puiseux series,
which form the smallest algebraically closed non-Archimedean field; see for exam-
ple [5], [25], [26], [14], [29]. In general, the algebraic properties of fields of formal
power series have been rather extensively studied (see for example [28]), and there
are various general theorems pertaining to algebraic closure and other properties
[20], [26] which mainly rest on divisibility of the Hahn group.

In this paper we develop a measure theory on vector spaces of such fields, and it
will turn out to be important that the structure be Cauchy complete. This entails
that convergence of sequences and series has some unusual properties [2]; in fact,
the series

∑∞
n=0 an converges if and only if its associated sequence (an) is null;

and in this case, the series even converges absolutely. In particular, it follows that
power series

∑∞
n=0 anx

n with real coefficients converge if and only if the geometric
sequence xn converges. Apparently for this to happen it is not sufficient that x be
less than 1 in magnitude; in fact, the geometric sequence diverges for any finite or
infinitely large x.

However, for many of the further arguments, in particular pertaining to the
continuation of real and complex analytic functions, we would like to assure that
the sequence converges as long as x is infinitely small; using that λ(xn) = nλ(x),
this is apparently the case if the Hahn group H is Archimedean. We summarize
this in the following definition.

Definition 1.2. (Levi-Civita Field) We call the non-Archimedean field K
a Levi-Civita field and denote it by R if it is Cauchy complete, and its Hahn group
is Archimedean and divisible.

For the sake of simplicity, we also call the adjoint field of ”complex-like” num-
bers R + iR, where i is the imaginary unit, a Levi-Civita field, and denote it by
C. On C, we set |a + ib| = |a| + |b| (without too much difficulty, one can see that
also the more conventional norm based on the root of squares of real and imaginary
parts can be introduced), and λ(a+ ib) = λ(|a+ ib|).

The original definition of the field described by Levi-Civita [17], [18], which we
shall briefly outline, is indeed more limited. However, as shown in [4], the original
Levi-Civita field represents the smallest example to our wider class of fields, and
has the distinction of being the only one that is computationally treatable [3], [31].
It is based on the concept of families of left-finite sets, and their properties are
discussed in detail in [1], [2].

Levi-Civita himself succeeded to show that his structure forms a totally ordered
field that is Cauchy complete, and that any power series with real or complex
coefficients converges for infinitely small arguments. By doing so, he succeeded to
extend infinitely often differentiable functions into infinitely small neighborhoods
by virtue of their local Taylor expansion. He also succeeded to show that the
resulting extended functions are infinitely often differentiable in the sense of the
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order topology, and on the original real points, their derivatives agree with those
of the underlying original function. The subject appeared again in the work by
Ostrowski [23], Neder [22], and later in the work of Laugwitz [15]. Two more
recent accounts of this work can be found in the book by Lightstone and Robinson
[19], which ends with the proof of Cauchy completeness, as well as in Laugwitz’
account on Levi-Civita’s work [16], which also contains a summary of properties of
Levi-Civita fields.

In [2] it is shown by explicit construction that C is algebraically closed, and that
R is real-closed, which also follows from general valuation theory, and specifically
for example the work of Rayner[26]. Compared to the general Hahn fields, the Levi-
Civita fields are characterized by well-ordered exponent sets that are particularly
”small”, and indeed minimally small to allow simultaneously algebraic closure and
the Cauchy completeness, as shown in [4].

2. Measure Theory on Levi-Civita vector spaces

Attempts to formulate meaningful measure theories on non-Archimedean fields
have to necessarily follow modified approaches rather than the common method of
Lebesgue. The total disconnectedness of these spaces under the order topology, the
lack of existence of suprema and infima of bounded sets, and the different orders
of magnitude that exist in the non-Archimedean structures, prevent the use of
concepts of measure theory for example on Banach spaces. We begin our discussion
with several general observations related to the introduction of measures on Levi-
Civita vector spaces. First we establish that the situation is indeed fundamentally
different from the real case.

Proposition 2.1. There is no non-trivial translation invariant measure on the
Levi-Civita field R or the vector spaces Rd.

Proof. We follow an indirect argument. Suppose there is a non-trivial mea-
sure m in R. Let A ⊂ R be any bounded set with non-vanishing measure. Let
b ∈ R be a bound of A, i.e. x ∈ A ⇒ |x| ≤ b. Now consider the family of translates
of A as follows:

An = n · b
δ
+A

where δ is an arbitrary positive infinitely small number. By translation invariance
we havem(An) = m(A), and by the boundedness of A by b, we also have Ai∩Aj = ∅
for i �= j. Now consider the set

B = [− b

δ
,+

b

δ
].

Apparently we have An ⊂ B for all n ∈ N. Because of the Archimedicity of R and
because m(B) is finite due to the measure being non-trivial, there exists k ∈ N such
that k ·m(A) > m(B), so we have on the one hand

m

(
n⋃

i=1

Ai

)
> m(B)

but on the other hand we also have
n⋃

i=1

Ai ⊂ B
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and thus a contradiction. The argument can be carried out analogously in the
vector spaces Rd. �

Apparently the above problems could be remedied by allowing the values of
the measures of the sets A and B in the above argument to themselves lie in the
non-Archimedean field R, which allows the scaling by infinitely large and infinitely
small scaling factors. In such an approach, in the one-dimensional case of R, any
interval (a, b) is assigned the non-Archimedean measure b − a. In fact, we observe
that it is also not possible to utilize any smaller field than the field R. Because
if the measure of the set [0, 1] is c, then scale invariance implies that the measure
of [0, 1/c] is 1; and further, for any r ∈ R, we have m([0, r/c]) = r, and so it is
apparently necessary that the range of all measures cannot consist of a set smaller
than R.

However, problems with a conventional measure theory immediately arise due
to the non-existence of infima inR, which play such a crucial role in the conventional
definition of outer measures. Furthermore, as we shall see, in the higher dimensional
case the simple product of intervals does not carry very far.

Perhaps the most robust way to define a measure in the Levi-Civita field R is
based on the following idea which is studied in [32]:

Definition 2.2. Let A ⊂ R be given. Then we say that A is measurable if
for every ε > 0 in R, there exist a sequence of mutually disjoint intervals (In) and
a sequence of mutually disjoint intervals (Jn) such that ∪∞

n=1In ⊂ A ⊂ ∪∞
n=1Jn,∑∞

n=1 l(In) and
∑∞

n=1 l(Jn) converge in R, and
∑∞

n=1 l(Jn)−
∑∞

n=1 l(In) ≤ ε.

Let us analyze the definition for a moment. At first glance, the requirement that
an inner approximation and an outer approximation differ by less than ε looks very
familiar and appears natural as in the real case. However, a significant difference
arises in the restrictions imposed by the required and necessary strong convergence
of the sums of lengths, and the need to eventually have the limits of these sums of
lengths differ by infinitely small amounts.

This situation does not pose a significant problem in the one-dimensional case,
other than that for example the standard Cantor set is not measurable[32], but
it does so in higher dimensions. To this end, let us consider higher dimensional
extensions of definition 2.2 based on the use of cross products of intervals, or boxes;
such structures have been studied in substantial detail in [33]. The difficulty is
clearly identified with the following problem:

Proposition 2.3. (Non-Measurability of Standard Triangle) Let T ⊂
R2 be the triangle with corner points (0, 0), (1, 0) and (0, 1). Then this triangle is
not measurable under the natural extension of the one dimensional measure to R2.

Proof. Assume it were, and pick ε positive and infinitely small. This requires
that there is a lower sum of boxes

∑∞
n=1 l(I

x
n) · l(Iyn) and an upper sum of boxes∑∞

n=1 l(J
x
n) · l(Jy

n) that have an area that differs by less than d. Furthermore, since
each sum converges, there is an N such that all terms l(Ixn) · l(Iyn) and l(Jx

n) · l(Jy
n)

are less than d for n > N . Now project the various intervals to the real line, i.e.
consider

Īx,yn = Ix,yn ∩ R and , J̄x,y
n = Jx,y

n ∩ R.
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This entails that actually l(Īxn) · l(Īyn) = 0 and l(Jx
n) · l(J̄y

n) = 0 for n > N and that
we have

N∑
n=1

l(Īxn) · l(Īyn) = m(T ∩ R) =

N∑
n=1

l(J̄x
n) · l(J̄y

n)

where m(T ∩ R) denotes the conventional measure on R2. However, it is an el-
ementary result of real measure theory that it is not possible to decompose the
real standard triangle into finitely many rectangles. Rather, as is well known, the
fact that the difference between outer and inner box enclosures can be made smaller
than any positive real ε directly requires the use of more and more boxes the smaller
ε becomes. �

So it appears advisable to modify the definitions of measures for the Levi-
Civita vector spaces Rd; and if it is our goal to reproduce a proof of the obtuse
angle theorem which as we shall see requires the ability to measure sets that are
significantly more than polytopes, such an approach is essential.

It is well known that abstract measure theory on general Banach spaces greatly
benefits from the notion of the σ-algebra, a collection of non-empty subsets of the
space of interest X such that for any countable family of sets within the collection,
their union and intersection is also in the collection (see for example [30] and
countless, but not countably many, other good introductory treatments of measure
theory). The elements of the σ-algebra then form the measurable sets; and one quite
readily obtains the numerous well-known properties of the measure. Furthermore,
if the space X has arithmetic structure, one may naturally demand that the σ-
algebra is invariant under translations and scaling, or more generally, under affine
transformations.

As we have seen above, this approach breaks down in Levi-Civita vector spaces:
if the family of measurable sets contains all elementary rectangles with real end
points, it should also contain the countable unions of them that make the standard
triangle measurable. But as we have seen, precisely this is not possible. As a
remedy, we consider a smaller family of measurable sets, and then recover the
ability to deal with countable unions of a specific form retroactively.

Definition 2.4. (S-Algrebra of Measurable Sets) Let B be a collection
of subsets of Rd. We say that B is an S-algebra if with A1, ..., An ∈ B, also
A1 ∪ ... ∪ An ∈ B, and A1 ∩ ... ∩ An ∈ B.

Utilizing the S-algebra, it will be possible to introduce a measure as an ex-
tension of the one dimensional case definition 2.2, where intervals and their multi-
dimensional equivalents will be replaced by elements of the S-algebra.

In the following section we will introduce a specific S-algebra, of which we
show that it is the smallest affine invariant S-algebra containing the unit cube.
Subsequently we will use this S-algebra to define an affine invariant measure on Rd

and show some of its properties. We will conclude with the proof of the obtuse
angle theorem.

3. The S-Algebra of Simplexes

We begin our discussion with the definition and properties of simplexes in the
non-Archimedean Levi-Civita vector spaces Rd, which will serve as the building
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blocks of the subsequent work. In all of the subsequent steps, it is of prime im-
portance that all algebraic manipulations and arguments can be carried out in the
respective Levi-Civita fields, which follows from the known theory of their behavior.

Definition 3.1. (The Simplex and its Measure) A set S ⊂ Rd is called a
simplex spanned by the vectors (v0, ..., vd) if

S = {x ∈ Rd : x = v0 + t1(v1 − v0) + ...+ td(vd − v0),

d∑
i=1

ti ≤ 1, ti ≥ 0}.

The measure m(S) ∈ R of the simplex is defined as

m(S) =
1

d!
· |det(v1 − v0, ..., vd − v0)|

where the determinant in Rd is defined through the algebraic expression corre-
sponding to those in the Real case. We call the simplex P degenerate if its measure
vanishes, otherwise we call it non-degenerate.

Before we proceed further, let us make several comments.

Remark 3.2. We observe that the definition of the measure of the simplex
in Rd parallels the common Riemann- and Lebesgue measures of a simplex in the
conventional Euclidean space Rd. Because of the basic properties of arithmetic
in R, in a fully analogous way as in the real case, it is easy to show that the
common well-known properties about determinants hold, in particular relating to
interchange of columns, performing linear combinations of columns, determinants
of products of matrices, etc.

We also note that the definition of the simplex in dimension d requires (d+ 1)
vectors to define its corners. However, any closed hull of (k+1) vectors with k < d
also forms a simplex; one can just add (d − k) copies of the first of the vector
to arrive at the required total of (d + 1) vectors, which does not affect the set P
described by the resulting closed hull. However, simple rules about determinants
that carry over fully to the non-Archimedean spaces show that all such simplexes
are degenerate and have zero measure.

Finally, to simplify further notation, in the following we do not distinguish
between the simplex containing its closure as defined above, or the simplex without
its closure, or the simplex with only part of its closure. This is in full agreement
to the case of R, where for the purposes of measure theory, we do not distinguish
between the closed interval, the open interval, or the interval containing only one
of its bounds.

Lemma 3.3. (Permutation of Vectors) Let P be a simplex spanned by
(v0, ..., vd). Let π be a permutation of (0, 1, ..., d). Let P ′ be the simplex given
by the vertices (vπ(0), vπ(1), ..., vπ(d)). Then P = P ′, and m(P ′) = m(P ).

Proof. We first consider the case of permutations of (0, 1, ..., d) that leave “0”
fixed, i.e. that satisfy π(0) = 0. Let x ∈ P , i.e. there exist positive ti, i = 1, ..., d,

with
∑d

i=1 ti ≤ 1 such that x = v0 + t1(v1 − v0) + ... + td(vd − v0). Then by
commutativity of addition in R, we also have x = v0 + tπ(1)(vπ(1) − v0) + ... +
tπ(d)(vπ(d) − v0), and since all tπ(i)are non-negative and clearly

∑
i tπ(i) ≤ 1, we

have that x ∈ P ′. Replacing π by its inverse, we see x ∈ P ′ implies x ∈ P , and
so P = P ′. We further see that in this case, m(P ′) = m(P ), since interchanging
columns in matrices does not affect the absolute value of the determinant.
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Now we consider the interchange of v0 and v1 and note that any arbitrary
permutation of (0, 1, ..., d) can be written as a composition of a permutation leaving
0 unchanged, and one that exchanges only 0 and 1; so that this concludes our proof
for a general permutation π. We observe that for a point x inside the simplex P ,

x = v0 + t1(v1 − v0) + td(vd − v0) + ...+ td(vd − v0)

= v1 + (1− t1) · (v0 − v1) + t2(v2 − v0) + ...+ td(vd − v0)

= v1 + (1− t1) · (v0 − v1) + t2(v2 − v1)− t2 · (v0 − v1) + ...+ td(vd − v1)− td(v0 − v1)

= v1 + (1− t1 − t2 − ...− td) · (v0 − v1) + t2 · (v2 − v1) + ...+ td(vd − v1)

Now we study the new coefficients s1 = (1 − t1 − t2 − ... − td), s2 = t2, ... ,
sd = td. Because of the respective conditions on the ti, each of them is non-negative,
and clearly their sum is bounded above by 1. And we have

m(P ) =
1

d!
· |det(v1 − v0, v2 − v0, ..., vd − v0)|

=
1

d!
· |det(v0 − v1, v2 − v0, ..., vd − v0)|

=
1

d!
· |det(v0 − v1, v2 − v0 − (v1 − v0), ..., vd − v0 − (v1 − v0))|

=
1

d!
· |det(v0 − v1, v2 − v1, ..., vd − v1)| = m(P ′),

completing the proof. �

Remark 3.4. (Alternate Simplex Representation) Now that it is established
that the vector v0, which appears in a prominent role in the definition of the measure
of the simplex, can be replaced by any other of the (d + 1) vectors, we often also
write the simplex in the following apparently equivalent version, which more directly
visualizes the interchangeability of the vectors:

S = {x ∈ Rd : x = t0v0 + t1v1 + ...+ tdvd,

d∑
i=1

ti = 1, ti ≥ 0}.

Before we proceed any further, it is useful to establish some basic properties of
simplexes that prove useful for further discussion:

Theorem 3.5. (Properties of Simplexes)
(a) Every simplex is the affine image of the unit simplex S = {t0 ·0+t1e1+ ...+

tded|
∑

ti = 1, ti ≥ 0} spanned by the unit vectors ei of the space. If the simplex is
non-degenerate, the affine transformation is a bijection.

(b) Any two non-degenerate simplexes are isomorphic images of each other
under an affine transformation.

(c) Let the simplexes S1,2 be related by an affine transformation via S2 = a +
M(S1), where M is a linear transformation, then m(S2) = | det(M)| ·m(S1), where
“det” denotes the determinant and “| |” denotes the absolute value.

(d) Every non-degenerate simplex is the intersection of (d+ 1) half spaces.

Proof. (a) Indeed the transformation from the unit simplex to the simplex
of interest is given by the translational part v0 and the matrix M = (v1, v2, ..., vd)
containing the defining vectors of the simplex as columns. If the simplex is non-
degenerate, then M is invertible, and so is the affine transformation.
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(b) Because of the non-degeneracy of the first simplex and (a), there is an affine
transformation A1 of the first simplex to the unit simplex. Composing this with the
affine transformation A2 from the unit simplex to the second simplex, we obtain
the desired affine transformation. Because the determinants are nonzero, it is a
bijection.

(c) This follows directly from the definition of the measure of the simplex.
(d) Apparently the unit simplex is the intersection of the d positive half spaces

and that half space spanned by the endpoints of the unit vectors that contains the
origin. Observe that affine images of half spaces are again half spaces, and use (a)
to obtain the half planes forming the general simplex. �

We now proceed to more general objects that form the core of the further
discussion.

Definition 3.6. (Convex Polytope) Let v0, v1, ... , vp be vectors in Rd.
Then we call

P = {x ∈ Rd : x = t0 · v0 + t1 · v1 + ...+ tp · vp,
p∑

i=1

ti = 1, ti ≥ 0}

the convex span of the vectors v0 to vp and denote it by P (v0, ..., vp) or conv{v0, ..., vp}.
Any set that can be written as such a convex span is called a convex polytope or
simply polytope.

Remark 3.7. Apparently the set P is indeed convex, and simplexes are convex
polytopes. Furthermore, similar to the case of the simplex, for notational simplicity
we do not distinguish between the closed polytope containing its boundary, the open
polytope, or any set in between these two. Furthermore, we say two polytopes are
almost disjoint if their interiors are disjoint.

For the further discussion, we need some tools; in particular, we need to char-
acterize a convex polytope by its vertices.

Definition 3.8. Let P be a convex polytope in Rd and z ∈ P . Then we call
z a vertex if z = t · x+ (1− t) · y for some 0 ≤ t ≤ 1 and x, y ∈ P implies z = x or
z = y.

So z is a vertex iff any line segment entirely in P that contains z has z as an
end point.

Lemma 3.9. Let P (v0, ..., vp) be a convex polytope and c a vertex of P . Then
there is i ∈ {1, ..., p} such that c = vi.

Proof. Indirect. Assume that c ∈ P is a vertex, but that c �= vi for all
i = 0, ..., p. Since c ∈ P , we can write

c = t0v0 + t1v1 + ...+ tpvp

with suitable ti. Since by assumption c is not one of the vi, at least two of these ti
need to be distinct from 0 and 1. If all vi with nonzero ti are equal, then c = vi and
we have a contradiction. Otherwise, at least two of the vi are distinct; let these be
v0 and v1. We set

x = 0 · v0 + (t0 + t1) · v1 + t2 · v2 + ...+ tp · vp
y = (t0 + t1) · v0 + 0 · v1 + t2 · v2 + ...+ tp · vp
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We observe that x, y ∈ P , that x �= y because by construction v0 �= v1, and
z = t1/(t0 + t1) · x + t0/(t0 + t1) · y. Thus, picking t = t1/(t0 + t1), we obtain a
contradiction; so c must be one of the vi. �

As we shall see now, the vertices of the convex polytope play a special role
similar to the basis vectors of a vector space, while the non-vertex vectors spanning
the polytope are superfluous.

Theorem 3.10. Let P be a convex polytope and ci for i = 0, .., N its vertices.
Then

P = {x ∈ Rd : x = t0c0 + t1c1 + ...+ tNcN ,
N∑
i=0

ti = 1, ti ≥ 0}

Proof. According to the last lemma, the vertices ci are necessarily included
in the vectors spanning the polytope; but there may perhaps be others of the vi,
i = N + 1, ..., p that are necessary to span the polytope. Assuming that there are,
we denote these by vN+1, ..., vp, and we have

P = {x ∈ Rd : x = t0c0+t1c1+ ...+tN cN+tN+1vN+1+ ...+tpvp,

p∑
i=0

ti = 1, ti ≥ 0}.

Now we will show that any vN+i that is not a vertex can be eliminated from
consideration. Specifically, we show that for any vi that is not a vertex, there are
t1 through tN so that

vN+i = tN+i
0 c0 + ...+ tN+i

N cN

with tij ≥ 0 that satisfy
∑N

j=0 t
N+i
j = 1. If this is the case, then for any x ∈ P , we

have

x = t0c0 + ...+ tNcN + tN+1vN+1 + ...+ tpvp

= t0c0 + ...+ tNcN + tN+1

(
tN+1
0 c0 + ...+ tN+1

N cN
)
+ ...+ tp (t

p
0c0 + ...+ tpNcN )

=
(
t0 + tN+1t

N+1
0 + ...+ tpt

p
0

)
c0 + ...+

(
tN + tN+1t

N+1
N + ...+ tpt

p
N

)
cN .

So this entails that any x ∈ P can indeed be expressed merely as a linear
combination of the ci for i = 0, ..., N . Furthermore, each of the coefficients is a sum
of non-negative terms and thus non-negative. Finally, the sum of the coefficients is
indeed 1, which can most easily be seen in the second line, where the coefficients
in each parentheses add up to 1.

Now we need to show that each of the vN+i can actually be expressed as an
affine combination of the ci as stated above. We proceed inductively, and first
consider the polytope spanned by c0, ..., cN , and compare with the span obtained
by adding on more non-vertex point from P denoted by vN+1. Since vN+1 is not a
vertex, there are distinct points x, y ∈ P such that vN+1 lies on the connection line
of x and y. Without loss of generality, because of the convexity of P, we can move
the farther of these two points closer to vN+1 so that actually vN+1 = 1/2(x+ y).
Now we write x, y ∈ P in terms of the vectors c0, ..., cN and vN+1 as

x = tx0c0 + ...+ txNcN + txN+1vN+1

y = ty0c0 + ...+ tyNcN + tyN+1vN+1

where the coefficients are non-negative and add to 1. Note that we cannot have
txN+1 = 1 or txN+1 = 1, because either case would force all other coefficients in
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the respective line to vanish and would mean that x = vN+1 or y = vN+1, which
contradicts the choice of x and y. We now observe

vN+1 =
1

2
(x+ y) =

txN+1 + tyN+1

2
· vN+1 +

tx0 + ty0
2

· c0 + ...+
txN + tyN

2
· cN

Now we solve for vN+1, which is possible since
(
txN+1 + tyN+1

)
/2¡1, and obtain

vN+1 =

tx0+ty0
2 · c0 + ...+

txN+tyN
2 · cN

1− txN+1+tyN+1

2

.

Note that because the coefficients in the expressions for x and y added up to 1, it
follows that those of the ci on the right hand side of the above equation also add
up to 1. Apparently they are also all non-negative; so we have shown that vN+1

already appears in the span of c0, ..., cN . Now one proceeds inductively, observing
that including vN+2 does not change the span, until reaching vN+1. So we see that
the polytope is spanned by its vertices only. �

Thus indeed, the vertices play an eminently prominent role in the description
of a polytope. Since they are unique up to re-ordering, they also allow a useful
classification of polytopes:

Definition 3.11. (Degeneracy and Dimension of a Polytope) Let P ⊂
Rd be a polytope. We say P has dimension q if the vector space spanned by its
basis vectors has dimension q. We say P is non-degenerate, or of full dimension, if
q = d; otherwise we say P is degenerate.

We note in passing that in case P is degenerate and of dimension q < d, it is
isomorphic to a non-degenerate polytope in the space Rq.

As another building block for the subsequent work, we need the following:

Theorem 3.12. (Intersection of Polytope and Half Space) The intersec-
tion of a polytope with a half space is a polytope.

Proof. Without loss of generality, let us assume the half space is closed, i.e.
it contains its boundary plane, and let us refer to those elements in Rd that do
not belong to the half space as lying above the plane. Consider all vertices of the
polytope P , and sort them based on whether they lie below, on, or above the plane
of the half space of interest. If they all lie below or on the plane, the intersection
is the original polytope. If they all lie above, the result is the empty set.

Now consider the case where some of the vertices lie on one side of the plane,
and some on the other. For every pair of one vertex above and one vertex below the
plane, consider the connection line between the points. By convexity, each of these
connection lines lies fully inside P , and furthermore by construction, each intersects
the plane. Let {pi} denote the set of all these intersection points. Now generate
a new polytope formed by the vertices of P and the set {pi}. Since the {pi} lie
inside P, the resulting polytope is indeed again P. Now consider the new polytope
P̄ formed from those vertices of P below the plane and the set {pi}. Apparently by
construction all elements of P̄ lie in the half space; and furthermore, every element
in P that is inside the half space lies in P̄ ; so P̄ is the intersection of P with the
half space. �

Now we address one of the important properties of polytopes, which sheds light
on the relationship between polytopes and simplexes:
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Theorem 3.13. (Polytope Decomposition) Any non-degenerate polytope in
Rdcan be written as a union of simplexes with disjoint interiors.

Proof. Pick one of the vertices p0 of P. Consider all other vertices and connec-
tion lines from them to p0. We call those connection lines that lie on the boundary
of P edges. Consider the space spanned by all vectors of edges emanating from
p0. The dimension of this space must be d, the dimension of the space we are
considering. For if the dimension is lower than d, necessarily all other vertices of
P must also lie in this lower dimensional space, which is a contradiction to the
non-degeneracy of P .

Of those edges spanning the full space, pick d so that their span has full dimen-
sion. Consider their d endpoints p1, ..., pd opposite to p0 and use them to define
a plane in Rd. Consider the intersection of P with that half space defined by the
plane and containing p0. The result is a non-degenerate simplex S with vertices p0,
p1, ... , pd. On the other hand, consider the intersection of P with the half space
defined by the plane and not containing p0. The result is a polytope P1 spanned
by the all vertices of P except p0, i.e. with one less vertices than P . Furthermore
we have by construction that P1 ∪ S = Q, while the intersection of P1and S lies in
the plane and is thus degenerate.

Now one proceeds inductively by removing vertices, until the resulting polytope
is itself a simplex with (d+ 1) vertices. �

As consequences of the above arguments, we also obtain a result about inter-
sections of polytopes:

Theorem 3.14. The intersection of two polytopes is a union of simplexes that
intersect at most on their boundary.

Proof. Following de Morgan’s laws, it is sufficient to consider the intersection
of two simplexes. Furthermore, according to theorem 3.5, a simplex is the intersec-
tion of (d + 1) half spaces, so it is sufficient to consider intersections of simplexes
and half spaces. According to the previous two theorems, these can be written as
the union of almost disjoint simplexes. �

Now we are ready to define the S-algebra of our interest:

Definition 3.15. (S-Algebra of Simplexes) We define S to be the S-algebra
of finite unions of almost disjoint simplexes, and each element of S is assigned a
measure based on the sum of volumes of its defining simplexes.

Indeed the collection S is an S-algebra, as the chain of theorems and proposi-
tions in this section shows. The most complicated part pertains to the intersection
of two sets in S, which follows from theorem 3.14. In passing it is worthwhile to
assert that the measure is indeed well-defined, and in particular that it is inde-
pendent of the specific decomposition into simplexes that is chosen. However, to
this end one has to merely observe that each element of S has a unique representa-
tion through the smallest number of simplexes; and any larger representation splits
some simplexes into other smaller simplexes. But elementary rules of linear algebra
that carry into the Levi-Civita vector spaces assert that the measure of the original
simplex equals the sum of measures of its constituent pieces.

It is particularly noteworthy to stress that the above construction is far from
artificial; it is indeed the smallest S-algebra that is affine invariant, i.e. it is invariant
under affine transformations in the sense of theorem 11.c.
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Theorem 3.16. (Minimality of S) The S-algebra of simplexes S is the smallest
affine invariant S-algebra that contains the unit cube and assigns it unit measure.

Before we come to the proof of the theorem, we need another observation:

Lemma 3.17. Every two points of the unit simplex have distance not exceeding√
d.

Proof. Given two points x,y in the unit simplex, we write them as x = t0 ·0+
t1e1 + ...+ tded and y = r0 · 0 + r1e1 + ...+ rded;

∑
ti = 1,

∑
ri = 1, ti ≥ 0, ri ≥ 0.

Let dist(x, y) denote the Euclidean distance between x and y, which because of the
existence of roots of positive elements of the Levi-Civita field can be introduced
and which has very similar properties. Then we have

dist(x, y) =
√
(t0 − r0)2 + ...+ (td − rd)2 ≤

√
(1− 0)2 + ...+ (1− 0)2 ≤

√
d

�
Now we are ready to proceed with the proof of the theorem:

Proof. First, apparently the unit cube U = [0, 1]d is contained in S, as it is
the union of d! closed simplexes, each of which is obtained by rotating and shifting
the unit simplex defined in theorem 3.5. Since the d! simplexes are almost disjoint
and each has measure 1/d!, we obtain that the measure of U is indeed 1.

Let S be an affine invariant S-algebra containing the unit cube. First, we show
that S contains the unit simplex. First we consider the non-trivial face of the unit
simplex that has all coordinates non-vanishing, i.e. the face given by

H0 = {t1e1 + ...+ tded|
∑

tj = 1, tj > 0}.
Consider the point c0 = 1

de1 + ...+ 1
dei + ...+ 1

ded = ( 1d ,
1
d , ...,

1
d ), which apparently

lies in H0 (in fact, geometrically it is the “center” of the face H0). In the following,
we will construct a sequence of affine transformations of the unit cube so that the
resulting image fully contains the unit simplex and one of the images of its faces
contains H0. For the purpose of better illustration, we also show the sequence of
transformation in figure 3.1 for the two-dimensional case.

First we observe that the cube V = [−1, 1]d is in the algebra S, since it appar-
ently can be obtained as the image of U under first the translation map T1 given by
T1(x) = x−( 12 ,

1
2 , ...,

1
2 ) and followed by the stretching map T2 given by T2(x) = 2x,

which shows that the cube V = [−1, 1]d is the image of an affine transformation of
U , as shown in the second picture in 3.1 and thus in S.

Now we claim there is an affine transformation of V such that the resulting
image of V contains the unit simplex and the image of one of the faces of V con-
tains H0. To prove this claim, we will give an explicit construction of the affine
transformation.

First, we perform a dilation of V by
√
d, which is achieved by the stretching

map D(x) =
√
d · x. We call A1 the image of V under this transformation D;

the result is shown in the third picture in 3.1. Next we perform an orthonormal
transformation R that takes the point (

√
d, 0, ..., 0) in the center of the upper face

of D to d · c0 = (1, 1, ..., 1), which apparently has the same length. To fully describe
this affine transformation, we define its action on all Euclidean basis vectors ei. We
begin by demanding that R(e1) =

√
d · c0. To achieve orthonormality, we apply the

well-known Gram-Schmidt process to the set {
√
d · c0, e2, ..., ed}, which will give as
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an orthogonal set of vectors {u1, u2, ..., ud} . More explicitly, using the notation
proju(v) =

<u,v>
<u,u>u, we inductively set

u1 =
√
d · c0, u2 = e2 − proju1

(e2), u3 = e3 − proju1
(e3) − proju2

(e3),...,

uk = ek−
∑k−1

j=1 projuj
(ek). Here < u, v > and ‖u‖ are the inner product and norm

defined as in any Euclidean space, and proju(v) = <u,v>
<u,u>u. So the desired affine

transformation, R, is given by:

R(e1) =
u1

‖u1‖
=

√
d · c0

R(e2) =
u2

‖u2‖
, ..., R(ed) =

ud

‖ud‖
We call A2 the image of A1 under R; the result is shown in the fourth picture

in 3.1. It is clear that A2 is a cube of edge length 2
√
d, we only have to show

that one the faces of A2 is parallel to H0. In fact, the image of the face F =
{(
√
d, ..., ad−1, ad) : −

√
d ≤ ai ≤

√
d} is parallel to the plane containing H0, since

by construction they are both perpendicular to c0, i.e. the inner product of c0 with
the difference of any two vectors in the image of F or the difference of any two
vectors in H0 both vanish.

Finally, take the image of A2 under the translation map T given by T (x) =
x− (d+1

d , d+1
d , ..., d+1

d ). We denote the image of A2 under T by A3, and the result
is shown in the fifth picture in 3.1. By construction and the previous lemma, A3

is an affine transformation of the original cube that contains the unit simplex, and
the translation of the face F contains H0, because the face of the cube contains a
disk of radius

√
d centered at c0, and by the preceding lemma, no point in H0 is

further from c0 than
√
d.

Therefore, the unit simplex is the intersection of A3 with U , as illustrated in
the last picture of 3.1. Thus, S contains the unit simplex.

Now we note that according to theorem 3.5, any simplex can be written as an
affine image of the unit simplex. Since the S-algebra contains finite unions of its
elements, we see that each element of S is necessarily contained in the smallest
S-algebra containing U . �

4. Measure theory in Rd

We are now ready to use the S-algebras in the last section to introduce a
measure on Levi-Civita vector spaces.

Definition 4.1. (S-Measure) Let A ⊂ Rd be given. Then we say that A is
measurable under the S-algebra S if for every ε > 0 in R, there exist sequences (Sn)
and (Tn) of mutually disjoint open elements of S, such that ∪∞

n=1Sn ⊂ A ⊂ ∪∞
n=1Tn,∑∞

n=1 m(Sn) and
∑∞

n=1 m(Tn) converge in R, and
∑∞

n=1 m(Tn)−
∑∞

n=1 m(Sn) ≤ ε.

As a special case, and as the most important case for the further discussion,
we also define

Definition 4.2. (Measure) We say a set A ⊂ Rd is measurable, or simplex
measurable, if it is measurable under the S-algebra of simplexes.

The advantage of this approach is that it retains very close similarity with
the earlier introduced measure [32], while being flexible enough to capture what
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Figure 3.1. Top row: unit simplex and unit cube, stretching of
cube and re-centering at origin, stretching cube by

√
d. Bottom

row: rotating cube by R , shifting cube, and intersecting with unit
cube, resulting in the unit simplex.

is needed for the proof of the obtuse angle theorem. We now derive a few basic
properties of the S-Measure.

Proposition 4.3. The unit cube [0, 1]d ⊂ Rd is simplex measurable with mea-
sure 1. Any countable set is measurable with measure 0.

Proof. The first statement follows directly from theorem 3.16. For the second
statement, Let (an) , n = 1, 2, ... denote the countable set and let ε > 0 in R be
given. We use that the cube is measurable, and consider affine images of the cube
centered around the an, and we form sets An as An = {an + ε[−1,+1] · δn} ∩
{∪n−1

i=1 Ai} where δ is a positive infinitely small number. Apparently the An cover
the set of interest and are mutually disjoint by construction. However, we have the
sum of the measures m(An) is bounded by ε ·

√
δ < ε. Since ε is arbitrary, the result

follows. �
One of the important results is the following:

Proposition 4.4. (Substitution Rule) If the set A is simplex measurable and
A is an affine transformation, then A(A) is measurable, and m(A(A)) = |det(A)| ·
m(A).

The proof follows directly from the definition of the measure in terms of ele-
ments of the S-algebra, the invariance of the S-algebra under affine transformation.

Proposition 4.5. (Countable Union of Measurable Sets) For each k ∈
N, let Ak ⊂ Rd be measurable such that (m(Ak)) forms a null sequence. Then
∪∞
k=1Ak is measurable and

m (∪∞
k=1Ak) ≤

∞∑
k=1

m (Ak) .

Moreover, if the sets (Ak)
∞
k=1 are mutually disjoint, then

m (∪∞
k=1Ak) =

∞∑
k=1

m (Ak) .
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The proof of this proposition follows exactly as in the one dimensional case in R
[32], it is simply necessary to replace all occurrences of intervals in the respective
proof by elements of S. In a similar manner, one also obtains the proof of the
following.

Proposition 4.6. Let A,B ⊂ R be measurable. Then m(A ∪ B) = m(A) +
m(B)−m(A ∩B).

5. The Obtuse Angle Theorem for Levi-Civita Vector Spaces

We now construct a proof of the Obtuse Angle Theorem for the vector spaces
Rd. The arguments follow very closely those of the real case [8], where in every step
along the way it is confirmed that they hold in the corresponding necessary way in
the Levi-Civita structures. As we will see, the most crucial part will turn out to be
the properties of affine invariant measures discussed in the previous sections.

Definition 5.1. (Erdös Set) Let SE be a set of finitely many points in Rd.
We call SE an Erdös Set if for any three points s0, s1 and s2 , the angle formed by
the points is non-obtuse.

As mentioned above, obtusity of an angle is well defined by virtue of the inner
product. As it turns out, Erdös sets are closely related to so-called Klee sets, and
their use helps in the subsequent proof:

Definition 5.2. (Klee Set) Let SK be a set of finitely many points in Rd.
We call SK a Klee Set if for any two points s1 and s2 in the set, there is a ”strip”,
i.e. a set bounded by two parallel hyperplanes, so that all points in SK are in the
strip, and s1 and s2 are on opposite sides of the boundary.

For the purpose of practical comprehension, this property asserts that any two
points are “on the outside” of the set and not merely in the span of the other points.

Let us now consider finite sets S ⊂ Rd of points, their convex hulls conv(S),
and general convex polytopes Q ⊂ Rd. We assume without loss of generality that
the set S has full dimension, i.e. does not lie in a hyperplane; because otherwise it
is possible to consider the problem merely in the space spanning the hyperplane,
which is isomorphic toRd−1 by virtue of a rotation and translation, which preserves
inner products and thus angles. We say that two sets touch iff they have at least
one point in common, but have disjoint interior. For any set Q ⊂ Rd and any
vector s ∈ Rd, we denote by Q+s the image of Q under the translation that moves
0 to s.

Lemma 5.3. We have the following relationship between the maximal cardinality
of Erdös sets and Klee sets:

2d ≤ max(card(SE)) ≤ max(card(SK))

Proof. The first inequality merely re-states that the vertex set of the unit cube
inRd is an Erdös set, as discussed above. The necessary arithmetic of the inner
product and the non-negativity of all inner products of corner points follows exactly
as in the real case. For the second inequality, let any two si, sj ∈ SE be given. Define
the hyperplane orthogonal to the line [si, sj ] as Hij = {x ∈ Rd : x · (si−sj) = 0}.
Then let the strip S(i, j) be the regions between the hyperplanes Hij + si and
Hij + sj , i.e. the translations of Hij by the vectors si and sj , respectively. Then it
follows that any other point s in SE lies inside the strip, since otherwise one of the
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angles formed by the three points {si, sj , s} would be obtuse. So every Erdös set
is a Klee set. �

Now we introduce another type of finite point sets:

Definition 5.4. (Translating Convex Hull Set) Let P = conv(SC) be the
convex hull of the set SC . We say that SC is a translating convex hull set if all
translated convex hulls of the form

P − s
i

intersect in a common point, but they only touch.

Lemma 5.5. We then have

2d ≤ max(card(SK)) ≤ max(card(SC))

Proof. We show that every Klee set SK is also a translating convex hull set.
Let SK be a Klee set. We first observe that since for si ∈ SK we have si ∈ P , and
thus 0 ∈ P − si for all si. Thus all convex hulls intersect (at the origin). Now, let
two translating convex hull sets P−si and P−sj be given. Consider the hyperplane
through the origin Hij defined to be perpendicular to (si − sj). Then following the
arguments in 5.3, the two sets lie on opposite sides of the hyperplane, so 0 is indeed
their only common point. �

We now relax the notion of the set P in the above, and replace it with a general
polytope Q instead of P . We further replace the requirement of intersection in a
common point by merely pairwise touching.

Definition 5.6. (Translating Polytope Set) Let Q be a general polytope.
We say that SQ is a translating polytope set if all translated polytopes of the form

Q− s
i

pairwise touch.

Lemma 5.7. We then have

2d ≤ max(card(SK)) ≤ max(card(SC)) ≤ max(card(SQ))

Proof. We merely observe every set SC is also a set SQ. �
The last step may appear somewhat strange in that we have vastly increased

the number of sets we can consider, and yet as we shall see below, there will be no
negative consequences in the remainder of our arguments.

In the next step we perform one of the most crucial transformation. We move
from the general polytope Q to another polytope Q∗ that satisfies the same proper-
ties, but has much nicer properties. That polytope is given through the following:

Definition 5.8. (Minkowski Symmetrization) Let Q be a polytope. Then
we define the Minkowski Symmetrization Q∗ of Q via

Q∗ = {1
2
(x− y) : x, y ∈ Q}

We note that since Q∗ is made of all differences of elements of Q, it is centrally
symmetric, i.e. with q it also contains −q. It is also easy to see that it is convex.
Indeed, Q∗ is even again a polytope with vertices of the form 1/2(qi − qj), for
vertices qi, qj of Q, but this is immaterial for the subsequent arguments. In passing
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we note that the special symmetric structure of Q∗ first introduced in [21] has
various advantages and is used frequently in polytope theory. One of the interesting
properties is the following:

Lemma 5.9. Let Q be a polytope in Rd, and Q∗ its Minkowski symmetrization.
Then Q+ si and Q+ sj touch if and only if Q∗ + si and Q∗ + sj touch.

Proof. We first prove the weaker statement that Q+ si and Q+ sj intersect
if and only if Q∗ + si and Q∗ + sj intersect. The proof follows from a sequence
of relatively simple arithmetic steps. First note that (Q∗ + si)

⋂
(Q∗ + sj) �=∅ is

equivalent to the existence of q´i, q´´i, q´j , q´´j ∈ Q such that 1/2(q´i−q´´i)+si =
1/2(q´j−q´´j) + sj . By bringing the double primed indices to the other side, this
equation can also be written equivalently as

1/2(q´i + q´´j) + si = 1/2(q´j + q´´i) + sj .

Because of the convexity of Q, we have that qi := 1/2(q´i + q´´j) and qj :=
1/2(q´j + q´´i) lie in Q. So we see that the original condition implies the existence
of qi and qj in Q such that qi+si = qj+sj , and so Q+si and Q+sj intersect. But on
the other hand, if the existence of such qiand qj in Q is assumed, then writing qi,j =
1/2(qi,j + qi,j), we also have shown the existence of q´i, q´´i, q´j , q´´j ∈ Q such
that 1/2(q´i−q´´i) + si = 1/2(q´j−q´´j) + sj , and hence (Q∗ + si)

⋂
(Q∗ + sj) �=∅.

It remains to show the equivalence under touching. We first observe that two
translates Q + si and Q + sj touch if and only if they intersect, while Q + si and
Q + sj + ε(sj−si) do not intersect for any ε > 0. However, employing the just
proved equivalence of intersection between Q + si and Q + sj versus Q∗ + si and
Q∗ + sj , we see that Q+ si and Q+ sj + ε(sj−si) not intersecting for any ε > 0,
ε ∈ R, is equivalent to Q∗ + si and Q∗+ sj + ε(sj−si) not intersecting for any such
ε. Thus we have proved the equivalence under touching. �

Now we proceed to the final part in the chain of our estimates of cardinalities,
in which we will obtain an upper bound on the maximal cardinality of the sets
SQ. We make use of many of the previous results of this paper, with the most
central ingredients being the Minkowski symmetrization, the invariance of Levi-
Civita measures under affine transformation, and the substitution rule for Levi-
Civita measures.

Lemma 5.10. (Maximal Cardinality Theorem) All above sets have the
same maximal cardinality; specifically, we have

2d = max(card(SE)) = max(card(SK)) = max(card(SC) = max(card(SQ)).

Proof. Building on the previous lemmata of this section, we note that the
only part necessary is to show that max(card(SQ)) ≤ 2d. We begin with a more
detailed study of a Minkowski symmetrized polytope that is translated by two
different elements si and sj of the set SQ. Specifically, let us consider a point
x in the intersection of the translates, i.e. x ∈ (Q∗ + si)

⋂
(Q∗ + sj). We have

x−si ∈ Q∗ and x−sj ∈ Q∗, and since Q∗ is centrally symmetric, we also have
si−x = −(x−si) ∈ Q∗. Further, since Q∗ is convex, we have that 1/2(si−sj) =
1/2[(x−sj) + (si−x)] ∈ Q∗. Adding sj , we see that 1/2(si + sj) is contained in
Q∗+ sj for all i. Now let P = conv(SQ) denote the convex hull of the point set SQ,
and let us define the sets Pj via

Pj =
1

2
(P + sj).
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Then we have that Pj = conv{1/2(si + sj) : si ∈ S} ⊂ Q∗ + sj , which implies
that any two of the sets Pj = 1/2(P + sj) can only mutually touch. However, all
sets Pj are contained in P . Because for any x ∈ Pj there are positive λi ∈ R with∑

i λi = 1 such that

x =
∑
i

λi ·
1

2
(si + sj) =

1

2
sj +

1

2

∑
i

λisi.

But since y =
∑

λisi ∈ P by the definition of P , and because of the convexity of
P , we have that x = 1/2(sj + y) ⊂ P . So we have that ∪jPj ⊂ P , and since the Pj

are almost disjoint measurable sets, we have∑
j

m(Pj) ≤ m(P ).

However, each of the Pj is an affine image of the polytope P under the transfor-
mation M = 1/2 · I + sj where I is the identity transformation, and so by the
substitution rule of the Levi-Civita measure theory 4.4, we have

m(Pj) =
1

2d
m(P ).

Combining this with the previous inequality, we see that there can be at most
2d different Pj , and hence there can be only at most 2d different values of sj . Thus
max(card(SQ)) ≤ 2d, which completes our proof. �

As a direct consequence, the first equality of the previous Lemma entails our
desired theorem:

Theorem 5.11. (Obtuse Angle Theorem for Levi-Civita Vector Spaces)
Every set of more than 2d points in the Levi-Civita vector space Rd admits at least
one obtuse angle.
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