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Abstract: An introduction to recent work on analysis over the non-Archi-
medean Levi-Civita field related to applications for common numerical tasks
is provided. After studying the algebraic, order, and topological properties, a
calculus is developed under which central concepts like the intermediate value
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allows the computation of derivatives of real functions as difference quotients
with infinitesimal increment.
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1. Introduction

In this paper, analysis is developed on the non-Archimedean structure R first
developed by Levi-Civita [1], [2], who succeeded to show that it forms a totally
ordered field that is Cauchy complete, and that any power series with real or
complex coefficients converges for infinitely small arguments. The subject
appeared again in the work by Ostrowski [3], Neder [4], and later in the work
of Laugwitz [5]. Two more recent accounts of this work can be found in the
book by Lightstone and Robinson [6], which ends with the proof of Cauchy
completeness, as well as in Laugwitz’ account on Levi-Civita’s work [7], which
also contains a summary of properties of Levi-Civita fields.
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In this paper, we extend the previous work and attempt to formulate the
basis of a workable analysis on the Levi-Civita field R. We show that R
admits nth roots of positive elements and that the field obtained by adjoining
the imaginary unit is algebraically closed. We also introduce a new topology,
complementing the order topology. Further, we apply these to the study of
sequences and series; in particular, we show that any power series with complex
coefficients converges within the conventional radius of convergence; this allows
for the direct use of a large class of functions. Finally we develop a differential
calculus on R, and we prove certain fundamental tools like the intermediate
value and mean value theorems, which hold under slightly stronger conditions.
We show that ”derivatives are differential quotients”, which allows the exact
computation of derivatives of real functions via mere arithmetic in R, [8], [9],
[10], [11], [12].

There are simple ways to construct non-Archimedean extensions of the real
numbers (see for example the books of Rudin [13], Hewitt and Stromberg [14],
or Stromberg [15], or at a deeper level the works of Fuchs [16], Ebbinghaus et
al. [17] or Lightstone and Robinson [6]), but such extensions usually quickly
fail to fulfill one or several of the above criteria of a ”useful” field, usually even
regarding the existence of roots.

A very important idea for the problem of the infinite came from Schmieden
and Laugwitz [18] which was applied to Delta Functions [19] [20] and Distri-
butions [21]. Certain equivalence classes of sequences of real numbers become
the new number set, and perhaps most interestingly, logical statements are
considered proved if they hold for ”most” of the elements of the sequences.
This approach lends itself to the introduction of a scheme that allows the
transfer of many properties of the real numbers to the new structure. This
method supplies an elegant tool that in particular permits the determination
of derivatives as differential quotients.

Unfortunately, the evolving structure, while very large, is not a field. The
ring contains zero divisors and is not totally ordered. Robinson [22] then rec-
ognized that the intuitive method can be generalized [23] by a non-constructive
process based on model theory to obtain a totally ordered field, and initiated
the branch of nonstandard analysis. Some of the standard works describing
this field are from Robinson [24], Stroyan and Luxemburg [25], and Davies
[26]. In this discipline, the transfer of theorems about real numbers is ex-
tremely simple, however at the expense of a non-constructive process invoking
the axiom of choice, leading to an exceedingly large structure of numbers and
theorems. The non-constructiveness makes practical use difficult and leads
to several oddities, for example that the sign of certain elements, although
assured to be either positive or negative, cannot be decided.

Another approach to a theory of infinitely small numbers originated in
game theory, and was pioneered by John Conway in his marvel ”On Numbers
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and Games” [27]. A humorous yet insightful account of these numbers can also
be found in Donald Knuth’s mathematical novelette ”Surreal Numbers: How
Two Ex-Students Turned to Pure Mathematics and Found Total Happiness”
[28]. Other important accounts on surreal numbers are by Alling [29] and
Gonshor [30].

2. The Non-Archimedean Fields R and C

2.1. Algebraic Structure

We begin the discussion by introducing a specific family of sets.

Definition 1. (The Family of Left-Finite Sets) A subset M of the rational
numbers Q will be called left-finite iff for every number r ∈ Q there are only
finitely many elements of M that are smaller than r. The set of all left-finite
subsets of Q will be denoted by F .

The next lemma gives some insight into the structure of left-finite sets.

Lemma 2. Let M ∈ F . If M 6= ∅, the elements of M can be arranged
in ascending order, and there exists a minimum of M . If M is infinite, the
resulting strictly monotonic sequence is divergent. Furthermore, let M, N ∈ F .
Then we have

a) X ⊂ M ⇒ X ∈ F
b) M ∪ N ∈ F
c) M ∩ N ∈ F
d) M + N = {x + y | x ∈ M, y ∈ N} ∈ F
e) For every x ∈ M +N, there are only finitely many pairs (a, b) ∈ M×N

such that x = a + b.

Proof. Statements a) - c) follow directly from the definition.
For d), let xM , xN denote the smallest elements in M, N respectively; these

exist by the preceding lemma. Let r in Q be given. Set

Mu = {x ∈ M |x < r − xN}, Nu = {x ∈ N |x < r − xM}

and set
Mo = M \ Mu, No = N \ Nu.

Then we have M +N = (Mu ∪Mo)+ (Nu ∪No) = (Mu + Nu)∪ (M o +Nu)∪
(Mu + No)∪ (M o + No) = (Mu + Nu)∪ (M o + N)∪ (M + N o). By definition
of Mo and No, (Mo + N) and (M + N o) do not contain any elements smaller
than r. Thus all elements of M + N that are smaller than r must actually
be contained in Mu + Nu. Since both Mu and Nu are finite because of the
left-finiteness of M and N , Mu +Nu is also finite. Thus there are only finitely
many elements in M + N that are smaller than r.
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To show the last statement, let x ∈ M + N be given. Set r = x + 1 and
define Mu, Nu as in the preceding paragraph. Then we have x /∈ (M o+N), x /∈
(M + N o). Hence all pairs (a, b) ∈ M × N which satisfy x = a + b lie in the
finite set Mu × Nu.

Having discussed the family of left-finite sets, we introduce two sets of
functions from the rational numbers into R and C.

Definition 3. (The Sets R and C) We define

R = {f : Q → R | {x|f(x) 6= 0} ∈ F},

C = {f : Q → C | {x|f(x) 6= 0} ∈ F}.
So the elements of R and C are those real or complex valued functions on Q
that are nonzero only on a left-finite set, i.e. they have left-finite support.

Obviously, we have R ⊂ C. In the following, we will denote elements of R
and C by x, y, etc. and identify their values at q ∈ Q with brackets like x[q].
This avoids confusion when we later consider functions on R and C.

Since the elements of R and C are functions with left-finite support, it is
convenient to utilize the properties of left-finite sets (2) for their description:

Definition 4. (Notation for Elements of R and C) An element x of R or
C is uniquely characterized by an ascending (finite or infinite) sequence (qn)
of support points and a corresponding sequence (x[qn]) of function values. We
will refer to the pair of sequences ((qn), (x[qn])) as the table of x.

For the further discussion, it is convenient to introduce the following ter-
minology.

Definition 5. (supp, λ , ∼ , ≈, =r , ∂ ) For x, y ∈ C, we define:
supp(x) = {q ∈ Q | x[q] 6= 0} and call it the support of x;
λ(x) = min(supp(x)) for x 6= 0 (which exists because of left-finiteness) and

λ(0) = +∞.
Comparing two elements, we say:
x ∼ y iff λ(x) = λ(y);
x ≈ y iff λ(x) = λ(y) and x[λ(x)] = y[λ(y)];
x =r y iff x[q] = y[q] for all q ≤ r.
Furthermore, we define an operation ∂ : C → C via
(∂x)[q] = (q + 1) · x[q + 1].
At this point, these definitions may feel somewhat arbitrary; but after

having introduced the concept of ordering on R, we will see that λ describes
”orders of infinite largeness or smallness”, the relation ”≈ ” corresponds to
agreement up to infinitely small relative error, while ”∼ ” corresponds to
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agreement of order of magnitude. The operation ”∂” will prove to be a deriva-
tion which, among other things, is useful for the concept of differentiation on
R.

Lemma 6. The relations ∼, ≈ and =r are equivalence relations. They
satisfy

x ≈ y ⇒ x ∼ y

If a, b ∈ Q , a > b, then x =a y ⇒ x =b y.

Furthermore, we have

λ(∂x) ≤ λ(x); and if λ(x) 6= 0,∞, even λ(∂x) = λ(x) − 1.

We now define arithmetic on R and C.

Definition 7. (Addition and Multiplication on R and C) We define addi-
tion on R and C componentwise:

(x + y)[q] = x[q] + y[q].

Multiplication is defined as follows. For q ∈ Q we set

(x · y)[q] =
∑

qx, qy ∈ Q ,
qx + qy = q

x[qx] · y[qy].

We remark that R and C are closed under addition since supp(x + y) ⊆
supp(x)∪ supp(y), so by Lemma 2, with x and y having left-finite support, so
does x + y. Lemma 2 also shows that only finitely many terms contribute to
the sum in the definition of the product.

Furthermore, the product defined above is itself an element of R or C
respectively since the sets of support points satisfy supp(x · y) ⊆ supp(x) +
supp(y), application of Lemma 2 shows that supp(x · y) ∈ F .

It turns out that the operations + and · we just defined on R and C make
(R,+,·) and (C,+,·) into fields. We begin by showing the ring structure.

Theorem 8. (R,+,·) and (C,+,·) are commutative rings with units.

Theorem 9. (Embeddings of R into R and C into C) R and C can be
embedded into R and C under preservation of their arithmetic structures.

Proof. Let x ∈ C . Define Π by

Π(x)[q] =

{

x if q = 0
0 else

.
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Remark 10. In the following, we identify an element x ∈ C with its image
Π(x) ∈ C under the embedding. We remind that the sum of a complex number
and an element of C has to be distinguished from the componentwise addition
of a constant to a function.

Furthermore, we note that every element in C has a unique representation
as a + b · i, where i denotes the imaginary unit in C and where a, b ∈ R.

We also make the following observation.

Remark 11. Let z1 and z2 be complex numbers. Then if both z1 and z2

are nonzero, we have z1 ∼ z2. Furthermore, z1 ≈ z2 is equivalent to z1 = z2.

So the restrictions of the relations ∼ and ≈ to R and C do not produce
anything new. Besides presenting themselves as ring extensions of R and C,
because of the embeddings of R and C, the new sets also become linear spaces.
It is also worth noting that the quantity λ is actually a valuation.

Theorem 12. (Valuation Structure) The operation λ has the following
properties:

λ(x · y) = λ(x) + λ(y) and λ(x + y) ≥ min(λ(x), λ(y)).

So it is a valuation of C.

Definition 13. (The Number d) Define the element d ∈ R as

d[q] =

{

1 if q = 1
0 else

.

Lemma 14. (Algebraic Properties of d) The number d has an inverse
and admits n-th roots in R.

Proof. Obviously the numbers denoted d−1 and d1/n, where

d−1[q] =

{

1 if q = −1
0 else

,

d1/n[q] =

{

1 if q = 1/n
0 else

,

satisfy the requirements.
Note that now, rational powers dq of d are defined.
We have shown that R and C contain the real and complex numbers re-

spectively, but in addition contain many more elements. The next theorem
shows that, from the point of view of set theory, C is not larger than R.
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Theorem 15. The sets C and R have the same cardinality.

Proof. Since we constructed an injective mapping Π : R → C, we have
card(R) = c ≤ card(C). On the other hand, every element of C is uniquely
determined by a sequence of support points and two sequences of function
values (for the real and imaginary parts respectively). So C can be mapped
injectively to a subset of the set of functions N → R3 (where we agree to
append triplets of zeros if the set of support points is finite). Thus by the laws
for cardinal number arithmetic, it follows that

card(C) ≤ (c3)ℵ0 = cℵ0 = c = card(R),

and altogether we obtain card(R)=card(C).
The only nontrivial step towards the proof that R and C are fields is the

existence of multiplicative inverses of nonzero elements. For this purpose, we
prove a central theorem that will be of key importance for a variety of proofs.

Lemma 16. (Fixed Point Theorem) Let qM ∈ Q be given. Define M ⊂ R
(M ⊂ C) to be the set of all elements x of R (C) such that λ(x) ≥ qM . Let
f : M → C satisfy f(M) ⊂ M . Suppose there exists k ∈ Q , k > 0 such that
for all x1, x2 ∈ M and all q ∈ Q , we have

x1 =q x2 ⇒ f(x1) =q+k f(x2).

Then there is a unique solution x ∈ M of the fixed point equation

x = f(x).

Remark 17. Without further knowledge about R and C, the requirements
and meaning of the fixed point theorem are not very intuitive. However, as we
will see later, the assumption about f means that f is a contracting function
with an infinitely small contraction factor. Furthermore, the sequence (ai)
that is constructed in the proof is indeed a Cauchy sequence, which is assured
convergence because of the Cauchy completeness of our fields with respect to
the order topology, as discussed below. However, while making the situation
more transparent, the properties of ordering and Cauchy completeness are not
required to formulate and prove the fixed point theorem, and so we want to
refrain from invoking them here.

Proof. We choose an arbitrary a0 ∈ M and define recursively

ai = f(ai−1), i = 1, 2, ...

Since f maps M into itself, this gives a sequence of elements of M . First we
note that

ai[p] = ai−1[p] for all p < (i − 1) · k + qM (∗)
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Since a0, a1 ∈ M, we have a1[p] = 0 = a0[p] for all p < qM . So (∗) holds for
i = 1, and induction shows that it holds for all i ≥ 1.

Next we define a function x : Q → C in the following way: for q ∈ Q
choose i ∈ N such that (i − 1) · k + qM > q. Set x[q] := ai[q]; note that, by
virtue of (*), this is independent of the choice of i.

Furthermore, we have x =q ai. So in particular x is an element of R or C,
respectively, since for every q ∈ Q , the set of its support points smaller than
q agrees with the set of support points smaller than q of one of the ai ∈ M .
Also, since x[p] = 0 for all p < qM , x is contained in M .

Now we show that x defined as above is a solution of the fixed point equa-
tion. For q ∈ Q choose again i ∈ N such that (i − 1) · k + qM > q. Then it
follows that

x =q ai =q ai+1.

By the contraction property of f, we thus get f(x) =q+k f(ai), which in turn
gives

x[q] = ai+1[q] = f(ai)[q] = f(x)[q].

Since this holds for all q ∈ Q , x is a fixed point of f .
It remains to show that x is a unique fixed point. Assume that y ∈ M is

a fixed point of f . The contraction property of f is equivalent to λ(f(x1) −
f(x2)) ≥ λ(x1 − x2) + k for all x1, x2 ∈ M . This implies

λ(x − y) = λ(f(x) − f(y)) ≥ λ(x − y) + k,

which is possible only if y = x.

Remark 18. It is worthwhile to point out that, in spite of the iterative
character of the fixed point theorem, for every q ∈ Q , the value of the fixed
point x at q can be calculated in finitely many steps. Among others, this is of
significant importance for practical purposes.

Using the fixed point theorem, we can now easily show the existence of
multiplicative inverses.

Theorem 19. (R,+,·) and (C,+,·) are fields.

Proof. We prove the theorem for R; the proof for C is completely analogous.
It remains to show the existence of multiplicative inverses of nonzero elements.

Let z ∈ R \ {0} be given. Set q = λ(z), a = z[q] and z∗ = 1/a · d−q · z.
Then λ(z∗) = 0 and z∗[0] = 1. If an inverse of z∗ exists then 1/a · d−q(z∗)−1

is an inverse of z; so without loss of generality, we may assume λ(z) = 0 and
z[0] = 1.

If z = 1, there exists an inverse. Otherwise, z is of the form z = 1+ y with
0 < k = λ(y) < +∞. It suffices to find x ∈ R such that

(1 + x) · (1 + y) = 1.
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This is equivalent to
x = −y · x − y.

Setting f(x) = −y · x− y, the problem is thus reduced to finding a fixed point
of f . Let M = {x ∈ R | λ(x) ≥ k}, then f(M) ⊂ M . Let x1, x2 ∈ M
satisfying x1 =q x2 be given. Since the smallest support point of y is k, we get
y · x1 =q+k y · x2, and hence

−y · x1 − y =q+k −y · x2 − y,

thus f satisfies the hypothesis of the Fixed Point Theorem (Lemma 16), and
consequently a fixed point of f exists.

Now we examine the existence of roots in R and C and find that, regarding
this important property, the new fields behave just like R and C respectively.

Theorem 20. Let z ∈ R be nonzero and set q = λ(z). If n ∈ N is even
and z[q] is positive, z has two n-th roots in R. If n is even and z[q] is negative,
z has no n-th roots in R. If n is odd, z has a unique n-th root in R.

Let z ∈ C be nonzero. Then z has n distinct n-th roots in C.

Proof. Let z be a nonzero number and write z = a · dq · (1 + y), where
a ∈ C , q ∈ Q , and λ(y) > 0. Assume that w is an n-th root of z. Since
q = λ(z) = λ(wn) = n · λ(w), we can write w = b · dq/n · (1 + x), where b ∈ C ,
λ(x) > 0. Raising to the n-th power, we see that bn = a and (1 + x)n = 1 + y
have to hold simultaneously. The first of these equations has a solution if and
only if the corresponding roots exist in R or C. So it suffices to show that the
equation

(1 + x)n = 1 + y

has a unique solution with λ(x) > 0. But this equation is equivalent to

nx + x2 · P (x) = y,

where P (x) is a polynomial with integer coefficients. Because λ(x) > 0, also
λ(P (x)) ≥ 0, and hence λ(x2 · P (x)) = 2λ(x) + λ(P (x)) > λ(x) > 0; so finally
we have λ(x) = λ(y) for all such x. The equation can be rewritten as a fixed
point problem x = f(x), where

f(x) =
y

n
− x2 · P (x)

n
.

Now let M be the set of all numbers in C (or in R if z ∈ R) whose smallest
support point does not lie below ky = λ(y). Then as we just concluded,
any solution of the fixed point equation must lie in M . We further have
f(M) ⊂ M ; for if x ∈ M , then λ(x2 ·P (x)) ≥ 2 ·ky > ky. Hence it follows that
f(x) = y/n−x2 ·P (x)/n has ky as smallest support point, and thus f(x) ∈ M .
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Let x1, x2 ∈ M satisfying x1 =q x2 be given. Then λ(x1) ≥ ky, λ(x2) ≥
ky, and the definition of multiplication shows that we get x2

1 =q+ky
x2

2. By
induction on m, we get xm

1 =q+ky
xm

2 for all m ∈ N , m > 1.
In particular, this gives x2

1 · P (x1) =q+ky
x2

2 · P (x2) and finally f(x1) =q+ky

f(x2). So f and M satisfy the hypothesis of Fixed Point Theorem (Lemma
16) which provides a unique solution of (1+x)n = 1+ y in M and hence in R.

We remark that a crucial point to the proof was the existence of roots of
the numbers dq; so we could not have chosen anything smaller than Q as the
domain of the functions which are the elements of our new fields.

Furthermore, it can be shown ([31]) that C actually satisfies a fundamental
theorem of algebra; for reasons of space, we do not present a proof here.

Theorem 21. (Fundamental Theorem of Algebra for C) Every polyno-
mial of positive degree with coefficients in C has a root in C.

As a consequence, we obtain th efollowing corollary.

Corollary 22. (R is Real Closed) Every polynomial over R with odd
degree has a root in R.

2.2. Order Structure

In the last section we have shown that R and C do not differ significantly
from R and C respectively as far as their algebraic properties are concerned.
In this section we will discuss the ordering.

The simplest way of introducing an order is to define a set of ‘positive’
numbers.

Definition 23. (The Set R+) Let R+ be the set of all non-vanishing
elements x of R which satisfy x[λ(x)] > 0.

Lemma 24. (Properties of R+) The set R+ has the following properties:
R+ ∩ (−R+) = ∅, R+ ∩ {0} = ∅, R+ ∪ {0} ∪ (−R+) = R
x, y ∈ R+ ⇒ x + y ∈ R+, x, y ∈ R+ ⇒ x · y ∈ R+.

The proofs follow rather directly from the respective definitions.

Having defined R+, we can now easily introduce an order in R.

Definition 25. (Ordering in R) Let x, y be elements of R. We say x > y,
if and only if x − y ∈ R+. Furthermore, we say x < y, iff y > x.

With this definition of the order relation, R is a totally ordered field.

Theorem 26. (Properties of the Order) With the order relation defined
in Def. 25, (R,+,·) becomes a totally ordered field, i.e.:

For any x, y, exactly one of the following holds: x < y, x = y, x > y.
For any x, y, z with x > y, y > z, we have x > z.
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Furthermore, the order is compatible with the algebraic structure of R, i.e.:

For any x, y, z, we have: x > y ⇒ x + z > y + z.
For any x, y, z; z > 0, we have: x > y ⇒ x · z > y · z.

The embedding Π from Theorem 9 satisfies x < y ⇒ Π(x) < Π(y).

Thus R, like C, is a proper field extension of R. Note that this is not
a contradiction to the well-known uniqueness of C as a field extension of R.
The respective theorem of Frobenius asserts only the non-existence of any
(commutative) field on Rn for n > 2. However, regarded as an R-vector space,
R is infinite dimensional.

Besides the usual order relations, some other notations are convenient.

Definition 27. (�,� ) Let a, b be positive. We say a is infinitely smaller
than b (and write a � b), iff n · a < b for all natural n; we say a is infinitely
larger than b (and write a � b) iff b � a. If |a| � 1, we say a is infinitely
small; if 1 � |a|, we say a is infinitely large. Infinitely small numbers are also
called infinitesimals or differentials. Infinitely large numbers are also called
infinite. Numbers that are neither infinitely small nor infinitely large are also
called finite.

Corollary 28. For all a, b, c ∈ R, we have:

a � b ⇒ a < b,
a � b, b � c ⇒ a � c.

We observe:
dq � 1 iff q > 0, dq � 1 iff q < 0.

The field R is non-Archimedian, i.e. there are elements which are not
exceeded by any natural number.

One of the consequences of R being non-Archimedian is that the concept
of Dedekind cuts and the existence of suprema are no longer valid.

Example 29. (Dedekind Cuts and Suprema) Let Mu, Mo be defined as
follows:

Mu = {x ∈ R |x < 0 and |x| is not infinitely small}, Mo = R \ Mu.

Then we obviously have Mu ∪ Mo = R, Mu < Mo and Mu 6= ∅ 6= Mo.
Nevertheless, there is no cut s satisfying Mu ≤ s ≤ Mo: Assume s was such a
cut.

If s is positive or zero we have s ∈ Mo, but −d also is an element of Mo

and it is smaller than s. Thus s 6≤ Mo.

If s is negative and |s| not infinitely small, we have s ∈ Mu. But then s/2
also is negative and |s/2| not infinitely small, and therefore s/2 is an element
of Mu. From s/2 > s, we infer Mu 6≤ s.

Finally, if s is negative and |s| infinitely small, we have s ∈ Mo. But 2 · s
also is an element of Mo and 2 · s < s. Thus, s 6≤ Mo.
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Hence such a cut s cannot exist. Furthermore, Mu also does not have a
supremum: Mu is bounded above by any element of Mo, but it is impossible
to select one least of these upper bounds.

Remark 30. It is apparent that the nonexistence of suprema is a conse-
quence of the nonarchimedicity and is not specific to R. Obviously, the same
argument holds for any non-Archimedian totally ordered field if d is chosen to
be any positive infinitely small quantity.

It is a crucial property of the field R that the differentials, especially the
formerly defined number d, correspond with Leibnitz’ intuitive idea of deriva-
tives as differential quotients. This will be discussed in great details below,
but here we want to give a simple example.

Example 31. (Calculation of Derivatives with Differentials) Let us
consider the function f(x) = x2 − 2x. f is differentiable on R, and we have
f ′(x) = 2x−2. As we know, we can get certain approximations to the derivative
at the position x by calculating the difference quotient

f(x + ∆x) − f(x)

∆x

at the position x. Roughly speaking, the accuracy increases if ∆x gets smaller.
In our enlarged field R, infinitely small quantities are available, and thus it is
natural to calculate the difference quotient for such infinitely small numbers.
For example let ∆x = d; we obtain

f(x + d) − f(x)

d
=

(x2 + 2xd + d2 − 2x − 2d) − (x2 − 2x)

d
= 2x − 2 + d.

We realize that the difference quotient differs from the exact value of the
derivative by only an infinitely small error. If all we are interested in is the
usual real derivative of the real function f : R → R, then this is given exactly
by the ‘real part’ of the difference quotient.

This observation is of great fundamental and practical importance [8] [9]
[10] [11] [12]. It enables us to replace differentiation by algebraic operations.

As we will show later, all algebraic operations on R can be implemented
directly on a computer. Thus we are now able to determine exact derivatives
numerically. This is a drastic improvement compared to all numerical methods
operating with differences.
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2.3. Topological Structure

In this section we will examine the topological structures of R and the related
sets. We will see that on R, in contrast to R, several different non-trivial
topologies can be defined, all of which have certain advantages.

We begin with the introduction of an absolute value; this is done as in any
totally ordered field.

Definition 32. (Absolute Value on R) Let x ∈ R. If x ≥ 0, we say
|x| = x, otherwise |x| = −x.

Lemma 33. (Properties of the Absolute Value) The mapping “| |” :
R → R has the following properties:

|x| = 0 iff x = 0, |x| = | − x|, |x · y| = |x| · |y|,
|x + y| ≤ |x| + |y|, ||x| − |y|| ≤ |x − y|.

Definition 34. (Absolute Value on C and Rn) On C and Rn, we define
absolute values as follows: Any element z ∈ C can be written z = a + bi
with a, b ∈ R, and this representation is unique. We then define |a + bi| =√

a2 + b2. Furthermore, for any (x1, ..., xn) ∈ Rn, we define |(x1, ..., xn)| =
√

x2
1 + ... + x2

n.

The roots exist according to Theorem 20.
Just like in any totally ordered set, we can now introduce the so-called

order topology.

Definition 35. (Order Topology) We call a subset M of R, C or Rn open
iff for any x0 ∈ M exists an ε > 0 ; ε ∈ R such that O(x0, ε), the set of points
x with |x − x0| < ε, is a subset of M .

Thus all ε-balls form a basis of the topology. We obtain the folowing lemma.

Lemma 36. (Properties of the Order Topology) With the above topology,
R, C and Rn become non connected topological spaces. They are Hausdorff.
There are no countable bases. The topology induced to R is the discrete
topology. The topology is not locally compact.

Proof. We first observe that the balls O(x0, ε) and the whole space are open.
Furthermore, all unions and finite intersections of open sets are obviously open.
Since M1 = {x ≤ 0 or (x > 0, x � 1)} and M2 = {x > 0 and x 6� 1} are
disjoint and open, but R = M1∪M2, R is non connected. Let x, y be different
elements. Then O(x, |x − y|/2) and O(y, |x − y|/2) are disjoint and open and
contain x and y respectively. Thus R, C and Rn are Hausdorff.

There cannot be any countable basis because the uncountably many open
sets MX = O(X, d), X ∈ R,C or Rn are disjoint. Obviously, the open sets
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induced on R, C or Rn respectively by the sets MX are just the single points.
Thus, in the induced topology, all sets are open and the topology is therefore
discrete.

To prove that the space is not locally compact, consider x ∈ R and let U
be a neighbourhood of x. Let ε ∈ R be such that O(x, ε) ⊂ U . We have to
show that the closure U− of U is not compact. Let the sets Mi be defined as
follows:

M−1 = {y|y − x � d · ε} ∪ {y|y < x},
Mi = (x + (i − 1) · d · ε, x + (i + 1) · d · ε) for i = 0, 1, 2, ... ..
Then the sets Mi cover R, and, in particular, the closure U− of any neigh-

bourhood of x:
If y < x, we have y ∈ M−1; y = x ∈ M0.
If y > x and y − x � d · ε we obtain y ∈ M1. If y > x and y − x � d · ε we

obtain y ∈ M−1. Otherwise, y is contained in one of the Mi, i = 1, 2, ....
Furthermore, the sets are open: the Mi, i = 0, 1, 2, ... are open intervals.

The set {y|y−x � d ·ε} is open because, with any y, it also contains O(y, d ·ε).
Obviously, {y|y < x} is also open. Thus M−1 is a union of open sets and hence
itself open.

But it is impossible to select finitely many sets of the Mi which cover U−,
because each of the infinitely many numbers x + i · dε ∈ U is contained only
in the set Mi.

Remark 37. A detailed study of the proof reveals that it can be executed
in the same way on any other non-Archimedean structure, and thus the above
unusual properties are not specific to R.

Besides the absolute value, it is useful to introduce a semi norm which is
not based on the order. For this purpose, we regard C as a space of functions
like in the beginning, and define the semi norm as a mapping from C into R.

Definition 38. (Semi Norm on C) We introduce the semi norm “‖ · ‖r”
as follows: ||x||r = supq≤r{|x[q]|}.

The supremum is finite and it is even a maximum since for any r, only
finitely many of the x[q] considered do not vanish. Thus the semi-norm is
similar to the supremum norm for continuous functions. Its properties also are
quite similar.

Lemma 39. (Properties of the Semi Norm) For an arbitrary r, the
mapping “|| ||r”: R → R satisfies the following:

||0||r = 0, ||x||r ≥ 0, ||x||r = || − x||r
||x + y||r ≤ ||x||r + ||y||r, | ||x||r − ||y||r | ≤ ||x − y||r.
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Using the family of these semi norms, we can now define another topology.

Definition 40. (Semi Norm Topology) We call a subset M of R, C or Rn

open with respect to the semi norm topology iff for any x0 ∈ M there is a real
ε > 0, such that S(x0, ε) = {x| ||x − x0||1/ε < ε} ⊂ M .

We will see that the semi norm topology is the most useful topology for
considering convergence in general. Moreover, it is of great importance for the
implementation of the calculus on R and C on computers.

Lemma 41. (Properties of the Semi Norm Topology) With the above
definition of the semi norm topology, R, C and Rn are topological spaces.
They are Hausdorff with countable bases. The topology induced on R by the
semi norm topology is the usual order topology on R. The order topology on
R is a refinement of the semi norm topology.

Proof. We can easily check that the balls S(x0, ε) are open: If x ∈ S(x0, ε),
we also have S(x, ε − ||x − x0||1/ε) ⊂ S(x0, ε). Furthermore, the whole space
is open, and unions as well as finite intersections of open sets are also open.
The balls S(r, q) with r, q rational form a basis of the topology. We obtain
a Hausdorff space: Let x 6= y be given; let r = λ(x − y). We define ε =
min(|(x− y)[r]|/2, 1/2|r|). Then S(x, ε) and S(y, ε) are disjoint and open, and
contain x and y respectively.

Considering elements of R, their supports can only consist of zero. There-
fore, the open subsets of R correspond to the open subsets of R.

In addition to the topologies discussed, there is another topology which
takes into account that, in any practical scenario, it will not be possible to
detect infinitely small errors, nor will it be possible to measure infinitely large
quantities. We obtain this topology by a suitable continuation of the order
topology on R.

3. Sequences and Series

3.1. Convergence and Completeness

In this section, we will discuss convergence with respect to the topologies
introduced in the last chapter. We begin by introducing a special property of
sequences.

Definition 42. (Regularity of a Sequence) A sequence (ai) in C is called
regular iff the union of the supports of all members of the sequence is a left-
finite set, i.e. iff ∪∞

i=0supp(ai) ∈ F .

Lemma 43. (Properties of Regularity) Let (ai), (bi) be regular sequences.
Then the sequence of the sums, the sequence of the products, any rearrange-
ment, as well as any subsequence of one of the sequences, and the merged
sequence c2i = ai, c2i+1 = bi are regular.
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Definition 44. (Strong Convergence) We call the sequence (ai) in R or C
strongly convergent to the limit a ∈ R or C respectively, iff it converges to a
with respect to the order topology, i.e. iff for every ε > 0, ε ∈ R there exists
n ∈ N such that |ai − a| < ε, ∀ i > n.

Using the idea of strong convergence allows a simple representation of the
elements of R and C, reminiscent of the expansion of real numbers into decimals

Theorem 45. (Expansion in Powers of Differentials) Let ((qi), (x[qi])) be
the table of x ∈ R or C (cf. Def. 4). Then the sequence

xn =

n
∑

i=1

x[qi] · dqi

converges strongly to the limit x. Hence we can write

x =
∞
∑

i=1

x[qi] · dqi.

Theorem 46. (Convergence Criterion for Strong Convergence) Let (ai)
be a sequence in R or C. Then (ai) converges strongly iff for all r ∈ Q there
exists n ∈ N such that ai1 =r ai2 for all i1, i2 > n.

The series
∑∞

i=0 ai converges strongly iff the sequence (ai) is a null sequence.

The proof is obvious. As a consequence, we also have the following lemma.

Lemma 47. Every strongly convergent sequence is regular.

We have ([1],[2]) the following theorem.

Theorem 48. (Cauchy Completeness of R and C) (an) is a Cauchy se-
quence in R or C ( for any positive ε ∈ R exists n ∈ N such that |an1 −an2 | ≤ ε
for all n1, n2 ≥ n), if and only if (an) converges strongly (there is a ∈ R or C
respectively such that for any positive ε ∈ R ∃ n ∈ N : |a− aν | < ε ∀ ν > n).

Proof. Let (an) be a Cauchy sequence in R. Write bn = an+1 − an. Then
(bn) is a null sequence. Since we have an = a0 +

∑n−1
i=0 bi, the sequence (an)

converges strongly according to Convergence Criterion (Theorem 46) for series.

The other direction is proved analogously as in R: Let (an) converge strongly
to the limit a. Let ε > 0 be given. Choose n ∈ N such that |aν−a| < ε

2
∀ ν > n.

Let now n1, n2 > n be given. Then we have |an1 −an2 | ≤ |an1 −a|+ |an2 −a| <
ε
2

+ ε
2

= ε. The proof for C is analogous.
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As we see, the concept of strong convergence provides very nice properties,
and moreover strong convergence can be checked easily by virtue of the con-
vergence criterion. However, for some applications it is not sufficient; and we
have to introduce another kind of convergence.

Definition 49. (Weak Convergence) We call the sequence (ai) weakly
convergent, if there is an a ∈ C such that (ai) converges to a with respect to
the semi norm topology, i.e. for any ε > 0; ε ∈ R there exists n ∈ N such that
||ai − a||1/ε < ε ∀ i > n. In this case, we call a the weak limit of (ai).

Theorem 50. (Convergence Criterion for Weak Convergence) Let the
sequence (ai) converge weakly to the limit a. Then the sequence (ai[q]) con-
verges pointwise to a[q], and the convergence is uniform on every subset of Q
bounded above.

Let on the other hand (ai) be regular, and let the sequence (ai[q]) converge
pointwise to a[q]. Then (ai) converges weakly to a.

Proof. Let (ai) converge weakly to a. Let r ∈ Q and ε > 0; ε ∈ R be
given. Choose ε1 < min(ε, 1/(1+ |r|)) such that, for all rational q ≤ r, we have
q < 1/ε1. Choose n ∈ N such that |(ai − a)[q]| < ε1 ∀ i > n, q < 1/ε1. Then
we obtain |(ai − a)[q]| < ε ∀ q < r and ∀i > n, and uniform convergence is
proved.

Let on the other hand the sequence be regular and pointwise conver-
gent. Since every support point of the limit function agrees at least with
one support point of one member of the sequence, and therefore is contained
in A = ∪isupp(ai) ∈ F , the limit function a is an element of C. Let now ε > 0;
ε ∈ R be given. Let r > 1/ε. We show first that the sequence of functions (ai)
converges uniformly on {q ∈ Q |q ≤ r}: Any point at which the limit function a
can differ from any ai has to be in A. Thus there are only finitely many points
to be studied below r. So for any such q, find Nq such that |ai[q] − a[q]| < ε
for all i > Nq, and let N = max(Nq). Then we have |ai[q] − a[q]| < ε for all
i > N and for all q ≤ r. In particular, we obtain ||ai − a||1/ε < ε for all i > N .

Whereas R is complete with respect to strong convergence, it is not with
respect to weak convergence, as we see in the following examples.

Example 51. (Weak Convergence and Completeness) Let an =
∑n

i=1 d−i/i.
Then the sequence (an) is Cauchy with respect to weak convergence (i.e. the
semi norm topology) and locally converges to the function which assumes the
value 1/n at -n ∈ Z− and vanishes elsewhere. But this limit function is not
an element of C.

Example 52. (Unbounded Null Sequence) Let an = d−n/n. Then (an)
is obviously unbounded, but converges weakly to zero.
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The relationship between strong convergence and weak convergence is pro-
vided by the following theorem, which follows from the regularity of strongly
convergent sequences and the fact that for any q, the values xn[q] are ultimately
constant.

Theorem 53. Strong convergence implies weak convergence to the same
limit.

It is worthwhile to study sequences of purely complex numbers in the light
of the two concepts of convergence in C.

Theorem 54. Let (ai) be a purely complex sequence in C converging
to the limit a. Then, regarded as a sequence in C, (ai) converges weakly to
the same limit. On the other hand, let (ai) be a sequence in C with purely
complex members converging weakly to the limit a. Then a is purely complex,
and the sequence (ai) converges to a in the complex sense.

To finish this section about the convergence of sequences, we will show that
the field R is indeed the smallest non-Archimedean extension of R satisfying
the basic requirements demanded in the beginning, which gives it a unique
position among all other field extensions.

Theorem 55. (Uniqueness of R) The field R is the smallest totally
ordered non Archimedian field extension of R that is complete with respect
to the order topology, in which every positive number has an n-th root, and
in which there is a positive infinitely small element a such that (an) is a null
sequence with respect to the order topology.

Proof. Obviously, R satisfies the mentioned conditions. We now show that
R can be embedded in any other field extension of R that is equipped with
the above properties. So let S be such a field.

Let δ ∈ S be positive and infinitely small such that (δn) is a null sequence.
Let δ1/n be an n-th root of δ. Such a root exists according to the requirements.
Now observe that (δ1/n)m = (δ1/n·p)m·p ∀ p ∈ N . So let q = m

n
∈ Q , and let

δq = (δ1/n)m. This element is unique. Furthermore, δq is still infinitely small
for q > 0. Let q1 < q2. Then we clearly have δq1 > δq2. Now let a ∈ R. Since
S is an extension of R, we also have a ∈ S, and thus a · δq ∈ S.

Now let ((qi), (x[qi])) be the table of an element x of R. Consider the
sequence

sn =
n
∑

i=1

x[qi]δ
qi.

Then in fact this sequence converges in S: Let ε > 0 be given. Since, according
to the requirements, (δn) converges to zero, there exists n ∈ N such that
|δν| < ε ∀ ν ≥ n. Since the sequence (qi) strictly diverges, there is m ∈ N such
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that qµ > n + 1 ∀ µ > m. But then we have for arbitrary µ1 > µ2 > m:

|sµ1 − sµ2 | = |
µ1
∑

i=µ2+1

x[qi]δ
qi| ≤

µ1
∑

i=µ2+1

|x[qi]|δqi

≤
(

µ1
∑

i=µ2+1

|x[qi]|
)

δqµ2+1 ≤
(

µ1
∑

i=µ2+1

|x[qi]|
)

δn+1 < δn < ε,

and thus the sequence converges because of the Cauchy completeness of S. We
now assign to every element

∑∞

i=1 x[qi] · dqi of R the element
∑∞

i=1 x[qi] · δqi of
S. This mapping is injective. Furthermore, we immediately verify that it is
compatible with the algebraic operations and the order on R.

Remark 56. We note that a field with the properties of R could also
be obtained by successively extending a simpler non Archimedian field, e.g.
the well known field of rational functions. To do this, we first would have to
Cauchy complete the field. After that, the algebraic closure had to be done,
for example by the method of Kronecker-Steinitz. This method, however, is
non-constructive, whereas the direct path followed here is entirely constructive.

Remark 57. In the proof of the uniqueness, we noted that δ was only re-
quired to be positive and infinitely small and such that (δn) is a null sequence.
But besides that, its actual magnitude was irrelevant. Thus, none of the in-
finitely small quantities is significantly different from the others. In particular,
there is an isomorphism of R onto itself given by the mapping x 7→ x′, where
x′[q] = bqx[a · q]; a ∈ Q , b ∈ R, a, b > 0 fixed. This remarkable property has
no analogy in R.

3.2. Power Series

In this section we review a very important class of sequences, namely that
of power series. Transcendental functions are very important, especially for
application, and one of the nice properties of the structures at hand here is
that power series can be introduced in much the same way as in R and C [9],
[10]. Furthermore, power series will prove important for the understanding of
other topics of analysis on R, especially for the problem of continuation of
arbitrary real functions.

We start our discussion of power series with an observation.

Lemma 58. Let M ∈ F , i.e. a left finite set. For M define

MΣ = {x1 + ... + xn|n ∈ N and x1, ..., xn ∈ M},

then MΣ is left finite if and only if min(M) ≥ 0.
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The proof follows from the fact that if min(M) < 0, then MΣ is unbounded
from the left; on the other hand if min(M) ≥ 0, we may without loss of gener-
ality even assume min(M) > 0, since 0 itself does not offer any contributions
in MΣ, and for any given q, only at most [q/ min(M)] + 1 terms in M can
be added to provide contributions below q. As a consequence we obtain the
following corollary.

Corollary 59. A sequence xi = xi is regular iff x is at most finite. A
sequence xi = ai · xi or xi =

∑i
j=0 aj · xjis regular if x is at most finite and ai

is regular.

Theorem 60. (Power Series with Purely Complex Coefficients) Let
∑∞

n=0 anzn, an ∈ C be a power series with radius of convergence equal to η.
Let z ∈ C, and let An(z) =

∑n
i=0 aiz

i ∈ C. Then, for |z| < η and |z| 6≈ η,
the sequence is weakly convergent, and for any q ∈ Q, the sequence An(z)[q]
converges absolutely. We define the limit to be the continuation of the power
series on C.

For the proof, we refer to [32]. A prominent result of the Cauchy theory
of analytic functions is that an analytic function is completely determined by
the values it takes on a closed path. Our theory guarantees the uniqueness of
a function even from the knowledge of only its value at one suitable point, as
the following theorem shows.

Theorem 61. (Pointformula à la Cauchy) Let f(z) =
∑∞

i=0 ai(z − z0)
i

be the continuation of a complex power series on C. Then the function is
completely determined by its value at z0 + h, where h is an arbitrary nonzero
infinitely small number.

Proof. Evaluating the power series yields:

f(z0 + h) =
∞
∑

i=0

aih
i.

Let r = λ(h), h0 = h[λ(h)]. Then we obtain:
a0 = (f(z0 + h))[0], a1 = (f(z0 + h))[r]/h0, a2 = (f(z0 + h) − a1h)[2r]/h2

0,
etc.

Choosing h = d, we obtain the even simpler result ai = (f(z0 + d))[i].
We will see that power series on C find a useful application in discussion

of so called formal power series. As we will see in the following theorem,
any power series with purely complex coefficients converges for infinitely small
arguments; furthermore, multiplication can be done term by term in the usual
formal power series sense, and convergence is always assured. Therefore, formal
power series form a natural part of the theory of power series.

Theorem 62. (Formal Power Series) Any power series with purely
complex coefficients converges strongly on any infinitely small ball, even if the
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classical radius of convergence is zero. Furthermore, on any infinitely small
ball we have, again independently of the radius of convergence, that

(

∞
∑

n=0

anxn) · (
∞
∑

n=0

bnxn) = (

∞
∑

n=0

cnxn),

where cn =
∑n

j=0 aj · bn−j.

Proof. Note that for infinitely small x and any r ∈ Q , we find an m with
xi[r] = 0 for any i > m. Hence for a fixed r, the above summation includes
only finitely many terms, which may be resorted according to the distributive
law.

In the following, it will prove extremely useful that any power series with
purely complex coefficients converges for infinitely small arguments since it
will allow us to find continuations of real functions in a natural way.

Above we discussed power series with purely complex coefficients only. This
allows us to define functions on R as continuations of important transcendental
functions on R like the sine and exponential functions. We will finish this sec-
tion with a discussion of power series in which the coefficients are not restricted
to C, [31].

Theorem 63. (General Convergence Criterion for Power Series) Let ai

be in C. Let

r = − lim inf(
λ(ai)

i
).

Let x ∈C be given. Then the power series
∑∞

i=1 aix
i converges strongly for

λ(x) > r and diverges weakly for λ(x) < r.
For λ(x) = r, the series converges weakly if and only if the sequence (dirai)

is regular and for every q ∈ Q, x[r] lies within the domain of convergence of
the complex series (dirai)[q].

4. Calculus on R
4.1. Equicontinuity and Equidifferentiability

We will introduce the concepts of continuity and differentiability on R and C in
this section. In a first approach, we follow the conventional ε−δ- method. Un-
like in R, however, ε and δ may be of a completely different order of magnitude,
which leads to a strengthening of the definition.

Definition 64. (Topologic Continuity and Equicontinuity) The function
f : D ⊂ R → R is called topologically continuous at the point x0 ∈ D if for
any positive ε ∈ R there is a positive δ ∈ R such that

|f(x) − f(x0)| < ε for any x ∈ D with |x − x0| < δ.
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The function is called equicontinuous at the point x0, if for any ε it is possible
to choose the δ in such a way that δ ∼ ε.

Analogously, we define continuity on C or Rn by use of absolute values.

We note that the stronger condition of equicontinuity is automatically sat-
isfied in R, since there we always have ε ∼ δ.

Theorem 65. (Rules about Continuity) Let f, g : D ⊂ R → R be
(equi)continuous at the point x ∈ D (and there ∼ 1). Then f + g and f · g are
(equi)continuous at the point x. Let h be (equi)continuous at the point f(x),
then h ◦ f is (equi)continuous at the point x.

Proof. The proof is analogous to the case of R.

Definition 66. (Topologic Differentiability, Equidifferentiability) The func-
tion f : D ⊂ R → R is called topologically differentiable with derivative g at
the point x0 ∈ D, if for any positive ε ∈ R we can find a positive δ ∈ R such
that

∣

∣

∣

∣

f(x) − f(x0)

x − x0
− g

∣

∣

∣

∣

< ε for any x ∈ D\{x0} with |x − x0| < δ.

If this is the case, we write g = f ′(x0). The function is called equidifferentiable
at the point x0, if for any at most finite ε it is possible to choose δ such that
δ ∼ ε.

Analogously, we define differentiability on C using absolute values. Similar
to the case of continuity, the concept of equidifferentiability can be generalized
formally without significant conceptual consequences.

Theorem 67. (Rules about Differentiability) Let f, g : D → R be
(equi)differentiable at the point x ∈ D (and not infinitely large there). Then
f + g and f · g are (equi)differentiable at the point x, and the derivatives are
given by (f + g)′(x) = f ′(x) + g′(x) and (f · g)′(x) = f ′(x)g(x) + f(x)g′(x).
If f(x) 6= 0 (f(x) ∼ 1), the function 1/f is (equi)differentiable at the point x
with derivative (1/f)′(x) = −f ′(x)/f 2(x). Let h be differentiable at the point
f(x), then h ◦ f is differentiable at the point x, and the derivative is given by
(h ◦ f)′(x) = h′(f(x)) · f ′(x).

Proof. The proofs are done as in the case of R. For equidifferentiability we
also get ε ∼ δ.

Functions that are produced by a finite number of arithmetic operations
from constants and the identity have therefore the same properties of smooth-
ness as in R and C. In particular, we obtain the following corollary.

Corollary 68. (Differentiability of Rational Functions) A rational func-
tion (with purely complex coefficients) is topologically (equi)differentiable at
any (finite) point where the denominator does not vanish (is ∼ 1) .
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One of the most important concepts of conventional analysis is that of
power series. As we will show in our next theorem, even power series have
analogous properties of smoothness as in conventional analysis; they are in-
finitely often differentiable.

Theorem 69. (Equidifferentiability of Power Series) Let f(z) =
∑∞

i=0 ai

(z − z0)
i be a power series with purely complex coefficients on C with real

radius of convergence η > 0. Then the series

gk(z) =
∞
∑

i=k

i (i − 1) . . . (i − k + 1) ai(z − z0)
i−k

converges weakly for any k ≥ 1 and for any z with |z−z0| < η and |z−z0| 6≈ η.
Furthermore, the function f is infinitely often equidifferentiable for such z, with
derivatives f (k) = gk. In particular, for i ≥ 0, we have ai = f (i)(z0)/i!. For
z ∈ C the derivatives agree with the corresponding ones of the complex power
series.

For the proof, we refer to [32]. We complete this section with a theorem
that in a sense reduces the calculation of derivatives to arithmetic operations
and is therefore of great importance for practical purposes; for an overview of
its consequences see for example ([8]), and in particular ([32]) and ([9]).

Theorem 70. (Derivatives are Differential Quotients) Let f : D → R
be a function that is equidifferentiable at the point x ∈ D. Let |h| � dr, and
x + h ∈ D. Then the derivative of f satisfies

f ′(x) =r
f(x + h) − f(x)

h
. (1)

In particular, the real part of the derivative can be calculated exactly from the
differential quotient for any infinitely small h.

Proof. Let h be as in the requirement, h = h0 · drh(1 + h1), with h0 ∈ R,
h1 as before, and therefore rh > r. Choose now ε = d(r+rh)/2; since f is
equidifferentiable, we can find a positive δ ∼ ε such that for any ∆x with
|∆x| < δ, the differential quotient differs less than ε from the derivative and

hence
∣

∣

∣

f(x+∆x)−f(x)
∆x

− f ′(x)
∣

∣

∣
is infinitely smaller than dr. But apparently, the

above h satisfies |h| < δ.

This is a central theorem, because it allows the calculation of derivatives
of functions on R by simple arithmetic on R, as we mentioned before and saw
in the special Example 31.

The following consequence is often important for practical purposes.

Corollary 71. (Remainder Formula) Let f be a function equidifferen-
tiable at x, let |h| � 1. Then we obtain:

f(x + h) = f(x) + h · f ′(x) + r(x, h) · h2,
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with an at most finite remainder r(x, h).

Proof. Let q = λ(h). Then we have by the above theorem,

f ′(x) =r
f(x + h) − f(x)

h
∀ r < q,

from which we get by multiplication with h and rearrangement of terms

f(x + h) =r+q f(x) + f ′(x) · h ∀ r < q.

Let D be the difference between the left and the right hand side. Clearly
D[r] = 0 ∀ r < 2q. Let r(x, h) = D/h2. Then we have r(x, h)[r] = 0 ∀ r < 0,
and therefore the expected result

f(x + h) = f(x) + f ′(x) · h + r(x, h) · h2,

as claimed.

4.2. Continuation of Real and Complex Functions

In this section we will discuss under what circumstances an arbitrary real
function can be extended, or continued, from R to R. For two important
classes of functions, rational functions and power series, we have already found
such continuations via Corollary 68 and Theorem 69. In both of these cases,
this continuation could be done in a rather natural way, as both algebraic
operations and the calculations of limits transfer directly to our new field.

However, for functions that cannot be expressed only in terms of algebraic
operations and limits, this method is not applicable, and other methods to
define continuations are needed. In particular, we are interested in preserving
as many of the original smoothness properties as possible. It turns out that
this is possible in a rather general fashion, and thus allows to increase the pool
of functions on the new set drastically.

Definition 72. (Normal Continuation on R) Let f be a real function on
the real interval [ar, br] ⊂ R, (a = −∞ or b = +∞ permitted), and let f
be n times differentiable there, (n = 0 or n = ∞ permitted). Let a, b ∈ R
be infinitely close to ar, br. To the function f , we then define the order n
continuation f̄n on [a, b] ⊂ R as follows: Let x̄ ∈ [a, b] ⊂ R. Write x̄ = X + x,
with X ∈ R and |x| at most infinitely small, and set f̄n(x̄) as:

f̄n(x̄) =
n
∑

i=0

f (i)(X)
xi

i!
.

A function on R is called an order n normal function if it is the order n normal
continuation of a real function.
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Note that for n = ∞, the above sum is strongly convergent independent of
the size of the derivatives f (i) according to Theorem 62 and thus well defined.

Clearly, the restriction of f̄n to R is just f . Furthermore, in any infinitely
small neighborhood of a real number, the function is given by its Taylor series.
Analogously, functions defined on regions of C may be continued. Of particular
interest is the case of analytic functions, which automatically posses order ∞
continuations.

Definition 73. (Analytic Continuation on C) Let f be an analytic function
on the region D ∈ C. To the function f , we construct an analytic continuation
f̄∞ on D ⊂ C as follows: Let x̄ ∈ (a, b) ⊂ C. Write x̄ = X + x, with X ∈ C ,
|x| at most infinitely small, and define f̄∞(x̄) as:

f̄∞(x̄) =

∞
∑

i=0

f (i)(X)
xi

i!
.

Theorem 74. (Uniqueness of Continuation) Let f1 and f2 be two order
n continuations that agree on all real or complex points of their domain. Then
f1 = f2.

Proof. The condition implies that the underlying real or complex functions
agree, and so do their derivatives, entailing that their continuations agree.

We observe that the normal continuation of a function has the same prop-
erties of smoothness as the original function.

Theorem 75. (Continuation of Continuous Functions) Let f be a con-
tinuous function on [ar, br] ⊂ R, and at least n times differentiable. Then the
order n continuation f̄n on [a, b] ⊂ R is equicontinuous.

Proof. Let x ∈ [a, b], ε > 0 in R be given. In case ε is finite, choose δ such
that in R, |f(x+h)−f(x)| < ε/2 for all real h with |h| < 2δ, which is possible
because of the continuity of f . But since for continued functions, function
values of infinitely close points differ by at most infinitely small quantities, for
h ∈ R we have |f(x + h) − f(x)| < ε for all h with |h| < δ as needed. On
the other hand, for infinitely small ε, as δ has to be chosen with δ ∼ ε, it is
sufficient to study only the points that are infinitely close to x, in which region
the function is given by a power series, which is known to be equicontinuous.

Theorem 76. (Continuation of Differentiable Functions) Let f be a
function on [ar, br] ⊂ R, n times differentiable (n = 0 or n = ∞ permitted).
Then the continued function f̄n on [a, b] ⊂ R is n times equidifferentiable on
[a, b] ⊂ R, and for real points in [a, b], the derivatives of f and f̄n agree.

Proof. Let x ∈ [a, b]. We will first consider the case of finite ε. We choose
a δ such that for all real h with |h| < 2δ, the difference quotient (f(Re(x) +
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h) − f(Re(x)))/h does not differ from the derivative by more than ε/2. Let
now h ∈ R be positive with |h| < δ, and let hc be its real part. For hc = 0, the
difference between the derivative and the difference quotient is infinitely small,
and therefore certainly smaller than the finite ε. Otherwise, since |hc| < 2δ,
we infer that the difference quotient does not disagree with the derivative by
more than ε.

On the other hand, for ε � 1, observe that since δ has to be chosen
with δ ∼ ε, it is sufficient to study only the points that are infinitely near to
x; but for those points, the function f̄n is given by a power series, which is
differentiable to the advertised values.

As mentioned before, functions defined by algebraic operations and limits,
especially rational functions and power series, can also be continued directly
by virtue of their algebraic and convergence properties. However, in this case
the same result is obtained.

Theorem 77. (Continuation of Rational Functions and Power Series)
The order ∞ continuations of a rational function or a power series agree with
the results obtained from the algebraic and limiting procedures, respectively.

To close, let us study order 0 continuations of real functions.

Example 78. (Non-Constant Functions with Vanishing Derivative) An
interesting case is the order 0 continuation of real functions. According to the
definition of the continuation, such functions are constant in every interval of
infinitely small width. By choosing δ = d, we immediately verify that they
are differentiable for any inner point within their domain, and their derivative
vanishes.

4.3. Improper Functions

Clearly the class of normal functions, which are built as continuations of real
functions, is rather small compared to the class of all possible smooth functions
on R or C. Furthermore, we are also interested in certain functions that cannot
be obtained by continuation from R or C, like delta functions. Finally, when
developing a theory of smooth functions, we want the class of functions to be
as large as possible. So it is desirable to discuss functions that go beyond what
can be obtained by continuations of functions on R. We begin by extending
the concept of normal functions.

Definition 79. (Scaled Normal Functions) Let f be a function on D in R
or C. Then we will call f a scaled normal function if f can be written as

f = l1 ◦ fn ◦ l2,

where l1(x) = a1 + b1 · x and l2(x) = a2 + b2 · x are linear functions with
coefficients from R or C and where fn is a normal function of order n.
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We will see that while enhancing our pool of interesting functions substan-
tially, the above introduced scaled normal functions behave very similarly to
the normal functions.

Another interesting class of improper functions are the delta functions.

Definition 80. (Delta Functions) Let f̄d: R → R be continuous, n times
differentiable with

∫∞

−∞
f̄d (x) dx = 1. Let fd be the order n continuation of f̄d,

and let c � 1. Then the function f with

f (x) =

{

0, for |x| � 1/c,
c · fd(c · x), else,

is called a delta function.

Lemma 81. Delta functions vanish for all arguments with finite or
infinitely large absolute value, and there are points infinitely close to the origin
where they assume infinitely large values.

So apparently, the definition of delta functions just follows the intuitive
concept. We will later see that they can be integrated, and we will also prove
the famous integral projection property.

Example 82. (Some Delta Functions) The following functions are delta
functions:

δ1(x) =

{

1/d for x ∈ [−d/2, d/2]
0 else

δ2(x) =

{

(1 − |x|/d)/d for x ∈ [−d, d]
0 else

δ3(x) =







(1 − x2/2d2)/2d for x ∈ [−d, d]
(|x| − 2d)2/4d3 for d < |x| ≤ 2d
0 else

δ4(x) =

{

exp[−x2/d2]/
√

2πd for |x|/d not infinite
0 else.

The second example is continuous on R, the third and fourth even differen-
tiable on R.

4.4. Intermediate Values and Extrema

In this section we will discuss certain fundamental and important concepts of
analysis, namely those of intermediate values and of extrema of functions. In
the case of real functions, continuity is sufficient for the function to assume in-
termediate values and extrema. However, in R, somewhat stronger conditions
are required. We begin by demonstrating that in R, continuity is not enough
to guarantee that intermediate values be assumed.



916 M. Berz

Example 83. (Continuous Functions and Intermediate Values) Let us
consider two functions, defined on the interval [−1, +1]:

f1(x) =

{

−1 if x ≤ 0 or (x > 0 and x � 1)
1 else

,

f2(x) = Re(x).
We refer to f2 as the Micro Gauss bracket, as it determines the (unique)

real part of x.

Both f1 and f2 are continuous; for any ε just choose δ = d and utilize
that both functions are constant on the d neighborhood around x for any
x ∈ [−1, +1] ⊂ R. The function f2 is even equicontinuous: for any ε > 0 in
R, choose δ = ε/2.

But the function f1 does not assume the value 0 which certainly lies between
f1(−1) and f1(+1).The values of the function f2 are purely real, which implies
that d will not be assumed, while it is obviously an intermediate value. On
the other hand, f2 at least comes infinitely close to any intermediate value.

The next theorem will show that intermediate values are assumed whenever
the function is equidifferentiable and its derivative does not vanish.

Theorem 84. (Intermediate Value Theorem) Let f be a function defined
on the finite interval [a, b], and let f be equidifferentiable there. Furthermore,
assume f(x) is finite, f ′(x) ∼ 1 in [a, b]. Then f assumes every intermediate
value between f(a) and f(b).

Proof. Let S be an intermediate value between f(a) and f(b). We begin
by determining an X ∈ [a, b] such that |S − f(X)| is infinitely small.

In case S lies infinitely near f(a), choose X = a; otherwise, if S lies
infinitely near f(b), choose X = b. Otherwise, let SR, aR, bR be the real parts
of S, a, b, respectively. Define a real function fR : [aR, bR] → R as follows:

fR(r) =







<(f(r)) if r ∈ (aR, bR)
<(f(a)) if r = aR

<(f(b)) if r = bR

,

where ”<” denotes the real part. Then as a real function, fR is continuous
on [aR, bR]. Since S is not infinitely near f(a) or f(b), we infer that SR lies
between fR(aR) and fR(bR), and hence there is a real X ∈ (aR, bR) such that
fR(X) = SR. Because aR < X < bR and all three numbers are real, we have
X ∈ [a, b]. Furthermore, |S − f(X)| ≤ |S − SR|+ |fR(X)− f(X)| is infinitely
small as desired.

Now let s = S − f(X). We try to find an infinitely small x such that
X + x ∈ [a, b] and S = f(X + x). Because of equidifferentiability of f , we get
according to Corollary 71:

S = f(X + x) = f(X) + f ′(X) · x + r(X, x) · x2,
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where r(X, x) is at most finite, and by assumption f ′(X) is finite as well.
Transforming the condition on x to a fixed point problem, we obtain

x =
s

f ′(X)
−r(X, x)

f ′(X)
· x2 = F (x).

Choose now M = {x|λ(x) ≥ λ(s), X + x ∈ [a, b]}. Then r(X, x) and hence
F are defined on M . And we have F (M) ⊂ M : Clearly on M , λ(F (x)) = λ(s).
Furthermore, if X = a, s has the same sign as the derivative in [a, b] and hence
as f ′(X); thus x is positive, entailing X +x ∈ [a, b]; if X = b, s and f ′(X) have
opposite signs, and hence x is negative, entailing X +x ∈ [a, b]; and otherwise,
X is finitely far away from both a and b, entailing X +x ∈ [a, b]. We now show
that F is contracting on M for any infinitely small q that satisfies q >> dλ(s).
Let such a q be given; we first observe that because of (1) and the finiteness
of f ′(X), we have for all x ∈ M that |(f (X + x) − f(X))/x − f ′(X)| <
q · |f ′(X)| /4, but also |(f (X + x)− f(X))/x− f ′(X +x)| < q · |f ′(X)| /4, and
thus by the triangle inequality |f ′(X)− f ′(X +x)| < q · |f ′(X)| /2. Using Cor.
71 and again (1), we have that

|F (x1) − F (x2)| =

∣

∣

∣

∣

r(X, x1)x
2
1 − r(X, x2)x

2
2

f ′(X) · (x1 − x2)

∣

∣

∣

∣

· |x1 − x2|

=

∣

∣

∣

∣

f(X + x1) − f(X + x2) − f ′ (X) (x1 − x2)

f ′(X) (x1 − x2)

∣

∣

∣

∣

· |x1 − x2|

≤
(
∣

∣

∣

∣

f(X + x1) − f(X + x2)

(x1 − x2)
− f ′(X + x1)

∣

∣

∣

∣

+ |f ′ (X + x1) − f ′ (X) |
)

× |x1 − x2|
|f ′(X)| <

(q

2
+

q

2

)

· |x1 − x2| = q · |x1 − x2|.

Thus F is contracting and hence has a fixed point, assuring that the interme-
diate value is assumed.

As pointed out before, mere continuity of the function is not sufficient to
assert the existence of intermediate values. It turns out that for the more
special class of normal functions, an intermediate value theorem can also be
obtained for vanishing first derivative as long as at each point, one of the higher
derivatives does not vanish.

Theorem 85. (Intermediate Value Theorem for Normal Functions) Let
f be an order n normal function defined on the interval [a, b], and let at every
point of the interval at least one of the derivatives not vanish. Then f assumes
every intermediate value between f(a) and f(b).

Proof. Let s ∈ R be between f(a) and f(b) and let SR be the real part
of S and fR the underlying real function. Then SR is between fR(Re(a)) and
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fR(Re(b)), and since fR is continuous on [a, b], there exists a real X ∈ [a, b]
such that fR (X) = SR. Let s = S − fR(X) = S − f(X) = S − SR; then s is
infinitely small. Since f is normal, we have

f(X + x) = fR(X) +
n
∑

i=1

f
(i)
R (X)

xi

i!
;

let now k be the index of the first nonvanishing derivative, which exists by
assumption. Then

f(X + x) = fR(X) +
f

(k)
R (X)

k!
· xk + r(X, x) · xk+1,

where λ(r(X, x)) ≥ 0, i.e. r(X, x) is at most finite. Note that for every
infinitely small x, we have λ(xk+1) > λ(xk), and thus

f(X + x) − fR(X) ≈ f
(k)
R (X)

k!
· xk.

In particular, if k is even, we infer that f(X + x) − fR(X) > 0 if and only

if f
(k)
R (X) > 0 (*). Now we try to find an infinitely small x ∈ R such that

S = f(X + x), which is equivalent to

s =
f

(k)
R (X)

k!
· xk + r(X, x) · xk+1.

Since according to (*), if k is even, then sk!/f (k)(X) > 0. Therefore,

g(x) =

(

k!s

f (k)(X)
− k!r(X, x)

f (k)(X)
· xk+1

)1/k

exists in R whether k is odd or even. The proof is now reduced to finding a
solution of the fixed point problem x = g(x). Let M = {x ∈ R|λ(x) ≥ λ(s)/k},
and let x ∈ M be given; then λ(xk+1) > λ(xk) > λ(s). Hence λ(g(x)) = λ(s)/k,
and thus g(x) ∈ M . Let x1, x2 in M be given such that x1 =q x2. Then
x2

1 =q+λ(s)/k x2
2, and by induction on m we obtain

xm
1 =q+(m−1)λ(s)/k xm

2 for all m ≥ 1.

In particular, xk+1
1 =q+λ(s) xk+1

2 . Hence [g(x1)]
k =q+λ(s) [g(x2)]

k. Since

g(x1) ≈
(

sk!

f
(k)
R

(X)

)1/k

≈ g(x2), we have λ[g(x1) − g(x2)] > λ(s)/k. Let

y = g(x2) − g(x1); then

[g(x2)]
k − [g(x1)]

k = k · y · [g(x1)]
k−1 + Q(y),
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where Q(y) is a polynomial in y with neither constant nor linear terms. Since
λ(y) > λ(s)/k = λ(g(x1)), we obtain λ(Q(y)) > λ[y · (g(x1))

k−1]. Therefore,

λ(y · (g(x1))
k−1) = λ

(

(g(x2))
k − (g(x1))

k
)

> q + λ(s).

Hence, λ(y) > q + λ(s) − (k − 1) · λ(g(x1)) = q + λ(s) − (k − 1) · λ(s)/k.
So λ(y) > q + λ(s)/k, which implies

g(x1) =q+λ(s)/k g(x2), where λ(s)/k > 0.

Therefore, g and M satisfy the requirements of the fixed point theorem.
This provides a solution of the fixed point problem and hence completes the
proof.

While the restrictions of the intermediate value theorem regarding finite-
ness of functions and derivatives may appear somewhat stringent, it is obvious
that the theorem can be utilized in a much more general way by subjecting
the function under consideration to suitable coordinate transformations that
bring it into the proper form. In particular, using linear transformations, we
obtain the intermediate value theorem for scaled normal functions including
delta functions.

Example 86. (Intermediate Values of Delta Functions) The delta func-
tion δ defined as

δ(x) =

{

exp[−x2/d2]/
√

2πd for |x|/d not infinite,
0 else,

assumes every positive real number in an infinitely small neighborhood of the
origin.

Te proof is obvious.

Remark 87. We note that the existence of roots can now be shown
similarly to the real case by use of the intermediate value theorem.

Similar to the question of intermediate values, we find that continuity is
also not sufficient for the existence of extrema.

Example 88. (Continuous and Differentiable Functions and Extrema)
We define f1 and f2 on [−1, +1] as follows:

f1(x) = x − <(x)
f2(x) = (x − <(x))2

where ”<(x)” denotes the real part of x. Then f1 is equicontinuous on [−1, 1],
as the choice δ = ε reveals. The function f2 is even equidifferentiable on
[−1, 1] with f ′

2 = 2f1, as the choice δ = ε reveals. But neither of the functions
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assumes a maximum: all positive infinitely small numbers are exceeded, while
no positive finite number is reached.

Theorem 89. (Maximum Theorem for Normal Functions) Let f be a
continuous order n normal function on the interval [a, b] ⊂ R, and let a, b be
real. Then f assumes a maximum inside the interval.

Proof. Like in the case of the intermediate value theorem, consider first
the real function fR obtained by restricting f to R. Since this function is
continuous, it assumes a maximum m; let M be the set of points where this
happens. We will show that m is also a maximum for f. Apparently it is
assumed for all points in M, and we will see that each point at which the
maximum is assumed is infinitely close to an element in M .

First let x be not infinitely close to a point in M ; then X = Re(x) /∈ M ,
and therefore fR(X) < m. But since |fR(X) − f(x)| ≤ |fR(X) − f(X)| +
|f(X))−f(x)| is infinitely small and both fR(X) and m are real, we even have
f(x) < m.

On the other hand, let x be infinitely close to an element of M, i.e. X =
Re(x) ∈ M . If all n derivatives of f vanish at X, the continued function
is constant on any infinitely small neighborhood of X, and hence f(x) = m.
Otherwise, let j ≤ n be the number of the first non-vanishing derivative. Then
according to the Taylor formula with remainder for R, j must be even because
otherwise X could not yield a local maximum of fR in R; furthermore, f

(j)
R (X)

is negative. But since in the infinitely small neighborhood of X, the dominating
term of the continuation is f

(j)
R (X) · (x − X)j, we infer that f(x) < m.

4.5. Mean Value Theorem and Taylor Theorem

Like in conventional calculus, we obtain the general mean value theorem from
a special case of it, the theorem of Rolle. Similar to before, slightly stronger
smoothness conditions than in R are required, and we present two versions of
Rolle’s theorem.

Theorem 90. (Rolle’s Theorem) Let f be a function on the finite interval
[a, b]. Let f be equidifferentiable twice, and let f ′′ ∼ 1 on [a, b]. Then there
exists ξ ∈ [a, b] with f ′(ξ) = 0.

Proof. Consider the function f ′ and apply the intermediate value theorem.

Theorem 91. (Rolle’s Theorem for Normal Functions) Let f be an order
n normal function on [a, b] with n ≥ 1, and let f(a) = f(b) = 0. Then there is
a ξ ∈ [a, b] with f ′(ξ) = 0.

Proof. Let x be a point in [a, b] where f assumes a maximum, and let
ξ = Re(x). Then according to the last theorem, the real restriction fR of f
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assumes a maximum at ξ, and thus f ′
R(ξ) = 0. But since for real points, the

derivatives of f and fR agree, we even have f ′(ξ) = 0, as desired.
As mentioned before, Rolle’s theorem conveniently allows to prove the mean

value theorem. Because for the case of twice equidifferentiable functions, the
conditions on the second derivative are somewhat cumbersome to phrase, we
restrict ourselves here to the case of normal functions.

Theorem 92. (Mean Value Theorem for Normal Functions) Let f , g be
order n normal functions on the interval [a, b] with n ≥ 1, and let g(b) 6= g(a),
g′ nonzero on [a, b]. Then there is a ξ ∈ [a, b] such that

f(b) − f(a)

g(b) − g(a)
= f ′(ξ)/g′(ξ) .

Proof. Define the function h on [a, b] as follows:

h(x) = f(x) − f(a) − f(b) − f(a)

g(b) − g(a)
· (g(x) − g(a)) .

Then clearly h is order n normal on [a, b] with n ≥ 1; also h(a) = h(b) = 0,
and therefore there is a ξ ∈ (a, b) with h′(ξ) = 0. Differentiating h and dividing
by g′(ξ) give the desired result.

5. Integration

In this section we will define an integral extending the concept of the Riemann
integral on R. In the theory of integration in R, in particular in connection with
the fundamental theorem, it proved important that primitives to functions are
unique up to constants. This is connected to the fact that if the derivative of
a differentiable function vanishes everywhere, the function must be constant.
In R, this is a direct consequence of the mean value theorem, and here we will
proceed in the same way. In a previous example, we showed that continuity
is not enough for this condition; but even equidifferentiability is not sufficient,
as the next example shows.

Example 93. (Non-Constant Equidifferentiable Function with Vanishing
Derivative)Let x ∈ [−1, 1]. Write x = a0+

∑∞

ν=1 aν ·drν , and define f : [−1, 1] →
R via

f(x) =

∞
∑

ν=1

aν · d3rν .

Then f is equidifferentiable on [−1, 1] with f ′(x) = 0 there. To see this,
note first that for all a, b ∈ [−1, 1] with a+ b ∈ [−1, 1] we have that f(a+ b) =
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f(a) + f(b). Let now h = a0 +
∑∞

ν=1 aν · drν 6= 0 in [−1, 1] be given. Then for
any x ∈ [−1, 1], we have

∣

∣

∣

∣

f(x + h) − f(x)

h

∣

∣

∣

∣

=

∣

∣

∣

∣

f(h)

h

∣

∣

∣

∣

=

∣

∣

∣

∣

∑∞

ν=1 aν · d3rν

a0+

∑∞

ν=1 aν · drν

∣

∣

∣

∣

.

Let now ε > 0 be given, and choose δ = ε . Let |h| < δ be nonzero. If ε is
finite, observe that the difference quotient is always infinitely small and hence
less than ε; if ε is infinitely small, observe that the difference quotient is of
the same magnitude as h2, which is infinitely much smaller than ε. So in both
cases, the difference quotient does not differ from 0 by more than ε, implying
f ′(x) = 0.

Remark 94. We note that the situation is not specific to R, but holds
similarly in other non-Archimedean ordered fields because of the existence of
nontrivial field automorphisms on all such fields.

Definition 95. (Primitive for Order n Normal Functions) Let f be piece-
wise an order n normal function on the finite interval [a, b] ∈ R. We say the
function F is a primitive to f on [a, b] if F is piecewise order (n + 1) normal
and satisfies

F ′(x) = f(x) for all x ∈ [a, b].

Theorem 96. (Existence and Uniqueness of Primitives) Let f be piece-
wise continuous order n normal function on the interval [a, b] ∈ R. Then f has
a primitive F on [a, b]. Furthermore, if F1 and F2 are two primitives to f on
[a, b], then

F1 − F2 = const. on [a, b].

Proof. Let f be as stated, fR a real function having f as piecewise con-
tinuation. Then fR is piecewise continuous and n times differentiable. Define
FR (x) =

∫ x

Re(a)
fR(x′)dx′; then FR is piecewise (n+1) times differentiable with

derivative fR. Let F be its piecewise order (n + 1) continuation. Then on
all real points x ∈ [a, b], F ′(x) = f(x). Because of Uniqueness Theorem for
Continuations (Theorem 74), f and F ′ agree on [a, b].

On the other hand, let F = F1 − F2 on [a, b]. Let FR be the restriction
of F to R. Then on R, we have F ′

R = 0 on [Re(a), Re(b)], and thus FR is

constant there. But then also F
(i)
R = 0, implying that its order n continuation

F is constant on [a, b].
After these preparations, we are ready to introduce an integral for the class

of piecewise continuous normal functions.
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Definition 97. (Integral for Piecewise Continuous Normal Functions) Let
f be a piecewise continuous order n normal function on the finite interval [a, b].
Let F be a primitive of f on [a, b]. We define the integral of f over the interval
[a, b] as follows:

∫ b

a

f dx = F (b) − F (a).

We also say
∫ a

b
f dx = −

∫ b

a
f dx.

We note that the definition is unique, independent of the particular choice
of the primitive according to the uniqueness theorem for primitives.

Besides integrals over finite ranges, we also define those over infinite ranges
similar to how it is done in R.

Definition 98. (Infinite Integrals) Let f be a piecewise continuous order n
normal function on the interval [a,∞]. Let F be a primitive, and for real x, let
L̄ = limx→∞ F (x) exist. Let B be positive and infinitely large in magnitude.
Then we define the two integrals

∫ ∞

a

f dx =

∫ B

a

f dx = L̄ − F (a).

Similarly, let f be a piecewise continuous order n normal function on the
interval [−∞, b], let F be its primitive, and for real x, let L = limx→−∞ F (x)
exist; let A be negative with infinitely large magnitude, and define

∫ b

−∞

f dx =

∫ b

A

f dx = F (b) − L.

Furthermore, if both of the above conditions are satisfied, define

∫ ∞

−∞

f dx =

∫ B

A

f dx = L̄ − L.

We obtain the following simple properties of the integral of a normal func-
tion.

Theorem 99. (Properties of the Integral) Let f, g be piecewise con-
tinuous order n normal functions on the interval [a, b] ∈ R, let c ∈ [a, b], let
x1, x2, k ∈ R. Then:

∫ b

a

(k1 · f + k2 · g) dx = k1 ·
∫ b

a

f dx + k2 ·
∫ b

a

g dx,

∫ b

a

f dx =

∫ c

a

f dx +

∫ b

c

f dx,
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∫ b

a

k dx = k · (b − a) (area of rectangle),

If f(x) ≤ g (x) on [a, b],

∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

The proof follows directly from the definition of the integral. Similar to
the situation in R, also here the integral as a function of the right boundary
is a primitive.

Theorem 100. (Fundamental Theorem for Normal Functions) Let f be
a piecewise continuous order n normal function on the finite interval [a, b] ∈ R,
c ∈ R with a ≤ c ≤ b. For x ∈ [a, b] we define a function g as

g(x) =

∫ x

c

f(x) dx.

Then g is a primitive of f .

The integral can readily be extended to scaled normal functions as follows.

Definition 101. (Integral for Scaled Normal Functions) Let f = l1 ◦
fn ◦ l2 be a scaled piecewise normal function on the interval [a, b] with linear
transformations l1(x) = a1 + b1 · x and l2(x) = a2 + b2 · x and a piecewise
normal function fn as in the definition (79). Then we define the integral of the
function f as:

∫ b

a

f(x) dx = (b − a) · a1 +
b1

b2
·
∫ l2(b)

l2(a)

fn dx.

Apparently the integral for scaled normal functions is particularly useful
for studying delta functions and other improper functions. One obtains the
following theorem.

Theorem 102. (Integral of Delta Functions) Let δ be a delta function.
Then for any at least finite a, we have

∫ a

−a

δ(x)dx = 1.

Proof. Since δ is a delta function, there is an order n normal function δn

such that δ(x) = cδn(cx) if |cx| is not infinitely large, zero else. Using the rules
about integration of scaled normal functions and infinite integrals, we have

∫ a

−a

δ(x) dx =

∫ a

−a

cδn(cx) dx
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=
c

c

∫ ca

−ca

δn(x) dx =

∫ ∞

−∞

δn(x) dx = 1.

In a similar way, we obtain the fundamental theorem of delta functions:

Theorem 103. (Fundamental Theorem of Delta Functions) Let δ be an
order n delta function and f a continuous order n normal function on [−a, a]
with a ∈ R. Then if the integral exists, we have

∫ a

−a

f(x) · δ(x)dx =0 f(0),

i.e. the integral agrees with f(0) up to at most infinitely small error. Further-
more, if n = 0, the integral always exists, and exactly equals f(0).

Proof. Since f is a continuous order n normal function, for any infinitely
small x, we have f(x) = f(0) +

∑n
i=1 f (i)(0) · xi/i!. Since δ is a delta function,

there is an order n normal function δn such that δ(x) = cδn(cx) if |cx| is not
infinitely large, zero else. Using the rules about integration of scaled normal
functions and infinite integrals, we obtain

∫ a

−a

f(x) · δ(x) dx =

∫ a

−a

f(x) · cδn(cx) dx

=
c

c

∫ ca

−ca

f(
x

c
) · δn(x) dx =

∫ ∞

−∞

f(
x

c
) · δn(x) dx

=

∫ ∞

−∞

[

f(0) +
n
∑

i=1

f (i) · xi

cii!

]

· δn(x) dx.

Since all the f (i) are finite, we have f(0) +
∑n

i=1 f (i) · xi

cii!
=0 f(0), and the

statement follows. In the special case of n = 0, the integral exactly equals
f(0).

6. Derivates, Continuity, and Differentiability

In this section, we will introduce a different approach to continuity and dif-
ferentiability that will prove to have far-reaching consequences regarding local
expansion in Taylor series, and consequently allows the development of a par-
ticularly strong calculus.

Definition 104. (Continuity) Let M be a bounded subset of R, f : M ⊂
R → R. We say f is continuous on the set M iff its difference quotients are
bounded, i.e. there exists l0 ∈ R such that

∣

∣

∣

∣

f(x) − f (x̄)

x − x̄

∣

∣

∣

∣

< l0 for all x, x̄ ∈ M.
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The number l0 is called a Lipschitz constant of f.

Apparently continuity is characterized by a particular local behavior:

Lemma 105. (Remainder Formula) Let M be a bounded subset of R,
f : M ⊂ R → R. Then f is continuous with Lipschitz constant l0 if and only
if there is a function s

(0)
x̄ (x) with |s(0)

x̄ (x)| < l0 such that

f(x) = f(x̄) + s
(0)
x̄ (x) · (x − x̄). (2)

In particular, for any r ∈ Q, this entails

f (x) =r+λ(l0) f (x̄) for all |x − x̄| << dr. (3)

It immediately follows that if f is continuous on M = [a, b] ⊂ R, then
f is bounded on M. Furthermore, the conventional sum and product rules of
continuity hold.

Theorem 106. (Singularity of Continuous Functions) Let x̄ ∈ [a, b],
f continuous on the interval [a, b]\{x̄}. Then there is a unique continuous
extension f̄ of f to the full interval [a, b].

Proof. Let s ∈ R be such that the points of the sequence xn = x̄ + s · dn,
which apparently converges to x̄, all lie in [a, b]. Then the sequence f(xn) is
Cauchy by virtue of (2). Define f̄(x̄) = lim f(xn); then by virtue of (2), f̄ is
continuous on [a, b], and it is unique there.

Definition 107. (Differentiability, Derivate, Derivative) Let M be a
bounded subset of R, f : M ⊂ R → R. We say f is differentiable at the
point x̄ ∈ M iff the difference quotient [f(x̄) − f(x)]/(x̄ − x) is continuous on
M\{x̄}. In this case, we call the unique continuation of the difference quotient

onto M the first derivate D
(1)
~x (x) of f . We call the value

f (1)(x̄) = D
(1)
~x (x̄) (4)

the derivative of the function f at x̄.

As before, we obtain the following theorem.

Theorem 108. (Derivatives are Differential Quotients) Let M be a
bounded subset of R, f : M ⊂ R → R. Let f be differentiable at the point x̄,
and let l1 be a Lipschitz constant of the derivate D

(1)
~x (x̄). Let r ∈ Q be given,

and let h ∈ R be such that |h| << dr and x̄ + h ∈ M. Then

f ′(x) =r+λ(l1)
f(x + h) − f(x)

h
. (5)
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Using the concept of differentiation, we can successively define higher deriva-
tives.

Definition 109. (Higher Derivates and Derivatives) Let M be a bounded
subset of R, f : M ⊂ R → R differentiable on M. We say f is twice differen-
tiable at x̄ if the derivate D

(1)
~x (x) is differentiable at the point x̄ ∈ M. In this

case, we call the derivate of D
(1)
~x (x) the second derivate of f, and denote it by

D
(2)
x̄ (x). Similarly, we say inductively that f is n times differentiable, if it is

(n−1) times differentiable, and its (n−1)st derivate D
(n−1)
x̄ (x) is differentiable.

We call the value

f (n)(x̄) =
1

n!
D

(n)
x̄ (x̄) (6)

the nth derivative of f at x̄.

As a consequence, we obtain the next theorem.

Theorem 110. (Taylor Formula) Let M be a bounded subset of R,
f : M ⊂ R → R, (n + 1)-times differentiable on M. Then we have

f(x) = f(x̄) + f ′(x̄)(x − x̄) + ... +
f (n)(x̄)

n!
(x − x̄)n + s

(n)
x̄ (x) · (x − x̄)n+1, (7)

where the function s
(n)
x̄ (x) is bounded in magnitude. If the bound is denoted

by ln,then for any r ∈ Q, this entails

f (x) =(n+1)r+λ(ln) f(x̄) + f ′(x̄)(x − x̄) + ... +
f (n)(x̄)

n!
(x − x̄)n (8)

for all |x − x̄| << dr.

The proof follows directly from repeated application of Lemma 2.

Theorem 111. (Taylor Expansion) Let M be a bounded subset of R,
f : M ⊂ R → R infinitely often differentiable on M. Let ln denote the bound
of the nth derivative, and let the scale s of the function f be defined by

s = − lim inf(
λ(ln)

n
) .

Then for all x with λ(x−x̄) > s, the Taylor series of f converges. Furthermore,
we have

f(x) =
∞
∑

n=0

f (n)(x̄)

n!
(x − x̄)n. (9)
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A particularly important case leading to s = 0 is the following.

Corollary 112. Let M be a bounded subset of R, f : M ⊂ R → R
infinitely often differentiable on M , and let all derivates of f be finite on M.
Then the Taylor series of f at x̄ converges to f(x) in every infinitely small
neighborhood around x̄.
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