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ABSTRACT 

Power series with rational exponents on the real numbers field and the Levi-Civita field are studied. We 
derive a radius of convergence for power series with rational exponents over the field of  real numbers 
that depends on the coefficients and on the density of  the exponents in the series. Then we generalize that 
result and study power series with rational exponents on the Levi-Civita field. A radius of  convergence 
is established that asserts convergence under a weak topology and reduces to the conventional radius of  
convergence for real power series. It also asserts strong (order) convergence for points whose distance 
from the center is infinitely smaller than the radius of  convergence. Then we study a class of  functions 
that are given locally by power series with rational exponents, which are shown to form a commutative 
algebra over the Levi-Civita field; and we study the differentiability properties of  such functions within 
their domain of  convergence. 

1. INTRODUCTION 

Power series with rational exponents on the Levi-Civita field ~ [8,9] are presented. 
We recall that the elements of  7~ are functions from Q to R with left-finite support 
(denoted by supp). That is, below every rational number q, there are only finitely 
many points where the given function does not vanish. For the further discussion, it 
is convenient to introduce the following terminology. 
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Definit ion 1.1. ()~, ~ ,  ,% --r)  We define )~(x) = min(supp(x))  for x # 0 in 
(which exists because o f  left-finiteness) and M0) = +oe .  

Given x, y • ~ and r • R, we say x ~ y if)~(x) = MY); x ~ y i f M x )  = )~(y) and 
x[Mx)]  = y[)~(y)]; a n d x  =r  Y i fx [q ]  = y[q] for all q ~< r. 

At this point, these definitions may  feel somewhat  arbitrary; but after having 
introduced an order on 7~, we will see that )~ describes orders o f  magnitude, the 
relation ~ corresponds to agreement  up to infinitely small relative error, while 
corresponds to agreement  o f  order o f  magnitude. 

The set ~ is endowed with formal power series multiplication (the exponents 
in the series forming left-finite sets o f  rational numbers)  and with componentwise  
addition, which make it into a field [3] in which we can isomorphically embed R as 
a subfield via the map Fl : N -+ 7¢ defined by 

x i f q  = 0 ,  
(1.1) F I ( x ) [ q ] =  0 else. 

Definit ion 1.2. (Order in 7~) Let x # y in T~ be given. Then we say x > y if  
(x - y)[)~(x - y)] > 0; furthermore,  we say x < y i f y  > x. 

With this definition o f  the order relation, 7~ is an ordered field. Moreover, the 
embedding 1-I in Equation (1.1) o f  R into ~ is compatible with the order. The order 
induces an absolute value on 7~ in the natural way. We also note here that )~, as 
defined above, is a valuation; moreover,  the relation ~ is an equivalence relation, 
and the set o f  equivalence classes (the value group) is ( isomorphic to) Q. 

Besides the usual order relations, some other notations are convenient. 

Defini t ion 1.3. (<<, >>) Let  x, y • 7~ be non-negative. We say x is infinitely smaller 
than y (and write x << y) i f n x  < y for all n • N; we say x is infinitely larger than 
y (and write x >> y) i f  y << x. I f  x << 1, we say x is infinitely small; i f  x >> 1, 
we say x is infinitely large. Infinitely small numbers  are also called infinitesimals or 
differentials. Infinitely large numbers  are also called infinite. Non-negative numbers 
that are neither infinitely small nor infinitely large are also called finite. 

Defini t ion 1.4. (The number  d) Let d be the element o f  T~ given by d[1] = 1 and 
d[q] = 0  for q 7~ 1. 

It is easy to check that d q << 1 if  and only if  q > 0. Moreover, for all x • 7~, the 

elements o f  supp(x) can be arranged in ascending order, say supp(x) = {ql, q2 . . . .  } 
with qj < qj+l for all j ;  and x can be written as x = ~ - 1  x[qJ ]dqj, where the 
series converges in the topology induced by the absolute value [3]. 

Altogether, it follows that 7~ is a non-Archimedean field extension o f  R. For 
a detailed study o f  this field, we refer the reader to [3,16,5,19,17,4,18,15]. In 
particular, it is shown that 7~ is complete with respect to the topology induced by 
the absolute value. In the wider context o f  valuation theory, it is interesting to note 
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that the topology induced by the absolute value, the so-called strong topology, is the 
same as that introduced via the valuation ~, as the following remark shows. 

Remark  1.5. The mapping A : 7~ x R --+ ~,  given by A(x, y) = exp ( -~ (x  - y)), 
is an ultrametric distance (and hence a metric); the valuation topology it induces 
is equivalent to the strong topology. Furthermore, a sequence (an) is Cauchy with 
respect to the absolute value if  and only if it is Cauchy with respect to the valuation 
metric A. 

For if A is an open set in the strong topology and a c A, then there exists r > 0 in 
such that, for all x ~ R,  Ix - a L < r :=~ x 6 A. Let l = exp(-~.(r)), then apparently 

we also have that, for all x ~ ~ ,  A ( x ,  a) < 1 ~ x ~ A; and hence A is open with 
respect to the valuation topology. The other direction of the equivalence of  the 
topologies follows analogously. The statement about Cauchy sequences also follows 
readily from the definition. 

It follows therefore that the field ~ is just a special case of  the class of fields 
discussed in [13]. For a general overview of  the algebraic properties of  formal 
power series fields in general, we refer the reader to the comprehensive overview by 
Ribenboim [12], and for an overview of the related valuation theory to the books 
by Krull [6], Schikhof [13] and Ailing [1]. A thorough and complete treatment of  
ordered structures can also be found in [11]. 

In this paper, we study the convergence and differentiability properties of  power 
series with rational exponents in a topology weaker than the valuation topology used 
in [13], and we thus allow for a much larger class of  power series to be included in 
the study. Prior to [ 19,15], work on power series on the Levi-Civita field ~ has been 
mostly restricted to power series with real coefficients. In [8-10,7], they could be 
studied for infinitely small arguments only, while in [3], using the newly introduced 
weak topology, also finite arguments were possible. Moreover, power series over 
complete valued fields in general have been studied by Schikhof [13], Ailing [1] 
and others in valuation theory, but always in the valuation topology. 

In [19], we study the general case when the coefficients in the power series are 
Levi-Civita numbers, using the weak convergence of [3]. We derive convergence 
criteria for power series which allow us to define a radius of  convergence 0 such 
that the power series converges weakly for all points whose distance from the center 
is smaller than 0 by a finite amount and it converges strongly for all points whose 
distance from the center is infinitely smaller than 7- 

In [15] it is shown that within their radius of  convergence, power series are 
infinitely often differentiable and the derivatives to any order are obtained by 
differentiating the power series term by term. Also, power series can be re-expanded 
around any point in their domain of  convergence and the radius of  convergence of  
the new series is equal to the difference between the radius of  convergence of  the 
original series and the distance between the original and new centers of  the series. 

In this paper, we generalize the results in [19,15] to the study of power series with 
rational exponents. We require that the rational exponents in the power series form 
a left-finite sequence; this allows for the possibility to add and multiply these series 
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(within their domain of  convergence) in a way that is quite parallel to the addition 
and multiplication of  R-numbers and makes it natural to study such generalized 
power series over 7~. We first derive a radius of  convergence for power series with 
rational exponents over ~ that is shown to depend on the coefficients and on the 
density of  the exponents in the series. Then we use that result to study convergence 

of power series with rational exponents on 7~. We derive a radius of  convergence in 
the weak topology that reduces to the conventional radius of  convergence for real 

power series. Moreover, we show that the series converges in the order topology 
for points the distance of  which from the center is infinitely smaller than the radius 
of  convergence. Finally, we study the differentiability of  power series with rational 
exponents on 7-4 within their domain of  convergence. 

2. POWER SERIES WITH RATIONAL EXPONENTS OVER R 

Definition 2.1. Let (q,),,c~ be a sequence of  rational numbers. Then we say that 

the sequence is left-finite if  qj < qj+l for all j 6 N and the set {q~: n 6 N} is a 
left-finite subset of  Q. 

R e m a r k  2.2. It follows directly from Definition 2.1 that, i f  (q~) is a sequence of 
rational numbers then (qn) is left-finite if  and only if  (qn) is a strictly increasing 
sequence that diverges to cx~. 

Definition 2.3. Let (q~) be a left-finite sequence of  rational numbers, and for each 
N 6 N, let J(N)  be such that qJ(N) < N and qJ(N)+l >~ N. Define I (N)  = J (N  + 1) 
- J (N) ;  that is the number ofqn'S satisfying N ~< qn < N + 1. Also define 

Bq = lim sup( / (N))  1/N 
N - - ~  

Bq will be called the density of  the sequence (qn). 

R e m a r k  2.4. Let (q~) be a left-finite sequence of  rational numbers, and let Bq be 
the density of  the sequence (qn). Then Bq >1 l. 

Proof. Since the sequence (qn) is left-finite, then it must diverge. Thus, for each 
N E N there exists M > N in N and there exists n E N such that M ~< q~ < M + 1. 
Hence, for each N E N there exists M > N in N such that I (M) ~> 1, where I (M) 
is as in Definition 2.3. It follows that for each N E N, there exists M > N in N such 
that I ( M ) I/M >~ 1; and hence Bq >/ 1. [] 

L e m m a  2.5. Let (qn) be a left-finite sequence of  rational numbers. I f  Bq < oc, 
then z.,n=0v'~ rq" converges for 0 < r < 1/ Bq and diverges for r > 1/ Bq. On the other 
hand, i f  Bq = oo, then Y~=o rqn diverges for all r > O. 
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Proof. Using the notation in Definition 2.3, we have that 

(2.1) r ~ I ( N ) r  N - - ~ ' I < N ) r  N + l < ~ r  q~ <~ ~ I ( N ) r  N i f O < r <  1; 

N=0 N=0 n=0 N=0 

and 

(x) oo 
(2.2) ~ I (N)r  N <. Z r  qn <~r Z I(N)rN i f r  > 1. 

N=0 n=0 N=0 

First assume that Bq < oo. I f r  < 1/Bq, then 

limsup(I (N)rN)I/N -= rBq < 1. 
N--+ ~ 

Hence ~ _ o I ( N ) r  u converges. It follows f rom Equations (2.1) and (2.2) that 
~oo rq n converges. On the other hand, i f r  > 1/Bq then n=0 

limsup( l ( N)rU) l/U = r Bq > 1. 
N---* oo 

Hence y~U~__O I (N)r  N diverges, and so does y~.n~__o r qn, using Equations (2.1) and 
(2.2). 

Now assume that Bq = ec and let r > 0 be given. Since 

Bq = lim s u p ( / ( N ) )  1/N -~- 00, 
N--+oo 

it follows that, for all M ~ N, there exists N ~> M in N such that ( I (N))  1/N > 1/r, 
and hence I (N)r N > 1. It follows that the sequence (I (N)r N) does not converge to 
zero. Thus, Y ~ - o  I (N)r N diverges; and hence, by the comparison test, ~n~=0 r q~ 
diverges, [] 

Theorem 2.6. Consider the sequence (An = ~Loaixqi),  where (an) is a real 
sequence, (qn) is a left-finite sequence of  rational numbers, and 0 < x E R. Assume 
the sequence converges for x = xo > 0 and diverges for x = Xl > O. Then (An) 
converges absolutely for 0 < x < xo/Bq; and it diverges for x > Bqxl (with the 
convention that 1/oc = 0). 

Proof. Since ~ ' ~  qn 2--n=0 anXO converges in R, the sequence (anxg n) converges to zero. 
In particular, (anx q') is bounded, that is there exists J > 0 in R such that [an Ixg ~ ~< J 
for all n ~> 0. It follows that, for all n ~> 0 and for 0 < x < xo/Bq, 

( X  )qn 
la, xqnl = la,]xqn = lanlxq, __ <~ Jr q. ' 

\xo  / 

x 1 
where r = - -  < - - .  

xo Bq 

By L e m m a  2.5, we have that Y~n~__0 Jr qn converges in R. Using the comparison test, 
qn converges absolutely for 0 < x < xo/Bq. ~ n = 0  anXo 
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Now we show that (An) diverges for all x 6 ~ satisfying x > BqXl. Assume not. 
Then there exists x2 >" BqXl in R such ~ q" that ~n=O anX2 converges. Thus, using the 
first part  o f  the proof,  it follows that (An) converges absolutely for x = Xl because 
x~ < x z / B q ,  which yields a contradiction. [] 

T h e o r e m  2.7. Consider the infinite series ~n~=oan xqn, where 0 < an ~ ]K f o r  all 

n >~ 0 and (qn) is a left-finite sequence o f  rational numbers. Assume ~n~=OanX q'~ 

converges f o r  x = xo > 0 and diverges f o r  x = xl  > O. Then ~n~=oan xqn diverges 

f o r  x > xl  and convergesJbr 0 < x < xo. 

Proof. Let x > Xl be given in ~ .  Since (q~) is left-finite, there exists N ~ N such 
that qn > l for all n ~> N. Since ~n~=O anx q" diverges, it follows that for all L > 0, 

there exists J > N such that J ~ = N  anx~ ~ > L. Hence 

J J ( ) q n  
~'-'~anX qn Z a n x q n X  ~- - -  > L ,  
n=N n=N \ Xl "] 

f rom which we infer that ~ = 0  an xqn diverges. 
Now let x 6 R be such that 0 < x < xo. Assume ~2~=o anxqn diverges. Then, by 

w-,oo x qn the first part  o f  the theorem, Z.,n=oan 0 diverges, a contradiction. So Y~m~_oanX q" 

converges for 0 < x < xo. [] 

C o r o l l a r y  2.8. Consider the infinite series v ' ~  a x qn where an ~ R f o r  all n and .d..in = 0  n 

(qn) is a left-finite sequence o f  rational numbers. Assume ~-]7=oanX qn converges 

absolutely f o r  x = xo > 0 and diverges f o r  x = Xl > O. Then ~-~--0 ]an Ixq~ diverges 

f o r  x > Xl and converges f o r  0 < x < xo. 

Coro l l a ry  2.9. Let  (an) be a real sequence, (qn) a left,finite sequence o f  rational 

numbers, and D = {x > 0 in R such that Y~=o an xqn converges absolutely}. Then 

the possibil i t ies f o r  D are 

v ~  a ~-qn converges absolutely f o r  all x > 0 in ~ .  (1) D = •+, in which case Z-,n=O n ~  

(2) D = 0, in which case ~ n = 0  lan Ix qn diverges f o r  all x > 0 in ~ .  

(3) There exists r > 0 in ~ such that (0, r)  C D C [0, r], in which case ~ = o  an xq" 
o~ 

converges absolutely f o r  0 < x < r, and ~ n = o  [an Ix qn diverges f o r  x > r. 

Proof .  Cases (1) and (2) are self-explanatory, but we should justify (3). Suppose 
D # ~ +  and D # 0, Since D # R +, there exists Xl ~ R + such that ~n~_o [an Ix qn 

diverges. Hence, by Corollary (2.8), 0 < x < Xl for all x c D. Therefore, D is 
bounded above. Let  r = sup D. Since D # 0, there exists x0 > 0 such that xo c D; 
hence r />  xo > 0. 

I f  0 < x < r,  then there exists a member  p o f  D such that 0 < x < p ~< r since 
r = sup D. Since p ~ D,  ~ - o  anp qn converges absolutely; hence, by Corollary 2.8, 
~n~=O anX qn converges absolutely. If, on the other hand, x > r, then x ¢ D; and 
hence ~n~__o lan Ix qn diverges. [] 
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R e m a r k  2.10. In case (3) o f  Corollary 2.9, r will be called the radius o f  absolute 

convergence o f  x ~  a ~.qn In cases (1) and (2), the radii o f  absolute convergence Z--~n =0  n ~  " 

are oo and 0, respectively. Moreover, in case (3), we can not assert what happens at 

x = r .  

T h e o r e m  2.11. Let (an) be a real sequence and (qn) a left-finite sequence of 
rational numbers. Then the following are true: 

(1) l f  ( q ~ )  is unbounded, then Y]nC~__oanXq" diverges for all x > O. 
( 2 )  I f  Bq < (x) and (qn ~ n [ )  converges to zero, then ~n~=oan xqn converges ab- 

solutely for all x > O. 
(3) I f  Bq < oo, ( q ~ )  is bounded, and a = l i m s u p ~ o  o qn [%/~n[ ~ O, then 

~'-~oz anxq n converges absolutely for 0 < x < 1/ ( a Bq ), diverges absolutely for n=O 
x > 1/(aBq), anddivergesforx > 1/a. 

(4) I f  Bq = ~z and a = limsupn__+o o q ~  > O, then ~n~__O la~lx q~ diverges for all 
x > O .  

Proof .  1. Let x > 0 be given. For each J > 0 in N, there exists n />  J in N such 

that q ~  > 1/X. Hence lanlx q" > 1 for some n/> J .  In particular, the sequence 

(anx qn) does not converge to zero; and hence Y]n~--0 an xqn diverges. 
2. Suppose that Bq < ~ and ( q ~ )  converges to zero; and let x > 0 be given. 

There exists J c N such that, for n ~> J in N, qn[%/-~n[ < (2xBq) -1. Hence 

< { 1 ]  q° 
la~ Ix qn \ ~ q / ]  for  all n ~> J. 

Since ~--'~ t'l--L-) qn converges, by Lemma 2.5, we obtain, using the comparison Z..~n=O ~, 2 Bq 
test, that ~ a ,.qn converges absolutely. Z--,n =0  n ~  

3. Suppose that 0 < a --- l imsupn_,~ q ~  ~ OO and Bq < ~ ;  and let x c ~ be 
such that 0 < x < 1/(aBq). Then a < 1/(xBq). Since a ---- l i m s u p n _ ~  q ~ ,  there 
exists J ~ N and there exists t c R such that q ~  ~ t ~ (xBq) -1 for all n >~ J .  

Hence, q ~ l x q  n < tx < l /Bq  for all n ) J .  Thus, lanlx qn < (tx) qn for all n ~> J ,  

where 0 < tx < 1/Bq. By Lemma 2.5, y]~_o(tx)qn converges in R; hence, using 

the comparison test, ~ 0  anxq~ converges absolutely. 
Now let x > 1/(aBq) be given. Then a > 1/(xBq). Hence there exists t E R such 

that a > t > 1/(xBq). Since a = limsupn_+o o q ~ ,  there exist infinitely many n's 
such that q ~  > t > 1/(XBq). Thus, for infinitely many n's, q ~ x  qn > tx > 
1/Bq; and hence ~,~--0 (tx)q" diverges by Lemma 2.5. Using the comparison test, it 

follows that ~ % 0  lan Ixqn diverges. 
Finally, let x > 1/a be given. Then a > 1/x. Thus, there exist infinitely many n's 

such that q ~  > 1/X. Hence, for infinitely many n's, la,,Ix q~ > 1. It follows that 

the sequence (anx q~) does not converge to zero, and hence x - ~  a rqn diverges. A-.,n=0 n ~  

Note that, for 1/(aBq) < x ~ 1/a, ~ anX q" ~ = 0  may or may not converge, but 

~=o-  lanl xq" diverges. For 0 < x < 1/(aBq), both A.~n=0W'~ an~cqn and ~n~=o la~lx q" 
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converge. For x > 1/a, both v ' ~  a x qn and ~ z =  0 lanLx qn diverge. So we can A--.n = 0  n 

define a radius of  absolute convergence but not one of  conditional convergence. 
4. Let x > 0 be given. Since a > 0, there exists t 6 IR such that 0 < t < a. Since 

a = l imsupn_~ q ~ ,  there exist infinitely many n's such that q ~  > t > 0. 
Hence, for infinitely many n's, la~lx qn > ( t x )  q" , where tx  > 0. By Lemma 2.5, 

y ~ L o ( t x ) q n  diverges; and hence ~ - - 0  lanl xq" diverges. [] 

3. R E V I E W  OF S T R O N G  C O N V E R G E N C E  A N D  W E A K  C O N V E R G E N C E  

In this section, we review some of  the convergence properties of  power series that 
will be needed in the rest of  this paper; and we refer the reader to [19] for a more 
detailed study of  convergence on the Levi-Civita field. 

Definition 3.1. A sequence (s,) in 7~ is called regular if  the union of  the supports 
of  all members of  the sequence is a left-finite subset of  Q. 

Definition 3.2. We say that a sequence (sn) converges strongly in ~ if it converges 
with respect to the topology induced by the absolute value. 

It is shown that every strongly convergent sequence in ~ is regular; moreover, the 
field ~ is Cauchy complete with respect to the strong topology [2]. For a detailed 
study of  the properties of  strong convergence, we refer the reader to [ 14,19]. 

Since power series with real coefficients do not converge strongly for any nonzero 
real argument, it is advantageous to study a new kind of convergence. We do that by 
defining a family of  semi-norms on ~ ,  which induces a topology weaker than the 
order topology and called weak topology [3]. 

Definition 3.3. Given r E R, we define a mapping II • IIr : ~ ~ R as follows: 

(3.1) ]lX]lr = max{lx[q]l: q c Q andq ~<r}. 

The maximum in Equation (3.1) exists in JR since, for any r ~ R, only finitely 
many of  the x[q]'s considered do not vanish. 

Definition 3.4. A sequence (sn) in 7~ is said to be weakly convergent if  there exists 
s c 7~, called the weak limit of  the sequence (sn), such that for all e > 0 in R, there 

exists N ~ N such that IlSm - s II 1/e < ~ for all m ~> N. 

A detailed study of  the properties of  weak convergence is found in [3,14,19]. 
Here we will only state the following two results. For the proof of  the first result, 
we refer the reader to [3]; and the proof  of  the second one is found in [14,19]. 

Theorem 3.5. (Convergence criterion for weak convergence) Let  (s,) converge 

weakly  in T¢ to the limit s. Then, the sequence (sn [q]) converges to s [q] in R, f o r  all 

q c Q, and the convergence is uniform on every subset  o f  Q bounded above. Le t  on 
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the other hand (Sn) be regular, and let the sequence (sn[q]) converge in ~ to s[q] 

]'or all q e Q. Then (s~) converges weakly in 7-4 to s. 

Theorem 3.6. I f  the series ~ a d oo Y]~=o n an ~ = o  bn are regular, ~ = o  an converges 
b oo c absolutely weakly to a, and Y~n=o n converges weakly to b, then ~n=o n, where 

cn = ~ = o  a jbn - j ,  converges weakly to ab. 

It is shown [3] that 7-4 is not Cauchy complete with respect to the weak topology 
and that strong convergence implies weak convergence to the same limit. 

4. P O W E R  S E R I E S  W I T H  R A T I O N A L  E X P O N E N T S  O V E R  7% 

We now discuss power series with rational exponents over 7-¢. We first study general 
criteria for such power series to converge strongly or weakly; we begin this section 
with an observation [3]. 

Lemma 4.1. Let L C (~ be left-finite; and define 

L E = { t l + - . - + t n :  n e N ,  a n d h  . . . . .  t n e L } .  

Then L ~ is left-finite i f  and only tfmin(L) ~> 0. 

Corollary 4,2. (1) A sequence xn = x qn, where (qn) is left-finite in (~, is regular i] 

x > 0 is at most finite. 
(2) A sequence Xn = anX qn or Xn = ~ = o a j x  qj, where (qn) is left-finite in (~, is 

regular i f  x > 0 is at most  f inite and (an) is regular. 

Proof. 1. Let x > 0 be at most finite, let L = supp(d-z(X)x) and let L~ be as in 
Lemma 4.1. Then, L~ is left-finite since min(L) = 0. Since U,,=o{;~(x)qn } is also 
left-finite and since 

oo oo 

U supp(x q~) c Lc  + U{~(x)q.}, 
n = 0  n = 0  

we obtain that Un~__0supp(x qn) is left-finite. This is so since the sum of two left-finite 
sets is itself left-finite and so is any subset of  a left-finite set [3]. Hence the sequence 
(x qn ) is regular. 

2. We use the fact that the product of  regular sequences is regular [14]. [] 

L e m m a 4 . 3 .  Let x e TC be such that O < lxl << l, and let q e Q \ {O} be given. 
Then 

(30 

(1 - l - x )  q = 1 + Z q(q - 1). . .  (q - j  + l J x j .  ~ 
j !  

j = l  
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Proof .  Let  x E N, 0 < Ixl < 1, be given. Then (1 + X) q = 1 -4- ~ - 1 C ( j , q ) x J ,  
where 

q(q - 1 ) . . - ( q  - j + 1) 
C(j,  q) = for all j ~> 1. 

j !  

Write q = m/n,  where n is a positive integer and m is a nonzero integer. Then 

(1 + X) m = 1 + C(j,  q ) x  j = Oli x i ,  

j = l  i = 0  

for s o m e  Oil,  or2, . . .  in R. 
Now let x ~ ~ be such that 0 < Ix l << 1. Then Y~00l iXi  converges strongly (and 

hence weakly) to (1 + X) m. Also ,  ~ i )-~4=0 aix = (1 + ~ j = l  C(j,  q)xJ) n. Altogether, )n 
( l + x )  m= ~ _ o t i x i =  l + Z C ( j , q ) x J  

i = o  j = l  

Therefore, 

(1 + x) q = (1 + x) rain = ((1 + x)m) 1/n = 1 + Z C( j ,q )xJ .  

j = l  

[ ]  

The following theorem allows for the continuation of  real power series with 
rational exponents into the field 7~; it will also be very useful for deriving a weak 
convergence criterion for the general case of  power series with rational exponents 
and coefficients from ~ ,  as we will see in the p roof  o f  Theorem 4.10. 

T h e o r e m  4.4. Let (an) be a real sequence, and let (qn) be left-finite in Q. 
Assume that y~n~=O anX qn converges absolutely for X ~ ~, 0 < X < cr and diverges 
absolutely for X > ~r. Let Yc ~ T~ be finite, and let An(x) = Y~i~oai fcqi E 7~. Then, 
for 0 < 3t(2) < a, the sequence is absolutely weakly convergent. We define the limit 

to be the continuation o f  the real infinite series on T~. 

Proof .  First note that the sequence is regular for any finite 2, which follows 
from Corollary 4.2, as the sequence (an) has only purely real terms, and is 
therefore regular. Let 2 6 R be finite and such that 0 < ~ (2 )  < a .  To show that 
(An (2)) converges absolutely weakly, it remains to show that (An (2)[r]) converges 
absolutely in R for all r 6 Q. Write 2 = X + x, where X = 9t(2). Then x = 0 or Ixl 
is infinitely small. For x = 0, we are done. Otherwise, let r E Q be given. Choose a 
positive integer m such that mMx) > r. Then, 

xqn[r] = X qn + Z x J C ( j , n ) X  qn- j  [ r ] ,  

j = l  
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where 

and 

So 

{ ~  ifqn is a normegative integer, 
Un = otherwise, 

r~(j-1) 
C(j ,n)= l lk=° ( q , - k )  for a l l j ~ > l .  

j! 

min(m, U n ) 

Yq'[r] = X q"[r] + Z x j[r]C(j,n)X q'-j, 
j=t 

where, for the last equality, we use the fact that xJ [r] - 0 for j > m. Let v2 > Vl > m 

be given. Since (qn) is left-finite, there exists J 6 N such that qn > m for all n ~> J. 
Then we get for any v2 > vl > J:  

v 2 v 1 v2 

Z]anycq,[r]l- y  laY'trll = y~  la, Yq'[r][ 
n=O n=O n = P l  

v~, lanl X qn min(m,Un) 
: xJ r C(j,n)Xqn-J 

n=vl j = l  

<- ~ lan[ Xq'-k- lanl[xJ[rllqn(qn--1)'"(qn--jW1)xqn-J 
n=vl j = l  ) ~  

~ (m.~=olXJ[r][Xm-J~" (n~vllanl'q~nn'Xqn--m) J 

Note that the right-hand sum contains only real terms. Since l i m n ~  q ~  = 1 and 
since 0 < X < a,  the sum converges to zero. As the left-hand term does not depend 

on vl or v2, ~ ' 1  lanxq'[r]l converges to zero in ~. Therefore, the sequence 

(Y~4n=o ]an ~qn [r]l) is Cauchy; hence, we obtain absolute convergence at r. [] 

4.1. C o n v e r g e n c e  criteria 

In this section, we derive divergence criteria for power series with rational ex- 
ponents and with coefficients from ~ in both the order topology and the weak 
topology. 

T h e o r e m  4.5. (Strong convergence criterion for power series with rational expo- 

nents) Let (an) be a sequence in 7~, let (qn) be a left-finite sequence in ~ and let 

n ~  k qn / n-+~ k q~ / 
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Let  x > 0 in T4 be given. Then thepower  series x ~  a x qn converges strongly in 7-4 / - - - n=0  n 

i f ) f i x )  > )~o and is strongly divergent i f ) f i x )  < Xo or i f ) f i x )  = )~o a n d - X ( a ~ ) / q n  > 

)~o f o r  infinitely many n. 

Proof .  First assume that X(x) > X0. To show t h a t  ~n~=oan xqn converges strongly 

in 7¢, it suffices to show that the sequence (an xqn ) is a null sequence with respect to 

the order topology. Since ~.(x) > )~0, there exists t > 0 in Q such that )fix) - t > )~0. 
Hence there exists N E N such that )fix) - t > -X(an) /qn  for all n ~> N. Since the 

sequence (qn) is left-finite, we may choose N large enough so that qn > 0 for all 

n/> N. Thus, X(an xqn) = )~(an) -+- qnX(X) > q,zt for all n ~> N. Since t > 0 and since 

limn-+~ qn = OC, we obtain that l imn_,~ X(anX qn ) = ~ ;  and hence (an xqn) is a null 

sequence with respect to the order topology. 

Now assume that )fix) < )~o. To show that y~n°C__o an xqn is strongly divergent in T¢, 

it suffices to show that the sequence (a~x qn) is not a null sequence with respect to 

the order topology. Since the sequence (qn) is left-finite, there exists No E N such 

that qn > 0 for all n/> No. Since )fix) < ~-0, for all N > No in N there exists n > N 
such that )fix) < - ) f f a n ) / q , .  Hence, for all N > No in N, there exists n > N such 
that )~(an xqn ) < 0 ,  which entails that the sequence (an xqn ) is not a null sequence 

with respect to the order topology. 

Finally, assume that )fix) = )~o and --)ffan)/qn > )~0 for infinitely many n. Then 

for all N > No in N, there exists n > N such that -)~(a~)/qn > )~o = )fix), where 
No 6 N is as in the previous paragraph. Thus, for each N > No in N, there 
exists n > N such that )~(anx qn) < 0. Therefore, the sequence (an xqn) is not a null 

sequence with respect to the order topology; and hence w ' ~  a x qn is strongly Z.~n = 0  n 

divergent in 7-4. [] 

R e m a r k  4.6. Let (an), (qn) and ;~0 be as in Theorem 4.5. Since the sequence (an) 
is regular, there exists lo < 0 in Q such that ~.(an) ~> l0 for all n ~> 0. Also, since 
the sequence (qn) is left-finite, there exists N ~ N such that qn >/1 for all n > /N.  It 

follows that 

_ b  l0 
X(an) <~ _ _ _  <~ - l o  for all n/> N; 

qn qn 

and hence 

Xo = limsup(-X(an) ~ <. -Io. 
n--+ec \ qn / 

In particular, this entails that Xo < ~ .  

The following two examples show that for the case when ;~(x) = )~0 and 

--X(an)/qn >~ XO for only finitely many n, the series w ' ~  a x qn can either converge / - - , n=0  n 

or diverge in the order topology. For this case, Theorem 4.10 provides a test for weak 
convergence. 
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Example  4.7. For each n ~> 0, let an = d and qn = n; and let x = 1. Then ~o = 

l i m s u p n ~ o c ( - 1 / n )  = 0 = )~(x). Moreover, we have that -)~(an)/qn = - 1 / n  < )~o 
= ~ d for all n > 0; and Y2~_o an xqn Y2~n=0 diverges in the order topology in ~ .  

Example  4.8. For each n, let tn c Q be such that v/-ff/2 < tn < V~, let an = dtn and 

qn = n; and let x = 1. Then )~o = l imsup , - ,o~( - tn /n )  = 0 = )~(x). Moreover, we 
have that -)~(an)/qn = - t n / n  < 0 --- )~o for all n > 0; and Z.,n=0W'~ anxqn ~--- Z-~n=0V'ec dtn 
converges strongly in ~ since the sequence (d t") is a null sequence with respect to 
the order topology. 

R e m a r k  4.9. Let )~0 be as in Theorem 4.5, and let x > 0 in 7~ be such that 

)~(x) = )~o. Then Lo 6 Q. So it remains to discuss the case when )~(x) = )~o 6 Q. 

T h e o r e m  4.10. (Weak convergence criterion for power series with rational expo- 

nents) Let (an) be a regular sequence in 7~ and (qn) a left-finite sequence in Q, and 
let )~o = limsUpn-+~(--)~(an)/qn) C Q. Let x > 0 in ~ be such that )~(x) = )~o. Let 

{ra,q = inf Bq • l imsup : r 6 A = supp(an) , 
/~ ---~ OO n = 0  

with the conventions 1/0 = ~ and 1/cx~ = 0 and where Bq is the density o f  the 
sequence (qn) as in Definition 2.3. Then ~nee=oanXqn converges weakly in ~ i f  
x[,Lo] < ~ra,q and is weakly divergent in T¢ / f  x[~.o] > Bq . Cra,q. 

Proof.  Without loss o f  generality, we may assume that )~o = 0. It follows that 0 < 
a . x ~ 1. Since the sequence (an) is regular, we can write Un=o s u p p ( n )  = {rl, r2, . .} 

OG r "  with rjl < rj2 i f  j l  < J2. For each n, we write an = ~ j = l a n j d  J, where anj - 
an[rj]. Let X = 9t(x); then X > 0. First assume that X < aa,q. 

First claim. For all j ~> 1, we have that ~- '~  ~ X q" converges in IR. Z---,n = 0  t~nj 

Proof  o f  the first claim. Since X < C~a,q, we have that 

X <  inf{ (BqlinmSUpIanjll/q")-l: j >I 1}; 

and hence 

X < (Bql imsuplan/ l l /qn)  -1 
n----> o o  

for all j ~> 1. 

Hence ~n°c=0 anj X qn converges in IR for all j ~> 1, by Theorem 2.11. 
It follows directly from Theorem 4.4 that z_,n=oW'~ an i x  qn converges weakly in 7~ 

for all j >/1. 

Second claim, v , ~  a x qn converges weakly in 7~. Z . . n = 0  n 

Proof  o f  the second claim. We know that ~n~__0 a n j X  qn c o n v e r g e s  weakly in ~ for 

all j / >  1. For each j ,  let f j ( x )  = v ' ~  ,, xq,," then )~(fj(x)) >1 0 for all j ~> 1. Z-.~n=0 ~ n j  , 

Thus ~ - 1  drj f j  (x) converges strongly (and hence weakly) in 7~. Now let t 6 Q be 
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given. Since the sequence (rn) is left-finite, then there exists m c N such that rj > t 
for all j ~> m. Thus, 

drj fj(x) It]= drj fj(x))[t]= drj[tllfj(x)[t21 
j=l j=l tl+t2=t 

= d r j [ t l ] f j ( x ) [ t 2 ]  = E dr j [ t l ]  an jX  qn [t2] 
j=l \ t l+t2=t - j=l tl+t2=t 

= Z  E d r j [ t l ] E a n j  xqn[t2]= anj drj[tllXq"[t2] 
j=l tl+t2=t n=0 n=0 j=l --tl+t,=t 

= E E a n j  drj[tl]xq"[t2] = anj(drjxq")[t] 
n=0 j=l --tl +t2=t ~ n=O j=l 

= Z a n j d r j x q n  [t]= a n j d  rj x qn [t] 
n=0 j=l n=0 

= an xqn [t]. 
\n =0 / 

By Corollary 4.2, the sequence (A, = Z ~ o  al xql) is regular; moreover, by the 
last sequence of  equalities, we have that 

nl'm n '  : forall,   
j=l 

~ - ' ~  dr j  It follows from Theorem 3.5 that the sequence (An) converges weakly to/--.j=l " 
f j  (x); that is, y~n~__0 anx qn converges weakly to Z j°°__ 1 d rj f j  (X). 

NOW assume that 

{( ~ ) - 1  0 } X > Bq . O'a, q = inf limsup qn an[r] : r E A = supp(an) . 
n-~ o0 n=O 

Then there exists Jo 6 N such that 

X > (limsup l a n .  II/qn'~ -1" 
JO 

and hence Y-~=o a,% X qn diverges in R by Theorem 2.11. This entails divergence 

of  (Y~neC__oanxqn)[rjo] in R; and hence ~j-~_oanx qn is weakly divergent in T~ by 
Theorem 3.5. [] 

Remark  4.11. At the expense of  making the statement of  the theorem more 
complicated, Theorem 4.10 can be discussed under the weaker requirement that the 
sequence (bn) rather than (an) be regular, where b,, = and nzo for each n. Moreover, 
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after scaling as discussed at the beginning of  the proof of  Theorem 4.10, the more 
general version of  the theorem would reduce to the simpler version stated and 
proved above. 

4.2.  A l g e b r a i c  p r o p e r t i e s  

We have seen in Theorem 4.5 and Theorem 4.10 that, for a given regular sequence 
(an) in ~ and a left-finite sequence (qn) in Q, the series ~n~=oanX q" converges 
strongly for x > 0 in ~ satisfying Z(x) > Zo and weakly for all x E 7~ satisfying 
Z(x) = Z0 and 0 < x[Z0] < ~ra,q, where 

)~o ___ lim sup ( - Z ( a n ) ) ,  
n~oo k qn / 

and where ~Ya,q is as in Theorem 4.10. 

Definition 4.12. Given a regular sequence (an) in 7-Z and a left-finite sequence (qn) 

in Q such that Zo ~ R, we define fa.q = {(an), (qn)} : D f  --+ 7"~, where 

D f  = {x > 0 in 7~: Z(x) > Zo or Z(x) = Zo and x[)~o] < C~a.q }, 

by fa ,q(X)  = v ' e c  a ,'q" / ~n=O t i m  " 

In the following, we will drop the subscripts (a, q) for the sake of simplicity in 
the notation. 

Definition 4.13. Let M = {f: f = {(an), (qn)} where (an) is a regular sequence in 
7~ and (qn) is a left-finite sequence of  rational numbers}. 

In the following, we define addition (9, scalar multiplication (3 and multiplication 
® on M; and we show that the resulting structure (M, (9, (3, ®) is a commutative 
algebra with unity. 

Definition 4.14. (Addition on M) Given f = [(an), (rn)}, g = {(bn), (Sn)} in M, 
let A ' ~ dn=0{rn} and B = = Un=o{Sn}; and let C = A U B. Since A and B are both 
left-finite, so is C [2]. So we can arrange the elements of  C in a strictly increasing 
sequence (tn). Define a sequence (cn) in 7Z as follows: 

(4.1) 
aj  if  tn = rj  e A \ B ,  

Cn = bk i f  tn = Sk E B \ A ,  

a j  -[- bk if  tn = rj  = Sk E A N B.  

Then (cn) is regular [2]. Define f (9 g = {(Cn), (tn)}. 

It follows readily from Definition 4.14 that, for all f ,  g E M, f (9 g E M and 

f ( g g = f  + g o n D f n D g .  
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Definition 4.15. (Scalar multiplication on M) For f = {(an), (qn)} E M andu 6 7~, 
define ~ @ f = {(uan), (q,)}. 

L e m m a  4.16. M is closed under scalar multiplication. 

Proof. We need to show that i f  (an) is a regular sequence in 7~ and if  or 6 ~ ,  then 
the sequence (otan) is regular. We have that 

OO 

U supp(oean) C U supp(an) + supp(oO. 
n = 0  n = 0  

oo oo lY 
Since Un=0 supp(an) and supp(o0 are both left-finite in Q, so is Un=o s u p p ( a n )  
[2]. Hence (otan) is regular in 7¢. [] 

It follows from Definition 4.15 that, for all f E M and for all a E ~ ,  o~ q) f = a f  

on Df.  

Definition 4.17. (Multiplication on M) Given f : {(an), (rn)}, g = {(bn), (sn)} in 
oo r ~ s M, let A = Un=0{ n}, B = U~=0{ n}, and let C = A + B. Since A and B are both 

left-finite, so is C [2]. So we can arrange the elements of  C in a strictly increasing 
sequence (t,,). Moreover, for each t 6 C, there exist only finitely many r 's  in A and 
finitely many s's in B such that t = r + s. For all n ~> 0, let 

(4.2) cn = Z (anj • bnk) 
j,k:tn =rnj ÷Sn k 

where the sum in (4.2) runs over only a finite number of  terms. Since (an) and (bn) 
are both regular, so is (cn) [2]. Define f @ g = {(c,,), (t~)}. 

It follows directly from Definition 4.17 that for all jr, g 6 M, f N g 6 M and 

f N g = f g  on Df 0 Og. 

Theorem 4.18. Ad = (M, @, 6), ®) is a commutative algebra over 7~, with 
multiplicative unity. 

Proof. ~ is commutative: Let f = {(an), (r,)} and g = {(b,), (sn)} in M be given. 
oo r oo s As in Definition (4.14), let A = Un=0{ n} and B = Un=0{ n}. Then 

f @ g = { ( C n ) , ( t n ) }  and g @ f = { ( e n ) , ( q n ) } ,  

where the sequences (tn) and (qn) are obtained by arranging in a strictly ascending 
order the elements of  A U B and B U A, respectively. Since A U B = B U A, 
we have that tn = qn for all n. That cn = en for all n follows immediately from 
Equation (4.1). Hence f ~ g = g ~3 f for all f ,  g 6 M. 

Similarly, we can show that @ is associative, ® is commutative, ® is associative, 
and ® is distributive with respect to ~ .  
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M has a neutral element with respect to (9: First note that i f  f : { (an), (qn)}, g = 
{(an), (tn)} C M, where an = 0 for all n, then 

(4.3) f ( 2 )  = g(2) = 0 for all 2 > 0 in ~ ;  and hence f = g. 

Let 0 M = {(an), (qn)} where an = 0 for all n and where (qn) is any le•finite 
sequence of  rational numbers. Then 0M is uniquely defined by virtue of  Equa- 

tion (4.3), and 0M e M. Moreover, f (9 0M = 0M (9 f = f for all f ~ M. 
Every element f 6 M has an additive inverse in M: Given f -- {(an), (qn)} 

M, let O f  ---- {(-an),  (qn)}. Since (an) is regular, so is ( -an) .  Hence O f  6 M. 
Furthermore, 

( O f )  (9 f = f (9 ( O f )  = {(an --an),  (qn)} =OM- 

M has a neutral element with respect to ®: Let 

1M = {(an), (qn)} where a0 = 1, an = 0 for all n ~> I 

and where (qn) is any left-finite sequence of rational numbers satisfying qo = 0. 
Then 1M is uniquely defined on its domain 7~+; and 1M e M. Moreover, 

f ® l M = l M ® f = f  for all f c M. 

Finally, it is easy to check that 

l ( g f = f  for all f ~ M, 

G (fl Q f )  = (aft) Q f for all f E M and for all c~,/~ 6 7~, 

ot (3 ( f  G g) = (~ (3 f )  @ (or (3 g) for all f ,  g 6 M and for all ot c 7~, 

(or + 13) Q f = (c~ (3 f )  (9 (13 (3 f )  for all f 6 M and for all a, 13 c 7~, 

o t ( 3 ( f  ® g ) = ( o t ( 3  f ) ® g :  f ® ( o t ® g )  forall f ,  g 6 M  

and for a l l~  6 ~ .  [] 

and 

4.3. Analytical properties 

We start this section by studying the differentiability properties of  functions in A4, 
at points in the domain of  the given function that are finitely away from 0. 

Theorem 4.19. Let f ~ AA be given by f ( 2 )  = ~n~=oan2qn," and let )~o = 
l i m s u p n ~ ( - ) ~ ( a n ) / q n ) .  Then the series 

o o  

gj(2) = Z a n q n ( q n  -- 1).- .  (qn -- j + 1) ~qn-j 
n=O 

converges weakly for  any j >~ 1 and for  any Yc ~ D f ,  where 

D f = {x > 0 in 7~: )~(x) > )~o or )~(x) ~- )~o and x[)~o] < Cra,q = Cr f }. 
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Furthermore, f is infinitely often differentiable for  all 2 ~ D f satisfying Z(2) = )~o, 
with derivatives f(J) (2) = gj (2). 

Proof. Without loss of  generality, we may assume that Zo = 0 and we may assume 

that lo = min(U~__0 supp(a,)) = O. This is so, since scaling the domain or the range 
of  the function by a constant factor does not change the differentiability properties 
of  the function. 

Observing that 

limsup qCqn(qn - -  1) . . .  (qn - j + 1) ~< lim qn~q/" = 1 
n--+oc n--+oo 

for any fixed positive integer j ,  the first part is clear. 
For the proof  of  the second part, let 2 c DT be finite (i.e. Z(2) = )~0 = 0), and let 

h be such that 2 + h ~ Df. Let us first state two intermediate results concerning the 

term I ( f (2  + h) - f ( x ) ) / h  - gl(x)l. First let h be not infinitely small; let hr and X 
be the real parts o f h  and 2, respectively. Then, hr =0 h and X --0 2. Evidently, we 

get gl(X) =o g1(2) and f ( X )  =o f (2 ) .  As hr # O, we obtain that 

(4.4) f ( 2  + h)h - f ( 2 )  _ gl (2) =o f ( X  q- hr)hr - f ( X )  - gl (X) . 

Let, on the other hand, Ihl be infinitely small. Write h = hodr(1 q- hl) with ho 6 IR, 

0 < r c Q, and Ihll at most infinitely small. Then we obtain, for any s ~< 2r, that 

f ( Y  +h) [ s ]=  an(Y + h )  q" [s] 
k n = O  / 

= anEhvqn(qn--1)'"(qn--v+l)yqn-v [s] 
v! 

v = 0  

( ~  )[ (~-~anhqn 2qn-1 ] = an y@ S] + [S] 
\ n = O  / \ n = O  ! 

+(~anh2qn(qn-1)xqn-2) [ s ] ' \ n  =0 2 

Other terms are not relevant as the corresponding powers of  h are infinitely smaller 
in absolute value than d s. Therefore, we get: 

(4.5) f ( 2  + h) - f ( 2 )  
h 

o~ 

-- gl(x) =r  ho dr E anqn(q2- ' l )  2@-2" 
n = O  
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f ( 2  q- h) - f (2 )  
- g l  (2 )  = r  O; and hence 

h 

f ( 2  +h)h-  f ( 2 ) _ g l ( 2 )  < ~  <~. 

Otherwise, we get 

f ( 2  + h ) -  f (2 )  - g ' ( 2 )  < "2'holdr ( qn(qn-1)  yq"-2) 2 

28 {'~---" qn(qn - 1)2q,,_2)[0] 
<~n~=O an - 2 '  

~ ~1 4 6. , 

and the proof  is completed. [] 

C o r o l l a r y  4.20. Let f ~ A4 be given by f (2)  v ' ~  a ~.qn. and let 3.o = 
limsupn__,~(-)~(an)/qn). Let 2 E Df be such that )~(2) = )~o. Let X = 2[Lo] and 
x = 2 - X. Then 

oo f(i)(X)xi .  
f (2 )  = f ( X  + x) = E ~. 

i=0 

Proof.  Again, without loss o f  generality, we may assume that )~0 -- 0. Then X = 
2[0] E R and x = 2 - X is either zero or satisfies 0 < Ixl << 1. I f x  = 0, we are done. 

So assume that 0 < Ixl << 1. Then 

oo oo ( ~ ) q  n 
f (2 )  : E a n ( X  +x)qn -=ZanXqn 1 -F 

n : 0  n=0 

X-" a ¥qn qn (qn -- 1).. .  (qn - i + 1) 
= / . 4  n . ~  i !  " 

n=0 i=0 

Since Ixl is infinitely small and (an) is regular, it follows that, for any t E Q, only 
finitely many members o f  the right sum contribute to f (2)[t]. So we can interchange 
the order o f  the sums. Thus, 

°° i ) ~-~ f( i)(X)xi  
f ( x )  = Z 77, anqn(qn -- l ) - "  (qn -- i + 1)X qn-i = - -  

i=o t" \n=O i=0 i! ' 

as claimed. [] 
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